CINXE.COM

monoidal category with diagonals in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> monoidal category with diagonals in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> monoidal category with diagonals </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/9827/#Item_11" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="monoidal_categories">Monoidal categories</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+monoidal+category">enriched monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/tensor+category">tensor category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+diagram">string diagram</a>, <a class="existingWikiWord" href="/nlab/show/tensor+network">tensor network</a></p> </li> </ul> <p><strong>With braiding</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/balanced+monoidal+category">balanced monoidal category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/twist">twist</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a></p> </li> </ul> <p><strong>With duals for objects</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+duals">category with duals</a> (list of them)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dualizable+object">dualizable object</a> (what they have)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/rigid+monoidal+category">rigid monoidal category</a>, a.k.a. <a class="existingWikiWord" href="/nlab/show/autonomous+category">autonomous category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pivotal+category">pivotal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spherical+category">spherical category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ribbon+category">ribbon category</a>, a.k.a. <a class="existingWikiWord" href="/nlab/show/tortile+category">tortile category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+closed+category">compact closed category</a></p> </li> </ul> <p><strong>With duals for morphisms</strong></p> <ul> <li> <p><span class="newWikiWord">monoidal dagger-category<a href="/nlab/new/monoidal+dagger-category">?</a></span></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+dagger-category">symmetric monoidal dagger-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dagger+compact+category">dagger compact category</a></p> </li> </ul> <p><strong>With traces</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/trace">trace</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/traced+monoidal+category">traced monoidal category</a></p> </li> </ul> <p><strong>Closed structure</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+closed+category">cartesian closed category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+category">closed category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/star-autonomous+category">star-autonomous category</a></p> </li> </ul> <p><strong>Special sorts of products</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semicartesian+monoidal+category">semicartesian monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category+with+diagonals">monoidal category with diagonals</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multicategory">multicategory</a></p> </li> </ul> <p><strong>Semisimplicity</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/semisimple+category">semisimple category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fusion+category">fusion category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modular+tensor+category">modular tensor category</a></p> </li> </ul> <p><strong>Morphisms</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+functor">monoidal functor</a></p> <p>(<a class="existingWikiWord" href="/nlab/show/lax+monoidal+functor">lax</a>, <a class="existingWikiWord" href="/nlab/show/oplax+monoidal+functor">oplax</a>, <a class="existingWikiWord" href="/nlab/show/strong+monoidal+functor">strong</a> <a class="existingWikiWord" href="/nlab/show/bilax+monoidal+functor">bilax</a>, <a class="existingWikiWord" href="/nlab/show/Frobenius+monoidal+functor">Frobenius</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/braided+monoidal+functor">braided monoidal functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+functor">symmetric monoidal functor</a></p> </li> </ul> <p><strong>Internal monoids</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+in+a+monoidal+category">monoid in a monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+monoid+in+a+symmetric+monoidal+category">commutative monoid in a symmetric monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module+over+a+monoid">module over a monoid</a></p> </li> </ul> <p><strong id="_examples">Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/tensor+product">tensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+monoidal+structure+on+presheaves">closed monoidal structure on presheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Day+convolution">Day convolution</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/coherence+theorem+for+monoidal+categories">coherence theorem for monoidal categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></p> </li> </ul> <p><strong>In higher category theory</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/braided+monoidal+2-category">braided monoidal 2-category</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+bicategory">monoidal bicategory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cartesian+bicategory">cartesian bicategory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+monoidal+n-category">k-tuply monoidal n-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/little+cubes+operad">little cubes operad</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-category">monoidal (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+double+category">compact double category</a></p> </li> </ul> </div></div> <h4 id="category_theory">Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#SmashMonoidalDiagonals'>Smash-monoidal diagonals</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A general <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mo>⊗</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(C,\otimes)</annotation></semantics></math> does not admit <a class="existingWikiWord" href="/nlab/show/diagonal">diagonal</a> <a class="existingWikiWord" href="/nlab/show/natural+transformations">natural transformations</a> of the form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>⟶</mo><mi>x</mi><mo>⊗</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">x \longrightarrow x\otimes x</annotation></semantics></math>, unlike the case of a <a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a> (where the monoidal product is the <a class="existingWikiWord" href="/nlab/show/Cartesian+product">Cartesian product</a>). A <strong>monoidal category with diagonals</strong> is a monoidal category with the extra <a class="existingWikiWord" href="/nlab/show/structure">structure</a> of a consistent system of such <a class="existingWikiWord" href="/nlab/show/diagonal+morphisms">diagonal morphisms</a>.</p> <h2 id="definition">Definition</h2> <p>A consistent system of diagonal maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mi>x</mi></msub><mo lspace="verythinmathspace">:</mo><mi>x</mi><mo>→</mo><mi>x</mi><mo>⊗</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">\Delta_x\colon x \to x \otimes x</annotation></semantics></math> as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> varies through the <a class="existingWikiWord" href="/nlab/show/objects">objects</a> of a <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mo>⊗</mo><mo>,</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(C,\otimes,I)</annotation></semantics></math> should be <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural</a>, so that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>⊗</mo><mi>f</mi><mo stretchy="false">)</mo><mo>∘</mo><msub><mi>Δ</mi> <mi>x</mi></msub><mo>=</mo><msub><mi>Δ</mi> <mi>y</mi></msub><mo>∘</mo><mi>f</mi></mrow><annotation encoding="application/x-tex">(f \otimes f)\circ \Delta_x = \Delta_y \circ f</annotation></semantics></math>, for any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>x</mi><mo>→</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">f\colon x\to y</annotation></semantics></math>. Hence such a system is a <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a> from the <a class="existingWikiWord" href="/nlab/show/identity+functor">identity functor</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/composition">composite</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mi>C</mi><mo>×</mo><mi>C</mi><mover><mo>→</mo><mo>⊗</mo></mover><mi>C</mi></mrow><annotation encoding="application/x-tex">C \to C \times C \stackrel{\otimes}{\to} C</annotation></semantics></math> of the <a class="existingWikiWord" href="/nlab/show/diagonal+functor">diagonal functor</a> with the given <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal product functor</a>.</p> <p>Another desirable property is that the diagonal map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mi>I</mi></msub><mo lspace="verythinmathspace">:</mo><mi>I</mi><mo>→</mo><mi>I</mi><mo>⊗</mo><mi>I</mi></mrow><annotation encoding="application/x-tex">\Delta_I\colon I \to I\otimes I</annotation></semantics></math> on the <a class="existingWikiWord" href="/nlab/show/tensor+unit">tensor unit</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/inverse+morphism">inverse</a> of the left <a class="existingWikiWord" href="/nlab/show/unitor">unitor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℓ</mi> <mi>I</mi></msub><mo lspace="verythinmathspace">:</mo><mi>I</mi><mo>⊗</mo><mi>I</mi><mover><mo>→</mo><mo>∼</mo></mover><mi>I</mi></mrow><annotation encoding="application/x-tex">\ell_I\colon I \otimes I \stackrel{\sim}{\to} I</annotation></semantics></math> (which is the same as the right unitor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>r</mi> <mi>I</mi></msub></mrow><annotation encoding="application/x-tex">r_I</annotation></semantics></math>).</p> <h2 id="examples">Examples</h2> <h3 id="general">General</h3> <ul> <li> <p>Any <a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a> has a canonical structure of diagonal maps given by the actual <a class="existingWikiWord" href="/nlab/show/diagonal+morphisms">diagonal morphisms</a>.</p> </li> <li> <p>Given a <a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a>, the <a class="existingWikiWord" href="/nlab/show/wide+subcategory">wide subcategory</a> consisting of the <a class="existingWikiWord" href="/nlab/show/monomorphisms">monomorphisms</a> is a monoidal category with the same product and unit. The <a class="existingWikiWord" href="/nlab/show/diagonal+morphism">diagonal morphism</a> of the original category, always a <a class="existingWikiWord" href="/nlab/show/monomorphism">monomorphism</a>, plays the role of the diagonal maps in the subcategory. Now there are no projections, since, for instance, in <a class="existingWikiWord" href="/nlab/show/Set">Set</a>, the projection maps are almost never injective.</p> </li> </ul> <div> <h3 id="SmashMonoidalDiagonals">Smash-monoidal diagonals</h3> <p>Write</p> <div class="maruku-equation" id="eq:SmashMonoidalCategoryOfPointedTopologicalSpaces"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>PointedTopologicalSpaces</mi><mo>,</mo><msup><mi>S</mi> <mn>0</mn></msup><mo>,</mo><mo>∧</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thickmathspace"></mspace><mi>SymmetricMonoidalCategories</mi></mrow><annotation encoding="application/x-tex"> \big( PointedTopologicalSpaces, S^0, \wedge \big) \;\;\in\; SymmetricMonoidalCategories </annotation></semantics></math></div> <ul> <li> <p>for the <a class="existingWikiWord" href="/nlab/show/category">category</a> of <a class="existingWikiWord" href="/nlab/show/pointed+topological+spaces">pointed topological spaces</a> (with respect to some <a class="existingWikiWord" href="/nlab/show/convenient+category+of+topological+spaces">convenient category of topological spaces</a> such as <a class="existingWikiWord" href="/nlab/show/compactly+generated+topological+spaces">compactly generated topological spaces</a> or <a class="existingWikiWord" href="/nlab/show/D-topological+spaces">D-topological spaces</a>)</p> </li> <li> <p>regarded as a <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a> with tensor product the <a class="existingWikiWord" href="/nlab/show/smash+product">smash product</a> and unit the <a class="existingWikiWord" href="/nlab/show/0-sphere">0-sphere</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>0</mn></msup><mspace width="thinmathspace"></mspace><mo>=</mo><mspace width="thinmathspace"></mspace><msub><mo>*</mo> <mo>+</mo></msub></mrow><annotation encoding="application/x-tex">S^0 \,=\, \ast_+</annotation></semantics></math>.</p> </li> </ul> <p>This category also has a <a class="existingWikiWord" href="/nlab/show/Cartesian+product">Cartesian product</a>, given on pointed spaces <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mi>i</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>𝒳</mi> <mi>i</mi></msub><mo>,</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X_i = (\mathcal{X}_i, x_i)</annotation></semantics></math> with underlying <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝒳</mi> <mi>i</mi></msub><mo>∈</mo><mi>TopologicalSpaces</mi></mrow><annotation encoding="application/x-tex">\mathcal{X}_i \in TopologicalSpaces</annotation></semantics></math> by</p> <div class="maruku-equation" id="eq:CartesianProductOfPointedTopologicalSpaces"><span class="maruku-eq-number">(2)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mn>1</mn></msub><mo>×</mo><msub><mi>X</mi> <mn>2</mn></msub><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mo stretchy="false">(</mo><msub><mi>𝒳</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">(</mo><msub><mi>𝒳</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>≔</mo><mspace width="thickmathspace"></mspace><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>𝒳</mi> <mn>1</mn></msub><mo>×</mo><msub><mi>𝒳</mi> <mn>2</mn></msub><mo>,</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> X_1 \times X_2 \;=\; (\mathcal{X}_1, x_1) \times (\mathcal{X}_2, x_2) \;\coloneqq\; \big( \mathcal{X}_1 \times \mathcal{X}_2 , (x_1, x_2) \big) \,. </annotation></semantics></math></div> <p>But since this <a class="existingWikiWord" href="/nlab/show/smash+product">smash product</a> is a non-trivial <a class="existingWikiWord" href="/nlab/show/quotient+topological+space">quotient</a> of the Cartesian product</p> <div class="maruku-equation" id="eq:SmashProductOfPointedSpacesQuotientDefinition"><span class="maruku-eq-number">(3)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>X</mi> <mn>1</mn></msub><mo>∧</mo><msub><mi>X</mi> <mn>1</mn></msub><mspace width="thinmathspace"></mspace><mo>≔</mo><mspace width="thinmathspace"></mspace><mfrac><mrow><msub><mi>X</mi> <mn>1</mn></msub><mo>×</mo><msub><mi>X</mi> <mn>2</mn></msub></mrow><mrow><msub><mi>X</mi> <mn>1</mn></msub><mo>∨</mo><msub><mi>X</mi> <mn>2</mn></msub></mrow></mfrac></mrow><annotation encoding="application/x-tex"> X_1 \wedge X_1 \,\coloneqq\, \frac{X_1 \times X_2}{ X_1 \vee X_2 } </annotation></semantics></math></div> <p>it is not itself <a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian</a>, but just <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal</a>.</p> <p>However, via the quotienting <a class="maruku-eqref" href="#eq:SmashProductOfPointedSpacesQuotientDefinition">(3)</a>, it still inherits, from the <a class="existingWikiWord" href="/nlab/show/diagonal+morphisms">diagonal morphisms</a> on underlying topological spaces</p> <div class="maruku-equation" id="eq:CartesianDiagonalOnTopologicalSpaces"><span class="maruku-eq-number">(4)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>𝒳</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><msub><mi>Δ</mi> <mi>𝒳</mi></msub></mrow></mover></mtd> <mtd><mi>𝒳</mi><mo>×</mo><mi>𝒳</mi></mtd></mtr> <mtr><mtd><mi>x</mi></mtd> <mtd><mo>↦</mo></mtd> <mtd><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathcal{X} &amp;\overset{ \Delta_{\mathcal{X}} }{\longrightarrow}&amp; \mathcal{X} \times \mathcal{X} \\ x &amp;\mapsto&amp; (x,x) } </annotation></semantics></math></div> <p>a suitable notion of <a class="existingWikiWord" href="/nlab/show/monoidal+category+with+diagonals">monoidal diagonals</a>:</p> <p> <div class="num_defn" id="SmashMonoidalDiagonal"> <h6>Definition</h6> <p>[Smash monoidal diagonals]</p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mi>PointedTopologicalSpaces</mi></mrow><annotation encoding="application/x-tex">X \,\in\, PointedTopologicalSpaces</annotation></semantics></math>, let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>D</mi> <mi>X</mi></msub><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mi>X</mi><mo>⟶</mo><mi>X</mi><mo>∧</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">D_X \;\colon\; X \longrightarrow X \wedge X</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/composition">composite</a></p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="176.057" height="35.269" viewBox="0 0 176.057 35.269"> <defs> <g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-0-0"> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-0-1"> <path d="M 5.671875 -4.859375 L 4.546875 -7.46875 C 4.703125 -7.75 5.0625 -7.8125 5.21875 -7.8125 C 5.28125 -7.8125 5.421875 -7.828125 5.421875 -8.03125 C 5.421875 -8.15625 5.3125 -8.15625 5.234375 -8.15625 C 5.03125 -8.15625 4.796875 -8.140625 4.59375 -8.140625 L 3.890625 -8.140625 C 3.171875 -8.140625 2.640625 -8.15625 2.625 -8.15625 C 2.53125 -8.15625 2.421875 -8.15625 2.421875 -7.9375 C 2.421875 -7.8125 2.515625 -7.8125 2.671875 -7.8125 C 3.375 -7.8125 3.421875 -7.703125 3.53125 -7.40625 L 4.953125 -4.09375 L 2.359375 -1.3125 C 1.9375 -0.84375 1.421875 -0.390625 0.53125 -0.34375 C 0.390625 -0.328125 0.296875 -0.328125 0.296875 -0.125 C 0.296875 -0.078125 0.3125 0 0.4375 0 C 0.609375 0 0.78125 -0.03125 0.953125 -0.03125 L 1.515625 -0.03125 C 1.90625 -0.03125 2.3125 0 2.6875 0 C 2.765625 0 2.921875 0 2.921875 -0.21875 C 2.921875 -0.328125 2.828125 -0.34375 2.765625 -0.34375 C 2.515625 -0.375 2.359375 -0.5 2.359375 -0.6875 C 2.359375 -0.890625 2.515625 -1.046875 2.859375 -1.40625 L 3.921875 -2.5625 C 4.1875 -2.828125 4.8125 -3.53125 5.078125 -3.796875 L 6.328125 -0.84375 C 6.34375 -0.828125 6.390625 -0.703125 6.390625 -0.6875 C 6.390625 -0.578125 6.125 -0.375 5.75 -0.34375 C 5.671875 -0.34375 5.546875 -0.328125 5.546875 -0.125 C 5.546875 0 5.671875 0 5.71875 0 C 5.921875 0 6.171875 -0.03125 6.375 -0.03125 L 7.6875 -0.03125 C 7.90625 -0.03125 8.125 0 8.328125 0 C 8.421875 0 8.546875 0 8.546875 -0.234375 C 8.546875 -0.34375 8.421875 -0.34375 8.3125 -0.34375 C 7.609375 -0.359375 7.578125 -0.421875 7.375 -0.859375 L 5.796875 -4.5625 L 7.3125 -6.1875 C 7.4375 -6.3125 7.703125 -6.609375 7.8125 -6.734375 C 8.328125 -7.265625 8.8125 -7.75 9.78125 -7.8125 C 9.890625 -7.828125 10.015625 -7.828125 10.015625 -8.03125 C 10.015625 -8.15625 9.90625 -8.15625 9.859375 -8.15625 C 9.6875 -8.15625 9.515625 -8.140625 9.34375 -8.140625 L 8.796875 -8.140625 C 8.421875 -8.140625 8 -8.15625 7.625 -8.15625 C 7.546875 -8.15625 7.40625 -8.15625 7.40625 -7.953125 C 7.40625 -7.828125 7.484375 -7.8125 7.546875 -7.8125 C 7.75 -7.796875 7.953125 -7.703125 7.953125 -7.46875 L 7.9375 -7.453125 C 7.921875 -7.359375 7.90625 -7.25 7.765625 -7.09375 Z M 5.671875 -4.859375 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-1-0"> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-1-1"> <path d="M 1.328125 -0.625 C 1.265625 -0.328125 1.25 -0.265625 0.65625 -0.265625 C 0.5 -0.265625 0.40625 -0.265625 0.40625 -0.109375 C 0.40625 0 0.515625 0 0.640625 0 L 3.390625 0 C 5.0625 0 6.734375 -1.609375 6.734375 -3.390625 C 6.734375 -4.609375 5.921875 -5.4375 4.734375 -5.4375 L 1.953125 -5.4375 C 1.8125 -5.4375 1.703125 -5.4375 1.703125 -5.296875 C 1.703125 -5.171875 1.796875 -5.171875 1.9375 -5.171875 C 2.203125 -5.171875 2.4375 -5.171875 2.4375 -5.046875 C 2.4375 -5.015625 2.421875 -5.015625 2.40625 -4.90625 Z M 3.09375 -4.890625 C 3.15625 -5.15625 3.171875 -5.171875 3.5 -5.171875 L 4.46875 -5.171875 C 5.390625 -5.171875 6.03125 -4.640625 6.03125 -3.671875 C 6.03125 -3.40625 5.90625 -2.109375 5.21875 -1.21875 C 4.875 -0.765625 4.1875 -0.265625 3.25 -0.265625 L 2.0625 -0.265625 C 1.984375 -0.28125 1.953125 -0.28125 1.953125 -0.328125 C 1.953125 -0.390625 1.96875 -0.46875 1.984375 -0.515625 Z M 3.09375 -4.890625 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-1-2"> <path d="M 4.15625 -3.046875 C 4.546875 -3.4375 5.671875 -4.59375 5.859375 -4.75 C 6.203125 -5 6.40625 -5.140625 6.96875 -5.171875 C 7.015625 -5.1875 7.078125 -5.234375 7.078125 -5.328125 C 7.078125 -5.40625 7.015625 -5.4375 6.96875 -5.4375 C 6.890625 -5.4375 6.84375 -5.421875 6.21875 -5.421875 C 5.625 -5.421875 5.40625 -5.4375 5.375 -5.4375 C 5.34375 -5.4375 5.21875 -5.4375 5.21875 -5.296875 C 5.21875 -5.28125 5.21875 -5.1875 5.328125 -5.171875 C 5.390625 -5.171875 5.609375 -5.15625 5.609375 -4.96875 C 5.609375 -4.921875 5.5625 -4.828125 5.5 -4.765625 L 5.484375 -4.71875 C 5.453125 -4.703125 5.453125 -4.6875 5.375 -4.609375 L 4.046875 -3.265625 L 3.234375 -4.953125 C 3.34375 -5.140625 3.578125 -5.171875 3.6875 -5.171875 C 3.71875 -5.171875 3.828125 -5.1875 3.828125 -5.328125 C 3.828125 -5.390625 3.78125 -5.4375 3.703125 -5.4375 C 3.625 -5.4375 3.328125 -5.421875 3.25 -5.421875 C 3.203125 -5.421875 2.90625 -5.421875 2.734375 -5.421875 C 1.984375 -5.421875 1.890625 -5.4375 1.828125 -5.4375 C 1.796875 -5.4375 1.671875 -5.4375 1.671875 -5.296875 C 1.671875 -5.171875 1.765625 -5.171875 1.890625 -5.171875 C 2.296875 -5.171875 2.359375 -5.09375 2.4375 -4.953125 L 3.5 -2.71875 L 1.859375 -1.046875 C 1.390625 -0.578125 1.015625 -0.296875 0.453125 -0.265625 C 0.34375 -0.25 0.25 -0.25 0.25 -0.109375 C 0.25 -0.0625 0.296875 0 0.375 0 C 0.4375 0 0.515625 -0.03125 1.125 -0.03125 C 1.703125 -0.03125 1.9375 0 1.96875 0 C 2.015625 0 2.140625 0 2.140625 -0.15625 C 2.140625 -0.171875 2.125 -0.25 2.015625 -0.265625 C 1.859375 -0.265625 1.75 -0.328125 1.75 -0.46875 C 1.75 -0.59375 1.84375 -0.703125 1.953125 -0.828125 C 2.09375 -0.96875 2.515625 -1.390625 2.796875 -1.671875 C 2.984375 -1.84375 3.421875 -2.3125 3.609375 -2.484375 L 4.53125 -0.578125 C 4.5625 -0.5 4.5625 -0.5 4.5625 -0.484375 C 4.5625 -0.421875 4.40625 -0.28125 4.140625 -0.265625 C 4.078125 -0.265625 3.96875 -0.25 3.96875 -0.109375 C 3.96875 -0.109375 3.984375 0 4.109375 0 C 4.1875 0 4.484375 -0.015625 4.5625 -0.03125 L 5.078125 -0.03125 C 5.8125 -0.03125 5.921875 0 6 0 C 6.03125 0 6.140625 0 6.140625 -0.15625 C 6.140625 -0.265625 6.046875 -0.265625 5.921875 -0.265625 C 5.484375 -0.265625 5.4375 -0.359375 5.390625 -0.484375 Z M 4.15625 -3.046875 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-2-0"> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-2-1"> <path d="M 3.578125 -2.203125 C 3.578125 -2.203125 3.546875 -2.265625 3.546875 -2.28125 C 3.546875 -2.28125 3.546875 -2.28125 3.671875 -2.40625 L 4.640625 -3.34375 C 4.796875 -3.484375 5 -3.625 5.0625 -3.65625 C 5.296875 -3.796875 5.5 -3.84375 5.703125 -3.84375 C 5.796875 -3.859375 5.875 -3.859375 5.875 -4 C 5.875 -4.03125 5.828125 -4.09375 5.78125 -4.09375 C 5.59375 -4.09375 5.375 -4.0625 5.1875 -4.0625 L 4.828125 -4.0625 C 4.71875 -4.0625 4.59375 -4.09375 4.46875 -4.09375 C 4.4375 -4.09375 4.34375 -4.09375 4.34375 -3.9375 C 4.34375 -3.859375 4.421875 -3.84375 4.453125 -3.84375 C 4.53125 -3.84375 4.640625 -3.8125 4.640625 -3.703125 C 4.640625 -3.625 4.578125 -3.578125 4.40625 -3.390625 L 3.90625 -2.9375 C 3.875 -2.890625 3.5 -2.53125 3.421875 -2.484375 L 2.796875 -3.640625 C 2.78125 -3.65625 2.765625 -3.703125 2.765625 -3.71875 C 2.765625 -3.75 2.890625 -3.84375 3.0625 -3.84375 C 3.125 -3.84375 3.203125 -3.859375 3.203125 -4 C 3.203125 -4.015625 3.203125 -4.09375 3.09375 -4.09375 C 2.96875 -4.09375 2.828125 -4.0625 2.703125 -4.0625 C 2.703125 -4.0625 2.296875 -4.0625 2.296875 -4.0625 C 2.171875 -4.0625 2.0625 -4.0625 1.9375 -4.0625 C 1.8125 -4.0625 1.6875 -4.09375 1.578125 -4.09375 C 1.515625 -4.09375 1.4375 -4.0625 1.4375 -3.9375 C 1.4375 -3.84375 1.515625 -3.84375 1.640625 -3.84375 C 1.984375 -3.84375 2.015625 -3.78125 2.078125 -3.6875 L 2.96875 -2.046875 C 2.84375 -1.9375 2.546875 -1.65625 2.34375 -1.453125 C 1.34375 -0.484375 1.125 -0.265625 0.546875 -0.234375 C 0.46875 -0.234375 0.390625 -0.234375 0.390625 -0.09375 C 0.390625 -0.046875 0.421875 0 0.484375 0 C 0.65625 0 0.875 -0.03125 1.0625 -0.03125 C 1.234375 -0.03125 1.625 0 1.78125 0 C 1.8125 0 1.921875 0 1.921875 -0.15625 C 1.921875 -0.234375 1.84375 -0.234375 1.8125 -0.234375 C 1.71875 -0.25 1.609375 -0.28125 1.609375 -0.375 C 1.609375 -0.40625 1.625 -0.4375 1.6875 -0.515625 C 1.6875 -0.53125 1.703125 -0.5625 1.71875 -0.5625 L 3.078125 -1.84375 L 3.84375 -0.453125 C 3.875 -0.40625 3.890625 -0.390625 3.890625 -0.375 C 3.890625 -0.328125 3.765625 -0.25 3.578125 -0.234375 C 3.53125 -0.234375 3.4375 -0.234375 3.4375 -0.09375 C 3.4375 -0.078125 3.453125 0 3.546875 0 C 3.671875 0 3.8125 -0.015625 3.9375 -0.015625 C 3.9375 -0.015625 4.34375 -0.03125 4.34375 -0.03125 C 4.46875 -0.03125 4.578125 -0.015625 4.703125 -0.015625 C 4.828125 -0.015625 4.953125 0 5.0625 0 C 5.140625 0 5.203125 -0.03125 5.203125 -0.15625 C 5.203125 -0.234375 5.109375 -0.234375 5.03125 -0.234375 C 4.65625 -0.234375 4.625 -0.296875 4.5625 -0.40625 Z M 3.578125 -2.203125 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-3-0"> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-3-1"> <path d="M -5.390625 0.578125 L -5.375 0.640625 L -5.34375 0.703125 L -5.296875 0.75 L -5.25 0.765625 C -4.859375 0.828125 -4.4375 0.828125 -4.046875 0.828125 C -2.515625 0.828125 -1.15625 0.578125 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 L -0.0625 -0.1875 C -1.25 0.1875 -2.5625 0.421875 -4.046875 0.421875 C -4.421875 0.421875 -4.8125 0.40625 -5.1875 0.375 C -5.296875 0.390625 -5.375 0.453125 -5.390625 0.578125 Z M -5.390625 0.578125 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-3-2"> <path d="M -5.1875 -1.546875 L -5.171875 -1.484375 L -5.140625 -1.421875 L -5.109375 -1.390625 C -3.5625 -0.546875 -1.921875 0 0 0.203125 C 0.125 0.1875 0.1875 0.125 0.203125 0 L 0.1875 -0.0625 L 0.15625 -0.125 L 0.125 -0.15625 L 0.0625 -0.1875 L 0 -0.203125 C -1.734375 -0.375 -3.171875 -0.828125 -4.609375 -1.5625 C -4.71875 -1.625 -4.828125 -1.71875 -4.984375 -1.75 C -5.109375 -1.734375 -5.171875 -1.671875 -5.1875 -1.546875 Z M -5.1875 -1.546875 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-4-0"> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-4-1"> <path d="M 0 -0.203125 L -0.0625 -0.1875 L -0.125 -0.15625 C -1.671875 0.71875 -3.03125 1.90625 -4.109375 3.296875 L -4.140625 3.34375 L -4.140625 3.40625 C -4.140625 3.53125 -4.0625 3.59375 -3.953125 3.609375 L -3.828125 3.578125 L -3.78125 3.53125 C -2.734375 2.171875 -1.390625 1.015625 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-4-2"> <path d="M 0 -0.203125 C -1.78125 -0.015625 -3.25 0.4375 -4.71875 1.1875 C -4.859375 1.25 -5.03125 1.3125 -5.140625 1.421875 L -5.171875 1.484375 L -5.1875 1.546875 C -5.171875 1.671875 -5.109375 1.734375 -4.984375 1.75 L -4.921875 1.734375 C -3.609375 1.0625 -2.15625 0.515625 -0.640625 0.28125 C -0.40625 0.234375 -0.171875 0.234375 0.0625 0.1875 L 0.125 0.15625 L 0.15625 0.125 L 0.1875 0.0625 L 0.203125 0 C 0.1875 -0.125 0.125 -0.1875 0 -0.203125 Z M 0 -0.203125 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-5-0"> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-5-1"> <path d="M 3.765625 -5.53125 C 3.671875 -5.6875 3.578125 -5.6875 3.515625 -5.6875 C 3.46875 -5.6875 3.375 -5.6875 3.28125 -5.53125 L 0.46875 -0.203125 C 0.40625 -0.109375 0.40625 -0.09375 0.40625 -0.078125 C 0.40625 0 0.46875 0 0.59375 0 L 6.453125 0 C 6.578125 0 6.640625 0 6.640625 -0.078125 C 6.640625 -0.09375 6.640625 -0.109375 6.578125 -0.203125 Z M 3.265625 -4.90625 L 5.53125 -0.625 L 0.984375 -0.625 Z M 3.265625 -4.90625 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-5-2"> <path d="M 5.828125 -2.65625 C 5.9375 -2.65625 6.109375 -2.65625 6.109375 -2.84375 C 6.109375 -3.015625 5.90625 -3.015625 5.796875 -3.015625 L 0.78125 -3.015625 C 0.65625 -3.015625 0.46875 -3.015625 0.46875 -2.84375 C 0.46875 -2.65625 0.625 -2.65625 0.75 -2.65625 Z M 5.796875 -0.96875 C 5.90625 -0.96875 6.109375 -0.96875 6.109375 -1.140625 C 6.109375 -1.328125 5.9375 -1.328125 5.828125 -1.328125 L 0.75 -1.328125 C 0.625 -1.328125 0.46875 -1.328125 0.46875 -1.140625 C 0.46875 -0.96875 0.65625 -0.96875 0.78125 -0.96875 Z M 5.796875 -0.96875 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-5-3"> <path d="M 1.625 -2.984375 C 1.625 -3.265625 1.40625 -3.4375 1.171875 -3.4375 C 0.90625 -3.4375 0.734375 -3.21875 0.734375 -3 C 0.734375 -2.71875 0.953125 -2.546875 1.171875 -2.546875 C 1.4375 -2.546875 1.625 -2.765625 1.625 -2.984375 Z M 1.625 -0.4375 C 1.625 -0.703125 1.40625 -0.890625 1.171875 -0.890625 C 0.90625 -0.890625 0.734375 -0.671875 0.734375 -0.453125 C 0.734375 -0.171875 0.953125 0 1.171875 0 C 1.4375 0 1.625 -0.21875 1.625 -0.4375 Z M 1.625 -0.4375 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-6-0"> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-6-1"> <path d="M 4.65625 -3.328125 L 2.265625 -5.703125 C 2.109375 -5.84375 2.09375 -5.875 2 -5.875 C 1.875 -5.875 1.75 -5.765625 1.75 -5.625 C 1.75 -5.546875 1.78125 -5.515625 1.90625 -5.390625 L 4.296875 -2.984375 L 1.90625 -0.578125 C 1.78125 -0.453125 1.75 -0.4375 1.75 -0.34375 C 1.75 -0.21875 1.875 -0.109375 2 -0.109375 C 2.09375 -0.109375 2.109375 -0.125 2.265625 -0.28125 L 4.640625 -2.65625 L 7.109375 -0.171875 C 7.140625 -0.171875 7.21875 -0.109375 7.296875 -0.109375 C 7.4375 -0.109375 7.53125 -0.21875 7.53125 -0.34375 C 7.53125 -0.375 7.53125 -0.421875 7.5 -0.484375 C 7.484375 -0.5 5.578125 -2.375 4.984375 -2.984375 L 7.171875 -5.171875 C 7.234375 -5.25 7.40625 -5.40625 7.46875 -5.46875 C 7.484375 -5.5 7.53125 -5.546875 7.53125 -5.625 C 7.53125 -5.765625 7.4375 -5.875 7.296875 -5.875 C 7.203125 -5.875 7.140625 -5.828125 7.015625 -5.6875 Z M 4.65625 -3.328125 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-6-2"> <path d="M 4.25 -6.890625 C 4.15625 -7.09375 4.09375 -7.140625 3.984375 -7.140625 C 3.828125 -7.140625 3.796875 -7.0625 3.71875 -6.890625 L 0.734375 -0.21875 C 0.671875 -0.0625 0.65625 -0.03125 0.65625 0.03125 C 0.65625 0.15625 0.765625 0.265625 0.890625 0.265625 C 0.984375 0.265625 1.078125 0.234375 1.171875 0.015625 L 3.984375 -6.328125 L 6.796875 0.015625 C 6.890625 0.265625 7.015625 0.265625 7.0625 0.265625 C 7.203125 0.265625 7.296875 0.15625 7.296875 0.03125 C 7.296875 0 7.296875 -0.03125 7.234375 -0.171875 Z M 4.25 -6.890625 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-7-0"> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-7-1"> <path d="M 5.21875 -3.671875 C 5.3125 -3.765625 5.328125 -3.796875 5.328125 -3.859375 C 5.328125 -3.953125 5.25 -4.046875 5.140625 -4.046875 C 5.078125 -4.046875 5.046875 -4.015625 4.953125 -3.921875 L 3.296875 -2.25 L 1.625 -3.921875 C 1.515625 -4.03125 1.484375 -4.046875 1.421875 -4.046875 C 1.328125 -4.046875 1.25 -3.953125 1.25 -3.859375 C 1.25 -3.78125 1.28125 -3.75 1.359375 -3.671875 L 3.03125 -1.984375 L 1.359375 -0.328125 C 1.265625 -0.21875 1.25 -0.1875 1.25 -0.125 C 1.25 -0.03125 1.328125 0.0625 1.421875 0.0625 C 1.5 0.0625 1.515625 0.03125 1.609375 -0.0625 L 3.28125 -1.734375 L 5.015625 0.015625 C 5.0625 0.03125 5.109375 0.0625 5.140625 0.0625 C 5.25 0.0625 5.328125 -0.03125 5.328125 -0.125 C 5.328125 -0.1875 5.296875 -0.21875 5.296875 -0.234375 C 5.265625 -0.28125 3.984375 -1.546875 3.546875 -1.984375 Z M 5.21875 -3.671875 "></path> </g> <g id="I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-7-2"> <path d="M 5.109375 -4.453125 C 5.15625 -4.546875 5.15625 -4.546875 5.15625 -4.59375 C 5.15625 -4.703125 5.078125 -4.78125 4.984375 -4.78125 C 4.890625 -4.78125 4.828125 -4.71875 4.78125 -4.609375 L 2.828125 -0.453125 L 0.859375 -4.578125 C 0.796875 -4.703125 0.765625 -4.78125 0.65625 -4.78125 C 0.546875 -4.78125 0.46875 -4.703125 0.46875 -4.59375 C 0.46875 -4.546875 0.46875 -4.546875 0.515625 -4.453125 L 2.609375 -0.03125 C 2.671875 0.09375 2.703125 0.171875 2.828125 0.171875 C 2.890625 0.171875 2.953125 0.140625 3.015625 -0.015625 Z M 5.109375 -4.453125 "></path> </g> </g> <clipPath id="I_5WIA5YrxLIArZT8vyv0quNZI4=-clip-0"> <path clip-rule="nonzero" d="M 80 31 L 86 31 L 86 35.269531 L 80 35.269531 Z M 80 31 "></path> </clipPath> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-0-1" x="2.989" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-1-1" x="72.973" y="33.93"></use> </g> <g clip-path="url(#I_5WIA5YrxLIArZT8vyv0quNZI4=-clip-0)"> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-2-1" x="79.92" y="35.269"></use> </g> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 8.316812 -4.071937 C 26.312906 -12.357094 44.305094 -17.220375 62.301187 -18.669594 " transform="matrix(1, 0, 0, -1, 8.316, 12.764)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-3-1" x="143.171" y="18.743"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-4-1" x="143.171" y="18.743"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 80.906656 -18.946937 C 98.887125 -18.040687 116.8715 -13.716469 134.855875 -5.978187 " transform="matrix(1, 0, 0, -1, 8.316, 12.764)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-5-1" x="19.594" y="8.435"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-2-1" x="26.651" y="9.775"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-3-2" x="36.558" y="12.764"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-4-2" x="36.558" y="12.764"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 8.316812 -0.001625 L 28.242594 -0.001625 " transform="matrix(1, 0, 0, -1, 8.316, 12.764)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-0-1" x="39.547" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-6-1" x="52.858" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-0-1" x="64.814" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-3-2" x="98.383" y="12.764"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-4-2" x="98.383" y="12.764"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 70.141031 -0.001625 L 90.066812 -0.001625 " transform="matrix(1, 0, 0, -1, 8.316, 12.764)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-1-2" x="102.567" y="11.045"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-7-1" x="110.154" y="11.045"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-1-2" x="116.741" y="11.045"></use> </g> <path fill="none" stroke-width="0.478" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00059375 -0.001625 L 21.761125 -0.001625 " transform="matrix(1, 0, 0, -1, 102.567, 12.764)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-1-2" x="103.038" y="19.875"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-7-2" x="110.624" y="19.875"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-1-2" x="116.27" y="19.875"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-5-2" x="127.529" y="14.479"></use> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-5-3" x="134.115491" y="14.479"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-0-1" x="138.474" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-6-2" x="151.786" y="15.752"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#I_5WIA5YrxLIArZT8vyv0quNZI4=-glyph-0-1" x="162.413" y="15.752"></use> </g> </svg> <p>of the Cartesian <a class="existingWikiWord" href="/nlab/show/diagonal+morphism">diagonal morphism</a> <a class="maruku-eqref" href="#eq:CartesianProductOfPointedTopologicalSpaces">(2)</a> with the <a class="existingWikiWord" href="/nlab/show/coprojection">coprojection</a> onto the defining <a class="existingWikiWord" href="/nlab/show/quotient+space">quotient space</a> <a class="maruku-eqref" href="#eq:SmashProductOfPointedSpacesQuotientDefinition">(3)</a>.</p> <p></p> </div> </p> <p>It is immediate that:</p> <p> <div class="num_prop" id="SmashMonoidalDiaginalsAreMonoidalDiagonals"> <h6>Proposition</h6> <p>The smash monoidal diagonal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> (Def. <a class="maruku-ref" href="#SmashMonoidalDiagonal"></a>) makes the <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a> <a class="maruku-eqref" href="#eq:SmashMonoidalCategoryOfPointedTopologicalSpaces">(1)</a> of <a class="existingWikiWord" href="/nlab/show/pointed+topological+spaces">pointed topological spaces</a> with <a class="existingWikiWord" href="/nlab/show/smash+product">smash product</a> a <a class="existingWikiWord" href="/nlab/show/monoidal+category+with+diagonals">monoidal category with diagonals</a>, in that</p> <ol> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a>;</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>S</mi> <mn>0</mn></msup><mover><mo>⟶</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msub><mi>D</mi> <mrow><msup><mi>S</mi> <mn>0</mn></msup></mrow></msub><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><msup><mi>S</mi> <mn>0</mn></msup><mo>∧</mo><msup><mi>S</mi> <mn>0</mn></msup></mrow><annotation encoding="application/x-tex">S^0 \overset{\;\;D_{S^0}\;\;}{\longrightarrow} S^0 \wedge S^0</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a>.</p> </li> </ol> <p></p> </div> </p> <p>While elementary in itself, this has the following profound consequence:</p> <p> <div class="num_remark"> <h6>Remark</h6> <p>[Suspension spectra have diagonals]</p> <p>Since the <a class="existingWikiWord" href="/nlab/show/suspension+spectrum">suspension spectrum</a>-<a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mi>PointedTopologicalSpaces</mi><mo>⟶</mo><mi>HighlyStructuredSpectra</mi></mrow><annotation encoding="application/x-tex"> \Sigma^\infty \;\colon\; PointedTopologicalSpaces \longrightarrow HighlyStructuredSpectra </annotation></semantics></math></div> <p>is a <a class="existingWikiWord" href="/nlab/show/strong+monoidal+functor">strong monoidal functor</a> from <a class="existingWikiWord" href="/nlab/show/pointed+topological+spaces">pointed topological spaces</a> <a class="maruku-eqref" href="#eq:SmashMonoidalCategoryOfPointedTopologicalSpaces">(1)</a> to any standard category of <a class="existingWikiWord" href="/nlab/show/highly+structured+spectra">highly structured spectra</a> (by <a href="Introduction+to+Stable+homotopy+theory+--+1-2#SmashProductOfFreeSpectra">this Prop.</a>) it follows that <em><a class="existingWikiWord" href="/nlab/show/suspension+spectra">suspension spectra</a> have <a class="existingWikiWord" href="/nlab/show/monoidal+category+with+diagonals">monoidal diagonals</a></em>, in the form of <a class="existingWikiWord" href="/nlab/show/natural+transformations">natural transformations</a></p> <div class="maruku-equation" id="eq:SmashMonoidalDiagonalOnSuspensionSpectra"><span class="maruku-eq-number">(5)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>X</mi><mover><mo>⟶</mo><mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><msup><mi>Σ</mi> <mn>∞</mn></msup><mo stretchy="false">(</mo><msub><mi>D</mi> <mi>X</mi></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace></mrow></mover><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>X</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>∧</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>X</mi><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex"> \Sigma^\infty X \overset{ \;\; \Sigma^\infty(D_X) \;\; }{\longrightarrow} \big( \Sigma^\infty X \big) \wedge \big( \Sigma^\infty X \big) </annotation></semantics></math></div> <p>to their respective <a class="existingWikiWord" href="/nlab/show/symmetric+smash+product+of+spectra">symmetric smash product of spectra</a>, which hence makes them into <em><a class="existingWikiWord" href="/nlab/show/comonoid+objects">comonoid objects</a></em>, namely <em><a class="existingWikiWord" href="/nlab/show/coring+spectra">coring spectra</a></em>.</p> <p>For example, given a <a class="existingWikiWord" href="/nlab/show/Whitehead-generalized+cohomology+theory">Whitehead-generalized cohomology theory</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>E</mi><mo>˜</mo></mover></mrow><annotation encoding="application/x-tex">\widetilde E</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Brown+representability+theorem">represented</a> by a <a class="existingWikiWord" href="/nlab/show/ring+spectrum">ring spectrum</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>E</mi><mo>,</mo><msup><mn>1</mn> <mi>E</mi></msup><mo>,</mo><msup><mi>m</mi> <mi>E</mi></msup><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thickmathspace"></mspace><mi>SymmetricMonoids</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>Ho</mi><mo stretchy="false">(</mo><mi>Spectra</mi><mo stretchy="false">)</mo><mo>,</mo><mi>𝕊</mi><mo>,</mo><mo>∧</mo><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex"> \big(E, 1^E, m^E \big) \;\; \in \; SymmetricMonoids \big( Ho(Spectra), \mathbb{S}, \wedge \big) </annotation></semantics></math></div> <p>the smash-monoidal diagonal structure <a class="maruku-eqref" href="#eq:SmashMonoidalDiagonalOnSuspensionSpectra">(5)</a> on suspension spectra serves to define the <a class="existingWikiWord" href="/nlab/show/cup+product">cup product</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>∪</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(-)\cup (-)</annotation></semantics></math> in the corresponding <a class="existingWikiWord" href="/nlab/show/multiplicative+cohomology+theory">multiplicative cohomology theory structure</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">[</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>X</mi><mover><mo>⟶</mo><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow></mover><msup><mi>Σ</mi> <mrow><msub><mi>n</mi> <mi>i</mi></msub></mrow></msup><mi>E</mi><mo maxsize="1.2em" minsize="1.2em">]</mo><mspace width="thinmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mover><mi>E</mi><mo>˜</mo></mover><msup><mrow></mrow> <mrow><msub><mi>n</mi> <mi>i</mi></msub></mrow></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>⇒</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo stretchy="false">[</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy="false">]</mo><mo>∪</mo><mo stretchy="false">[</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy="false">]</mo><mspace width="thinmathspace"></mspace><mo>≔</mo><mspace width="thinmathspace"></mspace><mo maxsize="1.8em" minsize="1.8em">[</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>X</mi><mover><mo>⟶</mo><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup><mo stretchy="false">(</mo><msub><mi>D</mi> <mi>X</mi></msub><mo stretchy="false">)</mo></mrow></mover><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>X</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>∧</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>X</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo>∧</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow></mover><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>Σ</mi> <mrow><msub><mi>n</mi> <mn>1</mn></msub></mrow></msup><mi>E</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>∧</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>Σ</mi> <mrow><msub><mi>n</mi> <mn>2</mn></msub></mrow></msup><mi>E</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mover><mo>⟶</mo><mrow><msup><mi>m</mi> <mi>E</mi></msup></mrow></mover><msup><mi>Σ</mi> <mrow><msub><mi>n</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>n</mi> <mn>2</mn></msub></mrow></msup><mi>E</mi><mo maxsize="1.8em" minsize="1.8em">]</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>∈</mo><mspace width="thinmathspace"></mspace><mover><mi>E</mi><mo>˜</mo></mover><msup><mrow></mrow> <mrow><msub><mi>n</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>n</mi> <mn>2</mn></msub></mrow></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \begin{aligned} &amp; \big[ \Sigma^\infty X \overset{c_i}{\longrightarrow} \Sigma^{n_i} E \big] \,\in\, {\widetilde E}{}^{n_i}(X) \\ &amp; \Rightarrow \;\; [c_1] \cup [c_2] \, \coloneqq \, \Big[ \Sigma^\infty X \overset{ \Sigma^\infty(D_X) }{\longrightarrow} \big( \Sigma^\infty X \big) \wedge \big( \Sigma^\infty X \big) \overset{ ( c_1 \wedge c_2 ) }{\longrightarrow} \big( \Sigma^{n_1} E \big) \wedge \big( \Sigma^{n_2} E \big) \overset{ m^E }{\longrightarrow} \Sigma^{n_1 + n_2}E \Big] \;\; \in \, {\widetilde E}{}^{n_1+n_2}(X) \,. \end{aligned} </annotation></semantics></math></div> <p></p> </div> </p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/relevance+monoidal+category">relevance monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semicartesian+monoidal+category">semicartesian monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a></p> </li> </ul> <h2 id="references">References</h2> <p>The stronger notion of relevance monoidal category is discussed in</p> <ul> <li>K. Dosen and Z. Petric, <em>Relevant Categories and Partial Functions</em>, Publications de l’Institut Mathématique, Nouvelle Série, Vol. 82(96), pp. 17–23 (2007) (<a href="http://arxiv.org/abs/math/0504133">arXiv:0504133</a></li> </ul> <p>When a <a class="existingWikiWord" href="/nlab/show/premonoidal+category">premonoidal category</a> comes equipped with a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Δ</mi> <mi>x</mi></msub><mo lspace="verythinmathspace">:</mo><mi>x</mi><mo>→</mo><mi>x</mi><mo>⊗</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">\Delta_x\colon x\to x\otimes x</annotation></semantics></math> for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math>, such as in the <a class="existingWikiWord" href="/nlab/show/Kleisli+category">Kleisli category</a> for a <a class="existingWikiWord" href="/nlab/show/strong+monad">strong monad</a> on a cartesian category, or in any <a class="existingWikiWord" href="/nlab/show/Freyd+category">Freyd category</a>, then the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>⊗</mo><mi>f</mi><mo stretchy="false">)</mo><mo>∘</mo><msub><mi>Δ</mi> <mi>x</mi></msub><mo>=</mo><msub><mi>Δ</mi> <mi>y</mi></msub><mo>∘</mo><mi>f</mi></mrow><annotation encoding="application/x-tex">(f\otimes f)\circ \Delta_x = \Delta_y \circ f</annotation></semantics></math> are called “copyable”.</p> <ul> <li>C. Führmann. <em>Varieties of effects</em>, Proc. Fossacs 2002. Doi:<a href="https://doi.org/10.1007/3-540-45931-6_11">10.1007/3-540-45931-6_11</a></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on April 30, 2021 at 04:56:11. See the <a href="/nlab/history/monoidal+category+with+diagonals" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/monoidal+category+with+diagonals" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/9827/#Item_11">Discuss</a><span class="backintime"><a href="/nlab/revision/monoidal+category+with+diagonals/7" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/monoidal+category+with+diagonals" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/monoidal+category+with+diagonals" accesskey="S" class="navlink" id="history" rel="nofollow">History (7 revisions)</a> <a href="/nlab/show/monoidal+category+with+diagonals/cite" style="color: black">Cite</a> <a href="/nlab/print/monoidal+category+with+diagonals" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/monoidal+category+with+diagonals" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10