CINXE.COM

Search results for: thermal barrier coating

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermal barrier coating</title> <meta name="description" content="Search results for: thermal barrier coating"> <meta name="keywords" content="thermal barrier coating"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermal barrier coating" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermal barrier coating"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4777</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermal barrier coating</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4777</span> Studies on Plasma Spray Deposited La2O3 - YSZ (Yttria-Stabilized Zirconia) Composite Thermal Barrier Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Sharma">Prashant Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotsna%20Dutta%20Majumdar"> Jyotsna Dutta Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study concerns development of a composite thermal barrier coating consisting of a mixture of La2O3 and YSZ (with 8 wt.%, 32 wt.% and 50 wt.% 50% La2O3) by plasma spray deposition technique on a CoNiCrAlY based bond coat deposited on Inconel 718 substrate by high velocity oxy-fuel deposition (HVOF) technique. The addition of La2O3 in YSZ causes the formation of pyrochlore (La2Zr2O7) phase in the inter splats boundary along with the presence of LaYO3 phase. The coefficient of thermal expansion is significantly reduced from due to the evolution of different phases and structural defects in the sprayed coating. The activation energy for TGO growth under isothermal and cyclic oxidation was increased in the composite coating as compared to YSZ coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20spraying" title="plasma spraying">plasma spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20method" title=" X-ray method"> X-ray method</a> </p> <a href="https://publications.waset.org/abstracts/48738/studies-on-plasma-spray-deposited-la2o3-ysz-yttria-stabilized-zirconia-composite-thermal-barrier-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4776</span> Evaluation of Thermal Barrier Coating According to Temperature and Curvature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunwoo%20Song">Hyunwoo Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee"> Jeong-Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongseok%20Kim"> Yongseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghan%20Yun"> Junghan Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungin%20Byun"> Jungin Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To avoid the damage of gas turbine blade from high-temperature, thermal barrier coating (TBC) is applied on the blade. However, it is damaged by thermal fatigue during the operation of gas turbine, and this damage lead to delamination of TBC between top coat and bond coat. The blade can be damaged after the failure of TBC, so durability evaluation of TBC should be performed. The durability of thermal barrier coating was decreased according to the increase of temperature, because thermal stress according to increase of temperature. Also, the curvature can be affect to durability of TBC, because the stress is determined by the shape of the TBC. Therefore, the effect of temperature and curvature on the stress should be evaluated. In this study, finite element analysis according to temperature and curvature were performed in the same condition of Kim et al. Finally, the stress was evaluated from the finite element analysis results according to temperature and curvature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curvature" title="curvature">curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20fatigue" title=" thermal fatigue"> thermal fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/15429/evaluation-of-thermal-barrier-coating-according-to-temperature-and-curvature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4775</span> Evaluation of Thermal Barrier Coating Applied to the Gas Turbine Blade According to the Thermal Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee">Jeong-Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunwoo%20Song"> Hyunwoo Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonseok%20Kim"> Yonseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghan%20Yun"> Junghan Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungin%20Byun"> Jungin Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Thermal Barrier Coating (TBC) prevents heat directly transferring from the high-temperature flame to the substrate. Top coat and bond coat compose the TBC and top coat consists of a ceramic and bond coat increases adhesion between the top coat and the substrate. The TBC technology drops the substrate surface temperature by about 150~200掳C. In addition, the TBC system has a cooling system to lower the blade temperature by the air flow inside the blade. Then, as a result, the thermal gradient occurs inside the blade by cooling. Also, the internal stress occurs due to the difference in thermal expansion. In this paper, the finite element analyses (FEA) were performed and stress changes were derived according to the thermal gradient of the TBC system. The stress was increased due to the cooling, but difference of the stress between the top coat and bond coat was decreased. So, delamination in the interface between top coat and bond coat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Barrier%20Coating%20%28TBC%29" title=" Thermal Barrier Coating (TBC)"> Thermal Barrier Coating (TBC)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradient" title=" thermal gradient"> thermal gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Analysis%20%28FEA%29" title=" Finite Element Analysis (FEA)"> Finite Element Analysis (FEA)</a> </p> <a href="https://publications.waset.org/abstracts/15385/evaluation-of-thermal-barrier-coating-applied-to-the-gas-turbine-blade-according-to-the-thermal-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4774</span> Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanbey%20Hazar">Hanbey Hazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Gul"> Hakan Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Neural%20Network" title="Artificial Neural Network">Artificial Neural Network</a>, <a href="https://publications.waset.org/abstracts/search?q=Diesel%20Engine" title=" Diesel Engine"> Diesel Engine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modelling" title=" Mathematical Modelling"> Mathematical Modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Barrier%20Coating" title=" Thermal Barrier Coating"> Thermal Barrier Coating</a> </p> <a href="https://publications.waset.org/abstracts/21703/thermal-barrier-coated-diesel-engine-with-neural-networks-mathematical-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4773</span> A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongseok%20Kim">Yongseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee"> Jeong-Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunwoo%20Song"> Hyunwoo Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghan%20Yun"> Junghan Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungin%20Byun"> Jungin Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title="thermal barrier coating">thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermally%20grown%20oxide" title=" thermally grown oxide"> thermally grown oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20oxidation" title=" isothermal oxidation"> isothermal oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/15412/a-study-on-prediction-model-for-thermally-grown-oxide-layer-in-thermal-barrier-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4772</span> Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Karthickeyan">V. Karthickeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20material" title="ceramic material">ceramic material</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel%20and%20diesel%20engine" title=" biofuel and diesel engine"> biofuel and diesel engine</a> </p> <a href="https://publications.waset.org/abstracts/102859/investigating-the-effect-of-ceramic-thermal-barrier-coating-on-diesel-engine-with-lemon-oil-biofuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4771</span> Effect of Epoxy-ZrP Nanocomposite Top Coating on Inorganic Barrier Layer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haesook%20Kim">Haesook Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ha%20Na%20Ra"> Ha Na Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansu%20Kim"> Mansu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Gi%20Kim"> Hyun Gi Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Soo%20Kim"> Sung Soo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxy-ZrP (伪-zirconium phosphate) nanocomposites were coated on inorganic barrier layer such as sputtering and atomic layer deposition (ALD) to improve the barrier properties and protect the layer. ZrP nanoplatelets were synthesized using a reflux method and exfoliated in the polymer matrix. The barrier properties of coating layer were characterized by measuring water vapor transmission rate (WVTR). The WVTR dramatically decreased after epoxy-ZrP nanocomposite coating, while maintaining the optical properties. It was also investigated the effect of epoxy-ZrP coating on inorganic layer after bending and reliability test. The optimal structure composed of inorganic and epoxy-ZrP nanocomposite layers was used in organic light emitting diodes (OLED) encapsulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-zirconium%20phosphate" title="伪-zirconium phosphate">伪-zirconium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=barrier%20properties" title=" barrier properties"> barrier properties</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20nanocomposites" title=" epoxy nanocomposites"> epoxy nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=OLED%20encapsulation" title=" OLED encapsulation"> OLED encapsulation</a> </p> <a href="https://publications.waset.org/abstracts/67636/effect-of-epoxy-zrp-nanocomposite-top-coating-on-inorganic-barrier-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4770</span> Technology of Thermal Spray Coating Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Petr%C5%AF">Jana Petr暖</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Zl%C3%A1mal"> Tom谩拧 Zl谩mal</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20%C4%8Cep"> Robert 膶ep</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20%C4%8Cepov%C3%A1"> Lenka 膶epov谩</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a> </p> <a href="https://publications.waset.org/abstracts/2535/technology-of-thermal-spray-coating-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4769</span> High Temperature Oxidation Resistance of NiCrAl Bond Coat Produced by Spark Plasma Sintering as Thermal Barrier Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Folorunso%20Omoniyi">Folorunso Omoniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Olubambi">Peter Olubambi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotimi%20Sadiku"> Rotimi Sadiku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal barrier coating (TBC) system is used in both aero engines and other gas turbines to offer oxidation protection to superalloy substrate component. In the present work, it shows the ability of a new fabrication technique to develop rapidly new coating composition and microstructure. The compact powders were prepared by Powder Metallurgy method involving powder mixing and the bond coat was synthesized through the application of Spark Plasma Sintering (SPS) at 10500C to produce a fully dense (97%) NiCrAl bulk samples. The influence of sintering temperature on the hardness of NiCrAl, done by Micro Vickers hardness tester, was investigated. And Oxidation test was carried out at 1100oC for 20h, 40h, and 100h. The resulting coat was characterized with optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and x-ray diffraction (XRD). Micro XRD analysis after the oxidation test revealed the formation of protective oxides and non-protective oxides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20oxidation" title="high-temperature oxidation">high-temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a> </p> <a href="https://publications.waset.org/abstracts/34130/high-temperature-oxidation-resistance-of-nicral-bond-coat-produced-by-spark-plasma-sintering-as-thermal-barrier-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4768</span> Characterization and Effect of Using Pumpkin Seeds Oil Methyl Ester (PSME) as Fuel in a LHR Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanbey%20Hazar">Hanbey Hazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Gul"> Hakan Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Ozturk"> Ugur Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to decrease the hazardous emissions of the internal combustion engines and to improve the combustion and thermal efficiency, thermal barrier coatings are applied. In this experimental study, cylinder, piston, exhaust, and inlet valves which are combustion chamber components have been coated with a ceramic material, and this earned the engine LHR feature. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 碌m, by using the boriding method. The piston of a diesel engine was coated in 300 碌m thickness with bor-based powder by using plasma coating method. Pumpkin seeds oil methyl ester (PSME) was produced by the transesterification method. In addition, dimethoxymethane additive materials were used to improve the properties of diesel fuel, pumpkin seeds oil methyl ester (PSME) and its mixture. Dimethoxymethane was blended with test fuels, which was used as a pilot fuel, at the volumetric ratios of 4% and 8%. Due to thermal barrier coating, the diesel engine's CO, HC, and smoke density values decreased; but, NOx and exhaust gas temperature (EGT) increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boriding" title="boriding">boriding</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title=" diesel engine"> diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20emission" title=" exhaust emission"> exhaust emission</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a> </p> <a href="https://publications.waset.org/abstracts/31878/characterization-and-effect-of-using-pumpkin-seeds-oil-methyl-ester-psme-as-fuel-in-a-lhr-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4767</span> Fabrication of Titanium Diboride-Based High Emissive Paint Coating Using Economical Dip Coating Method for High Temperature Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atasi%20Dan">Atasi Dan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamanio%20Chattopadhyay"> Kamanio Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Basu"> Bikramjit Basu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cost-effective titanium diboride (TiB2) paint coating has been developed on stainless steel substrate using commercially available polyvinylpyrrolidone as a binder by convenient dip-coating technique. The emittance of the coating has been explored by tailoring various process parameters to obtain highest thermal radiation. The optimized coating has achieved a high thermal emittance of 0.85. In addition, the coating exhibited an excellent thermal stability while heat-treated at 500 掳C in air. Along with the emittance, the structural and physical properties of the As-deposited and heat-treated coatings have been investigated systematically. The high temperature annealing has not affected the emittance, chemical composition and morphology of the coating significantly. Hence, the fabricated paint coating is expected to open up new possibilities for using it as a low-cost, thermally stable emitter in high temperature applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20diboride" title="titanium diboride">titanium diboride</a>, <a href="https://publications.waset.org/abstracts/search?q=emittance" title=" emittance"> emittance</a>, <a href="https://publications.waset.org/abstracts/search?q=paint%20coating" title=" paint coating"> paint coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/61044/fabrication-of-titanium-diboride-based-high-emissive-paint-coating-using-economical-dip-coating-method-for-high-temperature-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4766</span> The Role of Strategic Metals in Cr-Al-Pt-V Composition of Protective Bond Coats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Pashayev">A. M. Pashayev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Samedov"> A. S. Samedov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Usubaliyev"> T. B. Usubaliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sh.%20Yusifov"> N. Sh. Yusifov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different types of coating technologies are widely used for gas turbine blades. Thermal barrier coatings, consisting of ceramic top coat, thermally grown oxide and a metallic bond coat are used in applications for thermal protection of hot section components in gas turbine engines. Operational characteristics and longevity of high-temperature turbine blades substantially depend on a right choice of composition of the protective thermal barrier coatings. At a choice of composition of a coating and content of the basic elements it is necessary to consider following factors, as minimum distinctions of coefficients of thermal expansions of elements, level of working temperatures and composition of the oxidizing environment, defining the conditions for the formation of protective layers, intensity of diffusive processes and degradation speed of protective properties of elements, extent of influence on the fatigue durability of details during operation, using of elements with high characteristics of thermal stability and satisfactory resilience of gas corrosion, density, hardness, thermal conduction and other physical characteristics. Forecasting and a choice of a thermal barrier coating composition, all above factors at the same time cannot be considered, as some of these characteristics are defined by experimental studies. The implemented studies and investigations show that one of the main failures of coatings used on gas turbine blades is related to not fully taking the physical-chemical features of elements into consideration during the determination of the composition of alloys. It leads to the formation of more difficult spatial structure, composition which also changes chaotically in some interval of concentration that doesn't promote thermal and structural firmness of a coating. For the purpose of increasing the thermal and structural resistant of gas turbine blade coatings is offered a new approach to forecasting of composition on the basis of analysis of physical-chemical characteristics of alloys taking into account the size factor, electron configuration, type of crystal lattices and Darken-Gurry method. As a result, of calculations and experimental investigations is offered the new four-component metallic bond coat on the basis of chrome for the gas turbine blades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blades" title="gas turbine blades">gas turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20bond%20coat" title=" metallic bond coat"> metallic bond coat</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20metals" title=" strategic metals"> strategic metals</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-chemical%20features" title=" physical-chemical features"> physical-chemical features</a> </p> <a href="https://publications.waset.org/abstracts/45588/the-role-of-strategic-metals-in-cr-al-pt-v-composition-of-protective-bond-coats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4765</span> Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-Cut Papaya (Carica papaya)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basharat%20Yousuf">Basharat Yousuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhaya%20K.%20Srivastava"> Abhaya K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Psyllium gum alone and in combination with sunflower oil was investigated as a possible alternative edible coating for improvement of quality and shelf life of fresh-cut papaya. Different concentrations including 0.5, 1 and 1.5 percent of psyllium gum were used for coating of fresh-cut papaya. In some samples, refined sunflower oil was used as a lipid component to increase the effectiveness of coating in terms of water barrier properties. Soya lecithin was used as an emulsifier in coatings containing oil. Pretreatment with 1% calcium chloride was given to maintain the firmness of fresh-cut papaya cubes. 1% psyllium gum coating was found to yield better results. Further, addition of oil helped to maintain the quality and acted as a barrier to water vapour, therefore, minimizing the weight loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh-cut" title=" fresh-cut"> fresh-cut</a>, <a href="https://publications.waset.org/abstracts/search?q=gum" title=" gum"> gum</a>, <a href="https://publications.waset.org/abstracts/search?q=papaya" title=" papaya"> papaya</a>, <a href="https://publications.waset.org/abstracts/search?q=psylllium" title=" psylllium"> psylllium</a> </p> <a href="https://publications.waset.org/abstracts/26199/psyllium-plantago-gum-as-an-effective-edible-coating-to-improve-quality-and-shelf-life-of-fresh-cut-papaya-carica-papaya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4764</span> The Using of Liquefied Petroleum Gas (LPG) on a Low Heat Loss Si Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanbey%20Hazar">Hanbey Hazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Gul"> Hakan Gul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Thermal Barrier Coating (TBC) application is performed in order to reduce the engine emissions. Piston, exhaust, and intake valves of a single-cylinder four-cycle gasoline engine were coated with chromium carbide (Cr3C2) at a thickness of 300 碌m by using the Plasma Spray coating method which is a TBC method. Gasoline engine was converted into an LPG system. The study was conducted in 4 stages. In the first stage, the piston, exhaust, and intake valves of the gasoline engine were coated with Cr3C2. In the second stage, gasoline engine was converted into the LPG system and the emission values in this engine were recorded. In the third stage, the experiments were repeated under the same conditions with a standard (uncoated) engine and the results were recorded. In the fourth stage, data obtained from both engines were loaded on Artificial Neural Networks (ANN) and estimated values were produced for every revolution. Thus, mathematical modeling of coated and uncoated engines was performed by using ANN. While there was a slight increase in exhaust gas temperature (EGT) of LPG engine due to TBC, carbon monoxide (CO) values decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LPG%20fuel" title="LPG fuel">LPG fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a> </p> <a href="https://publications.waset.org/abstracts/58718/the-using-of-liquefied-petroleum-gas-lpg-on-a-low-heat-loss-si-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4763</span> Cold Spray Coating and Its Application for High Temperature </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Sidhu">T. S. Sidhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20spray%20coating" title="cold spray coating">cold spray coating</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20corrosion" title=" hot corrosion"> hot corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20spray%20coating" title=" thermal spray coating"> thermal spray coating</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20materials" title=" high-temperature materials "> high-temperature materials </a> </p> <a href="https://publications.waset.org/abstracts/89039/cold-spray-coating-and-its-application-for-high-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4762</span> Hot Corrosion Behavior of Calcium Zirconate Modified YSZ Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ejaz">Naveed Ejaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Liaqat%20Ali"> Liaqat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Nusair"> Amer Nusair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal barrier coatings (TBCs) serve as thermal barriers against the high temperature of the hot regions of the aircraft turbine engines keeping the surface of the turbine blades, vanes and combustion chamber at comparatively lower temperature. The life of these coatings depends on many in-service environmental factors. Among these factors, the behavior of the bond coat as well as the top coat at high temperature aggravated by the corrosive environments having S, V, Na and Cl plays a key role. The incorporation of the 5-15% CaZrO3 in YSZ coatings was studied after hot corrosion in vanadium oxide environment. It was observed that the reactivity of the V gradually switched from Y to Ca making CaV2O4 instead of YVO4; the percentage of CaV2O4 increased with the increase of CaZrO3 in YSZ. It eventually prevented leaching out of the Y from YSZ leaving the YSZ without any harmful phase change. The thermal insulation was found to be improved in case of CaZrO3 incorporated YSZ coatings as compared to only YSZ coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20corrosion" title="hot corrosion">hot corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coatings" title=" thermal barrier coatings"> thermal barrier coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=yttria%20stabilized%20zirconia" title=" yttria stabilized zirconia"> yttria stabilized zirconia</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20zirconate" title=" calcium zirconate"> calcium zirconate</a> </p> <a href="https://publications.waset.org/abstracts/35456/hot-corrosion-behavior-of-calcium-zirconate-modified-ysz-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4761</span> Comprehensive Microstructural and Thermal Analysis of Nano Intumescent Fire Retardant Coating for Structural Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Aziz">Hammad Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intumescent fire retardant coating (IFRC) is applied on the surface of material requiring fire protection. In this research work, IFRC鈥檚 were developed using ammonium polyphosphate, expandable graphite, melamine, boric acid, zinc borate, mica, magnesium oxide, and bisphenol A BE-188 with polyamide polyamine H-4014 as curing agent. Formulations were prepared using nano size MgO and compared with control formulation i.e. without nano size MgO. Small scale hydrocarbon fire test was conducted to scrutinize the thermal performance of the coating. Char and coating were further characterized by using FESEM, FTIR, EDS, TGA and DTGA. Thus, Intumescent coatings reinforced with 2 wt. % of nano-MgO (rod shaped particles) provide superior thermal performance and uniform microstructure of char due to well dispersion of nano particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intumescent%20coating" title="intumescent coating">intumescent coating</a>, <a href="https://publications.waset.org/abstracts/search?q=char" title=" char"> char</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a> </p> <a href="https://publications.waset.org/abstracts/34736/comprehensive-microstructural-and-thermal-analysis-of-nano-intumescent-fire-retardant-coating-for-structural-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4760</span> Preparation of Protective Coating Film on Metal Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Th.%20A.%20Al-rubaye">Rana Th. A. Al-rubaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel chromium-free protective coating films based on a zeolite coating was growing onto a FeCrAlloy metal using in 鈥搒itu hydrothermal method. The zeolite film was obtained using in-situ crystallization process that is capable of coating large surfaces with complex shape and in confined spaces has been developed. The zeolite coating offers an advantage of a high mechanical stability and thermal stability. The physico-chemical properties were investigated using X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X鈥搑ay analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550掳C). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fecralloy" title="fecralloy">fecralloy</a>, <a href="https://publications.waset.org/abstracts/search?q=zsm-5%20zeolite" title=" zsm-5 zeolite"> zsm-5 zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite%20coatings" title=" zeolite coatings"> zeolite coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20method" title=" hydrothermal method"> hydrothermal method</a> </p> <a href="https://publications.waset.org/abstracts/30792/preparation-of-protective-coating-film-on-metal-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4759</span> Effect of Carbon Nanotubes on Ultraviolet and Immersion Stability of Diglycidyl Ether of Bisphenol A Epoxy Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemova%20Anastasiia">Artemova Anastasiia</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen%20Zexiang"> Shen Zexiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Savilov%20Serguei"> Savilov Serguei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The marine environment is very aggressive for a number of factors, such as moisture, temperature, winds, ultraviolet radiation, chloride ion concentration, oxygen concentration, pollution, and biofouling, all contributing to marine corrosion. Protective organic coatings provide protection either by a barrier action from the layer, which is limited due to permeability to water and oxygen or from active corrosion inhibition and cathodic protection due to the pigments in the coating. Carbon nanotubes can play not only barrier effect but also passivation effect via adsorbing molecular species of oxygen, hydroxyl, chloride and sulphate anions. Multiwall carbon nanotubes composite provide very important properties such as mechanical strength, non-cytotoxicity, outstanding thermal and electrical conductivity, and very strong absorption of ultraviolet radiation. The samples of stainless steel (316L) coated by epoxy resin with carbon nanotubes-based pigments were exposed to UV irradiation (340nm), and immersion to the sodium chloride solution for 1000h and corrosion behavior in 3.5 wt% sodium chloride (NaCl) solution was investigated. Experimental results showed that corrosion current significantly decreased in the presence of carbon nanotube-based materials, especially nitrogen-doped ones, in the composite coating. Importance of the structure and composition of the pigment materials and its composition was established, and the mechanism of the protection was described. Finally, the effect of nitrogen doping on the corrosion behavior was investigated. The pigment-polymer crosslinking improves the coating performance and the corrosion rate decreases in comparison with pure epoxy coating from 5.7E-05 to 1.4E-05mm/yr for the coating without any degradation; in more than 6 times for the coating after ultraviolet degradation; and more than 16% for the coatings after immersion degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/112005/effect-of-carbon-nanotubes-on-ultraviolet-and-immersion-stability-of-diglycidyl-ether-of-bisphenol-a-epoxy-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4758</span> Energy Saving of the Paint with Mineral Insulators: Simulation and Study on Different Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Azemati">A. A. Azemati</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hosseini"> H. Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shirkavand%20Hadavand"> B. Shirkavand Hadavand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using an adequate thermal barrier coating in buildings the energy saving will be happened. In this study, a range of wall paints with different absorption coefficient in different climates has been investigated. In order to study these effects, heating and cooling loads of a common building with different ordinary paints and paint with mineral coating have been calculated. The effect of building paint in different climatic condition was studied and comparison was done between ordinary paints and paint with mineral insulators in temperate climate to obtain optimized energy consumption. The results have been shown that coatings with inorganic micro particles as insulation reduce the energy consumption of buildings around 14%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic" title=" inorganic"> inorganic</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20coating" title=" mineral coating"> mineral coating</a> </p> <a href="https://publications.waset.org/abstracts/42325/energy-saving-of-the-paint-with-mineral-insulators-simulation-and-study-on-different-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4757</span> Titanium-Aluminium Oxide Coating on Aluminized Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuyan%20Sun">Fuyan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Guang%20Wang"> Guang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xueyuan%20Nie"> Xueyuan Nie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminium oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviours of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behaviour of the coating material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium-aluminum%20oxide" title="titanium-aluminum oxide">titanium-aluminum oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20electrolytic%20oxidation" title=" plasma electrolytic oxidation"> plasma electrolytic oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20property" title=" thermal property"> thermal property</a> </p> <a href="https://publications.waset.org/abstracts/6532/titanium-aluminium-oxide-coating-on-aluminized-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4756</span> The Performance of Typical Kinds of Coating of Printed Circuit Board under Accelerated Degradation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20Wang">Xiaohui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liwei%20Sun"> Liwei Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilin%20Zhang"> Guilin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Printed circuit board (PCB) is the carrier of electronic components. Its coating is the first barrier for protecting itself. If the coating is damaged, the performance of printed circuit board will decrease rapidly until failure. Therefore, the coating plays an important role in the entire printed circuit board. There are common four kinds of coating of printed circuit board that the material of the coatings are paryleneC, acrylic, polyurethane, silicone. In this paper, we designed an accelerated degradation test of humid and heat for these four kinds of coating. And chose insulation resistance, moisture absorption and surface morphology as its test indexes. By comparing the change of insulation resistance of the coating before and after the test, we estimate failure time of these coatings based on the degradation of insulation resistance. Based on the above, we estimate the service life of the four kinds of PCB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board" title="printed circuit board">printed circuit board</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20assessment" title=" life assessment"> life assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20resistance" title=" insulation resistance"> insulation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20material" title=" coating material"> coating material</a> </p> <a href="https://publications.waset.org/abstracts/29607/the-performance-of-typical-kinds-of-coating-of-printed-circuit-board-under-accelerated-degradation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4755</span> Effect of Post Treatment Temperature on Ni-20Cr Wire Arc Spray Coating to Thermal Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ken%20Ninez%20Nurpramesti%20Prinindya">Ken Ninez Nurpramesti Prinindya</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuli%20Setiyorini"> Yuli Setiyorini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crown enclosure high temperature flares damaged and reduced dimensions crown. Generally crown on EHTF could have a life time up to twenty years. Therefore, this study aims to increase the value of thermal resistance with the effect post treatment on NiCr coated arc spray method. The variation of post treatment temperature, was at 650掳C, 750掳C, and 850掳C. Morphology on the surface and the adhesion strength was analyzed by SEM-EDX, Surface Roughness and Pull - off test. XRD testing was conducted to determine the contained in NiCr coated. Thermal stability of NiCr coated was tested by DSC-TGA. The most optimal results was owned by NiCr coating with post treated at 850掳C. It has good thermal stability until 1000掳C because of Cr2O3 formation in coated specimen. The higher temperature of post treatment coating was showed better result on porosity and roughness surface value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arc%20spray%20process" title="Arc spray process">Arc spray process</a>, <a href="https://publications.waset.org/abstracts/search?q=NiCr%20wire" title=" NiCr wire"> NiCr wire</a>, <a href="https://publications.waset.org/abstracts/search?q=post-treatment%20coating" title=" post-treatment coating"> post-treatment coating</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature-corrosion%20resistance" title=" high temperature-corrosion resistance"> high temperature-corrosion resistance</a> </p> <a href="https://publications.waset.org/abstracts/16505/effect-of-post-treatment-temperature-on-ni-20cr-wire-arc-spray-coating-to-thermal-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4754</span> The Effects of Dimethyl Adipate (DMA) on Coated Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanbey%20Hazar">Hanbey Hazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study is conducted to evaluate the effects of using blends of diesel fuel with dimethyl adipate (DMA) in proportions of 2%, 6/%, and 12% on a coated engine. In this study, cylinder, piston, exhaust and inlet valves which are combustion chamber components have been coated with a ceramic material. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 碌m, by using the boriding method. The piston of a diesel engine was coated in 300 碌m thickness with bor-based powder by using plasma coating method. Due to thermal barrier coating, the diesel engine's hazardous emission values decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethyl%20adipate%20%28DMA%29" title=" dimethyl adipate (DMA)"> dimethyl adipate (DMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20emissions" title=" exhaust emissions"> exhaust emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a> </p> <a href="https://publications.waset.org/abstracts/58746/the-effects-of-dimethyl-adipate-dma-on-coated-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4753</span> The Effect of Micro-Arc Oxidation Coated Piston Crown on Engine Characteristics in a Spark Ignited Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Velavan">A.Velavan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Saravanan"> C. G. Saravanan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vikneswaran"> M. Vikneswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20James%20Gunasekaran"> E. James Gunasekaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present investigation, experiments were carried out to compare the effect of the ceramic coated piston crown and uncoated piston on combustion, performance and emission characteristics of a port injected Spark Ignited engine. The piston crown was coated with aluminium alloy in the form ceramic oxide layer of thickness 500 碌m using micro-arc oxidation technique. This ceramic coating will act as a thermal barrier which reduces in-cylinder heat rejection and increases the durability of the piston by withstanding high temperature and pressure produced during combustion. Flame visualization inside the combustion chamber was carried out using AVL Visioscope combustion analyzer to predict the type of combustion occurs at different load condition. Based on the experimental results, it was found that the coated piston shows an improved thermal efficiency when compared to uncoated piston. This is because more heat presents in the combustion chamber which helps efficient combustion of the fuel. The CO and HC emissions were found to be reduced due to better combustion of the fuel whereas NOx emission was increased due to increase in combustion temperature for ceramic coated piston. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coated%20piston" title="coated piston">coated piston</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-arc%20oxidation" title=" micro-arc oxidation"> micro-arc oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier" title=" thermal barrier"> thermal barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=visioscope" title=" visioscope"> visioscope</a> </p> <a href="https://publications.waset.org/abstracts/103542/the-effect-of-micro-arc-oxidation-coated-piston-crown-on-engine-characteristics-in-a-spark-ignited-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4752</span> Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Nouri">S. Nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 &deg;C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al<sub>2</sub>O<sub>3</sub>+SiO<sub>2</sub> mixed oxide scale along with a continuous, compact and uniform layer of Ti<sub>5</sub>Si<sub>3</sub> beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gamma-TiAl%20alloy" title="Gamma-TiAl alloy">Gamma-TiAl alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20oxidation" title=" high temperature oxidation"> high temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Si-aluminide%20coating" title=" Si-aluminide coating"> Si-aluminide coating</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20procedure" title=" slurry procedure"> slurry procedure</a> </p> <a href="https://publications.waset.org/abstracts/105858/formation-of-protective-silicide-aluminide-coating-on-gamma-tial-advanced-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4751</span> The Characteristcs and Amino Acid Profile of Edible Coating Extracted from Pigskin Gelatin </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meity%20Sompie">Meity Sompie</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnes%20Triasih"> Agnes Triasih</a>, <a href="https://publications.waset.org/abstracts/search?q=Wisje%20Ponto"> Wisje Ponto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edible coating is thin layers that act as a barrier to the external factors and protect the food products. The addition of the plasticizer to the edible coating is required to overcome film caused by extensive intermolecular forces. The potential development of pigskin with different ages as a raw material for the manufacture of edible films had not been widely publicized. This research was aimed to determine the influence of gelatin concentration and different type of plasticizer on the edible coating characteristics extracted from pigskin gelatin. This study used Completely Randomized Design (CRD) with two factors and three replicates of treatments. The first factor was consisted of pigskin gelatin concentration ( 10, 20, and 30 %) and the second factor was different type of plasticizer (glycerol, sorbitol and PEG). The results show that the interaction between the use of gelatin concentrations and type of plasticizer had significant effect (P< 0.05) on the thickness, tensile strength, elongation, water vapor transmission rate (WVTR), water content and amino acid profile of edible coating. It was concluded that the edible coating from pigskin gelatin with plasticizer gliserol had the best film characteristics, and it can be applied as an edible coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20coating" title="edible coating">edible coating</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=pigskin%20gelatin" title=" pigskin gelatin"> pigskin gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a> </p> <a href="https://publications.waset.org/abstracts/86037/the-characteristcs-and-amino-acid-profile-of-edible-coating-extracted-from-pigskin-gelatin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4750</span> The Effect of Feedstock Powder Treatment / Processing on the Microstructure, Quality, and Performance of Thermally Sprayed Titanium Based Composite Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Salman">Asma Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Gabbitas"> Brian Gabbitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Cao"> Peng Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Deliang%20Zhang"> Deliang Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of a coating is strongly dependent upon its microstructure, which in turn is dependent on the characteristics of the feedstock powder. This study involves the evaluation and performance of a titanium-based composite coating produced by the HVOF (high-velocity oxygen fuel) spraying method. The feedstock for making the composite coating was produced using high energy mechanical milling of TiO2 and Al powders followed by a combustion reaction. The characteristics of the feedstock powder were improved by treating it with an organic binder. Two types of coatings were produced using treated and untreated feedstock powders. The microstructures and characteristics of both types of coatings were studied, and their thermal shock resistance was accessed by dipping into molten aluminum. The results of this study showed that feedstock treatment did not have a significant effect on the microstructure of the coatings. However, it did affect the uniformity, thickness and surface roughness of the coating on the steel substrate. A coating produced by an untreated feedstock showed better thermal shock resistance in molten aluminum compared with the one produced by PVA (polyvinyl alcohol) treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=feedstock" title=" feedstock"> feedstock</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20processing" title=" powder processing"> powder processing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20shock%20resistance" title=" thermal shock resistance"> thermal shock resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermally%20spraying" title=" thermally spraying"> thermally spraying</a> </p> <a href="https://publications.waset.org/abstracts/62969/the-effect-of-feedstock-powder-treatment-processing-on-the-microstructure-quality-and-performance-of-thermally-sprayed-titanium-based-composite-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4749</span> Green Synthesis Approach for Renewable Textile Coating and Their Mechanical and Thermal Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20Gamal%20Abd%20Elhaleem%20%20Elsayed">Heba Gamal Abd Elhaleem Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nour%20F%20%20Attia"> Nour F Attia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extensive use of textile and textile based materials in various applications including industrial applications are increasing regularly due to their interesting properties which require rapid development in their functions to be adapted to these applications [1-3]. Herein, green, new and renewable smart coating was developed for furniture textile fabrics. Facile and single step method was used for synthesis of green coating based on mandarin peel and chitosan. As, the mandarin peel as fruit waste material was dried, grinded and directly dispersed in chitosan solution producing new green coating composite and then coated on textile fabrics. The mass loadings of green mandarin peel powder was varied on 20-70 wt% and optimized. Thermal stability of coated textile fabrics was enhanced and char yield was improved compared to uncoated one. The charring effect of mandarin peel powder coated samples was significantly enhanced anticipating good flame retardancy effect. The tensile strength of the coated textile fabrics was improved achieved 35% improvement compared to uncoated sample. The interaction between the renewable coating and textile was evaluated. The morphology of uncoated and coated textile fabrics was studied using microscopic technique. Additionally, based on thermal properties of mandarin peel powder it could be promising flame retardant for textile fabrics. This study open new avenues for finishing textile fabrics with enhanced thermal, flame retardancy and mechanical properties with cost-effective and renewable green and effective coating <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title="flame retardant ">flame retardant </a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Properties" title=" Thermal Properties"> Thermal Properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Textile%20Coating" title=" Textile Coating "> Textile Coating </a>, <a href="https://publications.waset.org/abstracts/search?q=Renewable%20Textile" title=" Renewable Textile"> Renewable Textile</a> </p> <a href="https://publications.waset.org/abstracts/121731/green-synthesis-approach-for-renewable-textile-coating-and-their-mechanical-and-thermal-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4748</span> Alternative Coating Compositions by Thermal Arc Spraying to Improve the Contact Heat Treatment in Press Hardening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Burger">Philipp Burger</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Sommer"> Jonas Sommer</a>, <a href="https://publications.waset.org/abstracts/search?q=Haneen%20Daoud"> Haneen Daoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Hilmer"> Franz Hilmer</a>, <a href="https://publications.waset.org/abstracts/search?q=Uwe%20Glatzel"> Uwe Glatzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Press-hardened structural components made of coated high-strength steel are an essential part of the automotive industry when it comes to weight reduction, safety, and durability. Alternative heat treatment processes, such as contact heating, have been developed to improve the efficiency of this process. However, contact heating of the steel sheets often results in cracking within the Al-Si-coated layer. Therefore, this paper will address the development of alternative coating compositions based on Al-Si-X, suitable for contact heating. For this purpose, robot-assisted thermal arc spray was applied to coat the high-strength steel sheets. This ensured high reproducibility as well as effectiveness. The influence of the coating parameters and the variation of the nozzle geometry on the microstructure of the developed coatings will be discussed. Finally, the surface and mechanical properties after contact heating and press hardening will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=press%20hardening" title="press hardening">press hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20stamping" title=" hot stamping"> hot stamping</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20spraying" title=" thermal spraying"> thermal spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=arc%20spraying" title=" arc spraying"> arc spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20compositions" title=" coating compositions"> coating compositions</a> </p> <a href="https://publications.waset.org/abstracts/159998/alternative-coating-compositions-by-thermal-arc-spraying-to-improve-the-contact-heat-treatment-in-press-hardening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=160">160</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10