CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;15 of 15 results for author: <span class="mathjax">Montanaro, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Montanaro%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Montanaro, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Montanaro%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Montanaro, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14797">arXiv:2410.14797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14797">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0231533">10.1063/5.0231533 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multimode vibrational coupling across the insulator-to-metal transition in 1T-TaS$_{2}$ in THz cavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jarc%2C+G">Giacomo Jarc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathengattil%2C+S+Y">Shahla Yasmin Mathengattil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rigoni%2C+E+M">Enrico Maria Rigoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zilio%2C+S+D">Simone Dal Zilio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14797v1-abstract-short" style="display: inline;"> The use of optical cavities on resonance with material excitations allows controlling light-matter interaction in both the regimes of weak and strong coupling. We study here the multimode vibrational coupling of low energy phonons in the charge-density-wave material 1T-TaS$_{2}$ across its insulator-to-metal phase transition. For this purpose, we embed 1T-TaS$_{2}$ into THz Fabry-P茅rot cryogenic c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14797v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14797v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14797v1-abstract-full" style="display: none;"> The use of optical cavities on resonance with material excitations allows controlling light-matter interaction in both the regimes of weak and strong coupling. We study here the multimode vibrational coupling of low energy phonons in the charge-density-wave material 1T-TaS$_{2}$ across its insulator-to-metal phase transition. For this purpose, we embed 1T-TaS$_{2}$ into THz Fabry-P茅rot cryogenic cavities tunable in frequency within the spectral range of the vibrational modes of the insulating phase and track the linear response of the coupled phonons across the insulator-to-metal transition. In the low temperature dielectric state, we reveal the signatures of a multimode vibrational strong collective coupling. The observed polariton modes inherit character from all the vibrational resonances as a consequence of the cavity-mediated hybridization. We reveal that the vibrational strong collective coupling is suppressed across the insulator-to-metal transition as a consequence of the phonon-screening induced by the free charges. Our findings emphasize how the response of cavity-coupled vibrations can be modified by the presence of free charges, uncovering a new direction toward the tuning of coherent light-matter interaction in cavity-confined correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14797v1-abstract-full').style.display = 'none'; document.getElementById('2410.14797v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 9 figures (including Supplementary Material)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Chem. Phys. 161, 154711 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13587">arXiv:2310.13587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13587">pdf</a>, <a href="https://arxiv.org/format/2310.13587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Terahertz Saturable Absorption from Relativistic High-Temperature Thermodynamics in Black Phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Adhlakha%2C+N">Nidhi Adhlakha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ebrahimpour%2C+Z">Zeinab Ebrahimpour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Pietro%2C+P">Paola Di Pietro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+J">Johannes Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piccirilli%2C+F">Federica Piccirilli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cappelluti%2C+E">Emmanuele Cappelluti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lupi%2C+S">Stefano Lupi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perucchi%2C+A">Andrea Perucchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13587v1-abstract-short" style="display: inline;"> Thanks to its tunable infrared band-gap and to its anisotropic conduction properties, black phosphorus represents a very unique 2D material, whose potential in the engineering of new devices still needs to be fully explored. We investigate here the nonlinear terahertz (THz) electrodynamics of black phosphorus along the more conducting armchair direction. Similarly to the case of other 2D systems l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13587v1-abstract-full').style.display = 'inline'; document.getElementById('2310.13587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13587v1-abstract-full" style="display: none;"> Thanks to its tunable infrared band-gap and to its anisotropic conduction properties, black phosphorus represents a very unique 2D material, whose potential in the engineering of new devices still needs to be fully explored. We investigate here the nonlinear terahertz (THz) electrodynamics of black phosphorus along the more conducting armchair direction. Similarly to the case of other 2D systems like graphene and topological insulators, the THz saturable absorption properties of black phosphorus can be understood within a thermodynamic model by assuming a fast thermalization of the electron bath. While black phosphorus does not display the presence of massless fermions at ambient pressure and temperature, our analysis shows that its anomalous THz nonlinear properties can be accounted for by a relativistic massive Dirac dispersion, provided the Fermi temperature is low enough. An optimal tuning of the Fermi level therefore represents a strategy to engineer strong THz nonlinear response in other massive Dirac materials as in transition metal dichalchogenides or high-temperature superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13587v1-abstract-full').style.display = 'none'; document.getElementById('2310.13587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review Applied</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10279">arXiv:2310.10279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10279">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.125102">10.1103/PhysRevB.110.125102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of non-thermal states in optimally-doped $Bi_2Sr_2Ca_{0.92}Y_{0.08}Cu_2O_{8+未}$ revealed by mid-infrared three-pulse spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rigoni%2C+E+M">Enrico Maria Rigoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giusti%2C+F">Francesca Giusti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barba%2C+L">Luisa Barba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chita%2C+G">Giuseppe Chita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glerean%2C+F">Filippo Glerean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarc%2C+G">Giacomo Jarc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathengattil%2C+S+Y">Shahla Y. Mathengattil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">Fabio Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">Martin Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannetti%2C+C">Claudio Giannetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihailovic%2C+D">Dragan Mihailovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kabanov%2C+V">Viktor Kabanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10279v1-abstract-short" style="display: inline;"> In the cuprates, the opening of a d-wave superconducting (SC) gap is accompanied by a redistribution of spectral weight at energies two orders of magnitude larger than this gap. This indicates the importance to the pairing mechanism of on-site electronic excitations, such as orbital transitions or charge transfer excitations. Here, we resort to a three-pulse pump-probe scheme to study the broadban&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10279v1-abstract-full').style.display = 'inline'; document.getElementById('2310.10279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10279v1-abstract-full" style="display: none;"> In the cuprates, the opening of a d-wave superconducting (SC) gap is accompanied by a redistribution of spectral weight at energies two orders of magnitude larger than this gap. This indicates the importance to the pairing mechanism of on-site electronic excitations, such as orbital transitions or charge transfer excitations. Here, we resort to a three-pulse pump-probe scheme to study the broadband non-equilibrium dielectric function in optimally-doped $Bi_2Sr_2Ca_{0.92}Y_{0.08}Cu_2O_{8+未}$ and we identify two distinct dynamical responses: i) a blueshift of the central energy of an interband excitation peaked at 2 eV and ii) a change in spectral weight in the same energy range. Photoexcitation with near-IR and mid-IR pulses, with photon energies respectively above and below the SC gap, reveals that the transient changes in the central energy are not modified by the onset of superconductivity and do not depend on the pump photon energy. Conversely, the spectral weight dynamics strongly depends on the pump photon energy and has a discontinuity at the critical temperature. The picture that emerges is that, while high-energy pulses excite quasiparticles in both nodal and thermally inaccessible antinodal states, photoexcitation by low-energy pulses mostly accelerates the condensate and creates excitations predominantly at the nodes of the SC gap. These results, rationalized by kinetic equations for d-wave superconducting gaps, indicate that dynamical control of the momentum-dependent distribution of non-thermal quasiparticles may be achieved by the selective tuning of the photoexcitation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10279v1-abstract-full').style.display = 'none'; document.getElementById('2310.10279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05258">arXiv:2305.05258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05258">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.214305">10.1103/PhysRevB.107.214305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FEL stochastic spectroscopy revealing silicon bond softening dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Angelis%2C+D">Dario De Angelis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Principi%2C+E">Emiliano Principi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bencivenga%2C+F">Filippo Bencivenga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foglia%2C+L">Laura Foglia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klein%2C+Y">Yishay Klein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manfredda%2C+M">Michele Manfredda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mincigrucci%2C+R">Riccardo Mincigrucci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersoli%2C+E">Emanuele Pedersoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cresi%2C+J+S+P">Jacopo Stefano Pelli Cresi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perosa%2C+G">Giovanni Perosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prince%2C+K+C">Kevin C. Prince</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razzoli%2C+E">Elia Razzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shwartz%2C+S">Sharon Shwartz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simoncig%2C+A">Alberto Simoncig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spampinati%2C+S">Simone Spampinati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svetina%2C+C">Cristian Svetina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szlachetko%2C+J">Jakub Szlachetko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tripathi%2C+A">Alok Tripathi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vartanyants%2C+I+A">Ivan A. Vartanyants</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zangrando%2C+M">Marco Zangrando</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capotondi%2C+F">Flavio Capotondi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05258v1-abstract-short" style="display: inline;"> Time-resolved X-ray Emission/Absorption Spectroscopy (Tr-XES/XAS) is an informative experimental tool sensitive to electronic dynamics in materials, widely exploited in diverse research fields. Typically, Tr-XES/XAS requires X-ray pulses with both a narrow bandwidth and sub-picosecond pulse duration, a combination that in principle finds its optimum with Fourier transform-limited pulses. In this w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05258v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05258v1-abstract-full" style="display: none;"> Time-resolved X-ray Emission/Absorption Spectroscopy (Tr-XES/XAS) is an informative experimental tool sensitive to electronic dynamics in materials, widely exploited in diverse research fields. Typically, Tr-XES/XAS requires X-ray pulses with both a narrow bandwidth and sub-picosecond pulse duration, a combination that in principle finds its optimum with Fourier transform-limited pulses. In this work, we explore an alternative xperimental approach, capable of simultaneously retrieving information about unoccupied (XAS) and occupied (XES) states from the stochastic fluctuations of broadband extreme ultraviolet pulses of a free-electron laser. We used this method, in combination with singular value decomposition and Tikhonov regularization procedures, to determine the XAS/XES response from a crystalline silicon sample at the L2,3-edge, with an energy resolution of a few tens of meV. Finally, we combined this spectroscopic method with a pump-probe approach to measure structural and electronic dynamics of a silicon membrane. Tr-XAS/XES data obtained after photoexcitation with an optical laser pulse at 390 nm allowed us to observe perturbations of the band structure, which are compatible with the formation of the predicted precursor state of a non-thermal solid-liquid phase transition associated with a bond softening phenomenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05258v1-abstract-full').style.display = 'none'; document.getElementById('2305.05258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.13690">arXiv:2301.13690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.13690">pdf</a>, <a href="https://arxiv.org/format/2301.13690">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast Dynamics of the Topological Semimetal GdSb$_{x}$Te$_{2-x-未}$ In the Presence and Absence of a Charge Density Wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kirby%2C+R+J">Robert J. Kirby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giusti%2C+F">Francesca Giusti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koch-Liston%2C+A">Andr茅 Koch-Liston</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+S">Shiming Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petrides%2C+I">Ioannis Petrides</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Narang%2C+P">Prineha Narang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scholes%2C+G+D">Gregory D. Scholes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.13690v1-abstract-short" style="display: inline;"> Time-resolved dynamics in charge-density-wave materials have revealed interesting out-of-equilibrium electronic responses. However these are typically only performed in a single material possessing a CDW. As such, it is challenging to separate subtle effects originating from the CDW. Here, we report on the ultrafast dynamics of the GdSb$_{x}$Te$_{2-x-未}$ series of materials where E$_{F}$ can be tu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13690v1-abstract-full').style.display = 'inline'; document.getElementById('2301.13690v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.13690v1-abstract-full" style="display: none;"> Time-resolved dynamics in charge-density-wave materials have revealed interesting out-of-equilibrium electronic responses. However these are typically only performed in a single material possessing a CDW. As such, it is challenging to separate subtle effects originating from the CDW. Here, we report on the ultrafast dynamics of the GdSb$_{x}$Te$_{2-x-未}$ series of materials where E$_{F}$ can be tuned, resulting in a change from an undistorted tetraganal phase to a CDW with a wavevector that depends on $x$. Using mid-infrared, near-infrared, and visible excitation, we find the dynamics are sensitive to both E$_{F}$ and the presence of the CDW. Specifically, as the Sb content of the compounds increases, transient spectral features shift to higher probe energies. In addition, we observe an enhanced lifetime and change in the sign of the transient signal upon removing the CDW with high Sb concentrations. Finally, we reveal fluence- and temperature-dependent photo-induced responses of the differential reflectivity, which provide evidence of transient charge density wave suppression in related telluride materials. Taken together our results provide a blueprint for future ultrafast studies of CDW systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13690v1-abstract-full').style.display = 'none'; document.getElementById('2301.13690v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09369">arXiv:2301.09369</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.09369">pdf</a>, <a href="https://arxiv.org/format/2301.09369">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2058-9565/ad4979">10.1088/2058-9565/ad4979 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sketching phase diagrams using low-depth variational quantum algorithms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bosse%2C+J+L">Jan Lukas Bosse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santos%2C+R">Raul Santos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Ashley Montanaro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09369v2-abstract-short" style="display: inline;"> Mapping out phase diagrams of quantum systems using classical simulations can be challenging or intractable due to the computational resources required to simulate even small quantum systems far away from the thermodynamic limit. We investigate using quantum computers and the Variational Quantum Eigensolver (VQE) for this task. In contrast to the task of preparing the exact ground state using VQE,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09369v2-abstract-full').style.display = 'inline'; document.getElementById('2301.09369v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09369v2-abstract-full" style="display: none;"> Mapping out phase diagrams of quantum systems using classical simulations can be challenging or intractable due to the computational resources required to simulate even small quantum systems far away from the thermodynamic limit. We investigate using quantum computers and the Variational Quantum Eigensolver (VQE) for this task. In contrast to the task of preparing the exact ground state using VQE, sketching phase diagrams might require less quantum resources and accuracy, because low fidelity approximations to the ground state may be enough to correctly identify different phases. We used classical numerical simulations of low-depth VQE circuits to compute order parameters for four well-studied spin and fermion models which represent a mix of 1D and 2D, and exactly-solvable and classically hard systems. We find that it is possible to predict the location of phase transitions up to reasonable accuracy using states produced by VQE even when their overlap with the true ground state is small. Further, we introduce a model-agnostic predictor of phase transitions based on the speed with which the VQE energy improves with respect to the circuit depth, and find that in some cases this is also able to predict phase transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09369v2-abstract-full').style.display = 'none'; document.getElementById('2301.09369v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 + 5 pages, 8 + 10 figures, added data link to v2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Quantum Sci. Technol. 9 035034 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Science and Technology 9 (2024), Number 3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02346">arXiv:2210.02346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02346">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06596-2">10.1038/s41586-023-06596-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jarc%2C+G">Giacomo Jarc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathengattil%2C+S+Y">Shahla Yasmin Mathengattil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giusti%2C+F">Francesca Giusti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rigoni%2C+E+M">Enrico Maria Rigoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sergo%2C+R">Rudi Sergo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fassioli%2C+F">Francesca Fassioli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winnerl%2C+S">Stephan Winnerl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zilio%2C+S+D">Simone Dal Zilio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mihailovic%2C+D">Dragan Mihailovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prelov%C5%A1ek%2C+P">Peter Prelov拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eckstein%2C+M">Martin Eckstein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02346v2-abstract-short" style="display: inline;"> Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, via both weak and strong light-matter coupling. Here we report the experimental evidence of reversible cavity control of a metal-to-insulator phase transition in a correlated solid-state material. We embed the charge density wave material 1T-TaS$_{2}$ into cryogenic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02346v2-abstract-full').style.display = 'inline'; document.getElementById('2210.02346v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02346v2-abstract-full" style="display: none;"> Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, via both weak and strong light-matter coupling. Here we report the experimental evidence of reversible cavity control of a metal-to-insulator phase transition in a correlated solid-state material. We embed the charge density wave material 1T-TaS$_{2}$ into cryogenic tunable terahertz cavities and show that a switch between conductive and insulating behaviors, associated with a large change in the sample temperature, is obtained by mechanically tuning the distance between the cavity mirrors and their alignment. The large thermal modification observed is indicative of a Purcell-like scenario in which the spectral profile of the cavity modifies the energy exchange between the material and the external electromagnetic field. Our findings provide opportunities for controlling the thermodynamics and macroscopic transport properties of quantum materials by engineering their electromagnetic environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02346v2-abstract-full').style.display = 'none'; document.getElementById('2210.02346v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 36 figures (including Supplementary Information)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 622, 487-492 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15256">arXiv:2205.15256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.15256">pdf</a>, <a href="https://arxiv.org/format/2205.15256">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-43479-6">10.1038/s41467-023-43479-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards near-term quantum simulation of materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Clinton%2C+L">Laura Clinton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cubitt%2C+T">Toby Cubitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flynn%2C+B">Brian Flynn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gambetta%2C+F+M">Filippo Maria Gambetta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klassen%2C+J">Joel Klassen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Ashley Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piddock%2C+S">Stephen Piddock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santos%2C+R+A">Raul A. Santos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sheridan%2C+E">Evan Sheridan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15256v2-abstract-short" style="display: inline;"> Simulation of materials is one of the most promising applications of quantum computers. On near-term hardware the crucial constraint on these simulations is circuit depth. Many quantum simulation algorithms rely on a layer of unitary evolutions generated by each term in a Hamiltonian. This appears in time-dynamics as a single Trotter step, and in variational quantum eigensolvers under the Hamilton&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15256v2-abstract-full').style.display = 'inline'; document.getElementById('2205.15256v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15256v2-abstract-full" style="display: none;"> Simulation of materials is one of the most promising applications of quantum computers. On near-term hardware the crucial constraint on these simulations is circuit depth. Many quantum simulation algorithms rely on a layer of unitary evolutions generated by each term in a Hamiltonian. This appears in time-dynamics as a single Trotter step, and in variational quantum eigensolvers under the Hamiltonian variational ansatz as a single ansatz layer. We present a new quantum algorithm design for materials modelling where the depth of a layer is independent of the system size. This design takes advantage of the locality of materials in the Wannier basis and employs a tailored fermionic encoding that preserves locality. We analyse the circuit costs of this approach and present a compiler that transforms density functional theory data into quantum circuit instructions -- connecting the physics of the material to the simulation circuit. The compiler automatically optimises circuits at multiple levels, from the base gate level to optimisations derived from the physics of the specific target material. We present numerical results for materials spanning a wide structural and technological range. Our results demonstrate a reduction of many orders of magnitude in circuit depth over standard prior methods that do not consider the structure of the Hamiltonian. For example our results improve resource requirements for Strontium Vanadate (SrVO$_3$) from 864 to 180 qubits for a $3\times3\times3$ lattice, and the circuit depth of a single Trotter or variational layer from $7.5\times 10^8$ to depth $884$. Although this is still beyond current hardware, our results show that materials simulation may be feasible on quantum computers without necessarily requiring scalable, fault-tolerant quantum computers, provided quantum algorithm design incorporates understanding of the materials and applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15256v2-abstract-full').style.display = 'none'; document.getElementById('2205.15256v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">94 pages, 38 figures, 13 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 211 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02025">arXiv:2112.02025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02025">pdf</a>, <a href="https://arxiv.org/format/2112.02025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-33335-4">10.1038/s41467-022-33335-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stanisic%2C+S">Stasja Stanisic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bosse%2C+J+L">Jan Lukas Bosse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gambetta%2C+F+M">Filippo Maria Gambetta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Santos%2C+R+A">Raul A. Santos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mruczkiewicz%2C+W">Wojciech Mruczkiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=O%27Brien%2C+T+E">Thomas E. O&#39;Brien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ostby%2C+E">Eric Ostby</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Ashley Montanaro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02025v1-abstract-short" style="display: inline;"> The famous, yet unsolved, Fermi-Hubbard model for strongly-correlated electronic systems is a prominent target for quantum computers. However, accurately representing the Fermi-Hubbard ground state for large instances may be beyond the reach of near-term quantum hardware. Here we show experimentally that an efficient, low-depth variational quantum algorithm with few parameters can reproduce import&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02025v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02025v1-abstract-full" style="display: none;"> The famous, yet unsolved, Fermi-Hubbard model for strongly-correlated electronic systems is a prominent target for quantum computers. However, accurately representing the Fermi-Hubbard ground state for large instances may be beyond the reach of near-term quantum hardware. Here we show experimentally that an efficient, low-depth variational quantum algorithm with few parameters can reproduce important qualitative features of medium-size instances of the Fermi-Hubbard model. We address 1x8 and 2x4 instances on 16 qubits on a superconducting quantum processor, substantially larger than previous work based on less scalable compression techniques, and going beyond the family of 1D Fermi-Hubbard instances, which are solvable classically. Consistent with predictions for the ground state, we observe the onset of the metal-insulator transition and Friedel oscillations in 1D, and antiferromagnetic order in both 1D and 2D. We use a variety of error-mitigation techniques, including symmetries of the Fermi-Hubbard model and a recently developed technique tailored to simulating fermionic systems. We also introduce a new variational optimisation algorithm based on iterative Bayesian updates of a local surrogate model. Our scalable approach is a first step to using near-term quantum computers to determine low-energy properties of strongly-correlated electronic systems that cannot be solved exactly by classical computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02025v1-abstract-full').style.display = 'none'; document.getElementById('2112.02025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.01560">arXiv:2112.01560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.01560">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0080045">10.1063/5.0080045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable cryogenic THz cavity for strong light-matter coupling in complex materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jarc%2C+G">Giacomo Jarc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathengattil%2C+S+Y">Shahla Yasmin Mathengattil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giusti%2C+F">Francesca Giusti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barnaba%2C+M">Maurizio Barnaba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+A">Abhishek Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glerean%2C+F">Filippo Glerean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rigoni%2C+E+M">Enrico Maria Rigoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zilio%2C+S+D">Simone Dal Zilio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winnerl%2C+S">Stephan Winnerl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.01560v1-abstract-short" style="display: inline;"> We report here the realization and commissioning of an experiment dedicated to the study of the optical properties of light matter hybrids constituted of crystalline samples embedded in an optical cavity. The experimental assembly developed offers the unique opportunity to study the weak and strong coupling regime between a tunable optical cavity in cryogenic environment and low energy degrees of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.01560v1-abstract-full').style.display = 'inline'; document.getElementById('2112.01560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.01560v1-abstract-full" style="display: none;"> We report here the realization and commissioning of an experiment dedicated to the study of the optical properties of light matter hybrids constituted of crystalline samples embedded in an optical cavity. The experimental assembly developed offers the unique opportunity to study the weak and strong coupling regime between a tunable optical cavity in cryogenic environment and low energy degrees of freedom such as phonons, magnons or charge fluctuations. We describe here the setup developed which allows the positioning of crystalline samples in an optical cavity of different quality factor, the tuning of the cavity length at cryogenic temperatures and its optical characterization with a broadband time domain THz spectrometer (0.2-6 THz). We demonstrate the versatility of the setup by studying the vibrational strong coupling in CuGeO3 single crystal at cryogenic temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.01560v1-abstract-full').style.display = 'none'; document.getElementById('2112.01560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12355">arXiv:2111.12355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.12355">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Non-adiabatic suppression of 3D excitonic screening in black phosphorus by mid-infrared pulses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giusti%2C+F">Francesca Giusti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zanfrognini%2C+M">Matteo Zanfrognini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Pietro%2C+P">Paola Di Pietro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glerean%2C+F">Filippo Glerean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarc%2C+G">Giacomo Jarc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rigoni%2C+E+M">Enrico Maria Rigoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathengattil%2C+S+Y">Shahla Y. Mathengattil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Varsano%2C+D">Daniele Varsano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rontani%2C+M">Massimo Rontani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perucchi%2C+A">Andrea Perucchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Molinari%2C+E">Elisa Molinari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12355v1-abstract-short" style="display: inline;"> The competition between the electron-hole Coulomb attraction and the three-dimensional dielectric screening dictates the optical properties of layered semiconductors. In low-dimensional materials, the equilibrium dielectric environment can be significantly altered by the ultrafast excitation of photo-carriers, leading to renormalized band gap and exciton binding energies. Recently, black phosphoru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12355v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12355v1-abstract-full" style="display: none;"> The competition between the electron-hole Coulomb attraction and the three-dimensional dielectric screening dictates the optical properties of layered semiconductors. In low-dimensional materials, the equilibrium dielectric environment can be significantly altered by the ultrafast excitation of photo-carriers, leading to renormalized band gap and exciton binding energies. Recently, black phosphorus emerged as a 2D material with strongly layer-dependent electronic properties. Here, we resolve the coherent response of screening to sub-gap photo-excitation in bulk black phosphorus and find that mid-infrared pulses tuned across the band gap drive a transient non-thermal suppression of the dielectric screening, which is revealed by the emergence of the single-layer exciton resonance. Our work exposes the role of interlayer interactions in determining the electronic properties of 2D materials and discloses the possibility of optically manipulate them, which is of great relevance for the engineering of versatile van der Waals low-dimensional materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12355v1-abstract-full').style.display = 'none'; document.getElementById('2111.12355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.11288">arXiv:2012.11288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.11288">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.125121">10.1103/PhysRevB.104.125121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic Time-Domain Electronic Response in Cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Giusti%2C+F">Francesca Giusti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marciniak%2C+A">Alexandre Marciniak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Randi%2C+F">Francesco Randi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">Fabio Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glerean%2C+F">Filippo Glerean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarc%2C+G">Giacomo Jarc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greven%2C+M">Martin Greven</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">Andrea Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avella%2C+A">Adolfo Avella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.11288v1-abstract-short" style="display: inline;"> Superconductivity in the cuprates is characterized by spatial inhomogeneity and an anisotropic electronic gap of d-wave symmetry. The aim of this work is to understand how this anisotropy affects the non-equilibrium electronic response of high-Tc superconductors. We compare the nodal and antinodal non-equilibrium response to photo-excitations with photon energy comparable to the superconducting ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11288v1-abstract-full').style.display = 'inline'; document.getElementById('2012.11288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.11288v1-abstract-full" style="display: none;"> Superconductivity in the cuprates is characterized by spatial inhomogeneity and an anisotropic electronic gap of d-wave symmetry. The aim of this work is to understand how this anisotropy affects the non-equilibrium electronic response of high-Tc superconductors. We compare the nodal and antinodal non-equilibrium response to photo-excitations with photon energy comparable to the superconducting gap and polarization along the Cu-Cu axis of the sample. The data are supported by an effective d-wave BCS model indicating that the observed enhancement of the superconducting transient signal mostly involves an increase of pair coherence in the antinodal region, which is not induced at the node. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.11288v1-abstract-full').style.display = 'none'; document.getElementById('2012.11288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 125121 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05816">arXiv:2012.05816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05816">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.0c09758">10.1021/acsnano.0c09758 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wafer-scale integration of graphene-based photonic devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Giambra%2C+M+A">Marco A. Giambra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%C5%A1eikis%2C+V">Vaidotas Mi拧eikis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pezzini%2C+S">Sergio Pezzini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marconi%2C+S">Simone Marconi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Alberto Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabbri%2C+F">Filippo Fabbri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sorianello%2C+V">Vito Sorianello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+A+C">Andrea C. Ferrari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coletti%2C+C">Camilla Coletti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romagnoli%2C+M">Marco Romagnoli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05816v2-abstract-short" style="display: inline;"> Graphene and related materials can lead to disruptive advances in next generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (&gt;5,000 cm2 V-1 s-1) mobility devices with reliable performance at the wafer scale. Here, we present a flow for the integration of graphene in photonics circuits. This relies on chemical vapour depositi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05816v2-abstract-full').style.display = 'inline'; document.getElementById('2012.05816v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05816v2-abstract-full" style="display: none;"> Graphene and related materials can lead to disruptive advances in next generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (&gt;5,000 cm2 V-1 s-1) mobility devices with reliable performance at the wafer scale. Here, we present a flow for the integration of graphene in photonics circuits. This relies on chemical vapour deposition (CVD) of single layer graphene (SLG) matrices comprising up to ~12000 individual single crystals (SCs), grown to match the geometrical configuration of the devices in the photonic circuit. This is followed by a transfer approach which guarantees coverage over ~80% of the device area, and integrity for up to 150 mm wafers, with room temperature mobility ~5000 cm2 V-1 s-1. We use this process flow to demonstrate double SLG electro-absorption modulators with modulation efficiency ~0.25, 0.45, 0.75, 1 dB V-1 for device lengths ~30, 60, 90, 120 渭m. The data rate is up to 20 Gbps. Encapsulation with single-layer hBN is used to protected SLG during plasma-enhanced CVD of Si3N4, ensuring reproducible device performance. Our full process flow (from growth to device fabrication) enables the commercial implementation of graphene-based photonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05816v2-abstract-full').style.display = 'none'; document.getElementById('2012.05816v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 9 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.03442">arXiv:2006.03442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.03442">pdf</a>, <a href="https://arxiv.org/format/2006.03442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0016362">10.1063/5.0016362 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visible pump -- mid infrared pump -- broadband probe: development and characterization of a three-pulse setup for single-shot ultrafast spectroscopy at 50 kHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">Angela Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giusti%2C+F">Francesca Giusti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colja%2C+M">Matija Colja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brajnik%2C+G">Gabriele Brajnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marciniak%2C+A+M+A">Alexandre M. A. Marciniak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sergo%2C+R">Rudi Sergo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Angelis%2C+D">Dario De Angelis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glerean%2C+F">Filippo Glerean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sparapassi%2C+G">Giorgia Sparapassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarc%2C+G">Giacomo Jarc</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carrato%2C+S">Sergio Carrato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cautero%2C+G">Giuseppe Cautero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fausti%2C+D">Daniele Fausti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.03442v1-abstract-short" style="display: inline;"> We report here an experimental setup to perform three-pulse pump-probe measurements over a wide wavelength and temperature range. By combining two pump pulses in the visible (650-900 nm) and mid-IR (5-20 $渭$m) range, with a broadband supercontinuum white-light probe, our apparatus enables both the combined selective excitation of different material degrees of freedom and a full time-dependent reco&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03442v1-abstract-full').style.display = 'inline'; document.getElementById('2006.03442v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.03442v1-abstract-full" style="display: none;"> We report here an experimental setup to perform three-pulse pump-probe measurements over a wide wavelength and temperature range. By combining two pump pulses in the visible (650-900 nm) and mid-IR (5-20 $渭$m) range, with a broadband supercontinuum white-light probe, our apparatus enables both the combined selective excitation of different material degrees of freedom and a full time-dependent reconstruction of the non-equilibrium dielectric function of the sample. We describe here the optical setup, the cryogenic sample environment and the custom-made acquisition electronics capable of referenced single-pulse detection of broadband spectra at the maximum repetition rate of 50 kHz, achieving a sensitivity of the order of 10$^{-4}$ over an integration time of 1 s. We demonstrate the performance of the setup by reporting data on mid-IR pump, optical push and broadband probe in a single-crystal of Bi$_2$Sr$_2$Y$_{0.08}$Ca$_{0.92}$Cu$_2$O$_{8+未}$ across the superconducting and pseudogap phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03442v1-abstract-full').style.display = 'none'; document.getElementById('2006.03442v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 91, 073106 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.02791">arXiv:1511.02791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.02791">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> 30 GHz optoelectronic mixing in CVD graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Montanaro%2C+A">A. Montanaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mzali%2C+S">S. Mzali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazellier%2C+J+-">J. -P. Mazellier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bezencenet%2C+O">O. Bezencenet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Larat%2C+C">C. Larat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Molin%2C+S">S. Molin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legagneux%2C+P">P. Legagneux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dolfi%2C+D">D. Dolfi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dlubak%2C+B">B. Dlubak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seneor%2C+P">P. Seneor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin%2C+M+-">M. -B. Martin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+S">S. Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robertson%2C+J">J. Robertson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Centano%2C+A">A. Centano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zurutuza%2C+A">A. Zurutuza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.02791v2-abstract-short" style="display: inline;"> We report an optoelectronic mixer based on chemical vapour-deposited graphene. Our device consists in a coplanar waveguide that integrates a graphene channel, passivated with an atomic layer-deposited Al2O3 film. With this new structure, 30 GHz optoelectronic mixing in commercially-available graphene is demonstrated for the first time. In particular, using a 30 GHz intensity-modulated optical sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.02791v2-abstract-full').style.display = 'inline'; document.getElementById('1511.02791v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.02791v2-abstract-full" style="display: none;"> We report an optoelectronic mixer based on chemical vapour-deposited graphene. Our device consists in a coplanar waveguide that integrates a graphene channel, passivated with an atomic layer-deposited Al2O3 film. With this new structure, 30 GHz optoelectronic mixing in commercially-available graphene is demonstrated for the first time. In particular, using a 30 GHz intensity-modulated optical signal and a 29.9 GHz electrical signal, we show frequency downconversion to 100 MHz. These results open promising perspectives in the domain of optoelectronics for radar and radio-communication systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.02791v2-abstract-full').style.display = 'none'; document.getElementById('1511.02791v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10