CINXE.COM

Search results for: maneuvers

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: maneuvers</title> <meta name="description" content="Search results for: maneuvers"> <meta name="keywords" content="maneuvers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="maneuvers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="maneuvers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 56</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: maneuvers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Early Design Prediction of Submersible Maneuvers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hernani%20Brinati">Hernani Brinati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardel%20de%20Conti"> Mardel de Conti</a>, <a href="https://publications.waset.org/abstracts/search?q=Moyses%20Szajnbok"> Moyses Szajnbok</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Domiciano"> Valentina Domiciano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study brings a mathematical model and examples for the numerical prediction of submersible maneuvers in the horizontal and in the vertical planes. The geometry of the submarine is here taken as a body of revolution plus a sail, two horizontal and two vertical rudders. The model includes the representation of the hull resistance and of the propeller thrust and torque, what enables to consider the variation of the longitudinal component of the velocity of the ship when maneuvering. The hydrodynamic forces are represented through power series expansions of the acceleration and velocity components. The hydrodynamic derivatives for the body of revolution are mostly estimated based on fundamental principles applicable to the flow around airplane fuselages in the subsonic regime. The hydrodynamic forces for the sail and rudders are estimated based on a finite aspect ratio wing theory. The objective of this study is to build an expedite model for submarine maneuvers prediction, based on fundamental principles, which may be convenient in the early stages of the ship design. This model is tested against available numerical and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submarine%20maneuvers" title="submarine maneuvers">submarine maneuvers</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine" title=" submarine"> submarine</a>, <a href="https://publications.waset.org/abstracts/search?q=maneuvering" title=" maneuvering"> maneuvering</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a> </p> <a href="https://publications.waset.org/abstracts/13769/early-design-prediction-of-submersible-maneuvers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Collision Avoidance Maneuvers for Vessels Navigating through Traffic Separation Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswin%20V.%20J.">Aswin V. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreeja%20%20S."> Sreeja S.</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Harikumar"> R. Harikumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ship collision is one of the major concerns while navigating in the ocean. In congested sea routes where there are hectic offshore operations, ships are often forced to take close encounter maneuvers. Maritime rules for preventing collision at sea are defined in the International Regulations for Preventing Collision at Sea. Traffic Separation Schemes (TSS) are traffic management route systems ruled by International Maritime Organization (IMO), where the traffic lanes indicate the general direction of traffic flow. The Rule 10 of International Regulations for Preventing Collision at Sea prescribes the conduct of vessels while navigating through TSS. But no quantitative criteria regarding the procedures to detect and evaluate collision risk is specified in International Regulations for Preventing Collision at Sea. Most of the accidents that occur are due to operational errors affected by human factors such as lack of experience and loss of situational awareness. In open waters, the traffic density is less when compared to that in TSS, and hence the vessels can be operated in autopilot mode. A collision avoidance method that uses the possible obstacle trajectories in advance to predict “collision occurrence” and can generate suitable maneuvers for collision avoidance is presented in this paper. The suitable course and propulsion changes that can be used in a TSS considering International Regulations for Preventing Collision at Sea are found out for various obstacle scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title="collision avoidance">collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=maneuvers" title=" maneuvers"> maneuvers</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20trajectories" title=" obstacle trajectories"> obstacle trajectories</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20separation%20scheme" title=" traffic separation scheme"> traffic separation scheme</a> </p> <a href="https://publications.waset.org/abstracts/145379/collision-avoidance-maneuvers-for-vessels-navigating-through-traffic-separation-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Unearthing Air Traffic Control Officers Decision Instructional Patterns From Simulator Data for Application in Human Machine Teams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainuddin%20Zakaria">Zainuddin Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Woh%20Lye"> Sun Woh Lye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the continuous advancements in automated conflict resolution tools, there is still a low rate of adoption of automation from Air Traffic Control Officers (ATCOs). Trust or acceptance in these tools and conformance to the individual ATCO preferences in strategy execution for conflict resolution are two key factors that impact their use. This paper proposes a methodology to unearth and classify ATCO conflict resolution strategies from simulator data of trained and qualified ATCOs. The methodology involves the extraction of ATCO executive control actions and the establishment of a system of strategy resolution classification based on ATCO radar commands and prevailing flight parameters in deconflicting a pair of aircraft. Six main strategies used to handle various categories of conflict were identified and discussed. It was found that ATCOs were about twice more likely to choose only vertical maneuvers in conflict resolution compared to horizontal maneuvers or a combination of both vertical and horizontal maneuvers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20control%20strategies" title="air traffic control strategies">air traffic control strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict%20resolution" title=" conflict resolution"> conflict resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=simulator%20data" title=" simulator data"> simulator data</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy%20classification%20system" title=" strategy classification system"> strategy classification system</a> </p> <a href="https://publications.waset.org/abstracts/172853/unearthing-air-traffic-control-officers-decision-instructional-patterns-from-simulator-data-for-application-in-human-machine-teams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz">Zbigniew Czyz</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Magryta"> Pawel Magryta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko"> Mateusz Paszko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20bearings" title="gas bearings">gas bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopters" title=" helicopters"> helicopters</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20maneuvers" title=" helicopter maneuvers"> helicopter maneuvers</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20engines" title=" turbine engines"> turbine engines</a> </p> <a href="https://publications.waset.org/abstracts/50082/analysis-of-the-operating-load-of-gas-bearings-in-the-gas-generator-of-the-turbine-engine-during-a-deceleration-to-dash-maneuver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> The Strategy of Orbit Avoidance for Optical Remote Sensing Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dianxun%20Zheng">Dianxun Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wuxing%20Jing"> Wuxing Jing</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Hetong"> Lin Hetong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical remote sensing satellite, always running on the Sun-synchronous orbit, equipped laser warning equipment to alert CCD camera from laser attack. There have three ways to protect the CCD camera, closing the camera cover satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes a satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-object avoid maneuvers. On occasions of fulfilling the orbit tasks of the satellite, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. and the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to avoidance for optical remote sensing satellite when encounter the laser hostile attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20remote%20sensing%20satellite" title="optical remote sensing satellite">optical remote sensing satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=always%20running%20on%20the%20sun-synchronous" title=" always running on the sun-synchronous"> always running on the sun-synchronous</a> </p> <a href="https://publications.waset.org/abstracts/31188/the-strategy-of-orbit-avoidance-for-optical-remote-sensing-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Investigation of Airship Motion Sensitivity to Geometric Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Ding">Han Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xiaoliang"> Wang Xiaoliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Duan%20Dengping"> Duan Dengping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the process of airship design, the layout and the geometric shape of the hull and fins are crucial to the motion characteristics of the airship. In this paper, we obtained the quantification motion sensitivity of the airship to geometric parameters through turning circles and horizontal/vertical zigzag maneuvers by the parameterization of airship shape and building the dynamic model using Lagrangian approach and MATLAB Simulink program. In the dynamics simulation program, the affection of geometric parameters to the mass, center of gravity, moments of inertia, product of inertia, added mass and the aerodynamic forces and moments have been considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airship" title="airship">airship</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20approach" title=" Lagrangian approach"> Lagrangian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=turning%20circles" title=" turning circles"> turning circles</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%2Fvertical%20zigzag%20maneuvers" title=" horizontal/vertical zigzag maneuvers"> horizontal/vertical zigzag maneuvers</a> </p> <a href="https://publications.waset.org/abstracts/40146/investigation-of-airship-motion-sensitivity-to-geometric-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zheng%20DianXun">Zheng DianXun</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Bo"> Cheng Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Hetong"> Lin Hetong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the orbit avoidance strategies of optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. There are three ways to protect the CCD camera: closing the camera cover, satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. Thereinto, the avoid maneuvers adopts pulse guidance. And the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20remote%20sensing%20satellite" title="optical remote sensing satellite">optical remote sensing satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20avoidance" title=" satellite avoidance"> satellite avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20satellite" title=" virtual satellite"> virtual satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=avoid%20target-point" title=" avoid target-point"> avoid target-point</a>, <a href="https://publications.waset.org/abstracts/search?q=avoid%20maneuver" title=" avoid maneuver"> avoid maneuver</a> </p> <a href="https://publications.waset.org/abstracts/34217/research-on-the-strategy-of-orbital-avoidance-for-optical-remote-sensing-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Variability in Saturation Flow and Traffic Performance at Urban Signalized Intersection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Salini">P. N. Salini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Anish%20Kini"> B. Anish Kini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ashalatha"> R. Ashalatha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At signalized intersections with heterogeneous traffic, the percentage share of different vehicle categories have a bearing on the inter-vehicle space utilization, which eventually impacts the saturation flow. This paper analyzed the impact of the percentage share of various vehicle categories in the traffic stream on the saturation flow at signalized intersections by video graphing major intersections with varying geometry in Kerala, India. It was found that as the percentage share of two-wheelers increases, the saturation flow at signalized intersections increases and vice-versa for the percentage share of cars. The effect of bus blockage and parking maneuvers on the saturation flow were also studied. As the distance of bus blockage increases from the stop line, the effect on the saturation flow decreases, while with more buses stopping at the same bus stop, the saturation flow reduces further. The study revealed that with higher kerbside parking maneuvers on the upstream, the saturation flow reduces, and with an increase in the distance of the parking maneuver from the stop line, the effect on the saturation flow decreases. The adjustment factors for bus blockage due to bus stops within 75m downstream and parking maneuvers within 75m upstream of the intersection have been established for mixed traffic conditions. These adjustment factors could empower the urban planners, enforcement personnel and decision-makers to estimate the reduction in the capacity of signalized intersections for suggesting improvements in the form of parking restrictions/ bus stop relocation for existing intersections or make design changes for planned intersections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=signalized%20intersection" title="signalized intersection">signalized intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20flow" title=" saturation flow"> saturation flow</a>, <a href="https://publications.waset.org/abstracts/search?q=adjustment%20factors" title=" adjustment factors"> adjustment factors</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a> </p> <a href="https://publications.waset.org/abstracts/131466/variability-in-saturation-flow-and-traffic-performance-at-urban-signalized-intersection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Cicek">Ibrahim Cicek</a>, <a href="https://publications.waset.org/abstracts/search?q=Melike%20Nikbay"> Melike Nikbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=e-powertrain" title=" e-powertrain"> e-powertrain</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a> </p> <a href="https://publications.waset.org/abstracts/126708/optimization-of-e-motor-control-parameters-for-electrically-propelled-vehicles-by-integral-squared-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> VTOL-Fw Mode-Transitioning UAV Design and Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feri%CC%87t%20%C3%87akici">Feri̇t Çakici</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kemal%20Leblebi%CC%87ci%CC%87o%C4%9Flu"> M. Kemal Leblebi̇ci̇oğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-transitioning capability is designed and analyzed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor and airplane mode controllers and design of an algorithm to transition between modes in achieving smooth switching maneuvers between VTOL and FW flight. Thus, VTOL-FW UAV’s flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-transitioning, agile maneuvers and increasing survivability. Experiments conducted in simulation and real world environments shows that VTOL-FW UAV has both multirotor and airplane characteristics with extra benefits in an enlarged flight envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20design" title="aircraft design">aircraft design</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20analysis" title=" linear analysis"> linear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20transitioning%20control" title=" mode transitioning control"> mode transitioning control</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/45269/vtol-fw-mode-transitioning-uav-design-and-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyong%20Zheng">Zhiyong Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Li"> Xu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Huang"> Liang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengliang%20Sun"> Zhengliang Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhua%20Xu"> Jianhua Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gated%20recurrent%20unit" title="gated recurrent unit">gated recurrent unit</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-stage%20learning" title=" multi-stage learning"> multi-stage learning</a>, <a href="https://publications.waset.org/abstracts/search?q=reliable%20estimation" title=" reliable estimation"> reliable estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20auto-encoder" title=" variational auto-encoder"> variational auto-encoder</a>, <a href="https://publications.waset.org/abstracts/search?q=yaw%20angle" title=" yaw angle"> yaw angle</a> </p> <a href="https://publications.waset.org/abstracts/127783/a-multi-stage-learning-framework-for-reliable-and-cost-effective-estimation-of-vehicle-yaw-angle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> The Effect of Degraded Shock Absorbers on the Safety-Critical Tipping and Rolling Behaviour of Passenger Cars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Schramm">Tobias Schramm</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCnther%20Prokop"> Günther Prokop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Germany, the number of road fatalities has been falling since 2010 at a more moderate rate than before. At the same time, the average age of all registered passenger cars in Germany is rising continuously. Studies show that there is a correlation between the age and mileage of passenger cars and the degradation of their chassis components. Various studies show that degraded shock absorbers increase the braking distance of passenger cars and have a negative impact on driving stability. The exact effect of degraded vehicle shock absorbers on road safety is still the subject of research. A shock absorber examination as part of the periodic technical inspection is only mandatory in very few countries. In Germany, there is as yet no requirement for such a shock absorber examination. More comprehensive findings on the effect of degraded shock absorbers on the safety-critical driving dynamics of passenger cars can provide further arguments for the introduction of mandatory shock absorber testing as part of the periodic technical inspection. The specific effect chains of untripped rollover accidents are also still the subject of research. However, current research results show that the high proportion of sport utility vehicles in the vehicle field significantly increases the probability of untripped rollover accidents. The aim of this work is to estimate the effect of degraded twin-tube shock absorbers on the safety-critical tipping and rolling behaviour of passenger cars, which can lead to untripped rollover accidents. A characteristic curve-based five-mass full vehicle model and a semi-physical phenomenological shock absorber model were set up, parameterized and validated. The shock absorber model is able to reproduce the damping characteristics of vehicle twin-tube shock absorbers with oil and gas loss for various excitations. The full vehicle model was validated with steering wheel angle sinus sweep driving maneuvers. The model was then used to simulate steering wheel angle sine and fishhook maneuvers, which investigate the safety-critical tipping and rolling behavior of passenger cars. The simulations were carried out in a realistic parameter space in order to demonstrate the effect of various vehicle characteristics on the effect of degraded shock absorbers. As a result, it was shown that degraded shock absorbers have a negative effect on the tipping and rolling behavior of all passenger cars. Shock absorber degradation leads to a significant increase in the observed roll angles, particularly in the range of the roll natural frequency. This superelevation has a negative effect on the wheel load distribution during the driving maneuvers investigated. In particular, the height of the vehicle's center of gravity and the stabilizer stiffness of the vehicles has a major influence on the effect of degraded shock absorbers on the overturning and rolling behaviour of passenger cars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=safety-critical%20driving%20dynamics" title=" safety-critical driving dynamics"> safety-critical driving dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=suspension%20degradation" title=" suspension degradation"> suspension degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=tipping%20and%20rolling%20behavior%20of%20passenger%20cars" title=" tipping and rolling behavior of passenger cars"> tipping and rolling behavior of passenger cars</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20shock%20absorber" title=" vehicle shock absorber"> vehicle shock absorber</a> </p> <a href="https://publications.waset.org/abstracts/194629/the-effect-of-degraded-shock-absorbers-on-the-safety-critical-tipping-and-rolling-behaviour-of-passenger-cars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Optimal Placement of the Unified Power Controller to Improve the Power System Restoration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Esmaili">Mohammad Reza Esmaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UPFC" title="UPFC">UPFC</a>, <a href="https://publications.waset.org/abstracts/search?q=SPA" title=" SPA"> SPA</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20cycle%20algorithm" title=" water cycle algorithm"> water cycle algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20problem" title=" multi-objective problem"> multi-objective problem</a>, <a href="https://publications.waset.org/abstracts/search?q=pareto" title=" pareto"> pareto</a> </p> <a href="https://publications.waset.org/abstracts/172408/optimal-placement-of-the-unified-power-controller-to-improve-the-power-system-restoration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Physiological Effects during Aerobatic Flights on Science Astronaut Candidates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Llanos">Pedro Llanos</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Garc%C3%ADa"> Diego García</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth&rsquo;s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and &ndash;Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=g%20force" title="g force">g force</a>, <a href="https://publications.waset.org/abstracts/search?q=aerobatic%20maneuvers" title=" aerobatic maneuvers"> aerobatic maneuvers</a>, <a href="https://publications.waset.org/abstracts/search?q=suborbital%20flight" title=" suborbital flight"> suborbital flight</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoxia" title=" hypoxia"> hypoxia</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20astronauts" title=" commercial astronauts"> commercial astronauts</a> </p> <a href="https://publications.waset.org/abstracts/124830/physiological-effects-during-aerobatic-flights-on-science-astronaut-candidates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M-M.%20Mohamed%20Ahmed">M-M. Mohamed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacer%20K.%20M%E2%80%99Sirdi"> Nacer K. M’Sirdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Naamane"> Aziz Naamane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=convoy" title=" convoy"> convoy</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20control" title=" non-linear control"> non-linear control</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20observer" title=" non-linear observer"> non-linear observer</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode" title=" sliding mode"> sliding mode</a> </p> <a href="https://publications.waset.org/abstracts/111128/non-linear-control-based-on-state-estimation-for-the-convoy-of-autonomous-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Astrov">Igor Astrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalya%20Berezovski"> Natalya Berezovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMA-L2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NARMA-L2%20neurocontroller" title="NARMA-L2 neurocontroller">NARMA-L2 neurocontroller</a>, <a href="https://publications.waset.org/abstracts/search?q=situational%20awareness" title=" situational awareness"> situational awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=vectored%20thrust%20aerial%20vehicle" title=" vectored thrust aerial vehicle"> vectored thrust aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=aviation" title=" aviation"> aviation</a> </p> <a href="https://publications.waset.org/abstracts/33158/neural-network-motion-control-of-vtav-by-narma-l2-controller-for-enhanced-situational-awareness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Improved Imaging and Tracking Algorithm for Maneuvering Extended UAVs Using High-Resolution ISAR Radar System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Barbary">Mohamed Barbary</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Abd%20El-Azeem"> Mohamed H. Abd El-Azeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maneuvering extended object tracking (M-EOT) using high-resolution inverse synthetic aperture radar (ISAR) observations has been gaining momentum recently. This work presents a new robust implementation of the multiple models (MM) multi-Bernoulli (MB) filter for M-EOT, where the M-EOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maneuvering%20extended%20objects" title="maneuvering extended objects">maneuvering extended objects</a>, <a href="https://publications.waset.org/abstracts/search?q=ISAR" title=" ISAR"> ISAR</a>, <a href="https://publications.waset.org/abstracts/search?q=skewed%20normal%20distribution" title=" skewed normal distribution"> skewed normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-RMM" title=" sub-RMM"> sub-RMM</a>, <a href="https://publications.waset.org/abstracts/search?q=MM-MB-TBD%20filter" title=" MM-MB-TBD filter"> MM-MB-TBD filter</a> </p> <a href="https://publications.waset.org/abstracts/167135/improved-imaging-and-tracking-algorithm-for-maneuvering-extended-uavs-using-high-resolution-isar-radar-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Research on ARQ Transmission Technique in Mars Detection Telecommunications System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhongfei%20Cai">Zhongfei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20He"> Hui He</a>, <a href="https://publications.waset.org/abstracts/search?q=Changsheng%20Li"> Changsheng Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studied in the automatic repeat request (ARQ) transmission technique in Mars detection telecommunications system. An ARQ method applied to proximity-1 space link protocol was proposed by this paper. In order to ensure the efficiency of data reliable transmission, this ARQ method combined these different ARQ maneuvers characteristics. Considering the Mars detection communication environments, this paper analyzed the characteristics of the saturation throughput rate, packet dropping probability, average delay and energy efficiency with different ARQ algorithms. Combined thus results with the theories of ARQ transmission technique, an ARQ transmission project in Mars detection telecommunications system was established. The simulation results showed that this algorithm had excellent saturation throughput rate and energy efficiency with low complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARQ" title="ARQ">ARQ</a>, <a href="https://publications.waset.org/abstracts/search?q=mars" title=" mars"> mars</a>, <a href="https://publications.waset.org/abstracts/search?q=CCSDS" title=" CCSDS"> CCSDS</a>, <a href="https://publications.waset.org/abstracts/search?q=proximity-1" title=" proximity-1"> proximity-1</a>, <a href="https://publications.waset.org/abstracts/search?q=deepspace" title=" deepspace"> deepspace</a> </p> <a href="https://publications.waset.org/abstracts/31557/research-on-arq-transmission-technique-in-mars-detection-telecommunications-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do%C4%9Fan%20Y%C4%B1ld%C4%B1z">Doğan Yıldız</a>, <a href="https://publications.waset.org/abstracts/search?q=Aydan%20M%C3%BC%C5%9Ferref%20Erkmen"> Aydan Müşerref Erkmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20octocopter%20model" title=" nonlinear octocopter model"> nonlinear octocopter model</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title=" collision avoidance"> collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20detection" title=" obstacle detection"> obstacle detection</a> </p> <a href="https://publications.waset.org/abstracts/150063/collision-avoidance-based-on-model-predictive-control-for-nonlinear-octocopter-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> ISAR Imaging and Tracking Algorithm for Maneuvering Non-ellipsoidal Extended Objects Using Jump Markov Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Barbary">Mohamed Barbary</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Abd%20El-azeem"> Mohamed H. Abd El-azeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maneuvering non-ellipsoidal extended object tracking (M-NEOT) using high-resolution inverse synthetic aperture radar (ISAR) observations is gaining momentum recently. This work presents a new robust implementation of the Jump Markov (JM) multi-Bernoulli (MB) filter for M-NEOT, where the M-NEOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on an MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maneuvering%20extended%20objects" title="maneuvering extended objects">maneuvering extended objects</a>, <a href="https://publications.waset.org/abstracts/search?q=ISAR" title=" ISAR"> ISAR</a>, <a href="https://publications.waset.org/abstracts/search?q=skewed%20normal%20distribution" title=" skewed normal distribution"> skewed normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-RMM" title=" sub-RMM"> sub-RMM</a>, <a href="https://publications.waset.org/abstracts/search?q=JM-MB-TBD%20filter" title=" JM-MB-TBD filter"> JM-MB-TBD filter</a> </p> <a href="https://publications.waset.org/abstracts/178767/isar-imaging-and-tracking-algorithm-for-maneuvering-non-ellipsoidal-extended-objects-using-jump-markov-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Trajectory Generation Procedure for Unmanned Aerial Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amor%20Jnifene">Amor Jnifene</a>, <a href="https://publications.waset.org/abstracts/search?q=Cedric%20Cocaud"> Cedric Cocaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most constraining problems facing the development of autonomous vehicles is the limitations of current technologies. Guidance and navigation controllers need to be faster and more robust. Communication data links need to be more reliable and secure. For an Unmanned Aerial Vehicles (UAV) to be useful, and fully autonomous, one important feature that needs to be an integral part of the navigation system is autonomous trajectory planning. The work discussed in this paper presents a method for on-line trajectory planning for UAV’s. This method takes into account various constraints of different types including specific vectors of approach close to target points, multiple objectives, and other constraints related to speed, altitude, and obstacle avoidance. The trajectory produced by the proposed method ensures a smooth transition between different segments, satisfies the minimum curvature imposed by the dynamics of the UAV, and finds the optimum velocity based on available atmospheric conditions. Given a set of objective points and waypoints a skeleton of the trajectory is constructed first by linking all waypoints with straight segments based on the order in which they are encountered in the path. Secondly, vectors of approach (VoA) are assigned to objective waypoints and their preceding transitional waypoint if any. Thirdly, the straight segments are replaced by 3D curvilinear trajectories taking into account the aircraft dynamics. In summary, this work presents a method for on-line 3D trajectory generation (TG) of Unmanned Aerial Vehicles (UAVs). The method takes as inputs a series of waypoints and an optional vector of approach for each of the waypoints. Using a dynamic model based on the performance equations of fixed wing aircrafts, the TG computes a set of 3D parametric curves establishing a course between every pair of waypoints, and assembling these sets of curves to construct a complete trajectory. The algorithm ensures geometric continuity at each connection point between two sets of curves. The geometry of the trajectory is optimized according to the dynamic characteristics of the aircraft such that the result translates into a series of dynamically feasible maneuvers. In summary, this work presents a method for on-line 3D trajectory generation (TG) of Unmanned Aerial Vehicles (UAVs). The method takes as inputs a series of waypoints and an optional vector of approach for each of the waypoints. Using a dynamic model based on the performance equations of fixed wing aircraft, the TG computes a set of 3D parametric curves establishing a course between every pair of waypoints, and assembling these sets of curves to construct a complete trajectory. The algorithm ensures geometric continuity at each connection point between two sets of curves. The geometry of the trajectory is optimized according to the dynamic characteristics of the aircraft such that the result translates into a series of dynamically feasible maneuvers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning" title="trajectory planning">trajectory planning</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20autonomous%20air%20vehicle" title=" unmanned autonomous air vehicle"> unmanned autonomous air vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20of%20approach" title=" vector of approach"> vector of approach</a>, <a href="https://publications.waset.org/abstracts/search?q=waypoints" title=" waypoints"> waypoints</a> </p> <a href="https://publications.waset.org/abstracts/59777/trajectory-generation-procedure-for-unmanned-aerial-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Cargo Securement Standards and Braking Maneuvers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20A.%20Romero">Jose A. Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Otremba"> Frank Otremba</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20A.%20Lozano-Guzman"> Alejandro A. Lozano-Guzman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road safety is affected by many factors, involving the vehicle, the infrastructure, and the environment. Many efforts have been thus made to improve road safety through rational standards for the different systems involved in freight transportation. Cargo shifting and falling have been recognized as critical and contributive effects for road crashes. To avoid such situations, regional and international standards have been implemented, aiming to prevent such types of cargo-related accidents. In particular, there are specific compulsory standard requirements to maintain the cargo on the vehicle without shifting, when the vehicle performs an emergency braking maneuver. In this paper, a simulation is presented to analyze the effect of the vibration of the cargo on the braking distance of the vehicle. Such vibration can lead to a poor cargo restraining, and higher braking efficiency, as a result of the decoupling of the cargo mass from the vehicle mass. Such higher braking efficiency, on the order of 4.4%, further suggests a greater demand for the current braking standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title="road safety">road safety</a>, <a href="https://publications.waset.org/abstracts/search?q=cargo%20securement" title=" cargo securement"> cargo securement</a>, <a href="https://publications.waset.org/abstracts/search?q=shifting%20cargo" title=" shifting cargo"> shifting cargo</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20dynamics" title=" vehicle dynamics"> vehicle dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=ABS" title=" ABS"> ABS</a> </p> <a href="https://publications.waset.org/abstracts/87553/cargo-securement-standards-and-braking-maneuvers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Kitchenary Metaphors in Hindi-Urdu: A Cognitive Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bairam%20Khan">Bairam Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Premlata%20Vaishnava"> Premlata Vaishnava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to conceptualize one entity in terms of another allows us to communicate through metaphors. This central feature of human cognition has evolved with the development of language, and the processing of metaphors is without any conscious appraisal and is quite effortless. South Asians, like other speech communities, have been using the kitchenary [culinary] metaphor in a very simple yet interesting way and are known for bringing into new and unique constellations wherever they are. This composite feature of our language is used to communicate in a precise and compact manner and maneuvers the expression. The present study explores the role of kitchenary metaphors in the making and shaping of idioms by applying Cognitive Metaphor Theories. Drawing on examples from a corpus of adverts, print, and electronic media, the study looks at the metaphorical language used by real people in real situations. The overarching theme throughout the course is that kitchenary metaphors are powerful tools of expression in Hindi-Urdu. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20metaphor%20theories" title="cognitive metaphor theories">cognitive metaphor theories</a>, <a href="https://publications.waset.org/abstracts/search?q=kitchenary%20metaphors" title=" kitchenary metaphors"> kitchenary metaphors</a>, <a href="https://publications.waset.org/abstracts/search?q=hindi-urdu%20print" title=" hindi-urdu print"> hindi-urdu print</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20electronic%20media" title=" and electronic media"> and electronic media</a>, <a href="https://publications.waset.org/abstracts/search?q=grammatical%20structure%20of%20kitchenary%20metaphors%20of%20hindi-urdu" title=" grammatical structure of kitchenary metaphors of hindi-urdu"> grammatical structure of kitchenary metaphors of hindi-urdu</a> </p> <a href="https://publications.waset.org/abstracts/153455/kitchenary-metaphors-in-hindi-urdu-a-cognitive-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Kitchenary Metaphors In Hindi-urdu: A Cognitive Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bairam%20Khan">Bairam Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Premlata%20Vaishnava"> Premlata Vaishnava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ability to conceptualize one entity in terms of another allows us to communicate through metaphors. This central feature of human cognition has evolved with the development of language, and the processing of metaphors is without any conscious appraisal and is quite effortless. South Asians, like other speech communities, have been using the kitchenary [culinary] metaphor in a very simple yet interesting way and are known for bringing into new and unique constellations wherever they are. This composite feature of our language is used to communicate in a precise and compact manner and maneuvers the expression. The present study explores the role of kitchenary metaphors in the making and shaping of idioms by applying Cognitive Metaphor Theories. Drawing on examples from a corpus of adverts, print, and electronic media, the study looks at the metaphorical language used by real people in real situations. The overarching theme throughout the course is that kitchenary metaphors are powerful tools of expression in Hindi-Urdu. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20metaphor%20theory" title="cognitive metaphor theory">cognitive metaphor theory</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20domain" title=" source domain"> source domain</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20domain" title=" target domain"> target domain</a>, <a href="https://publications.waset.org/abstracts/search?q=signifier-%20signified" title=" signifier- signified"> signifier- signified</a>, <a href="https://publications.waset.org/abstracts/search?q=kitchenary" title=" kitchenary"> kitchenary</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnocultural%20elements%20of%20south%20asia%20and%20hindi-%20urdu%20language" title=" ethnocultural elements of south asia and hindi- urdu language"> ethnocultural elements of south asia and hindi- urdu language</a> </p> <a href="https://publications.waset.org/abstracts/159664/kitchenary-metaphors-in-hindi-urdu-a-cognitive-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Predictive Output Feedback Linearization for Safe Control of Collaborative Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliasghar%20Arab">Aliasghar Arab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous robots interacting with humans, as safety-critical nonlinear control systems, are complex closed-loop cyber-physical dynamical machines. Keeping these intelligent yet complicated systems safe and smooth during their operations is challenging. The aim of the safe predictive output feedback linearization control synthesis is to design a novel controller for smooth trajectory following while unsafe situations must be avoided. The controller design should obtain a linearized output for smoothness and invariance to a safety subset. Inspired by finite-horizon nonlinear model predictive control, the problem is formulated as constrained nonlinear dynamic programming. The safety constraints can be defined as control barrier functions. Avoiding unsafe maneuvers and performing smooth motions increases the predictability of the robot’s movement for humans when robots and people are working together. Our results demonstrate the proposed output linearization method obeys the safety constraints and, compared to existing safety-guaranteed methods, is smoother and performs better. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotics" title="robotics">robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20robots" title=" collaborative robots"> collaborative robots</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20robots" title=" autonomous robots"> autonomous robots</a> </p> <a href="https://publications.waset.org/abstracts/152151/predictive-output-feedback-linearization-for-safe-control-of-collaborative-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Vieira">Ana Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Lau"> Fernando Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Pedro%20Mort%C3%A1gua"> João Pedro Mortágua</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Cruz"> Luís Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Santos"> Rui Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor%20noise" title="rotor noise">rotor noise</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20tool" title=" acoustic tool"> acoustic tool</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU%20Programming" title=" GPU Programming"> GPU Programming</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV%20noise" title=" UAV noise"> UAV noise</a> </p> <a href="https://publications.waset.org/abstracts/16738/a-new-computational-tool-for-noise-prediction-of-rotating-surfaces-fact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Modeling and Controlling the Rotational Degree of a Quadcopter Using Proportional Integral and Derivative Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar">Sanjay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of complex dynamic systems has advanced through various scientific approaches with the help of computer modeling. The common design trends in aerospace system design can be applied to quadcopter design. A quadcopter is a nonlinear, under-actuated system with complex aerodynamics parameters and creates challenges that demand new, robust, and effective control approaches. The flight control stability can be improved by planning and tracking the trajectory and reducing the effect of sensors and the operational environment. This paper presents a modern design Simmechanics visual modeling approach for a mechanical model of a quadcopter with three degrees of freedom. The Simmechanics model, considering inertia, mass, and geometric properties of a dynamic system, produces multiple translation and rotation maneuvers. The proportional, integral, and derivative (PID) controller is integrated with the Simmechanics model to follow a predefined quadcopter rotational trajectory for a fixed time interval. The results presented are satisfying. The simulation of the quadcopter control performed operations successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system" title="nonlinear system">nonlinear system</a>, <a href="https://publications.waset.org/abstracts/search?q=quadcopter%20model" title=" quadcopter model"> quadcopter model</a>, <a href="https://publications.waset.org/abstracts/search?q=simscape%20modelling" title=" simscape modelling"> simscape modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=proportional-integral-derivative%20controller" title=" proportional-integral-derivative controller"> proportional-integral-derivative controller</a> </p> <a href="https://publications.waset.org/abstracts/139466/modeling-and-controlling-the-rotational-degree-of-a-quadcopter-using-proportional-integral-and-derivative-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Accidents Involving Pedestrians Walking along with/against Traffic: An Evaluation of Crash Characteristics and Injuries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Wei%20Pai">Chih-Wei Pai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong-Chang%20Jou"> Rong-Chang Jou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using A1 A2 police-reported accident data for years 2003–2010 in Taiwan, the paper examines anatomic injuries and crash characteristics specific to pedestrians in “facing traffic” and “back to traffic” crashes. There were 2768 and 7558 accidents involving pedestrians walking along with/against traffic respectively. Injuries sustained by pedestrians and crash characteristics in these two crash types were compared with those in other crash types (nearside crash, nearside dart-out crash, offside crash, offside dart-out crash). Main findings include that “back to traffic” crashes resulted in more severe injuries, and pedestrians in “back to traffic” crashes had increased head, neck, and spine injuries than those in other crash types; and there was an elevated risk of head injuries in unlit darkness and NBU (non-built-up) roadways. Several crash features (e.g. unlit darkness, overtaking maneuvers, phone use by pedestrians and drivers, intoxicated drivers) appear to be over-involved in “back to traffic” crashes. The implications of the research findings regarding pedestrian/driver education, enforcement, and remedial engineering design are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20accident" title="pedestrian accident">pedestrian accident</a>, <a href="https://publications.waset.org/abstracts/search?q=crash%20characteristics" title=" crash characteristics"> crash characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=injury" title=" injury"> injury</a>, <a href="https://publications.waset.org/abstracts/search?q=facing%20traffic" title=" facing traffic"> facing traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20to%20traffic" title=" back to traffic"> back to traffic</a> </p> <a href="https://publications.waset.org/abstracts/28180/accidents-involving-pedestrians-walking-along-withagainst-traffic-an-evaluation-of-crash-characteristics-and-injuries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheib%20Fergani">Soheib Fergani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV%20application" title="UAV application">UAV application</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking" title=" trajectory tracking"> trajectory tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=backstepping" title=" backstepping"> backstepping</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20to%20state%20stability" title=" input to state stability"> input to state stability</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20evaluation" title=" stability evaluation"> stability evaluation</a> </p> <a href="https://publications.waset.org/abstracts/185079/formal-asymptotic-stability-guarantees-analysis-and-evaluation-of-nonlinear-controlled-unmanned-aerial-vehicle-for-trajectory-tracking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Human Factors Simulation Approach to Analyze Older Drivers’ Performance in Intersections Left-Turn Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yassir%20AbdelRazig">Yassir AbdelRazig</a>, <a href="https://publications.waset.org/abstracts/search?q=Eren%20Ozguven"> Eren Ozguven</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%20Moses"> Ren Moses</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While there exists a greater understanding of the differences between the driving behaviors of older and younger drivers, there is still a need to further understand how the two groups perform when attempting to perform complex intersection maneuvers. This paper looks to determine if, and to what extent, these differences exist when drivers encounter permissive left-hand turns, pedestrian traffic, two and four-lane intersections, heavy fog, and night conditions. The study will utilize a driving simulator to develop custom drivable scenarios containing one or more of the previously mentioned conditions. 32 younger and 32 older (+65 years) participants perform driving simulation scenarios and have their velocity, time to the nearest oncoming vehicle, accepted and rejected gaps, etc., recorded. The data collected from the simulator is analyzed via Raff’s method and logistic regression in order to determine and compare the critical gaps values of the two cohorts. Out of the parameters considered for this study, only the age of the driver, their experience (if they are a younger driver), the size of a gap, and the presence of pedestrians on the crosswalk proved significant. The results did not support the hypothesis that older drivers would be significantly more conservative in their critical gaps judgment and acceptance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=older%20drivers" title="older drivers">older drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=left-turn" title=" left-turn"> left-turn</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factors" title=" human factors"> human factors</a> </p> <a href="https://publications.waset.org/abstracts/67405/human-factors-simulation-approach-to-analyze-older-drivers-performance-in-intersections-left-turn-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maneuvers&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=maneuvers&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10