CINXE.COM

Profiling XNNPACK with TFLite — The TensorFlow Blog

<!DOCTYPE html> <html class='v2' dir='ltr' lang='en' xmlns='http://www.w3.org/1999/xhtml' xmlns:b='http://www.google.com/2005/gml/b' xmlns:data='http://www.google.com/2005/gml/data' xmlns:expr='http://www.google.com/2005/gml/expr'> <head> <link href='https://www.blogger.com/static/v1/widgets/3566091532-css_bundle_v2.css' rel='stylesheet' type='text/css'/> <meta content='text/html; charset=UTF-8' http-equiv='Content-Type'/> <meta content='blogger' name='generator'/> <link href='https://blog.tensorflow.org/favicon.ico' rel='icon' type='image/x-icon'/> <link href='https://blog.tensorflow.org/2022/06/Profiling-XNNPACK-with-TFLite.html' rel='canonical'/> <link rel="alternate" type="application/atom+xml" title="The TensorFlow Blog - Atom" href="https://blog.tensorflow.org/feeds/posts/default" /> <link rel="alternate" type="application/rss+xml" title="The TensorFlow Blog - RSS" href="https://blog.tensorflow.org/feeds/posts/default?alt=rss" /> <link rel="service.post" type="application/atom+xml" title="The TensorFlow Blog - Atom" href="https://www.blogger.com/feeds/7864883956188652345/posts/default" /> <link rel="alternate" type="application/atom+xml" title="The TensorFlow Blog - Atom" href="https://blog.tensorflow.org/feeds/7361191615000850760/comments/default" /> <!--Can't find substitution for tag [blog.ieCssRetrofitLinks]--> <link href='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGaMOZjmmcdeCHArC2JZGpTO3nsFS6Pdv4_mR7Krfqjyw5hbMWoy1TBJkDg5h9P62LPDIXoaPvj8NdwcszzXK_IhsS3Z39jx-q25Ud-Os7ShQkm2YjIhNX0Bn8R3Cfa-hcz_jZXvF_a8W9tpE2PDiX9A5d32qkAgfNpled0X_1DJuxHfoFOOtMdC4b/s1600/image6.png' rel='image_src'/> <meta content='XNNPACK per-operator profiling with TensorFlow Lite is now available.' name='description'/> <meta content='https://blog.tensorflow.org/2022/06/Profiling-XNNPACK-with-TFLite.html' property='og:url'/> <meta content='Profiling XNNPACK with TFLite' property='og:title'/> <meta content='XNNPACK per-operator profiling with TensorFlow Lite is now available.' property='og:description'/> <meta content='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGaMOZjmmcdeCHArC2JZGpTO3nsFS6Pdv4_mR7Krfqjyw5hbMWoy1TBJkDg5h9P62LPDIXoaPvj8NdwcszzXK_IhsS3Z39jx-q25Ud-Os7ShQkm2YjIhNX0Bn8R3Cfa-hcz_jZXvF_a8W9tpE2PDiX9A5d32qkAgfNpled0X_1DJuxHfoFOOtMdC4b/w1200-h630-p-k-no-nu/image6.png' property='og:image'/> <meta charset='UTF-8'/> <meta content='IE=edge' http-equiv='X-UA-Compatible'/> <meta content='width=device-width, initial-scale=1' name='viewport'/> <meta content='https://www.gstatic.com/tf_blog/images/image_blank.png' property='og:image'/> <meta content='https://www.gstatic.com/tf_blog/images/image_blank.png' property='twitter:image'/> <meta content='summary_large_image' name='twitter:card'/> <meta content='Profiling XNNPACK with TFLite' property='twitter:title'/> <title>Profiling XNNPACK with TFLite &#8212; The TensorFlow Blog</title> <style id='page-skin-1' type='text/css'><!-- /* ADD YOUR CSS HERE */ body{font-family:Roboto,sans-serif;font-size:16px;line-height:30px;-webkit-font-smoothing:antialiased;color:#000}h1{font-family:Google Sans,sans-serif;font-size:34px;font-weight:500;line-height:44px}h2{font-size:30px;line-height:40px}h2,h3{font-family:Google Sans,sans-serif;font-weight:700}h3{font-size:24px;line-height:32px}h4{font-size:20px;font-weight:500}h4,h5{font-family:Google Sans,sans-serif;line-height:26px}h5{font-size:16px;font-weight:700}h6{font-size:14px;line-height:22px}.display,h6{font-family:Google Sans,sans-serif;font-weight:700}.display{font-size:46px;line-height:56px}.hidden-text{height:1px;overflow:hidden;pointer-events:none;position:absolute;top:-10px;width:1px}img,video{border:0;height:auto;max-width:100%}body{position:relative;min-height:100vh}body.no-scroll{overflow:hidden}.content-wrap{padding-top:97px;padding-bottom:552px}@media only screen and (max-width:839px){.content-wrap{padding-top:48px}}.widget{margin:0;line-height:unset}.widget li{padding-left:12px}.widget ol,.widget ul{padding-left:40px}.widget li,.widget ol,.widget ul{line-height:unset}.tensorsite-full-footer{position:absolute;bottom:0;height:461px;width:100%}.posts-container{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;position:relative}.posts-container .tensorsite-posts__regular{-webkit-box-flex:3;-webkit-flex:3;-ms-flex:3;flex:3}.divider{width:100%;background-color:#e3e5e8;height:1px;margin-bottom:24px;z-index:1}.divider--lg-gap{margin:45px auto 25px}.divider--article-bottom{margin:30px 0}.divider--article-top{margin-bottom:36px}@media only screen and (max-width:767px){.divider--article-top{margin-bottom:24px}}.tensorsite-blog-logo{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center}.tensorsite-blog-logo__image{width:auto;height:32px}.tensorsite-logo{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1}.tensorsite-logo__image{width:auto;height:32px}@media only screen and (max-width:767px){.tensorsite-logo{margin-bottom:36px}}.wrapper{overflow:hidden}.tensorsite-container{margin:48px auto;padding:0 40px;position:relative;width:auto;max-width:1420px}@media only screen and (max-width:767px){.tensorsite-container{margin:24px auto;padding:0 20px}}@media only screen and (min-width:768px){.tensorsite-container.featured{margin:48px auto -12px}}.tensorsite-container--large{margin:48px auto;padding:0 40px;position:relative;width:auto;max-width:1050px}@media only screen and (max-width:767px){.tensorsite-container--large{margin:24px auto;padding:0 20px}}.tensorsite-container--medium{margin:48px auto;padding:0 40px;position:relative;width:auto;max-width:844px}@media only screen and (max-width:767px){.tensorsite-container--medium{margin:24px auto;padding:0 20px}}.tensorsite-container--narrow{margin:48px auto;padding:0 40px;position:relative;width:auto;max-width:682px}@media only screen and (max-width:767px){.tensorsite-container--narrow{margin:24px auto;padding:0 20px}}.tensorsite-container--flex-horizontal{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex}.section,body{margin:0}.tensorsite-content{border-radius:10px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1;-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;padding:26px 30px;position:relative}.tensorsite-content .spacer{-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1}.tensorsite-content a:not(.tensorsite-content__button),.tensorsite-content div{-webkit-transition:color .2s linear;transition:color .2s linear}.tensorsite-content ul{list-style:none;padding:0}.tensorsite-content ul li{line-height:1;margin:8px 0}.tensorsite-content ul li:last-of-type{margin-bottom:0}.tensorsite-content p{margin:0}.tensorsite-content__image-wrapper{position:relative}.tensorsite-content__image{border-radius:10px 10px 0 0;display:block;height:100%;-o-object-fit:cover;object-fit:cover;position:absolute;width:100%;-webkit-transform:scale(1.015);transform:scale(1.015);-webkit-transition:-webkit-transform .5s ease;transition:-webkit-transform .5s ease;transition:transform .5s ease;transition:transform .5s ease,-webkit-transform .5s ease;will-change:transform}@media only screen and (max-width:850px){.tensorsite-content__image{position:relative}}.tensorsite-content__icon{position:absolute;top:15px;right:24px}.tensorsite-content__subtitle{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:26px;font-weight:500!important;color:#425066;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin-bottom:18px;position:relative}.tensorsite-content__subtitle b{margin:0 5px}.tensorsite-content__title{font-family:Google Sans,sans-serif;font-size:34px;font-weight:500;line-height:44px;font-weight:700!important;color:#425066;margin-bottom:12px}.tensorsite-content__title:last-child{margin-bottom:0}.tensorsite-content__title--grow{-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1}.tensorsite-content__info{font-size:14px;line-height:22px;color:#616161;margin-bottom:18px}.tensorsite-content__description{font-family:Roboto,sans-serif;font-size:16px;line-height:30px;color:#616161;margin-bottom:24px}a{color:#425066;-webkit-transition:color .2s linear;transition:color .2s linear}a,a:active,a:focus{text-decoration:none}a.disabled{pointer-events:none;cursor:default;color:#ccc}a.disabled .cta-icon path{fill:#ccc}a .cta-icon{-webkit-transition:margin-right .2s linear,margin-left .2s linear;transition:margin-right .2s linear,margin-left .2s linear}a .cta-icon path{fill:#425066;-webkit-transition:fill .2s linear;transition:fill .2s linear}a .cta-icon.grey path{fill:#ccc}a .cta-icon--left{-webkit-transform:rotate(180deg);transform:rotate(180deg)}a:hover{color:#ff6f00}a:hover .cta-icon path{fill:#ff6f00}.tensorsite-card{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-backface-visibility:hidden;backface-visibility:hidden;background:#fff;border-radius:10px;-webkit-box-shadow:0 0 36px rgba(0,0,0,.1);box-shadow:0 0 36px rgba(0,0,0,.1);-webkit-box-orient:horizontal;-webkit-box-direction:normal;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;margin:24px 0;overflow:hidden;position:relative;-webkit-transform:translateZ(0);transform:translateZ(0);-webkit-transition:opacity .2s linear,-webkit-box-shadow .2s linear;transition:opacity .2s linear,-webkit-box-shadow .2s linear;transition:box-shadow .2s linear,opacity .2s linear;transition:box-shadow .2s linear,opacity .2s linear,-webkit-box-shadow .2s linear}.tensorsite-card.hidden{display:none}.tensorsite-card .divider{margin-bottom:18px}@media only screen and (max-width:850px){.tensorsite-card .divider{margin-bottom:14px}}.tensorsite-card.featured{min-height:300px}.tensorsite-card.featured .tensorsite-content{-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center}.tensorsite-card.featured .tensorsite-content .tensorsite-content__title{font-size:40px;line-height:54px}@media only screen and (max-width:850px){.tensorsite-card.featured .tensorsite-content .tensorsite-content__title{font-size:26px;line-height:36px}}.tensorsite-card.featured .tensorsite-content .tensorsite-content__subtitle{margin-bottom:18px}@media only screen and (max-width:850px){.tensorsite-card.featured .tensorsite-content .tensorsite-content__subtitle{margin-bottom:10px}}@media only screen and (max-width:850px){.tensorsite-card{-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;max-height:unset;max-width:600px;margin:24px auto}}.tensorsite-card:hover .tensorsite-content__title{color:#ff6f00}.tensorsite-card .tensorsite-content{padding:28px 30px 32px}.tensorsite-card .tensorsite-content .tensorsite-content__cta-wrapper,.tensorsite-card .tensorsite-content .tensorsite-content__description,.tensorsite-card .tensorsite-content .tensorsite-content__info,.tensorsite-card .tensorsite-content .tensorsite-content__subtitle,.tensorsite-card .tensorsite-content .tensorsite-content__title{position:relative}.tensorsite-card .tensorsite-content .tensorsite-content__subtitle{margin-bottom:14px}@media only screen and (max-width:1279px){.tensorsite-card .tensorsite-content .tensorsite-content__subtitle{margin-bottom:8px;line-height:24px;font-size:14px}}.tensorsite-card .tensorsite-content .tensorsite-content__title{margin-bottom:16px;font-size:30px}@media only screen and (max-width:1279px){.tensorsite-card .tensorsite-content .tensorsite-content__title{font-size:24px;margin-bottom:14px;line-height:32px}.tensorsite-card .tensorsite-content .tensorsite-content__title .no-subtitle{margin-top:32px}}.tensorsite-card .tensorsite-content .tensorsite-content__description{margin-bottom:0;display:-webkit-box;line-clamp:4;-webkit-line-clamp:4;text-overflow:ellipsis;-webkit-box-orient:vertical;overflow:hidden}.tensorsite-card .tensorsite-content .tensorsite-content__description *{color:#616161!important;font-weight:400!important}.tensorsite-card .tensorsite-content .tensorsite-content__info{font-family:Google Sans,sans-serif;margin-bottom:20px}@media only screen and (max-width:1279px){.tensorsite-card .tensorsite-content .tensorsite-content__info{line-height:24px}}@media only screen and (max-width:850px){.tensorsite-card .tensorsite-content{padding:16px 18px 20px}}.tensorsite-card .tensorsite-content__image-wrapper{background-color:#fbfcfc;overflow:hidden;position:relative;width:auto;-webkit-flex-basis:40%;-ms-flex-preferred-size:40%;flex-basis:40%;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center}@media only screen and (max-width:850px){.tensorsite-card .tensorsite-content__image-wrapper{max-height:250px}}.tensorsite-card .tensorsite-content__image-wrapper.hidden{display:none}.tensorsite-card:focus,.tensorsite-card:hover{-webkit-box-shadow:0 0 64px rgba(0,0,0,.22);box-shadow:0 0 64px rgba(0,0,0,.22);cursor:pointer}.tensorsite-card__href{height:100%;left:0;opacity:0;position:absolute;top:0;width:100%;z-index:2}.tensorsite-card:first-of-type{margin-top:0}.tensorsite-card:hover .tensorsite-content__image-wrapper img,.tensorsite-card__href:focus~.tensorsite-content__image-wrapper img{-webkit-transform:scale(1.03);transform:scale(1.03);-webkit-transition:-webkit-transform 1s ease;transition:-webkit-transform 1s ease;transition:transform 1s ease;transition:transform 1s ease,-webkit-transform 1s ease}.tensorsite-detail{color:#000!important}.tensorsite-detail__title{font-family:Google Sans,sans-serif;font-size:46px;font-weight:700;line-height:56px;margin-bottom:24px}@media only screen and (max-width:767px){.tensorsite-detail__title{font-family:Google Sans,sans-serif;font-size:28px;font-weight:700;line-height:1.36;margin-bottom:16px}}.tensorsite-detail__body,.tensorsite-detail__body div,.tensorsite-detail__body div>span,.tensorsite-detail__body li>span{font-family:Roboto,sans-serif!important;font-size:16px!important;line-height:28px!important;letter-spacing:0!important}.tensorsite-detail__body b,.tensorsite-detail__body strong{font-weight:500!important}.tensorsite-detail__body h1,.tensorsite-detail__body h1>span,.tensorsite-detail__body h1>strong,.tensorsite-detail__body h2,.tensorsite-detail__body h2>span,.tensorsite-detail__body h2>strong{font-family:Google Sans,sans-serif!important;font-size:30px!important;font-weight:700!important;line-height:40px!important;margin-bottom:18px!important;margin-top:40px}@media only screen and (max-width:767px){.tensorsite-detail__body h1,.tensorsite-detail__body h1>span,.tensorsite-detail__body h1>strong,.tensorsite-detail__body h2,.tensorsite-detail__body h2>span,.tensorsite-detail__body h2>strong{font-size:24px!important;line-height:34px!important;margin-bottom:12px!important;margin-top:30px}}.tensorsite-detail__body h3,.tensorsite-detail__body h3>span,.tensorsite-detail__body h3>strong{font-family:Google Sans,sans-serif!important;font-size:26px!important;font-weight:700!important;line-height:36px!important;margin-bottom:14px!important;margin-top:40px}@media only screen and (max-width:767px){.tensorsite-detail__body h3,.tensorsite-detail__body h3>span,.tensorsite-detail__body h3>strong{font-size:22px!important;line-height:32px!important;margin-bottom:12px!important;margin-top:30px}}.tensorsite-detail__body h4,.tensorsite-detail__body h4>span,.tensorsite-detail__body h4>strong{font-family:Google Sans,sans-serif!important;font-size:20px!important;font-weight:500!important;line-height:30px!important;margin-bottom:14px!important;margin-top:40px}@media only screen and (max-width:767px){.tensorsite-detail__body h4,.tensorsite-detail__body h4>span,.tensorsite-detail__body h4>strong{margin-bottom:12px!important;margin-top:30px}}.tensorsite-detail__body ol,.tensorsite-detail__body ul{margin:24px 0}@media only screen and (max-width:767px){.tensorsite-detail__body ol,.tensorsite-detail__body ul{margin:18px 0}}.tensorsite-detail__body a{color:#425066!important;font-weight:500!important}.tensorsite-detail__body a:not(.author-link){text-decoration:underline!important}.tensorsite-detail__body a:hover{color:#ff6f00!important}.tensorsite-detail__body a.author-link{white-space:nowrap}.tensorsite-detail__body a[imageanchor]{display:block!important;float:none!important;margin-left:0!important;margin-right:0!important}.tensorsite-detail__body img{display:block}.tensorsite-detail__body img:not(.unset-width){width:100%;border-radius:4px;margin:24px 0}.tensorsite-detail__body img.unset-width{margin:0 auto 12px}.tensorsite-detail__body iframe{width:100%}.tensorsite-detail__body .gist{margin:24px 0}.tensorsite-detail__body .tr-caption-container{width:100%;padding:0;margin:24px 0}.tensorsite-detail__body .tr-caption-container img{margin:0 0 12px}.tensorsite-detail__body .tr-caption{font-size:12.8px!important;font-style:normal!important;font-family:unset!important;line-height:1.8!important;font-weight:400!important}.tensorsite-detail__body code,.tensorsite-detail__body pre[class*=language-]{background:#f5f6f7!important;font-family:Roboto Mono,monospace!important;border-radius:2px}.tensorsite-detail__body code{padding:5px 8px}.tensorsite-detail__body pre[class*=language-]{margin:24px auto!important;line-height:1.7!important;padding:24px}@media only screen and (max-width:767px){.tensorsite-detail__body pre[class*=language-]{padding:8px 12px}}.tensorsite-detail__body pre[class*=language-] code{padding:0}.tensorsite-detail__body pre[class*=language-] .token.operator{background:unset!important}.tensorsite-detail__body .separator[style*=center]>a:not([style*=float]){margin:0!important}.tensorsite-detail__contact{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;margin-bottom:36px}@media only screen and (max-width:767px){.tensorsite-detail__contact{margin-bottom:24px}}.tensorsite-detail__info{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:26px;font-weight:400;color:#616161;margin-right:25px}.tensorsite-detail-footer .article-divider{padding:30px 0}.tensorsite-detail-footer .tensorsite-chip{font-family:Roboto,sans-serif;font-size:16px;line-height:30px;color:#616161;border:1px solid #ebebeb;padding:4px 10px;display:inline-block;border-radius:4px;margin-bottom:4px;-webkit-transition:color .2s linear,background-color .2s linear;transition:color .2s linear,background-color .2s linear;text-decoration:none}.tensorsite-detail-footer .tensorsite-chip:hover{background-color:hsla(213,7%,76%,.2)}.tensorsite-detail-footer .tensorsite-chip:focus{background-color:hsla(213,7%,76%,.26)}.tensorsite-detail-footer .tensorsite-chip:active{background-color:hsla(213,7%,76%,.32)}.tensorsite-next{background:#f5f6f7;padding:48px 0 60px;display:none}@media only screen and (max-width:767px){.tensorsite-next{padding:48px 0 0}}.tensorsite-next.active{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex}.tensorsite-next__title{font-family:Google Sans,sans-serif;font-size:46px;font-weight:700;line-height:56px;margin-bottom:36px;text-align:center}@media only screen and (max-width:767px){.tensorsite-next__title{font-family:Google Sans,sans-serif;font-size:28px;font-weight:700;line-height:1.36;margin-bottom:24px}}#pagination-container{display:none}.pagination{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between}.pagination .arrow-link{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:20px;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;text-decoration:none}.pagination .arrow-link .cta-icon{height:12px}.pagination .arrow-link .cta-icon--left{margin-left:4px}.pagination .arrow-link .cta-icon--right{margin-right:4px}.pagination .arrow-link>span{padding:0 8px}.pagination .arrow-link:hover .cta-icon--left{margin-left:0;margin-right:4px}.pagination .arrow-link:hover .cta-icon--right{margin-left:4px;margin-right:0}.filter-page__title{font-family:Google Sans,sans-serif;font-size:46px;font-weight:700;line-height:56px;line-height:46px;margin-bottom:20px}@media only screen and (max-width:767px){.filter-page__title{font-family:Google Sans,sans-serif;font-size:30px;font-weight:700;line-height:40px}}.filter-page__subtitle{font-size:18px;line-height:30px;max-width:735px}@media only screen and (max-width:767px){.filter-page__subtitle{font-family:Roboto,sans-serif;font-size:16px;line-height:28px}}.filter-page__subtitle a{text-decoration:underline;font-weight:500}.tensorsite-button{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:20px;border-radius:8px;-webkit-box-shadow:0 0 20px transparent;box-shadow:0 0 20px transparent;display:inline-block;height:auto;outline:none;padding:13px 22px;text-transform:none;-webkit-transition:background .3s linear,color .3s linear,-webkit-box-shadow .3s linear;transition:background .3s linear,color .3s linear,-webkit-box-shadow .3s linear;transition:box-shadow .3s linear,background .3s linear,color .3s linear;transition:box-shadow .3s linear,background .3s linear,color .3s linear,-webkit-box-shadow .3s linear}.tensorsite-button:active{-webkit-box-shadow:none;box-shadow:none}.tensorsite-button--orange{background:-webkit-gradient(linear,left top,right top,from(#ff6f00),to(#ff9100));background:linear-gradient(90deg,#ff6f00,#ff9100);color:#fff;overflow:hidden;position:relative;z-index:1}.tensorsite-button--orange:after{background:#ff6f00;bottom:0;content:"";left:0;opacity:0;position:absolute;right:0;top:0;-webkit-transition:opacity .3s;transition:opacity .3s;z-index:-1}.tensorsite-button--orange:focus:after,.tensorsite-button--orange:hover:after{opacity:1}.tensorsite-button--white{background:#fff;color:#425066}.tensorsite-button--white:focus,.tensorsite-button--white:hover{background:#425066;color:#fff}.tensorsite-footer{margin-top:-92px;overflow:hidden;padding-top:92px;pointer-events:none;position:relative}.tensorsite-footer:after,.tensorsite-footer:before{bottom:0;content:"";display:block;position:absolute}.tensorsite-footer:before{background:#ff6f00;left:0;right:calc(1440px + ((100% - 1440px) / 2) + 96px);top:184px}.tensorsite-footer:after{background:#ff9100;left:calc(1440px + ((100% - 1440px) / 2) + 96px);right:0;top:0}.tensorsite-footer.grey{background-color:#f5f6f7}.tensorsite-footer__container{background-image:-webkit-gradient(linear,right top,left top,color-stop(18%,#ff9100),color-stop(86%,#ff6f00));background-image:linear-gradient(-90deg,#ff9100 18%,#ff6f00 86%);margin:0 auto;max-width:calc(100% - 192px);min-height:210px;padding:70px 0;position:relative}@media screen and (min-width:1440px){.tensorsite-footer__container{max-width:1248px}}@media only screen and (max-width:767px){.tensorsite-footer__container{background-image:-webkit-gradient(linear,right top,left top,from(#ff9100),to(#ff6f00));background-image:linear-gradient(-90deg,#ff9100,#ff6f00);padding-bottom:100px}}.tensorsite-footer__side{bottom:0;position:absolute;width:192px}.tensorsite-footer__side:before{content:"";display:block;height:92px;margin-top:-92px;width:100%}.tensorsite-footer__side--left{background:#ff6f00;left:-192px;top:92px}.tensorsite-footer__side--left:before{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 192 92'%3E%3Cpath d='M162 8L96 46 30 84a60.7 60.7 0 0 1-30 8h192V0a60.7 60.7 0 0 0-30 8z' fill='%23FF6F00'/%3E%3C/svg%3E")}.tensorsite-footer__side--right{background:#ff9100;right:-192px;top:0}.tensorsite-footer__side--right:before{background-image:url("data:image/svg+xml;charset=utf-8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 192 92'%3E%3Cpath d='M162 8L96 46 30 84a60.7 60.7 0 0 1-30 8h192V0a60.7 60.7 0 0 0-30 8z' fill='%23FF9100'/%3E%3C/svg%3E")}.tensorsite-footer__content{pointer-events:auto}.tensorsite-footer__content .tensorsite-content{margin:0 auto;max-width:650px;padding:0}.tensorsite-footer__content .tensorsite-content__title{font-family:Google Sans,sans-serif;font-size:30px;font-weight:700;line-height:40px;color:#fff;padding:0;text-align:center;width:auto}.tensorsite-footer__content .tensorsite-content__description{font-size:18px;line-height:30px;color:#fff;text-align:center}.tensorsite-footer__content .tensorsite-content__cta-wrapper{margin-top:10px;text-align:center}.tensorsite-footer__content .tensorsite-content .tensorsite-content__title+.tensorsite-content__cta-wrapper{margin-top:40px}@media only screen and (max-width:767px){.tensorsite-footer__content{margin:0 -76px}}.tensorsite-footer__lines{background:url("https://www.gstatic.com/tf_blog/images/tf_lines.svg") bottom/100% auto no-repeat;bottom:0;left:50%;max-width:1720px;min-width:1320px;pointer-events:none;position:absolute;top:0;-webkit-transform:translate(-50%);transform:translate(-50%);width:90vw;z-index:2}@media only screen and (max-width:767px){.tensorsite-footer__lines{-webkit-transform:translate(-30%);transform:translate(-30%)}}@media only screen and (max-width:480px){.tensorsite-footer__lines{-webkit-transform:translate(-20%);transform:translate(-20%)}}.icon-link{border-radius:50%;height:42px;width:42px;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-transition:background .2s linear;transition:background .2s linear;position:relative}.icon-link:hover{background-color:hsla(213,7%,76%,.2)}.icon-link:focus{background-color:hsla(213,7%,76%,.26)}.icon-link:active{background-color:hsla(213,7%,76%,.32)}.icon-tooltip{left:-3rem}.icon-tooltip,.icon-tooltip-github{position:absolute;width:10rem;background-color:#f5f6f7;top:2.25rem;z-index:999;border-radius:.5rem;text-align:center;color:#425066;display:none;-webkit-box-shadow:0 1px 6px 0 rgba(60,64,67,.3),0 2px 6px 2px rgba(60,64,67,.15);box-shadow:0 1px 6px 0 rgba(60,64,67,.3),0 2px 6px 2px rgba(60,64,67,.15)}.icon-tooltip-github{left:-7rem}.footer__links .footer-link:not(:first-child):before{content:"\B7";color:#999;font-weight:500;margin:5px}.social-icons__container-header,.social-icons__links{height:100%;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center}.social-icons__container-header{margin-right:14px}.social-icons__container-header .icon-link{margin-right:0;margin-left:18px}@media only screen and (max-width:1000px){.social-icons__container-header{display:none}}.social-icons__container-footer{background:#f9f9f9;padding:36px 40px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center}.social-icons__container-footer .icon-link:not(:last-of-type){margin-right:24px}.social-icons__container-footer .footer__side--right{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;gap:20px}@media only screen and (max-width:767px){.social-icons__container-footer .footer__side--right{display:block}.social-icons__container-footer .footer__side--right .social-icons__links{place-content:center}}@media only screen and (max-width:767px){.social-icons__container-footer{-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column}}.header__overlay{height:100%;left:0;position:absolute;width:100%;background-color:rgba(0,0,0,.4);-webkit-animation:fade-in .4s cubic-bezier(.39,.575,.565,1);animation:fade-in .4s cubic-bezier(.39,.575,.565,1);opacity:0;top:0;z-index:-1}.header__overlay.show{opacity:1;z-index:800;-webkit-transition:opacity .2s ease-in-out;transition:opacity .2s ease-in-out}.header{position:fixed;z-index:700;top:0;width:100%;-webkit-box-shadow:0 1px 2px 0 rgba(60,64,67,.3),0 2px 6px 2px rgba(60,64,67,.15);box-shadow:0 1px 2px 0 rgba(60,64,67,.3),0 2px 6px 2px rgba(60,64,67,.15);height:97px}@media only screen and (max-width:839px){.header{height:48px}}.header .top-row{background:#fff;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;padding:0 24px;height:48px;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;border-bottom:1px solid #e6e6e6}@media only screen and (max-width:839px){.header .top-row{padding:0 16px}}.header .top-row__left,.header .top-row__right{-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-box-flex:0;-webkit-flex:0 0 auto;-ms-flex:0 0 auto;flex:0 0 auto;height:100%}.header .nav-row,.header .top-row__left,.header .top-row__right{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex}.header .nav-row{background:#f5f6f7;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;width:100%}.header .nav-items{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;height:48px;position:relative;padding:0 24px}@media only screen and (max-width:839px){.header .nav-items{display:none}}.header .nav-items tab{position:relative}.header .nav-items tab.active .header__nav-item:after,.header .nav-items tab:hover .header__nav-item:after{background:#425066}@media only screen and (max-width:839px){.header .header__cta,.header .nav-items{display:none}}.header__search-container{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;margin:6px 0 6px 24px;overflow:hidden;position:relative;margin-right:36px;border-radius:4px}@media only screen and (max-width:767px){.header__search-container:not(.mobile){display:none}}.header__search-container.mobile{margin:0 0 20px}.header__search-container.mobile #searchform,.header__search-container.mobile .searchbox{width:100%}.header__search-container .searchbox{border-radius:2px}.header__search-container .searchbox input{font-family:Roboto,sans-serif;font-size:16px;line-height:30px;background:#f5f6f7;color:#425066;border:0;margin:0;height:20px;outline:0;padding:8px 8px 8px 40px;width:100%;-webkit-transition:background .2s;transition:background .2s}.header__search-container .searchbox input::-webkit-input-placeholder{color:#425066}.header__search-container .searchbox input:-ms-input-placeholder,.header__search-container .searchbox input::-ms-input-placeholder{color:#425066}.header__search-container .searchbox input::placeholder{color:#425066}.header__search-container .searchbox input:hover{background:#e8eaed}.header__search-container .material-icons{color:#425066;left:8px;position:absolute;top:6px;-webkit-transition:color .2s;transition:color .2s}.header__cta{font-family:Google Sans,sans-serif;font-size:16px;font-weight:700;line-height:20px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center}.header__cta.mobile{padding:18px 0}.header__cta:hover .cta-icon{margin-left:0;margin-right:12px}.header__cta .cta-icon{-webkit-transition:margin-right .2s linear,margin-left .2s linear;transition:margin-right .2s linear,margin-left .2s linear;margin-left:4px;margin-right:8px;-webkit-transform:rotate(180deg);transform:rotate(180deg)}.header__nav-item{font-family:Google Sans,sans-serif;font-size:14px;font-weight:700;line-height:22px;color:#677282;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;padding:0 36px 0 0;height:100%;text-transform:none}.header__nav-item:hover{color:#677282}.header__nav-item.mobile{font-weight:500;padding:0}.header__nav-item.mobile:hover{color:#ff6f00}.header__nav-item:after{bottom:0;border-radius:3px 3px 0 0;content:"";display:block;height:3px;left:calc(50% - 18px);min-width:20px;position:absolute;right:0;-webkit-transform:translateX(-50%);transform:translateX(-50%);width:calc(100% - 44px)}.header__hamburger{border:0;background:none;outline:none;padding:0;margin:1px 8px 0 -4px;padding:8px;color:rgba(0,0,0,.65);cursor:pointer}@media only screen and (min-width:840px){.header__hamburger{display:none}}.header__side-menu{background-color:#fff;bottom:0;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;height:100%;left:0;overflow:auto;position:fixed;top:0;-webkit-transform:translateX(-100%);transform:translateX(-100%);-webkit-transition:-webkit-transform .2s cubic-bezier(.215,.61,.355,1);transition:-webkit-transform .2s cubic-bezier(.215,.61,.355,1);transition:transform .2s cubic-bezier(.215,.61,.355,1);transition:transform .2s cubic-bezier(.215,.61,.355,1),-webkit-transform .2s cubic-bezier(.215,.61,.355,1);z-index:900}.header__side-menu.is-open{height:100%;-webkit-transform:translateX(0);transform:translateX(0);width:80%}.header__side-menu__content{height:100%;padding:18px 16px 0;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column}.header__side-menu__content .spacer{-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1}.header__side-menu__title{font-size:18px;line-height:30px;font-weight:500;margin-bottom:12px}.header__side-menu__items{list-style:none}.header__side-menu__items li{padding:12px 0}.header__side-menu__bottom{border-top:1px solid #e6e6e6}.header__side-menu__logo-container{background:#fff;height:48px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-flex-shrink:0;-ms-flex-negative:0;flex-shrink:0;padding:0 16px;border-bottom:1px solid #e6e6e6}.tensorsite__tags{-webkit-box-flex:1;-webkit-flex:1;-ms-flex:1;flex:1;height:650px;margin-left:40px;padding-top:40px;position:-webkit-sticky;position:sticky;top:97px}@media only screen and (max-width:850px){.tensorsite__tags{display:none}}.tensorsite__tags h2{margin-bottom:32px}.tensorsite__tags .tensorsite-tag{font-family:Google Sans,sans-serif;font-size:20px;font-weight:500;line-height:26px;color:#425066;display:block;padding:20px 0;border-bottom:1px solid #e3e5e8;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-box-align:center;-webkit-align-items:center;-ms-flex-align:center;align-items:center;-webkit-transition:color .2s linear;transition:color .2s linear}.tensorsite__tags .tensorsite-tag:hover{color:#ff6f00}.tensorsite__tags .tensorsite-tag:hover .cta-icon{margin-left:12px;margin-right:0}.tensorsite__tags .tensorsite-tag .cta-icon{-webkit-transition:margin-right .2s linear,margin-left .2s linear;transition:margin-right .2s linear,margin-left .2s linear;margin-left:8px;margin-right:4px}.community-icon{width:24px;height:24px;vertical-align:middle} ] --></style> <!-- Custom TensorFlow Fonts --> <link href='https://fonts.googleapis.com/css?family=Google+Sans:400,500,700|Roboto:400,400italic,500,500italic,700,700italic|Roboto+Mono:400,500,700|Material+Icons' rel='stylesheet'/> <!-- End Custom TensorFlow Fonts --> <!-- Code Block Syntax Highlighting --> <link href="//prismjs.com/themes/prism.css" rel="stylesheet"> <script src="//prismjs.com/prism.js" type="text/javascript"></script> <script src='https://cdnjs.cloudflare.com/ajax/libs/prism/1.17.1/plugins/autoloader/prism-autoloader.min.js'></script> <!-- End Code Block Syntax Highlighting --> <!-- Image Zoom --> <link href='https://cdn.jsdelivr.net/npm/zoom-vanilla.js/dist/zoom.css' rel='stylesheet'/> <script defer='defer' src='https://cdn.jsdelivr.net/npm/zoom-vanilla.js/dist/zoom-vanilla.min.js' type='text/javascript'></script> <!-- End Image Zoom--> <link href='https://www.gstatic.com/tf_blog/images/favicon.png' rel='shortcut icon' type='image/png'/> <script type='text/javascript'> //<![CDATA[ const qs = (string, el = document) => el.querySelector(string); const qsa = (string, el = document) => el.querySelectorAll(string); class App { constructor() { this.body = qs('body'); this.detailBody = qs('.tensorsite-detail__body'); this.overlay = qs('.header__overlay'); this.hamburger = qs('.header__hamburger'); this.sideMenu = qs('.header__side-menu'); this.detailBodies = qsa('.tensorsite-detail__body'); this.searchForms = qsa('.searchbox'); this.searchInputs = qsa('.search-input'); this.homeHref = qs('#home-href'); this.featuredCard = qs('.tensorsite-card.featured'); this.featuredPostHref = this.featuredCard && this.featuredCard .querySelector('.tensorsite-card__href') .getAttribute('href'); this.cards = qsa('.tensorsite-card'); this.images = qsa('img[border]'); this.cardDescriptions = qsa('.tensorsite-content__description'); this.hiddenDescription = qsa('.tensorsite-detail__description'); this.iconLinks = qs('.social-icons__links').children this.iconTooltips = qsa('[class^="icon-tooltip"]') this._toggleMobileMenu = this._toggleMobileMenu.bind(this); this._closeMenu = this._closeMenu.bind(this); this._onResize = this._onResize.bind(this); this._getScreen = this._getScreen.bind(this); this._searchGoogle = this._searchGoogle.bind(this); this._handleSearchKeypress = this._handleSearchKeypress.bind(this); this._removeDividerAboveImage(); this._setAllTagActive(); this._showFeaturedPost(); this._redirectWithMaxResults(); this._makeImagesZoomable(); this._removeCardLineBreaks(); this._getNextPost().then(()=>{ this._removeCardLineBreaks(); }) this.addEventListeners(); } addEventListeners() { window.addEventListener('resize', this._onResize); this.hamburger.addEventListener('click', this._toggleMobileMenu); this.searchForms.forEach(el => el.addEventListener('submit', this._searchGoogle)); this.searchInputs.forEach(el => el.addEventListener('keypress', this._handleSearchKeypress)); Array.from(this.iconLinks).forEach((icon, i) => { icon.addEventListener("mouseover", () => icon.querySelectorAll('[class^="icon-tooltip"]')[0].style.display = 'block'); icon.addEventListener("mouseout", () => icon.querySelectorAll('[class^="icon-tooltip"]')[0].style.display = 'none'); }) } _getNextPost() { return new Promise((resolve) => { const nextHref = qs('.tensorsite-detail__next-url'); if (this.detailBody && nextHref) { let request = new XMLHttpRequest(); request.open('GET', nextHref.getAttribute('href'), true); request.onload = function() { if (this.status >= 200 && this.status < 400) { // Success! Should be an HTML response // Save html in variable so you're able to query select const parser = new DOMParser(); const html = parser.parseFromString(this.response, "text/html"); const nextTitle = html.querySelector('.tensorsite-detail__title'); const nextDesc = html.querySelector('.tensorsite-detail__description'); const nextTags = html.querySelector('.tensorsite-detail__tags'); const nextHref = qs('.tensorsite-detail__next-url').getAttribute('href'); const nextImgUrl = html.querySelector('.tensorsite-detail__main-image'); const nextTitleEl = document.querySelector('.tensorsite-content__title.next'); const nextDescEl = document.querySelector('.tensorsite-content__description.next'); let nextTagsEl = document.querySelector('.tensorsite-content__subtitle.next'); const nextHrefEl = document.querySelector('.tensorsite-card__href.next'); const nextImgEl = document.querySelector('.tensorsite-content__image-wrapper'); const nextContainer = qs('.tensorsite-next'); const footer = qs('.tensorsite-footer'); if (nextTitleEl && nextTitle) { nextTitleEl.innerHTML = nextTitle.innerHTML; } if (nextDescEl && nextDesc) { nextDescEl.innerHTML = nextDesc.innerHTML; } if (nextTagsEl && nextTags) { nextTagsEl.innerHTML = nextTags.innerHTML; } if (nextHref && nextHrefEl) { nextHrefEl.setAttribute('href', nextHref); } if (nextImgEl && nextImgUrl) { // If Blogger can't find a firstImageUrl, it returns a // message informing us of that, so this checks // if the string is a URL if(!/http/.test(nextImgUrl.innerHTML)){ nextImgEl.classList.add('hidden'); } else { nextImgEl.querySelector('img').src = nextImgUrl.innerHTML; } } if (nextHref) { nextContainer.classList.add('active'); footer.classList.add('grey'); } resolve(); } else { // We reached our target server, but it returned an error console.error('Error: Could not get the next title'); } }; request.send(); } }) } get isMenuOpen() { return this.sideMenu.classList.contains('is-open'); } _handleSearchKeypress(e) { if (e.which == 13) { this._searchGoogle(); } } _searchGoogle(e) { e.preventDefault(); const {value} = e.target.querySelector('.search-input'); window.location.href = 'https://www.google.com/search?q=site%3A' + window.location.hostname + '%20' + value; } _toggleMobileMenu() { this.body.classList.toggle('no-scroll'); this.overlay.classList.toggle('show'); this.sideMenu.classList.toggle('is-open'); if (this.isMenuOpen) { this.overlay.addEventListener('click', this._closeMenu); } else { this.overlay.removeEventListener('click', this._closeMenu); } } _closeMenu(e) { if (this.isMenuOpen) { this._toggleMobileMenu(); } } _onResize() { if (this._getScreen().width > 839 && this.isMenuOpen) { this._closeMenu(); } } _getScreen() { return { scrollY: window.scrollY, width: window.innerWidth, height: window.innerHeight, } }; _removeDividerAboveImage() { if (this.detailBody && this.detailBody.firstElementChild && this.detailBody.firstElementChild.querySelector('img')) { const firstDivider = qs('.divider'); firstDivider.style.display = 'none'; } } _isCurrentPathAllPosts(){ const {pathname, search} = window.location; return pathname === '/' || (pathname === '/search' && !/label/.test(search)) } _setAllTagActive() { if(this._isCurrentPathAllPosts()){ const allTag = qs('.header__nav-item.all'); allTag.parentElement.classList.add('active'); } } // Shows featured post only if not on the home page _showFeaturedPost() { if (window.location.pathname === '/' && this.featuredCard) { // If any posts in the list have the same href, hide them. // Using a boolean in order to skip the first match // since that is the actual featured card. let skippedFirst = false; this.cards.forEach(card => { const link = card .querySelector('.tensorsite-card__href') .getAttribute('href'); if (link === this.featuredPostHref) { if (skippedFirst) { card.classList.add('hidden'); } skippedFirst = true; } }) } } _makeImagesZoomable(){ this.images.forEach(image => { image.setAttribute('data-action', 'zoom'); if(/a/i.test(image.parentNode.tagName)){ image.parentNode.replaceWith(image) } }) } // Adds max-results query param if URL contains a label filter but // doesn't contain max-results _redirectWithMaxResults(){ const {search} = window.location; const isLabelMatch = /(tensorflow|tfx|community)/gi.test(search) if(isLabelMatch && !/max-results/.test(search)){ window.location.href = window.location.href + '&max-results=20' } } _removeCardLineBreaks(){ const descriptions = this.cardDescriptions || [this.hiddenDescription]; if(descriptions){ descriptions.forEach(node=> { let stringArray = node.innerText.split(/(\r\n|\n|\r)/g); for(let i = stringArray.length; i > 0; i--){ if(/(\r\n|\n|\r)/.test(stringArray[i]) || stringArray[i] === ''){ let j = i - 1; while(j > 0 && (/(\r\n|\n|\r)/.test(stringArray[j]) || stringArray[j] === '')){ stringArray.splice(j, 1); j-- } } } return node.innerText = stringArray.join('') }) } } } window.addEventListener('DOMContentLoaded', (event) => { new App(); }); //]]> </script> <script type='text/javascript'> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-142343919-1', 'auto', 'blogger'); ga('blogger.send', 'pageview'); </script> <link href='https://www.blogger.com/dyn-css/authorization.css?targetBlogID=7864883956188652345&amp;zx=fec37b9b-5beb-4355-a145-f93f4e783e5d' media='none' onload='if(media!=&#39;all&#39;)media=&#39;all&#39;' rel='stylesheet'/><noscript><link href='https://www.blogger.com/dyn-css/authorization.css?targetBlogID=7864883956188652345&amp;zx=fec37b9b-5beb-4355-a145-f93f4e783e5d' rel='stylesheet'/></noscript> <meta name='google-adsense-platform-account' content='ca-host-pub-1556223355139109'/> <meta name='google-adsense-platform-domain' content='blogspot.com'/> </head> <body> <div class='header__overlay'></div> <div class='section' id='nav'><div class='widget HTML' data-version='1' id='HTML1'> <header class='header'> <div aria-hidden='true' data-href='https://blog.tensorflow.org/' hidden='true' id='home-href'></div> <div class='top-row'> <div class='top-row__left'> <button aria-label='Toggle menu' class='header__hamburger' type='button'> <i class='material-icons'>menu</i> </button> <a class='tensorsite-blog-logo' href='https://blog.tensorflow.org/'> <img alt='TensorFlow Blog Logo' class='tensorsite-blog-logo__image' src='https://www.gstatic.com/tf_blog/images/tfblog_logo.svg'/> </a> </div> <div class='top-row__right'> <div class='header__search-container'> <form action='' class='searchbox'> <input aria-label='Search box' class='search-input' name='q' onblur='if (this.value=="") {this.value="Search the Blog";}' onfocus='if (this.value=="Search the Blog") {this.value=""}' placeholder='Search the Blog' type='text' value=''/> <i class='material-icons'>search</i> <input style='visibility:hidden;position:absolute' type='submit'/> </form> </div> <a class='header__cta' href='https://www.tensorflow.org/'> <svg class='cta-icon' height='12' viewBox='0 0 18 18' width='12' xmlns='http://www.w3.org/2000/svg'> <g fill='none' fill-rule='evenodd' transform='translate(-3 -3)'> <rect height='24' width='24'></rect> <path d='M20.55,10.95 L13.05,3.45 C12.45,2.85 11.55,2.85 10.95,3.45 C10.35,4.05 10.35,4.95 10.95,5.55 L15.9,10.5 L4.5,10.5 C3.6,10.5 3,11.1 3,12 C3,12.9 3.6,13.5 4.5,13.5 L15.9,13.5 L10.95,18.45 C10.35,19.05 10.35,19.95 10.95,20.55 C10.95,20.55 10.95,20.55 10.95,20.55 C11.55,21.15 12.45,21.15 13.05,20.55 C13.05,20.55 13.05,20.55 13.05,20.55 L20.55,13.05 C21.15,12.45 21.15,11.55 20.55,10.95 C20.55,10.95 20.55,10.95 20.55,10.95 Z' fill='#000'></path> </g> </svg> Return to TensorFlow Home </a> </div> </div> <div class='nav-row'> <div class='nav-items'> <tab> <a class='header__nav-item all' dir='ltr' href='https://blog.tensorflow.org/'> All </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow+Core&max-results=20'> TensorFlow Core </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow.js&max-results=20'> TensorFlow.js </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow+Lite&max-results=20'> TensorFlow Lite </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=TFX&max-results=20'> TFX </a> </tab> <tab> <a class='header__nav-item' dir='ltr' href='https://blog.tensorflow.org/search?label=Community&max-results=20'> Community </a> </tab> </div> <section class='social-icons'> <div class='social-icons__container-header'> <div class='social-icons__links'> <a class='icon-link' href='https://discuss.tensorflow.org' rel='noopener noreferrer' target='_blank'> <img alt='TensorFlow Forum' src='https://www.gstatic.com/tf_blog/images/ic_forum_2.svg'/> <div class='icon-tooltip'>TensorFlow Forum</div> </a> <a class='icon-link' href='https://www.youtube.com/tensorflow' rel='noopener noreferrer' target='_blank'> <img alt='TensorFlow YouTube' src='https://www.gstatic.com/tf_blog/images/ic_youtube.svg'/> <div class='icon-tooltip'>TensorFlow YouTube</div> </a> <a class='icon-link' href='https://twitter.com/TensorFlow' rel='noopener noreferrer' target='_blank'> <img alt='TensorFlow Twitter' src='https://www.gstatic.com/tf_blog/images/ic_twitter.svg'/> <div class='icon-tooltip'>TensorFlow Twitter</div> </a> <a class='icon-link' href='https://github.com/tensorflow' rel='noopener noreferrer' target='_blank'> <img alt='TensorFlow GitHub' src='https://www.gstatic.com/tf_blog/images/ic_github.svg'/> <div class='icon-tooltip-github'>TensorFlow GitHub</div> </a> </div> </div> </section> </div> </header> <div class='header__side-menu'> <div class='header__side-menu__logo-container'> <a class='tensorsite-blog-logo' href='https://blog.tensorflow.org/'> <img alt='TensorFlow Blog Logo' class='tensorsite-blog-logo__image' src='https://www.gstatic.com/tf_blog/images/tfblog_logo.svg'/> </a> </div> <div class='header__side-menu__content'> <div class='header__side-menu__items'> <div class='header__search-container mobile'> <form action='' class='searchbox'> <input aria-label='Search box' class='search-input' name='q' onblur='if (this.value=="") {this.value="Search the Blog";}' onfocus='if (this.value=="Search the Blog") {this.value=""}' placeholder='Search the Blog' type='text' value=''/> <i class='material-icons'>search</i> <input style='visibility:hidden;position:absolute' type='submit'/> </form> </div> <div class='header__side-menu__title'>Tags</div> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/'> All </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow+Core&max-results=20'> TensorFlow Core </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow.js&max-results=20'> TensorFlow.js </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=TensorFlow+Lite&max-results=20'> TensorFlow Lite </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=TFX&max-results=20'> TFX </a> </li> </tab> <tab> <li> <a class='header__nav-item mobile' dir='ltr' href='https://blog.tensorflow.org/search?label=Community&max-results=20'> Community </a> </li> </tab> </div> <div class='spacer'></div> <div class='header__side-menu__bottom'> <a class='header__cta mobile' href='https://www.tensorflow.org/'> Return to TensorFlow Home </a> </div> </div> </div> </div></div> <div class='content-wrap'> <div class='section' id='blog'><div class='widget FeaturedPost' data-version='1' id='FeaturedPost1'> </div><div class='widget Blog' data-version='1' id='Blog1'> <div class='tensorsite-container--narrow'> <div class='tensorsite-detail'> <a aria-hidden='true' class='tensorsite-detail__next-url' hidden='true' href='https://blog.tensorflow.org/2022/06/Adding-Quantization-aware-Training-and-Pruning-to-the-TensorFlow-Model-Garden.html'></a> <div aria-hidden='true' class='tensorsite-detail__current-url' hidden='true'>https://blog.tensorflow.org/2022/06/Profiling-XNNPACK-with-TFLite.html</div> <div aria-hidden='true' class='tensorsite-detail__tags' hidden='true'> <span>performance</span> <b class='label-divider-dot'>&#183;</b> <span>profiling</span> </div> <div aria-hidden='true' class='tensorsite-detail__main-image' hidden='true'> https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGaMOZjmmcdeCHArC2JZGpTO3nsFS6Pdv4_mR7Krfqjyw5hbMWoy1TBJkDg5h9P62LPDIXoaPvj8NdwcszzXK_IhsS3Z39jx-q25Ud-Os7ShQkm2YjIhNX0Bn8R3Cfa-hcz_jZXvF_a8W9tpE2PDiX9A5d32qkAgfNpled0X_1DJuxHfoFOOtMdC4b/s1600/image6.png </div> <p aria-hidden='true' class='tensorsite-detail__description' hidden='true'> <span class='tensorsite-content__info'> June 15, 2022 &#8212; </span> <em>Posted by Alan Kelly, Software Engineer</em> We are happy to share that detailed <a href="https://www.tensorflow.org/lite/performance/measurement" target="_blank">profiling information</a> for XNNPACK is now available in TensorFlow 2.9.1 and later. <a href="https://github.com/google/XNNPACK" target="_blank">XNNPACK</a> is a highly optimized library of floating-point neural network inference operators for ARM, WebAssembly, and x86 platforms, and it is the default TensorFlow Lite CPU inference engine for floating-point models. The most common and ex&#8230; </p> <div class='tensorsite-content__subtitle'> <a href='https://blog.tensorflow.org/search?label=performance&max-results=20'> <span>performance</span> </a> <b class='label-divider-dot'>&#183;</b> <a href='https://blog.tensorflow.org/search?label=profiling&max-results=20'> <span>profiling</span> </a> <b class='label-divider-dot'>&#183;</b> <img alt='Google Article' class='community-icon' src='https://www.gstatic.com/tf_blog/images/ic_google.svg'/> </div> <div class='tensorsite-detail__title'> Profiling XNNPACK with TFLite </div> <div class='tensorsite-detail__contact'> <div class='tensorsite-detail__info'> <span class='tensorsite-detail__timestamp'>June 15, 2022</span> </div> <a class='icon-link' href='https://twitter.com/intent/tweet?text=%22Profiling XNNPACK with TFLite%22 from the TensorFlow Blog%0A%0Ahttps://blog.tensorflow.org/2022/06/Profiling-XNNPACK-with-TFLite.html' rel='noopener noreferrer' target='_blank' title='Share this post on Twitter'> <svg alt='Twitter Social Icon' class='twitter-icon social-icon' height='19' viewBox='0 0 23 19' width='23' xmlns='http://www.w3.org/2000/svg'> <g fill='none' fill-rule='evenodd' transform='translate(-7 -9)'> <rect height='36' width='36'></rect> <path d='M14.076,27.2827953 C22.566,27.2827953 27.21,20.2477953 27.21,14.1477953 C27.21,13.9477953 27.21,13.7487953 27.197,13.5507953 C28.1,12.8977953 28.88,12.0887953 29.5,11.1617953 C28.657,11.5347953 27.764,11.7797953 26.848,11.8877953 C27.812,11.3107953 28.533,10.4037953 28.878,9.33479527 C27.972,9.87179527 26.98,10.2507953 25.947,10.4547953 C24.198,8.59579527 21.274,8.50679527 19.415,10.2547953 C18.217,11.3817953 17.708,13.0617953 18.08,14.6647953 C14.368,14.4787953 10.91,12.7257953 8.566,9.84279527 C7.341,11.9507953 7.967,14.6497953 9.995,16.0047953 C9.261,15.9827953 8.542,15.7837953 7.9,15.4267953 L7.9,15.4847953 C7.9,17.6827953 9.449,19.5747953 11.603,20.0107953 C10.924,20.1957953 10.211,20.2227953 9.519,20.0897953 C10.124,21.9707953 11.856,23.2587953 13.832,23.2957953 C12.197,24.5797953 10.178,25.2777953 8.098,25.2747953 C7.731,25.2747953 7.364,25.2527953 7,25.2087953 C9.111,26.5627953 11.567,27.2817953 14.076,27.2787953' fill='#545454'></path> </g> </svg> </a> </div> <div class='divider divider--article-top'></div> <div class='tensorsite-detail__body'> <p><em>Posted by Alan Kelly, Software Engineer</em></p><p> </p><a name='more'></a><p></p> <p> We are happy to share that detailed <a href="https://www.tensorflow.org/lite/performance/measurement" target="_blank">profiling information</a> for XNNPACK is now available in TensorFlow 2.9.1 and later. <a href="https://github.com/google/XNNPACK" target="_blank">XNNPACK</a> is a highly optimized library of floating-point neural network inference operators for ARM, WebAssembly, and x86 platforms, and it is the default TensorFlow Lite CPU inference engine for floating-point models. </p> <p> The most common and expensive neural network operators, such as fully connected layers and convolutions, are executed by XNNPACK so that you get the best performance possible from your model. Historically the profiler would measure the runtime for the entire section of delegated graph, meaning that the runtime of all delegated operators was accumulated in one result, making it difficult to identify the individual operations that were slow. </p> <table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto;"><tbody><tr><td style="text-align: center;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGaMOZjmmcdeCHArC2JZGpTO3nsFS6Pdv4_mR7Krfqjyw5hbMWoy1TBJkDg5h9P62LPDIXoaPvj8NdwcszzXK_IhsS3Z39jx-q25Ud-Os7ShQkm2YjIhNX0Bn8R3Cfa-hcz_jZXvF_a8W9tpE2PDiX9A5d32qkAgfNpled0X_1DJuxHfoFOOtMdC4b/s1600/image6.png" style="display: block; margin-left: auto; margin-right: auto; padding: 1em 0px; text-align: center;"><img alt="" border="0" data-original-height="296" data-original-width="1999" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGaMOZjmmcdeCHArC2JZGpTO3nsFS6Pdv4_mR7Krfqjyw5hbMWoy1TBJkDg5h9P62LPDIXoaPvj8NdwcszzXK_IhsS3Z39jx-q25Ud-Os7ShQkm2YjIhNX0Bn8R3Cfa-hcz_jZXvF_a8W9tpE2PDiX9A5d32qkAgfNpled0X_1DJuxHfoFOOtMdC4b/s1600/image6.png" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;"><span style="text-align: left;"><i>Previous TFLite profiling results when XNNPACK was used. The runtime of all delegated operators was accumulated in one row.</i></span></td></tr></tbody></table><p></p><p></p> <p> If you are using TensorFlow Lite 2.9.1 or later, it gives the per operator profile even for the section that is delegated to XNNPACK so that you no longer need to decide between fast inference and detailed performance information. The operator name, data layout (NHWC for example), datatype (FP32) and microkernel type (if applicable) are shown. </p> <table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto;"><tbody><tr><td style="text-align: center;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjC4hVKqTuz3ZI3BDW-N9XFOthfw0GAmJrCuh0QCjgXglrO69vef8Nzj8-o9NZjF5sW9_mvqg3fQa8PuQO1b14ITkAcMx2cjqfcXKAnU3CpF7L_JE7qyjt8F-SmVXS-Foug7IKB7bYpknoYu1GWhyJqey-ZLL44YtitJyBrGYbYLCLU8p1VyqKjecm_/s1563/image2.png" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img border="0" data-original-height="750" data-original-width="1563" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjC4hVKqTuz3ZI3BDW-N9XFOthfw0GAmJrCuh0QCjgXglrO69vef8Nzj8-o9NZjF5sW9_mvqg3fQa8PuQO1b14ITkAcMx2cjqfcXKAnU3CpF7L_JE7qyjt8F-SmVXS-Foug7IKB7bYpknoYu1GWhyJqey-ZLL44YtitJyBrGYbYLCLU8p1VyqKjecm_/s16000/image2.png" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;"><span style="text-align: start;"><i>New detailed per-operator profiling information is now shown. The operator name, data layout, data type and microkernel type are visible.</i></span></td></tr></tbody></table><div style="text-align: center;"><div class="separator" style="clear: both; text-align: left;">Now, you get lots of helpful information, such as the runtime per operator and the percentage of the total runtime that it accounts for. The runtime of each node is given in the order in which they were executed. The most expensive operators are also listed.</div></div><table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto;"><tbody><tr><td style="text-align: center;"><div class="separator" style="clear: both;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjszotPDs2GEy4drnKKcO1gPTCmmEYpf60Yk3iTA2MCogHpXF-pBWUYsH__DIoFkWhJisBBTP6uebX3MAyC0XFthmV5vcGFBndJF0L1EodeESG4tMJ9uY9z0IjotVNySAjcghi40WGRLZOFyneNB2J96pXlMEMXijMxRikoT68yzL1j1jgBMygupjWV/s1600/image3.png" style="display: block; padding: 1em 0px; text-align: center;"><img alt="" border="0" data-original-height="220" data-original-width="1475" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjszotPDs2GEy4drnKKcO1gPTCmmEYpf60Yk3iTA2MCogHpXF-pBWUYsH__DIoFkWhJisBBTP6uebX3MAyC0XFthmV5vcGFBndJF0L1EodeESG4tMJ9uY9z0IjotVNySAjcghi40WGRLZOFyneNB2J96pXlMEMXijMxRikoT68yzL1j1jgBMygupjWV/s1600/image3.png" /></a></div></td></tr><tr><td class="tr-caption" style="text-align: center;"><span style="text-align: left;"><i>The most expensive operators are listed. In this example, you can see that a deconvolution accounted for 33.91% of the total runtime.</i></span></td></tr></tbody></table><p></p><p></p> <p> XNNPACK can also perform inference in half-precision (16 bit) floating point format if the hardware supports these operations natively, and IEEE16 inference is supported for every floating-point operator in the model, and the model&#8217;s `reduced_precision_support` metadata indicates that it is compatible with FP16 inference. FP16 inference can also be forced. More information is available <a href="https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/delegates/xnnpack/README.md#floating-point-ieee-fp16-operators-experimental" target="_blank">here</a>. If half precision has been used, then F16 will be present in the Name column:</p><table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto;"><tbody><tr><td style="text-align: center;"><div class="separator" style="clear: both;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgxQNnx-7gGV730igjxQLFBYhj8EH9B7FXaiRmJ61E2bD5lDfpwJ_6UFC0ViXc_EdjX4bpuxJkSDfhrRuHvu9UB0-GRYsyF9co3aqIpYBDyh2wQVq0_7yKDaFGwSN2om7c18piUo_6SYD5uU6N4J1yzzjiBbeM4u1krWhzTOTkiuHlNCi1NUUSxp3a6/s1600/image5.png" style="display: block; padding: 1em 0px; text-align: center;"><img alt="" border="0" data-original-height="220" data-original-width="1504" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgxQNnx-7gGV730igjxQLFBYhj8EH9B7FXaiRmJ61E2bD5lDfpwJ_6UFC0ViXc_EdjX4bpuxJkSDfhrRuHvu9UB0-GRYsyF9co3aqIpYBDyh2wQVq0_7yKDaFGwSN2om7c18piUo_6SYD5uU6N4J1yzzjiBbeM4u1krWhzTOTkiuHlNCi1NUUSxp3a6/s1600/image5.png" /></a></div></td></tr><tr><td class="tr-caption" style="text-align: center;"><span style="text-align: left;"><i>FP16 inference has been used.</i></span></td></tr></tbody></table><p></p><p></p> <p> Here, unsigned quantized inference has been used (QU8).</p><table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto;"><tbody><tr><td style="text-align: center;"><div class="separator" style="clear: both;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj5mSDtQ3FzM_t0tuazFhgIEOdjRhbZG_ReGkegnKKmqfIeEXAzVwS3Xcl-SPFz6EoBFsgx2SlZWWOJ5wMOg-Jra8_hvZjAE_9eAB-3XVgDcv2qOHYDPqMzk7XIynvAA2qMWAEwPWgjwh5uaWpVePcHG4UyxXU7kjPI7VqaLBf0zh5WOlugtT7boDdN/s1600/TF%20Blog.png" style="display: block; padding: 1em 0px; text-align: center;"><img alt="" border="0" data-original-height="220" data-original-width="1475" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj5mSDtQ3FzM_t0tuazFhgIEOdjRhbZG_ReGkegnKKmqfIeEXAzVwS3Xcl-SPFz6EoBFsgx2SlZWWOJ5wMOg-Jra8_hvZjAE_9eAB-3XVgDcv2qOHYDPqMzk7XIynvAA2qMWAEwPWgjwh5uaWpVePcHG4UyxXU7kjPI7VqaLBf0zh5WOlugtT7boDdN/s1600/TF%20Blog.png" /></a></div></td></tr><tr><td class="tr-caption" style="text-align: center;"><span style="text-align: left;"><i>QU8 indicates that unsigned quantized inference has been used</i></span></td></tr></tbody></table><p></p><p></p> <p> And finally, sparse inference has been used. Sparse operators require that the data layout change from NHWC to NCHW as this is more efficient. This can be seen in the operator name.</p> <table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto;"><tbody><tr><td style="text-align: center;"><div class="separator" style="clear: both;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhJW-1poK1ASuATN0IjayI53Hj6OYeyWvsuQdPOitXVjNbtdJiMpOK6jQVAK5QBTyeoCvsiZqMG93SrA9NZNyk2hVHEWWgF_7PILtAIdgBIAni-UWivl07GhDxYqYzMt8hDsO1PbjVMsaBgGIet5oTcbe0kijN9t-QIqtdIYVStmIExc_RaSZoOCng1/s1600/image1.png" style="display: block; padding: 1em 0px; text-align: center;"><img alt="" border="0" data-original-height="228" data-original-width="1507" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhJW-1poK1ASuATN0IjayI53Hj6OYeyWvsuQdPOitXVjNbtdJiMpOK6jQVAK5QBTyeoCvsiZqMG93SrA9NZNyk2hVHEWWgF_7PILtAIdgBIAni-UWivl07GhDxYqYzMt8hDsO1PbjVMsaBgGIet5oTcbe0kijN9t-QIqtdIYVStmIExc_RaSZoOCng1/s1600/image1.png" /></a></div></td></tr><tr><td class="tr-caption" style="text-align: center;"><span style="text-align: left;"><i>SPMM microkernel indicates that the operator is evaluated via SParse matrix-dense Matrix Multiplication. Note that sparse inference use NCHW layout (vs the typical NHWC) for the operators.</i></span></td></tr></tbody></table><p></p><p></p> <p>Note that when some operators are delegated to XNNPACK, and others aren&#8217;t, two sets of profile information are shown. This happens when not all operators in the model are supported by XNNPACK. The next step in this project is to merge profile information from XNNPACK operators and TensorFlow Lite into one profile.</p> <h2><strong>Next Steps</strong></h2> <p>You can learn more about performance measurement and profiling in TensorFlow Lite by visiting this <a href="https://www.tensorflow.org/lite/performance/measurement" target="_blank">guide</a>. Thanks for reading!</p><br /> </div> </div> <div class='tensorsite-detail-footer'> <div class='article-divider'> <img alt='Diamond Article Divider' src='https://www.gstatic.com/tf_blog/images/ic_article_end.svg'/> </div> <a class='tensorsite-chip' href='https://blog.tensorflow.org/search?label=performance&max-results=20'> performance </a> <a class='tensorsite-chip' href='https://blog.tensorflow.org/search?label=profiling&max-results=20'> profiling </a> <a class='tensorsite-chip' href='https://blog.tensorflow.org/search?label=TensorFlow+Lite&max-results=20'> TensorFlow Lite </a> </div> </div> <div class='tensorsite-next'> <div class='tensorsite-container--large'> <div class='tensorsite-next__title'>Next post</div> <div class='tensorsite-card'> <a aria-label='Next Card' class='tensorsite-card__href next' href='https://blog.tensorflow.org/2022/06/Profiling-XNNPACK-with-TFLite.html'></a> <div class='tensorsite-content__image-wrapper'> <img alt='Profiling XNNPACK with TFLite' class='tensorsite-content__image' src='https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGaMOZjmmcdeCHArC2JZGpTO3nsFS6Pdv4_mR7Krfqjyw5hbMWoy1TBJkDg5h9P62LPDIXoaPvj8NdwcszzXK_IhsS3Z39jx-q25Ud-Os7ShQkm2YjIhNX0Bn8R3Cfa-hcz_jZXvF_a8W9tpE2PDiX9A5d32qkAgfNpled0X_1DJuxHfoFOOtMdC4b/s1600/image6.png'/> </div> <div class='tensorsite-content'> <div class='tensorsite-content__subtitle next'> <span>performance</span> <b class='label-divider-dot'>&#183;</b> <span>profiling</span> <b class='label-divider-dot'>&#183;</b> <img alt='Google Article' class='community-icon' src='https://www.gstatic.com/tf_blog/images/ic_google.svg'/> </div> <div class='tensorsite-content__title next'> Profiling XNNPACK with TFLite </div> <p class='tensorsite-content__description next'> <span class='tensorsite-content__info'> June 15, 2022 </span> &#8212; <span> <em>Posted by Alan Kelly, Software Engineer</em> We are happy to share that detailed <a href="https://www.tensorflow.org/lite/performance/measurement" target="_blank">profiling information</a> for XNNPACK is now available in TensorFlow 2.9.1 and later. <a href="https://github.com/google/XNNPACK" target="_blank">XNNPACK</a> is a highly optimized library of floating-point neural network inference operators for ARM, WebAssembly, and x86 platforms, and it is the default TensorFlow Lite CPU inference engine for floating-point models. The most common and ex&#8230; </span> </p> </div> </div> </div> </div> <!--Can't find substitution for tag [posts.post]--> </div></div> </div> <!-- End Page Container --> <div class='tensorsite-full-footer'> <div class='section' id='footer'><div class='widget HTML' data-version='1' id='HTML2'> <section class='tensorsite-footer'> <div class='tensorsite-container tensorsite-footer__container'> <div class='tensorsite-footer__side tensorsite-footer__side--left'></div> <div class='tensorsite-footer__side tensorsite-footer__side--right'></div> <div class='tensorsite-footer__content'> <div class='tensorsite-content'> <div class='tensorsite-content__title tensorsite-content__title--grow'> Build, deploy, and experiment easily with TensorFlow </div> <div class='tensorsite-content__cta-wrapper'> <a class='tensorsite-content__button tensorsite-button tensorsite-button--white' href='https://www.tensorflow.org/'> Get started </a> </div> </div> </div> </div> <div class='tensorsite-footer__lines'></div> </section> <section class='social-icons'> <div class='social-icons__container-footer'> <a alt='TensorFlow Home' class='tensorsite-logo' href='https://www.tensorflow.org/'> <img alt='TensorFlow Logo' class='tensorsite-logo__image' src='https://www.gstatic.com/tf_blog/images/tf_lockup.svg'/> </a> <div class='footer__side--right'> <div class='footer__links'> <a alt='Youtube Social Link' class='footer-link' href='https://www.google.com/' rel='noopener noreferrer' target='_blank'> Google </a> <a alt='Twitter Social Link' class='footer-link' href='https://policies.google.com/privacy' rel='noopener noreferrer' target='_blank'> Privacy </a> <a alt='Github Link' class='footer-link' href='https://policies.google.com/terms' rel='noopener noreferrer' target='_blank'> Terms </a> <a class='footer-link' href='https://blog.tensorflow.org/p/tensorflow-blog-contribution-notice.html'> Contributions notice </a> </div> <div class='social-icons__links'> <a alt='Youtube Social Link' class='icon-link' href='https://www.youtube.com/channel/UC0rqucBdTuFTjJiefW5t-IQ' rel='noopener noreferrer' target='_blank'> <img src='https://www.gstatic.com/tf_blog/images/ic_youtube.svg'/></a> <a alt='Twitter Social Link' class='icon-link' href='https://twitter.com/TensorFlow' rel='noopener noreferrer' target='_blank'> <img src='https://www.gstatic.com/tf_blog/images/ic_twitter.svg'/></a> <a alt='Github Link' class='icon-link' href='https://github.com/tensorflow' rel='noopener noreferrer' target='_blank'> <img src='https://www.gstatic.com/tf_blog/images/ic_github.svg'/></a> </div> </div> </div> </section> </div></div> </div> <script type="text/javascript" src="https://www.blogger.com/static/v1/widgets/984859869-widgets.js"></script> <script type='text/javascript'> window['__wavt'] = 'AOuZoY7DcVye3jRhrnjc9I_hy1HtE_ut_g:1732691340275';_WidgetManager._Init('//www.blogger.com/rearrange?blogID\x3d7864883956188652345','//blog.tensorflow.org/2022/06/Profiling-XNNPACK-with-TFLite.html','7864883956188652345'); _WidgetManager._SetDataContext([{'name': 'blog', 'data': {'blogId': '7864883956188652345', 'title': 'The TensorFlow Blog', 'url': 'https://blog.tensorflow.org/2022/06/Profiling-XNNPACK-with-TFLite.html', 'canonicalUrl': 'https://blog.tensorflow.org/2022/06/Profiling-XNNPACK-with-TFLite.html', 'homepageUrl': 'https://blog.tensorflow.org/', 'searchUrl': 'https://blog.tensorflow.org/search', 'canonicalHomepageUrl': 'https://blog.tensorflow.org/', 'blogspotFaviconUrl': 'https://blog.tensorflow.org/favicon.ico', 'bloggerUrl': 'https://www.blogger.com', 'hasCustomDomain': true, 'httpsEnabled': true, 'enabledCommentProfileImages': true, 'gPlusViewType': 'FILTERED_POSTMOD', 'adultContent': false, 'analyticsAccountNumber': 'UA-142343919-1', 'encoding': 'UTF-8', 'locale': 'en', 'localeUnderscoreDelimited': 'en', 'languageDirection': 'ltr', 'isPrivate': false, 'isMobile': false, 'isMobileRequest': false, 'mobileClass': '', 'isPrivateBlog': false, 'isDynamicViewsAvailable': true, 'feedLinks': '\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22The TensorFlow Blog - Atom\x22 href\x3d\x22https://blog.tensorflow.org/feeds/posts/default\x22 /\x3e\n\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/rss+xml\x22 title\x3d\x22The TensorFlow Blog - RSS\x22 href\x3d\x22https://blog.tensorflow.org/feeds/posts/default?alt\x3drss\x22 /\x3e\n\x3clink rel\x3d\x22service.post\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22The TensorFlow Blog - Atom\x22 href\x3d\x22https://www.blogger.com/feeds/7864883956188652345/posts/default\x22 /\x3e\n\n\x3clink rel\x3d\x22alternate\x22 type\x3d\x22application/atom+xml\x22 title\x3d\x22The TensorFlow Blog - Atom\x22 href\x3d\x22https://blog.tensorflow.org/feeds/7361191615000850760/comments/default\x22 /\x3e\n', 'meTag': '', 'adsenseHostId': 'ca-host-pub-1556223355139109', 'adsenseHasAds': true, 'adsenseAutoAds': false, 'boqCommentIframeForm': true, 'loginRedirectParam': '', 'view': '', 'dynamicViewsCommentsSrc': '//www.blogblog.com/dynamicviews/4224c15c4e7c9321/js/comments.js', 'dynamicViewsScriptSrc': '//www.blogblog.com/dynamicviews/02de2df73990045b', 'plusOneApiSrc': 'https://apis.google.com/js/platform.js', 'disableGComments': true, 'interstitialAccepted': false, 'sharing': {'platforms': [{'name': 'Get link', 'key': 'link', 'shareMessage': 'Get link', 'target': ''}, {'name': 'Facebook', 'key': 'facebook', 'shareMessage': 'Share to Facebook', 'target': 'facebook'}, {'name': 'BlogThis!', 'key': 'blogThis', 'shareMessage': 'BlogThis!', 'target': 'blog'}, {'name': 'X', 'key': 'twitter', 'shareMessage': 'Share to X', 'target': 'twitter'}, {'name': 'Pinterest', 'key': 'pinterest', 'shareMessage': 'Share to Pinterest', 'target': 'pinterest'}, {'name': 'Email', 'key': 'email', 'shareMessage': 'Email', 'target': 'email'}], 'disableGooglePlus': true, 'googlePlusShareButtonWidth': 0, 'googlePlusBootstrap': '\x3cscript type\x3d\x22text/javascript\x22\x3ewindow.___gcfg \x3d {\x27lang\x27: \x27en\x27};\x3c/script\x3e'}, 'hasCustomJumpLinkMessage': false, 'jumpLinkMessage': 'Read more', 'pageType': 'item', 'postId': '7361191615000850760', 'postImageThumbnailUrl': 'https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGaMOZjmmcdeCHArC2JZGpTO3nsFS6Pdv4_mR7Krfqjyw5hbMWoy1TBJkDg5h9P62LPDIXoaPvj8NdwcszzXK_IhsS3Z39jx-q25Ud-Os7ShQkm2YjIhNX0Bn8R3Cfa-hcz_jZXvF_a8W9tpE2PDiX9A5d32qkAgfNpled0X_1DJuxHfoFOOtMdC4b/s72-c/image6.png', 'postImageUrl': 'https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGaMOZjmmcdeCHArC2JZGpTO3nsFS6Pdv4_mR7Krfqjyw5hbMWoy1TBJkDg5h9P62LPDIXoaPvj8NdwcszzXK_IhsS3Z39jx-q25Ud-Os7ShQkm2YjIhNX0Bn8R3Cfa-hcz_jZXvF_a8W9tpE2PDiX9A5d32qkAgfNpled0X_1DJuxHfoFOOtMdC4b/s1600/image6.png', 'pageName': 'Profiling XNNPACK with TFLite', 'pageTitle': 'The TensorFlow Blog: Profiling XNNPACK with TFLite', 'metaDescription': 'XNNPACK per-operator profiling with TensorFlow Lite is now available.'}}, {'name': 'features', 'data': {}}, {'name': 'messages', 'data': {'edit': 'Edit', 'linkCopiedToClipboard': 'Link copied to clipboard!', 'ok': 'Ok', 'postLink': 'Post Link'}}, {'name': 'template', 'data': {'name': 'custom', 'localizedName': 'Custom', 'isResponsive': false, 'isAlternateRendering': false, 'isCustom': true}}, {'name': 'view', 'data': {'classic': {'name': 'classic', 'url': '?view\x3dclassic'}, 'flipcard': {'name': 'flipcard', 'url': '?view\x3dflipcard'}, 'magazine': {'name': 'magazine', 'url': '?view\x3dmagazine'}, 'mosaic': {'name': 'mosaic', 'url': '?view\x3dmosaic'}, 'sidebar': {'name': 'sidebar', 'url': '?view\x3dsidebar'}, 'snapshot': {'name': 'snapshot', 'url': '?view\x3dsnapshot'}, 'timeslide': {'name': 'timeslide', 'url': '?view\x3dtimeslide'}, 'isMobile': false, 'title': 'Profiling XNNPACK with TFLite', 'description': 'XNNPACK per-operator profiling with TensorFlow Lite is now available.', 'featuredImage': 'https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiGaMOZjmmcdeCHArC2JZGpTO3nsFS6Pdv4_mR7Krfqjyw5hbMWoy1TBJkDg5h9P62LPDIXoaPvj8NdwcszzXK_IhsS3Z39jx-q25Ud-Os7ShQkm2YjIhNX0Bn8R3Cfa-hcz_jZXvF_a8W9tpE2PDiX9A5d32qkAgfNpled0X_1DJuxHfoFOOtMdC4b/s1600/image6.png', 'url': 'https://blog.tensorflow.org/2022/06/Profiling-XNNPACK-with-TFLite.html', 'type': 'item', 'isSingleItem': true, 'isMultipleItems': false, 'isError': false, 'isPage': false, 'isPost': true, 'isHomepage': false, 'isArchive': false, 'isLabelSearch': false, 'postId': 7361191615000850760}}]); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML1', 'nav', document.getElementById('HTML1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_FeaturedPostView', new _WidgetInfo('FeaturedPost1', 'blog', document.getElementById('FeaturedPost1'), {}, 'displayModeFull')); _WidgetManager._RegisterWidget('_BlogView', new _WidgetInfo('Blog1', 'blog', document.getElementById('Blog1'), {'cmtInteractionsEnabled': false, 'lightboxEnabled': true, 'lightboxModuleUrl': 'https://www.blogger.com/static/v1/jsbin/2646514562-lbx.js', 'lightboxCssUrl': 'https://www.blogger.com/static/v1/v-css/1964470060-lightbox_bundle.css'}, 'displayModeFull')); _WidgetManager._RegisterWidget('_HTMLView', new _WidgetInfo('HTML2', 'footer', document.getElementById('HTML2'), {}, 'displayModeFull')); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10