CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–13 of 13 results for author: <span class="mathjax">Hu, W</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Hu%2C+W">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hu, W"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hu%2C+W&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hu, W"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05608">arXiv:2406.05608</a> <span> [<a href="https://arxiv.org/pdf/2406.05608">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Janus graphene nanoribbons with a single ferromagnetic zigzag edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Song%2C+S">Shaotang Song</a>, <a href="/search/quant-ph?searchtype=author&query=Teng%2C+Y">Yu Teng</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+W">Weichen Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen Xu</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Y">Yuanyuan He</a>, <a href="/search/quant-ph?searchtype=author&query=Ruan%2C+J">Jiawei Ruan</a>, <a href="/search/quant-ph?searchtype=author&query=Kojima%2C+T">Takahiro Kojima</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W">Wenping Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Giessibl%2C+F+J">Franz J Giessibl</a>, <a href="/search/quant-ph?searchtype=author&query=Sakaguchi%2C+H">Hiroshi Sakaguchi</a>, <a href="/search/quant-ph?searchtype=author&query=Louie%2C+S+G">Steven G Louie</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+J">Jiong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05608v2-abstract-short" style="display: inline;"> Topological design of pi-electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically exhibit antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a new class of ferromagnetic quantum spin chains, enabling the explor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05608v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05608v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05608v2-abstract-full" style="display: none;"> Topological design of pi-electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically exhibit antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a new class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the 1D limit, but also establishes a long-sought carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics. However, designing such GNRs entails overcoming daunting challenges, including simultaneous breaking of structural and spin symmetries, and designing elegant precursors for asymmetric fabrication of reactive zigzag edges. Here, we report a general approach for designing and fabricating such ferromagnetic GNRs in the form of Janus GNRs with two distinct edge configurations. Guided by Lieb's theorem and topological classification theory, we devised two JGNRs by asymmetrically introduced a topological defect array of benzene motifs to one zigzag edge, while keeping the opposing zigzag edge unchanged. This breaks structural symmetry and creates a sublattice imbalance within each unit cell, initiating a spin symmetry breaking. Three Z-shape precursors are designed to fabricate one parent ZGNR and two JGNRs with an optimal lattice spacing of the defect array for a complete quench of the magnetic edge states at the defective edge. Characterization via scanning probe microscopy/spectroscopy and first-principles density functional theory confirms the successful fabrication of Janus GNRs with ferromagnetic ground state delocalised along the pristine zigzag edge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05608v2-abstract-full').style.display = 'none'; document.getElementById('2406.05608v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04793">arXiv:2401.04793</a> <span> [<a href="https://arxiv.org/pdf/2401.04793">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> 2024 Roadmap on Magnetic Microscopy Techniques and Their Applications in Materials Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Christensen%2C+D+V">D. V. Christensen</a>, <a href="/search/quant-ph?searchtype=author&query=Staub%2C+U">U. Staub</a>, <a href="/search/quant-ph?searchtype=author&query=Devidas%2C+T+R">T. R. Devidas</a>, <a href="/search/quant-ph?searchtype=author&query=Kalisky%2C+B">B. Kalisky</a>, <a href="/search/quant-ph?searchtype=author&query=Nowack%2C+K+C">K. C. Nowack</a>, <a href="/search/quant-ph?searchtype=author&query=Webb%2C+J+L">J. L. Webb</a>, <a href="/search/quant-ph?searchtype=author&query=Andersen%2C+U+L">U. L. Andersen</a>, <a href="/search/quant-ph?searchtype=author&query=Huck%2C+A">A. Huck</a>, <a href="/search/quant-ph?searchtype=author&query=Broadway%2C+D+A">D. A. Broadway</a>, <a href="/search/quant-ph?searchtype=author&query=Wagner%2C+K">K. Wagner</a>, <a href="/search/quant-ph?searchtype=author&query=Maletinsky%2C+P">P. Maletinsky</a>, <a href="/search/quant-ph?searchtype=author&query=van+der+Sar%2C+T">T. van der Sar</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+C+R">C. R. Du</a>, <a href="/search/quant-ph?searchtype=author&query=Yacoby%2C+A">A. Yacoby</a>, <a href="/search/quant-ph?searchtype=author&query=Collomb%2C+D">D. Collomb</a>, <a href="/search/quant-ph?searchtype=author&query=Bending%2C+S">S. Bending</a>, <a href="/search/quant-ph?searchtype=author&query=Oral%2C+A">A. Oral</a>, <a href="/search/quant-ph?searchtype=author&query=Hug%2C+H+J">H. J. Hug</a>, <a href="/search/quant-ph?searchtype=author&query=Mandru%2C+A+-">A. -O. Mandru</a>, <a href="/search/quant-ph?searchtype=author&query=Neu%2C+V">V. Neu</a>, <a href="/search/quant-ph?searchtype=author&query=Schumacher%2C+H+W">H. W. Schumacher</a>, <a href="/search/quant-ph?searchtype=author&query=Sievers%2C+S">S. Sievers</a>, <a href="/search/quant-ph?searchtype=author&query=Saito%2C+H">H. Saito</a>, <a href="/search/quant-ph?searchtype=author&query=Khajetoorians%2C+A+A">A. A. Khajetoorians</a>, <a href="/search/quant-ph?searchtype=author&query=Hauptmann%2C+N">N. Hauptmann</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04793v1-abstract-short" style="display: inline;"> Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetization patterns, current distributions and magnetic fields at nano- and microscale is of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04793v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04793v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04793v1-abstract-full" style="display: none;"> Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetization patterns, current distributions and magnetic fields at nano- and microscale is of major importance to understand the material responses and qualify them for specific applications. In this roadmap, we aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using SQUIDs, spin center and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods as well as magnetooptics and nanoMRI. The roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students outlining prospects of the development of magnetic imaging technologies for the upcoming decade with a focus on physics, materials science, and chemistry of planar, 3D and geometrically curved objects of different material classes including 2D materials, complex oxides, semi-metals, multiferroics, skyrmions, antiferromagnets, frustrated magnets, magnetic molecules/nanoparticles, ionic conductors, superconductors, spintronic and spinorbitronic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04793v1-abstract-full').style.display = 'none'; document.getElementById('2401.04793v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08218">arXiv:2209.08218</a> <span> [<a href="https://arxiv.org/pdf/2209.08218">pdf</a>, <a href="https://arxiv.org/ps/2209.08218">ps</a>, <a href="https://arxiv.org/format/2209.08218">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Non-Demolition Measurement on the Spin Precession of Laser-Trapped $^{171}$Yb Atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y+A">Y. A. Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+T+A">T. A. Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+S+-">S. -Z. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W+-">W. -K. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+T">T. Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Z+-">Z. -T. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08218v1-abstract-short" style="display: inline;"> Quantum non-demolition (QND) measurement enhances the detection efficiency and measurement fidelity, and is highly desired for its applications in precision measurements and quantum information processing. We propose and demonstrate a QND measurement scheme for the spin states of laser-trapped atoms. On $^{171}$Yb atoms held in an optical dipole trap, a transition that is simultaneously cycling, s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08218v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08218v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08218v1-abstract-full" style="display: none;"> Quantum non-demolition (QND) measurement enhances the detection efficiency and measurement fidelity, and is highly desired for its applications in precision measurements and quantum information processing. We propose and demonstrate a QND measurement scheme for the spin states of laser-trapped atoms. On $^{171}$Yb atoms held in an optical dipole trap, a transition that is simultaneously cycling, spin-state selective, and spin-state preserving is created by introducing a circularly polarized beam of control laser to optically dress the spin states in the excited level, while leaving the spin states in the ground level unperturbed. We measure the phase of spin precession of $5\times10^{4}$ atoms in a bias magnetic field of 20 mG. This QND approach reduces the optical absorption detection noise by $\sim$19 dB, to a level of 2.3 dB below the atomic quantum projection noise. In addition to providing a general approach for efficient spin-state readout, this all-optical technique allows quick switching and real-time programming for quantum sensing and quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08218v1-abstract-full').style.display = 'none'; document.getElementById('2209.08218v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01771">arXiv:2110.01771</a> <span> [<a href="https://arxiv.org/pdf/2110.01771">pdf</a>, <a href="https://arxiv.org/format/2110.01771">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Feasible Architecture for Quantum Fully Convolutional Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yusui Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W">Wenhao Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+X">Xiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01771v1-abstract-short" style="display: inline;"> Fully convolutional networks are robust in performing semantic segmentation, with many applications from signal processing to computer vision. From the fundamental principles of variational quantum algorithms, we propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices. In this work, a parameterized quantum circuit consisting of three layers, co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01771v1-abstract-full').style.display = 'inline'; document.getElementById('2110.01771v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01771v1-abstract-full" style="display: none;"> Fully convolutional networks are robust in performing semantic segmentation, with many applications from signal processing to computer vision. From the fundamental principles of variational quantum algorithms, we propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices. In this work, a parameterized quantum circuit consisting of three layers, convolutional, pooling, and upsampling, is characterized by generative one-qubit and two-qubit gates and driven by a classical optimizer. This architecture supplies a solution for realizing the dynamical programming on a one-way quantum computer and maximally taking advantage of quantum computing throughout the calculation. Moreover, our algorithm works on many physical platforms, and particularly the upsampling layer can use either conventional qubits or multiple-level systems. Through numerical simulations, our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01771v1-abstract-full').style.display = 'none'; document.getElementById('2110.01771v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11099">arXiv:2107.11099</a> <span> [<a href="https://arxiv.org/pdf/2107.11099">pdf</a>, <a href="https://arxiv.org/format/2107.11099">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11128-022-03442-8">10.1007/s11128-022-03442-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RGB Image Classification with Quantum Convolutional Ansaetze </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Jing%2C+Y">Yu Jing</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+X">Xiaogang Li</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y">Yang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+C">Chonghang Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Fu%2C+W">Wenbing Fu</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W">Wei Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yuanyuan Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+H">Hua Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11099v2-abstract-short" style="display: inline;"> With the rapid growth of qubit numbers and coherence times in quantum hardware technology, implementing shallow neural networks on the so-called Noisy Intermediate-Scale Quantum (NISQ) devices has attracted a lot of interest. Many quantum (convolutional) circuit ansaetze are proposed for grayscale images classification tasks with promising empirical results. However, when applying these ansaetze o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11099v2-abstract-full').style.display = 'inline'; document.getElementById('2107.11099v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11099v2-abstract-full" style="display: none;"> With the rapid growth of qubit numbers and coherence times in quantum hardware technology, implementing shallow neural networks on the so-called Noisy Intermediate-Scale Quantum (NISQ) devices has attracted a lot of interest. Many quantum (convolutional) circuit ansaetze are proposed for grayscale images classification tasks with promising empirical results. However, when applying these ansaetze on RGB images, the intra-channel information that is useful for vision tasks is not extracted effectively. In this paper, we propose two types of quantum circuit ansaetze to simulate convolution operations on RGB images, which differ in the way how inter-channel and intra-channel information are extracted. To the best of our knowledge, this is the first work of a quantum convolutional circuit to deal with RGB images effectively, with a higher test accuracy compared to the purely classical CNNs. We also investigate the relationship between the size of quantum circuit ansatz and the learnability of the hybrid quantum-classical convolutional neural network. Through experiments based on CIFAR-10 and MNIST datasets, we demonstrate that a larger size of the quantum circuit ansatz improves predictive performance in multiclass classification tasks, providing useful insights for near term quantum algorithm developments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11099v2-abstract-full').style.display = 'none'; document.getElementById('2107.11099v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://link.springer.com/article/10.1007/s11128-022-03442-8</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Inf Process 21, 101 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06062">arXiv:2105.06062</a> <span> [<a href="https://arxiv.org/pdf/2105.06062">pdf</a>, <a href="https://arxiv.org/format/2105.06062">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11128-022-03571-0">10.1007/s11128-022-03571-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of Superconducting Quantum Computing Chips under Different Architecture Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W">Wei Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y">Yang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+W">Weiye Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Pi%2C+J">Jiawei Pi</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+E">Enyi Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+X">Xin-Ding Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+H">Hua Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06062v3-abstract-short" style="display: inline;"> Existing and near-term quantum computers can only perform two-qubit gates between physically connected qubits. Research has been done on compilers to rewrite quantum programs to match hardware constraints. However, the quantum processor architecture, in particular the qubit connectivity and topology, still lacks enough discussion, while it potentially has a huge impact on the performance of the qu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06062v3-abstract-full').style.display = 'inline'; document.getElementById('2105.06062v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06062v3-abstract-full" style="display: none;"> Existing and near-term quantum computers can only perform two-qubit gates between physically connected qubits. Research has been done on compilers to rewrite quantum programs to match hardware constraints. However, the quantum processor architecture, in particular the qubit connectivity and topology, still lacks enough discussion, while it potentially has a huge impact on the performance of the quantum algorithms. We perform a quantitative and comprehensive study on the quantum processor performance under different qubit connectivity and topology. We select ten representative design models with different connectivities and topologies from quantum architecture design space and benchmark their performance by running a set of standard quantum algorithms. It is shown that a high-performance architecture almost always comes with a design with a large connectivity, while the topology shows a weak influence on the performance in our experiment. Different quantum algorithms show different dependence on quantum chip connectivity and topologies. This work provides quantum computing researchers with a systematic approach to evaluating their processor design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06062v3-abstract-full').style.display = 'none'; document.getElementById('2105.06062v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Wei Hu and Yang Yang contributed equally to this work. Corresponding authors: Hua Xu and Xin-Ding Zhang. Submitted to qip</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum Inf Process 21, 237 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13816">arXiv:2003.13816</a> <span> [<a href="https://arxiv.org/pdf/2003.13816">pdf</a>, <a href="https://arxiv.org/format/2003.13816">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.124.128101">10.1103/PhysRevLett.124.128101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Noise Enabled Biocompass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xiao%2C+D">Da-Wu Xiao</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W">Wen-Hui Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+Y">Yunfeng Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Zhao%2C+N">Nan Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13816v2-abstract-short" style="display: inline;"> The discovery of magnetic protein provides a new understanding of a biocompass at the molecular level. However, the mechanism by which magnetic protein enables a biocompass is still under debate, mainly because of the absence of permanent magnetism in the magnetic protein at room temperature. Here, based on a widely accepted radical pair model of a biocompass, we propose a microscopic mechanism th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13816v2-abstract-full').style.display = 'inline'; document.getElementById('2003.13816v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13816v2-abstract-full" style="display: none;"> The discovery of magnetic protein provides a new understanding of a biocompass at the molecular level. However, the mechanism by which magnetic protein enables a biocompass is still under debate, mainly because of the absence of permanent magnetism in the magnetic protein at room temperature. Here, based on a widely accepted radical pair model of a biocompass, we propose a microscopic mechanism that allows the biocompass to operate without a finite magnetization of the magnetic protein in a biological environment. With the structure of the magnetic protein, we show that the magnetic fluctuation, rather than the permanent magnetism, of the magnetic protein can enable geomagnetic field sensing. An analysis of the quantum dynamics of our microscopic model reveals the necessary conditions for optimal sensitivity. Our work clarifies the mechanism by which magnetic protein enables a biocompass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13816v2-abstract-full').style.display = 'none'; document.getElementById('2003.13816v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 128101(2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.05846">arXiv:1801.05846</a> <span> [<a href="https://arxiv.org/pdf/1801.05846">pdf</a>, <a href="https://arxiv.org/format/1801.05846">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5004578">10.1063/1.5004578 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lessons on electronic decoherence in molecules from exact modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W">Wenxiang Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+B">Bing Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Franco%2C+I">Ignacio Franco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.05846v1-abstract-short" style="display: inline;"> Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schreefer-Heeger Hamiltonian with Hubbard electron-electron interactions us… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05846v1-abstract-full').style.display = 'inline'; document.getElementById('1801.05846v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.05846v1-abstract-full" style="display: none;"> Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schreefer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ a Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05846v1-abstract-full').style.display = 'none'; document.getElementById('1801.05846v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.03770">arXiv:1709.03770</a> <span> [<a href="https://arxiv.org/pdf/1709.03770">pdf</a>, <a href="https://arxiv.org/ps/1709.03770">ps</a>, <a href="https://arxiv.org/format/1709.03770">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Complete orbital angular momentum Bell-state measurement and superdense coding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Kong%2C+L">Ling-Jun Kong</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+R">Rui Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z">Zhou-Xiang Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Si%2C+Y">Yu Si</a>, <a href="/search/quant-ph?searchtype=author&query=Qi%2C+W">Wen-Rong Qi</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+S">Shuang-Yin Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Tu%2C+C">Chenghou Tu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yongnan Li</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W">Wei Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+F">Fei Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Y">Yan-Qing Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+H">Hui-Tian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.03770v1-abstract-short" style="display: inline;"> Quantum protocols require access to large-scale entangled quantum states, due to the requirement of channel capacity. As a promising candidate, the high-dimensional orbital angular momentum (OAM) entangled states have been implemented, but only one of four OAM Bell states in each individual subspace can be distinguished. Here we demonstrate the first realization of complete OAM Bell-state measurem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03770v1-abstract-full').style.display = 'inline'; document.getElementById('1709.03770v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.03770v1-abstract-full" style="display: none;"> Quantum protocols require access to large-scale entangled quantum states, due to the requirement of channel capacity. As a promising candidate, the high-dimensional orbital angular momentum (OAM) entangled states have been implemented, but only one of four OAM Bell states in each individual subspace can be distinguished. Here we demonstrate the first realization of complete OAM Bell-state measurement (OAM-BSM) in an individual subspace, by seeking the suitable unitary matrix performable using only linear optics and breaking the degeneracy of four OAM Bell states in ancillary polarization dimension. We further realize the superdense coding via our complete OAMBSM with the average success probability of ~82% and the channel capacity of ~1.1(4) bits. This work opens the window for increasing the channel capacity and extending the applications of OAM quantum states in quantum information in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03770v1-abstract-full').style.display = 'none'; document.getElementById('1709.03770v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.08403">arXiv:1503.08403</a> <span> [<a href="https://arxiv.org/pdf/1503.08403">pdf</a>, <a href="https://arxiv.org/ps/1503.08403">ps</a>, <a href="https://arxiv.org/format/1503.08403">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0953-4075/48/7/075402">10.1088/0953-4075/48/7/075402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Amplitude modulated Bloch oscillations of photon probability distribution in a cavity-atom system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+G">Gang Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W">Wenhui Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Z">Zhi Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.08403v1-abstract-short" style="display: inline;"> We study the dynamics of the Rabi Hamiltonian in the medium coupling regime with $\left\vert g/蠅\right\vert \sim 0.07$, where $g$ is atom-field coupling constant, $蠅$ is the field frequency, for the quantum state with average photon number $\bar{n}\sim 10^{4}$. We map the original Hamiltonian to an effective one, which describes a tight-binding chain subjected to a staggered linear potential. It i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08403v1-abstract-full').style.display = 'inline'; document.getElementById('1503.08403v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.08403v1-abstract-full" style="display: none;"> We study the dynamics of the Rabi Hamiltonian in the medium coupling regime with $\left\vert g/蠅\right\vert \sim 0.07$, where $g$ is atom-field coupling constant, $蠅$ is the field frequency, for the quantum state with average photon number $\bar{n}\sim 10^{4}$. We map the original Hamiltonian to an effective one, which describes a tight-binding chain subjected to a staggered linear potential. It is shown that the photon probability distribution of a Gaussian-type state exhibits the amplitude modulated Bloch oscillation (BO), which is a superposition of two conventional BOs with a half-BO-period delay between them and is essentially another type of Bloch-Zener oscillation. The probability transition between the two BOs can be controlled and suppressed by the ratio $g\sqrt{\bar{n}}% /蠅$, as well as in-phase resonant oscillating atomic frequency $惟\left( t\right) $, leading to multiple zero-transition points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.08403v1-abstract-full').style.display = 'none'; document.getElementById('1503.08403v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. B: At. Mol. Opt. Phys. 48, 075402 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.6999">arXiv:1205.6999</a> <span> [<a href="https://arxiv.org/pdf/1205.6999">pdf</a>, <a href="https://arxiv.org/ps/1205.6999">ps</a>, <a href="https://arxiv.org/format/1205.6999">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11128-013-0616-7">10.1007/s11128-013-0616-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of one-dimensional tight-binding models with arbitrary time-dependent external homogeneous fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W+H">W. H. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+L">L. Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.6999v2-abstract-short" style="display: inline;"> The exact propagators of two one-dimensional systems with time-dependent external fields are presented by following the path-integral method. It is shown that the Bloch acceleration theorem can be generalized to the impulse-momentum theorem in quantum version. We demonstrate that an evolved Gaussian wave packet always keeps its shape in an arbitrary time-dependent homogeneous driven field. Moreove… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.6999v2-abstract-full').style.display = 'inline'; document.getElementById('1205.6999v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.6999v2-abstract-full" style="display: none;"> The exact propagators of two one-dimensional systems with time-dependent external fields are presented by following the path-integral method. It is shown that the Bloch acceleration theorem can be generalized to the impulse-momentum theorem in quantum version. We demonstrate that an evolved Gaussian wave packet always keeps its shape in an arbitrary time-dependent homogeneous driven field. Moreover, that stopping and accelerating of a wave packet can be achieved by the pulsed field in a diabatic way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.6999v2-abstract-full').style.display = 'none'; document.getElementById('1205.6999v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quant. Inf. Proc. 12, 3569 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.0168">arXiv:1203.0168</a> <span> [<a href="https://arxiv.org/pdf/1203.0168">pdf</a>, <a href="https://arxiv.org/ps/1203.0168">ps</a>, <a href="https://arxiv.org/format/1203.0168">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.86.042110">10.1103/PhysRevA.86.042110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probability-preserving evolution in a non-Hermitian two-band model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W+H">W. H. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+L">L. Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Y. Li</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.0168v2-abstract-short" style="display: inline;"> A non-Hermitian PT-symmetric system can have full real spectrum but does not ensure probability preserving time evolution, in contrast to that of a Hermitian system. We present a non-Hermitian two-band model, which is comprised of dimerized hopping terms and staggered imaginary on-site potentials, and study the dynamics in the exact PT-symmetric phase based on the exact solution. It is shown that… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.0168v2-abstract-full').style.display = 'inline'; document.getElementById('1203.0168v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.0168v2-abstract-full" style="display: none;"> A non-Hermitian PT-symmetric system can have full real spectrum but does not ensure probability preserving time evolution, in contrast to that of a Hermitian system. We present a non-Hermitian two-band model, which is comprised of dimerized hopping terms and staggered imaginary on-site potentials, and study the dynamics in the exact PT-symmetric phase based on the exact solution. It is shown that an initial state, which does not involve two equal-momentum-vector eigenstates in different bands, obeys perfectly probability-preserving time evolution in terms of the Dirac inner product. Beyond this constriction, the quasi-Hermitian dynamical behaviors, such as non-spreading propagation and fractional revival of a Gaussian wave packet, are also observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.0168v2-abstract-full').style.display = 'none'; document.getElementById('1203.0168v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 86, 042110 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.2167">arXiv:1105.2167</a> <span> [<a href="https://arxiv.org/pdf/1105.2167">pdf</a>, <a href="https://arxiv.org/ps/1105.2167">ps</a>, <a href="https://arxiv.org/format/1105.2167">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.84.052310">10.1103/PhysRevA.84.052310 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamics of a tight-binding ring threaded by time-periodic magnetic flux </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W+H">W. H. Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Song%2C+Z">Z. Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.2167v2-abstract-short" style="display: inline;"> We analytically study the effects of periodically alternating magnetic fields on the dynamics of a tight-binding ring. It is shown that an arbitrary quantum state can be frozen coherently at will by the very frequent square-wave field as well as the monochromatic-wave field when the corresponding optimal amplitudes are taken. Numerical simulations show that the average fidelity depends on not only… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2167v2-abstract-full').style.display = 'inline'; document.getElementById('1105.2167v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.2167v2-abstract-full" style="display: none;"> We analytically study the effects of periodically alternating magnetic fields on the dynamics of a tight-binding ring. It is shown that an arbitrary quantum state can be frozen coherently at will by the very frequent square-wave field as well as the monochromatic-wave field when the corresponding optimal amplitudes are taken. Numerical simulations show that the average fidelity depends on not only the system parameters, but also the features of the quantum state. Moreover, taking the initial zero-momentum Gaussian wave packets as examples, we show the dependence of the threshold frequency on the width of the packet for the given average fidelities. These observations provide a means to perform the quantum state engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.2167v2-abstract-full').style.display = 'none'; document.getElementById('1105.2167v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 84, 052310 (2011) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>