CINXE.COM
Search results for: biphasic calcium phosphate
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biphasic calcium phosphate</title> <meta name="description" content="Search results for: biphasic calcium phosphate"> <meta name="keywords" content="biphasic calcium phosphate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biphasic calcium phosphate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biphasic calcium phosphate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1163</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biphasic calcium phosphate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1163</span> Mutagenicity Evaluation of Locally Produced Biphasic Calcium Phosphate Using Ames Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Fathin%20Alia%20Che%20Wahab">Nur Fathin Alia Che Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Thirumulu%20Ponnuraj%20Kannan"> Thirumulu Ponnuraj Kannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuliani%20Mahmood"> Zuliani Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Ab.%20Rahman"> Ismail Ab. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanafi%20Ismail"> Hanafi Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Locally produced Biphasic Calcium Phosphate (BCP) consists of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) which is a promising material for dentin and bone regeneration as well as in tissue engineering applications. The study was carried out to investigate the mutagenic effect of locally produced BCP using Ames test. Mutagenicity was evaluated with and without the addition of metabolic activation system (S9). This study was performed on Salmonella typhimurium TA98, TA102, TA1537, and TA1538 strains using preincubation assay method. The doses tested were 5000, 2500, 1250, 625, 313 µg/plate. Negative and positive controls were also included. The bacteria were incubated for 48 hours at 37 ± 0.5 °C. Then, the revertant colonies were counted. Data obtained were evaluated using non-statistical method. The mean number of revertant colonies in strains with and without S9 mix treated with locally produced BCP was less than double when compared to negative control for all the tested concentrations. The results from this study indicate that the locally produced BCP is non-mutagenic under the present test conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ames%20test" title="ames test">ames test</a>, <a href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate" title=" biphasic calcium phosphate"> biphasic calcium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=dentin%20regeneration" title=" dentin regeneration"> dentin regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=mutagenicity" title=" mutagenicity"> mutagenicity</a> </p> <a href="https://publications.waset.org/abstracts/51753/mutagenicity-evaluation-of-locally-produced-biphasic-calcium-phosphate-using-ames-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1162</span> Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Suwanprateeb">J. Suwanprateeb</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Thammarakcharoen"> F. Thammarakcharoen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimetic" title="biomimetic">biomimetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Calcium%20Phosphate%20Coating" title=" Calcium Phosphate Coating"> Calcium Phosphate Coating</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/13016/enhancing-protein-incorporation-in-calcium-phosphate-coating-on-titanium-by-rapid-biomimetic-co-precipitation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1161</span> Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabaa%20M.%20Abdul%20Rahim">Nabaa M. Abdul Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.Kadhim"> Mohammed A.Kadhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadhil%20K.%20Fuliful"> Fadhil K. Fuliful</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20coating" title=" flame coating"> flame coating</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/161818/controlling-the-surface-morphology-of-the-biocompatible-hydroxyapatite-layer-deposited-by-using-a-flame-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1160</span> Calcium Phosphate Cement/Gypsum Composite as Dental Pulp Capping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Feng%20Lin">Jung-Feng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Tang%20Chen"> Wei-Tang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-King%20Hsu"> Chung-King Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Pin%20Lin"> Chun-Pin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Huei%20Lin"> Feng-Huei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the objectives of operative dentistry is to maintain pulp health in compromised teeth. Mostly used methods for this purpose are direct pulp capping and pulpotomy, which consist of placement of biocompatible materials and bio-inductors on the exposed pulp tissue to preserve its health and stimulate repair by mineralized tissue formation. In this study, we developed a material (calcium phosphate cement (CPC)/gypsum composite) as the dental pulp capping material for shortening setting time and improving handling properties. We further discussed the influence of five different ratio of gypsum to CPC on HAP conversion, microstructure, setting time, weight loss, pH value, temperature difference, viscosity, mechanical properties, porosity, and biocompatibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate%20cement" title="calcium phosphate cement">calcium phosphate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20sulphate%20hemihydrate" title=" calcium sulphate hemihydrate"> calcium sulphate hemihydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20capping" title=" pulp capping"> pulp capping</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20setting%20time" title=" fast setting time"> fast setting time</a> </p> <a href="https://publications.waset.org/abstracts/63252/calcium-phosphate-cementgypsum-composite-as-dental-pulp-capping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1159</span> Tricalcium Phosphate-Chitosan Composites for Tissue Engineering Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Voicu">G. Voicu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20D.%20Ghitulica"> C. D. Ghitulica</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cucuruz"> A. Cucuruz</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Busuioc"> C. Busuioc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of tissue engineering, the compositional and microstructural features of the employed materials play an important role, with implications on the mechanical and biological behaviour of the medical devices. In this context, the development of calcium phosphate-natural biopolymer composites represents a choice of many scientific groups. Thus, tricalcium phosphate powders were synthesized by a wet method, namely co-precipitation, starting from high purity reagents. Moreover, the substitution of calcium with magnesium have been approached, in the 5-10 wt.% range. Afterwards, the phosphate powders were integrated into two types of composites with chitosan, different from morphological point of view. First, 3D porous scaffolds were obtained by a freeze-drying procedure. Second, uniform compact films were achieved by film casting. The influence of chitosan molecular weight (low, medium and high), as well as phosphate powder to polymer ratio (1:1 and 1:2) on the morphological properties, were analysed in detail. In conclusion, the reported biocomposites, prepared by a straightforward route are suitable for bone substitution or repairing applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20reconstruction" title="bone reconstruction">bone reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20scaffolds" title=" composite scaffolds"> composite scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=tricalcium%20phosphate" title=" tricalcium phosphate"> tricalcium phosphate</a> </p> <a href="https://publications.waset.org/abstracts/62713/tricalcium-phosphate-chitosan-composites-for-tissue-engineering-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1158</span> Evaluation of Compressive Mechanical Properties of the Radial Bone Defect Treated with Selected Bone Graft Substitute Materials in Rabbit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Gholipoor%20Bashiri">Omid Gholipoor Bashiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghafur%20Mosavi"> Ghafur Mosavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliasghar%20Behnamghader"> Aliasghar Behnamghader</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahmood%20Rabiee"> Seyed Mahmood Rabiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To determine the effect of selected bone graft on the compression properties of radial bone in rabbit. Design-Experimental in vivo study. Animals: A total of 45 adult male New Zealand white rabbits. Procedures: The rabbits were anesthetized and a one-cm-full thickness piece of radial bone was removed using oscillating saw in the all rabbit. The rabbits were divided into 5 groups on the basis of the material used to fill the bone defect: group 1: the paste of bone cement calcium phosphate; group II: the paste of calcium phosphate mixture with type I collagen; group III: tricalcium phosphate mixed with hydroxyapatite (TCP & HP) with 5% porosity; group IV: the same scaffold as group III with 10% porosity; and group V: the same scaffold as group III and IV with 20% porosity, with 9 rabbits in each group. Subsequently subdivided into 3 subgroups of 3 rabbits each. Results: There was a significant increase in compression properties of radial bone in the group II and V in 2nd and 3rd months as compared with groups I, III and IV. The mean endurable crack-strength in group II and V were slightly higher than that of normal radius (P<0.05). Conclusion and clinical relevance: Application of calcium phosphate paste with type I collagen and scaffold of tricalcium phosphate with hydroxyapatite having 20% porosity indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate" title="calcium phosphate">calcium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=tricalcium%20phosphate" title=" tricalcium phosphate"> tricalcium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20bone" title=" radial bone"> radial bone</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20properties" title=" compressive properties"> compressive properties</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20i%20collagen" title=" type i collagen"> type i collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbit" title=" rabbit"> rabbit</a> </p> <a href="https://publications.waset.org/abstracts/9365/evaluation-of-compressive-mechanical-properties-of-the-radial-bone-defect-treated-with-selected-bone-graft-substitute-materials-in-rabbit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1157</span> Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20Magdalena%20M%C3%A9ndez-Gonz%C3%A1lez">María Magdalena Méndez-González</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Garc%C3%ADa%20Rocha"> Miguel García Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Manuel%20Yermo%20De%20la%20Cruz"> Carlos Manuel Yermo De la Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure" title="structure">structure</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate" title=" calcium phosphate"> calcium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20and%20materials%20engineering" title=" metallurgical and materials engineering"> metallurgical and materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/14287/determination-of-the-structural-parameters-of-calcium-phosphate-for-biomedical-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1156</span> Efficacy of Combined CHAp and Lanthanum Carbonate in Therapy for Hyperphosphatemia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreea%20C%C3%A2r%C3%A2c">Andreea Cârâc</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Morosan"> Elena Morosan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Corina%20Ionita"> Ana Corina Ionita</a>, <a href="https://publications.waset.org/abstracts/search?q=Rica%20Bosencu"> Rica Bosencu</a>, <a href="https://publications.waset.org/abstracts/search?q=Geta%20Carac"> Geta Carac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanum carbonate exhibits a considerable ability to bind phosphate and the substitution of Ca2+ ions by divalent or trivalent lanthanide metal ions attracted attention during the past few years. Although Lanthanum carbonate has not been approved by the FDA for treatment of hyperphosphatemia, we prospectively evaluated the efficacy of the combination of Calcium hydroxyapatite and Lanthanum carbonate for the treatment of hyperphosphatemia on mice. Calcium hydroxyapatite commonly referred as CHAp is a bioceramic material and is one of the most important implantable materials due to its biocompatibility and osteoconductivity. We prepared calcium hydroxyapatite and lanthanum carbonate. CHAp was prepared by co-precipitation method using Ca(OH)2, H3PO4, NH4OH with calcination at 1200ºC. Lanthanum carbonate was prepared by chemical method using NaHCO3 and LaCl3 at low pH environment , ph below 4.0 The confirmation of both substances structures was made using XRD characterization, FTIR spectra and SEM /EDX analysis. The study group included 20 subjects-mice divided into four groups according to the administered substance: lanthanum carbonate (group A), lanthanum carbonate + CHAp (group B), CHAp (group C) and salt water (group D). The results indicate a phosphate decrease when subjects (mice) were treated with CHAp and lanthanum carbonate (0.5 % CMC), in a single dose of 1500 mg/kg. Serum phosphate concentration decreased [from 4.5 ± 0.8 mg/dL) to 4.05 ± 0.2 mg/dL), P < 0.01] in group A and to 3.6 ± 0.2 mg/dL] only after the 24 hours of combination therapy. The combination of CHAp and lanthanum carbonate is a suitable regimen for hyperphosphatemia treatment subjects because it avoids both the hypercalcemia of CaCO3 and the adverse effects of CHAp. The ability of CHAp to decrease the serum phosphate concentration is 1/3 that of lanthanum carbonate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20hydroxyapatite" title="calcium hydroxyapatite">calcium hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperphosphatemia" title=" hyperphosphatemia"> hyperphosphatemia</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20carbonate" title=" lanthanum carbonate"> lanthanum carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate" title=" phosphate"> phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/16361/efficacy-of-combined-chap-and-lanthanum-carbonate-in-therapy-for-hyperphosphatemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1155</span> Preparation and Characterization of Calcium Phosphate Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Thepsuwan">W. Thepsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Monmaturapoj"> N. Monmaturapoj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate%20cements" title="calcium phosphate cements">calcium phosphate cements</a>, <a href="https://publications.waset.org/abstracts/search?q=TTCP" title=" TTCP"> TTCP</a>, <a href="https://publications.waset.org/abstracts/search?q=DCPA" title=" DCPA"> DCPA</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/17449/preparation-and-characterization-of-calcium-phosphate-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1154</span> Synthesis of Tricalcium Phosphate Substituted with Magnesium Ions for Bone Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreia%20Cucuruz">Andreia Cucuruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Daniela%20Ghitulica"> Cristina Daniela Ghitulica</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgeta%20Voicu"> Georgeta Voicu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Busuioc"> Cristina Busuioc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramics based on calcium phosphates have lately increased attention for tissue engineering because they can be used as substitute bones or for bone regeneration since they mimic very well the nanostructure of tough bone tissue, but also because of other advantages such as a very good biocompatibility and osseointegration. This study aims the preparation and characterization of ceramic materials on the basis of TCP (Ca₃(PO₄)₂), within which calcium ions are substituted by magnesium ions (Mg²⁺) in order to improve the regenerative properties of these materials. TCP-Mg material was synthesized by chemical precipitation method using calcium oxide (CaO) and phosphoric acid (H₃PO₄) as precursors. The objective was to obtain powders with different concentrations of Mg in order to analyze the effect of magnesium ions on the physicochemical properties of phosphate ceramics and in vitro degradation in simulated biological fluid (SBF). Ceramic powders were characterized in vitro but also from the compositional and microstructural point of view. TCP_Mg powders were prepared through wet chemical method from calcium oxide (CaO), magnesium oxide nanopowder (MgO < 50 nm particle size (BET) Sigma Aldrich), phosphoric acid (H₃PO₄ - 85 wt.% in H₂O, 99.99% trace metals basis - Sigma Aldrich). In order to determine the quantities of raw materials, calculations were performed to obtain HAp with Ca/P ratio of 1.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title="bone regeneration">bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20substitution" title=" magnesium substitution"> magnesium substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=tricalcium%20phosphate" title=" tricalcium phosphate"> tricalcium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/62756/synthesis-of-tricalcium-phosphate-substituted-with-magnesium-ions-for-bone-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1153</span> Evalution of Antiurolithiatic Potentials from Cucumis sativus Fruits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Pramod">H. J. Pramod</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pethkar"> S. Pethkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evaluation of antiurolithiatic potentials from the extracts of Cucumis sativus fruits at different doses and cystone (standard formulation) at a dose of 750 mg/kg were measured for both preventive and curative regimen in wistar rats by adding 0.75% v/v ethylene glycol (EG) to drinking water for 28 days, except normal rats. After the completion of the experimental period, (28th day) urinary parameters like (urine volume, routine urine analysis, levels of calcium, phosphate, oxalate, magnesium, sodium) serum biomarkers like (creatinine, BUN, uric acid, ALP, ALT, AST) kidney homogenate analysis for (levels of calcium, oxalate and phosphate) were analysed. The treated groups shows increased in the urine output significantly compared to the normal. The extract shows significantly decreased in the urinary excretion of the calcium, phosphate, magnesium, sodium and oxalate. The both preventive and curative treatment of extracts showed decrease in the stone forming constituents in the kidneys of urolithiatic rats further the kidneys of all the groups were excised and sectioned for histopathological examination which further claims to posses antiurolithiatic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cucumis%20sativus" title="Cucumis sativus">Cucumis sativus</a>, <a href="https://publications.waset.org/abstracts/search?q=urolithiasis" title=" urolithiasis"> urolithiasis</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20glycol" title=" ethylene glycol"> ethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=cystone" title=" cystone"> cystone</a> </p> <a href="https://publications.waset.org/abstracts/17358/evalution-of-antiurolithiatic-potentials-from-cucumis-sativus-fruits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1152</span> Characterization of Fish Bone Catalyst for Biodiesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarina%20Sulaiman">Sarina Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.Khairudin"> N.Khairudin </a>, <a href="https://publications.waset.org/abstracts/search?q=P.Jamal"> P.Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Z.%20Alam"> M.Z. Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaki%20Zainudin"> Zaki Zainudin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Azmi"> S. Azmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, fish bone waste was used as a new catalyst for biodiesel production. Instead of discarding the fish bone waste, it will be utilized as a source for catalyst that can provide significant benefit to the environment. Also, it can be substitute as a calcium oxide source instead of using eggshell, crab shell and snail shell. The XRD and SEM analysis proved that calcined fish bone contains calcium oxide, calcium phosphate and hydroxyapatite. The catalyst was characterized using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcinations" title="calcinations">calcinations</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20bone" title=" fish bone"> fish bone</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20catalyst" title=" waste catalyst"> waste catalyst</a> </p> <a href="https://publications.waset.org/abstracts/7717/characterization-of-fish-bone-catalyst-for-biodiesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Study of Pseudomonas as Biofertiliser in Salt-Affected Soils of the Northwestern Algeria: Solubilisation of Calcium Phosphate and Growth Promoting of Broad Bean (Vcia faba)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Djoudi">A. Djoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Djibaou"> R. Djibaou</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Reguieg%20Yssaad"> H. A. Reguieg Yssaad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study focuses on the study of a bacteria belonging to Pseudomonas solubilizing tricalcium phosphate. They were isolated from rhizosphere of a variety of broad bean grown in salt-affected soils (electrical conductivity between 4 and 8 mmhos/cm) of the irrigated perimeter of Mina in northwestern Algeria. Isolates which have advantageous results in the calcium phosphate solubilization index test were subjected to identification using API20 then used to re-inoculate the same soil in pots experimentation to assess the effects of inoculation on the growth of the broad bean (Vicia faba). Based on the results obtained from the in-vitro tests, two isolates P5 and P8 showed a significant effect on the solubilization of tricalcium phosphate with an index I estimated at 314% and 283% sequentially. According to the results of in-vivo tests, the inoculation of the soil with P5 and P8 were significantly and positively influencing the growth in biometric parameters of the broad bean. Inoculation with strain P5 has promoted the growth of the broad bean in stem height, stem fresh weight and stem dry weight of 108.59%, 115.28%, 104.33%, respectively. Inoculation with strain P8 has fostered the growth of the broad bean stem fresh weight of 112.47%. The effect of Pseudomonas on the development of Vicia faba is considered as an interesting process by which PGPR can increase biological production and crop protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas" title="Pseudomonas">Pseudomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vicia%20faba" title=" Vicia faba"> Vicia faba</a>, <a href="https://publications.waset.org/abstracts/search?q=promoting%20of%20plant%20growth" title=" promoting of plant growth"> promoting of plant growth</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization%20tricalcium%20phosphate" title=" solubilization tricalcium phosphate"> solubilization tricalcium phosphate</a> </p> <a href="https://publications.waset.org/abstracts/32622/study-of-pseudomonas-as-biofertiliser-in-salt-affected-soils-of-the-northwestern-algeria-solubilisation-of-calcium-phosphate-and-growth-promoting-of-broad-bean-vcia-faba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sharma">S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Batra"> U. Batra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kapoor"> S. Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dua"> A. Dua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the as-synthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p < 0.0001, two way Anova), however, these were independent of TEA addition (p > 0.15, two way Anova). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p < 0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capping%20agent" title="capping agent">capping agent</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=2-%20sample%20t-test" title=" 2- sample t-test"> 2- sample t-test</a>, <a href="https://publications.waset.org/abstracts/search?q=two-way%20analysis%20of%20variance%20%28ANOVA%29" title=" two-way analysis of variance (ANOVA)"> two-way analysis of variance (ANOVA)</a> </p> <a href="https://publications.waset.org/abstracts/35507/the-effects-and-interactions-of-synthesis-parameters-on-properties-of-mg-substituted-hydroxyapatite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> Study of the Formation Mechanism of Dipalmitoylphosphatidylcholine Liposomes and Calcium Ion Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mdzinarashvili">T. Mdzinarashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khvedelidze"> M. Khvedelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Shekiladze"> E. Shekiladze</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chinchaladze"> S. Chinchaladze</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mdzinarashvili"> M. Mdzinarashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the possible interaction between calcium ions and lipids is of great importance for the studies of complexes of calcium drug-carrying nanoparticles. We prepared calcium-containing complex liposomes from Dipalmitoylphosphatidylcholine (DPPC) lipids and studied their thermodynamic properties. In calorimetric studies, we determined that the phase transition temperature of these complexes is close to 420 C. It was shown that both hydrophobic and hydrophilic connections take part in the formation of calcium nanoparticles. We were interested in hydrophilic bonds represented by hydrogen bonds. We have shown that these hydrogen bonds are formed between the phospholipid heads, and the main contributor is the oxygen atoms in the phosphoric acid residues. In addition, based on the amount of heat absorbed during the breaking of hydrogen bonds formed between calcium-containing nanoparticle complexes, it can be concluded that the hydrogen atoms in the head of DPPC lipids form hydrogen bonds between P=O and P-O groups of phosphate. The energy of heat absorption measured by the calorimeter is of the order obtained by breaking the hydrogen bonds we have specified. Thus, we conclude that our approach to the model of liposome formation from lipids is correct. As for calcium atoms - due to the fact that it is present in the form of positive ions in the liposome, they will connect only with negatively charged phosphorus ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPPC" title="DPPC">DPPC</a>, <a href="https://publications.waset.org/abstracts/search?q=liposomes" title=" liposomes"> liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20nanoparticles" title=" complex nanoparticles"> complex nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/154573/study-of-the-formation-mechanism-of-dipalmitoylphosphatidylcholine-liposomes-and-calcium-ion-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Ihejirika">C. E. Ihejirika</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Nwachukwu"> M. I. Nwachukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Njoku-Tony"> R. F. Njoku-Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20C.%20Ihejirika"> O. C. Ihejirika</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20O.%20Enwereuzoh"> U. O. Enwereuzoh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20O.%20Imo"> E. O. Imo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Ashiegbu"> D. C. Ashiegbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium-carbide" title=" calcium-carbide"> calcium-carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification" title=" denitrification"> denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity "> toxicity </a> </p> <a href="https://publications.waset.org/abstracts/12369/impact-of-calcium-carbide-waste-dumpsites-on-soil-chemical-and-microbial-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1147</span> Microstracture of Iranian Processed Cheese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ezzati">R. Ezzati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dezyani"> M. Dezyani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mirzaei"> H. Mirzaei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of the concentration of trisodium citrate (TSC) emulsifying salt (0.25 to 2.75%) and holding time (0 to 20 min) on the textural, rheological, and microstructural properties of Iranian Processed Cheese Cheddar cheese were studied using a central composite rotatable design. The loss tangent parameter (from small amplitude oscillatory rheology), extent of flow, and melt area (from the Schreiber test) all indicated that the meltability of process cheese decreased with increased concentration of TSC and that holding time led to a slight reduction in meltability. Hardness increased as the concentration of TSC increased. Fluorescence micrographs indicated that the size of fat droplets decreased with an increase in the concentration of TSC and with longer holding times. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is due to residual colloidal calcium phosphate, decreased as the concentration of TSC increased. The soluble phosphate content increased as concentration of TSC increased. However, the insoluble Ca decreased with increasing concentration of TSC. The results of this study suggest that TSC chelated Ca from colloidal calcium phosphate and dispersed casein; the citrate-Ca complex remained trapped within the process cheese matrix. Increasing the concentration of TSC helped to improve fat emulsification and casein dispersion during cooking, both of which probably helped to reinforce the structure of process cheese. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iranian%20processed%20cheese" title="Iranian processed cheese">Iranian processed cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=cheddar%20cheese" title=" cheddar cheese"> cheddar cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsifying%20salt" title=" emulsifying salt"> emulsifying salt</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/26295/microstracture-of-iranian-processed-cheese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1146</span> Removal and/or Recovery of Phosphates by Precipitation as Ferric Phosphate from the Effluent of a Municipal Wastewater Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyriaki%20Kalaitzidou">Kyriaki Kalaitzidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasia%20Tolkou"> Athanasia Tolkou</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Raptopoulou"> Christina Raptopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Manassis%20Mitrakas"> Manassis Mitrakas</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasios%20Zouboulis"> Anastasios Zouboulis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphate rock is the main source of phosphorous (P) in fertilizers and is essential for high crop yield in agriculture; currently, it is considered as a critical element, phasing scarcity. Chemical precipitation, which is a commonly used method of phosphorous removal from wastewaters, finds its significance in that phosphates may be precipitated in appropriate chemical forms that can be reused-recovered. Most often phosphorous is removed from wastewaters in the form of insoluble phosphate salts, by using salts (coagulants) of multivalent metal ions, most frequently iron, aluminum, calcium, or magnesium. The removal degree is affected by various factors, such as pH, chemical agent dose, temperature, etc. In this study, phosphate precipitation from the secondary (biologically treated) effluent of a municipal wastewater treatment plant is examined. Using chlorosulfate (FeClSO4) it was attempted to either remove and/or recover PO43-. Results showed that the use of Fe3+ can achieve residual concentrations lower than the commonly applied legislation limit of PO43- (i.e. 3 mg PO43-/L) by adding 7.5 mg/L Fe3+ in the secondary effluent with an initial concentration of about 10 mg PO43-/L and at pH range between 6 to 9. In addition, the formed sediment has a percentage of almost 24% PO43- content. Therefore, simultaneous removal and recovery of PO43- as ferric phosphate can be achieved, making it possible for the ferric phosphate to be re-used as a possible (secondary) fertilizer source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferric%20phosphate" title="ferric phosphate">ferric phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20recovery" title=" phosphorus recovery"> phosphorus recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20removal" title=" phosphorus removal"> phosphorus removal</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/23640/removal-andor-recovery-of-phosphates-by-precipitation-as-ferric-phosphate-from-the-effluent-of-a-municipal-wastewater-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1145</span> Reinforcement of Calcium Phosphate Cement with E-Glass Fibre </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanchan%20Maji">Kanchan Maji</a>, <a href="https://publications.waset.org/abstracts/search?q=Debasmita%20Pani"> Debasmita Pani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudip%20Dasgupta"> Sudip Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium phosphate cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve its mechanical strength. Here we study the setting behaviour of Si-doped and un-doped alpha tri-calcium phosphate (α-TCP) based CPC and its reinforcement with the addition of E-glass fibre. Alpha tri-calcium phosphate powders were prepared by solid state sintering of CaCO3, CaHPO4 and tetra ethyl ortho silicate (TEOS) was used as silicon source to synthesise Si doped α-TCP powders. Alpha tri-calcium phosphate based CPC hydrolyzes to form hydroxyapatite (HA) crystals having excellent osteoconductivity and bone-replacement capability thus self-hardens through the entanglement of HA crystals. Setting time, phase composition, hydrolysis conversion rate, microstructure, and diametral tensile strength (DTS) of un-doped CPC and Si-doped CPC were studied and compared. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9-432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. The intensities of the α-TCP peaks of (201) and (161) at 2θ of 22.2°and 24.1° decreased when the time of immersion of CPC in SBF increased from 0 hours to 10 days, due to its transformation into HA. As Si incorporation in the crystal lattice stabilised the TCP phase, Si doped CPC showed a little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. This lower porosity and greater compactness in the microstructure attributes to greater DTS values observed in Si-doped CPC. E-glass fibres of the average diameter of 12 μm were cut into approximately 1 mm in length and immersed in SBF to deposit carbonated apatite on its surface. This was performed to promote HA crystal growth and entanglement along the fibre surface to promote stronger interface between dispersed E-glass fibre and CPC matrix. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resist the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its bioactivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Calcium%20phosphate%20cement" title="Calcium phosphate cement">Calcium phosphate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=e-glass%20fibre" title=" e-glass fibre"> e-glass fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=diametral%20tensile%20strength" title=" diametral tensile strength"> diametral tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/34383/reinforcement-of-calcium-phosphate-cement-with-e-glass-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1144</span> Diversity of Microbial Ground Improvements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Ivanov">V. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Chu"> J. Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Stabnikov"> V. Stabnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low cost, sustainable, and environmentally friendly microbial cements, grouts, polysaccharides and bioplastics are useful in construction and geotechnical engineering. Construction-related biotechnologies are based on activity of different microorganisms: urease-producing, acidogenic, halophilic, alkaliphilic, denitrifying, iron- and sulphate-reducing bacteria, cyanobacteria, algae, microscopic fungi. The bio-related materials and processes can be used for the bioaggregation, soil biogrouting and bioclogging, biocementation, biodesaturation of water-satured soil, bioencapsulation of soft clay, biocoating, and biorepair of the concrete surface. Altogether with the most popular calcium- and urea based biocementation, there are possible and often are more effective such methods of ground improvement as calcium- and magnesium based biocementation, calcium phosphate strengthening of soil, calcium bicarbonate biocementation, and iron- or polysaccharide based bioclogging. The construction-related microbial biotechnologies have a lot of advantages over conventional construction materials and processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title="ground improvement">ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=biocementation" title=" biocementation"> biocementation</a>, <a href="https://publications.waset.org/abstracts/search?q=biogrouting" title=" biogrouting"> biogrouting</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms "> microorganisms </a> </p> <a href="https://publications.waset.org/abstracts/8747/diversity-of-microbial-ground-improvements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1143</span> Comparison of the Hydration Products of Commercial and Experimental Calcium Silicate Cement: The Preliminary Observational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Woo%20Chang">Seok Woo Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The objective of this study was to compare and evaluate the hydration products of commercial and experimental calcium silicate cement. Materials and Methods: The commercial calcium silicate cement (ProRoot MTA, Dentsply) and experimental calcium silicate cement (n=10) were mixed with distilled water (water/powder ratio = 20 w/w) and stirred at room temperature for 10 hours. These mixtures were dispersed on wafer and dried for 12 hours at room temperature. Thereafter, the dried specimens were examined with Scanning Electron Microscope (SEM). Electron Dispersive Spectrometry (EDS) was also carried out. Results: The commercial calcium silicate cement (ProRoot MTA) and experimental calcium silicate cement both showed precipitation of rod-like and globule-like crystals. Based on EDS analysis, these precipitates were supposed to be calcium hydroxide or calcium silicate hydrates. The degree of formation of these precipitates was higher in commercial MTA. Conclusions: Based on the results, both commercial and experimental calcium silicate cement had ability to produce calcium hydroxide or calcium silicate hydrate precipitates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20cement" title="calcium silicate cement">calcium silicate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=ProRoot%20MTA" title=" ProRoot MTA"> ProRoot MTA</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20hydroxide" title=" calcium hydroxide"> calcium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20hydrate" title=" calcium silicate hydrate"> calcium silicate hydrate</a> </p> <a href="https://publications.waset.org/abstracts/8741/comparison-of-the-hydration-products-of-commercial-and-experimental-calcium-silicate-cement-the-preliminary-observational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1142</span> Biocompatibilities of Various Calcium Silicate Cements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Woo%20Chang">Seok Woo Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee%20Yeon%20Kum"> Kee Yeon Kum</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Shik%20Bae"> Kwang Shik Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=WooCheol%20Lee"> WooCheol Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The objective of this study was to compare the biocompatibilities and mineralization potential of ProRoot MTA and newly developed calcium phosphate based cement, Capseal. Materials and Methods: The biocompatibilities and mineralization-related gene expressions (Bone sialoprotein (BSP) and osteocalcin (OCN)) of ProRoot MTA and Capseal were also compared by a methylthiazol tetrazolium (MTT) assay and reverse transcription-polymerization chain reaction (RT-PCR) analysis on 1, 3, and 7 days, respectively. Empty rings were used as control group. The results were statistically analyzed by Kruskal-Wallis test with a Bonferroni correction. P-value of < 0.05 was considered significant. Results: The biocompatibilities of ProRoot MTA and Capseal were equally favorable. ProRoot MTA and Capseal affected the messenger RNA expression of osteocalcin and osteonectin. Conclusions: Based on the results, both ProRoot MTA and Capseal could be a useful biomaterial in clinical endodontics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20cement" title=" calcium silicate cement"> calcium silicate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=MTT" title=" MTT"> MTT</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a> </p> <a href="https://publications.waset.org/abstracts/3950/biocompatibilities-of-various-calcium-silicate-cements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1141</span> Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozan%20Kahraman">Ozan Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Feng"> Hao Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weibull" title="Weibull">Weibull</a>, <a href="https://publications.waset.org/abstracts/search?q=Biphasic" title=" Biphasic"> Biphasic</a>, <a href="https://publications.waset.org/abstracts/search?q=MTS" title=" MTS"> MTS</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20models" title=" kinetic models"> kinetic models</a>, <a href="https://publications.waset.org/abstracts/search?q=E.coli%20O157%3AH7" title=" E.coli O157:H7"> E.coli O157:H7</a> </p> <a href="https://publications.waset.org/abstracts/57326/validation-of-escherichia-coli-o157h7-inactivation-on-apple-carrot-juice-treated-with-manothermosonication-by-kinetic-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1140</span> The Biocompatibility and Osteogenic Potential of Experimental Calcium Silicate Based Root Canal Sealer, Capseal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Woo%20Chang">Seok Woo Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Capseal I and Capseal II are calcium silicate and calcium phosphate based experimental root canal sealer. The aim of this study was to evaluate the biocompatibility and mineralization potential of Capseal I and Capseal II. Materials and Methods: The biocompatibility and mineralization-related gene expression (alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN)) of Capseal I and Capseal II were compared using methylthiazol tetrazolium assay and reverse transcription-polymerization chain reaction analysis, respectively. The results were analyzed by Kruskal-Wallis test. P-value of < 0.05 was considered significant. Result: Both Capseal I and Capseal II were favorable in biocompatibility and influenced the messenger RNA expression of ALP and BSP. Conclusion: Within the limitation of this study, Capseal is biocompatible and have mineralization promoting potential, and thus could be a promising root canal sealer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization-related%20gene%20expression" title=" mineralization-related gene expression"> mineralization-related gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=Capseal%20I" title=" Capseal I"> Capseal I</a>, <a href="https://publications.waset.org/abstracts/search?q=Capseal%20II" title=" Capseal II"> Capseal II</a> </p> <a href="https://publications.waset.org/abstracts/10059/the-biocompatibility-and-osteogenic-potential-of-experimental-calcium-silicate-based-root-canal-sealer-capseal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1139</span> Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20S.%20Marchenko">Ekaterina S. Marchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsharat%20A.%20Baigonakova"> Gulsharat A. Baigonakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20M.%20Dubovikov"> Kirill M. Dubovikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20A.%20Khlusov"> Igor A. Khlusov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate%20coating" title="calcium phosphate coating">calcium phosphate coating</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=NiTi%20alloy" title=" NiTi alloy"> NiTi alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=two-layer%20coating" title=" two-layer coating"> two-layer coating</a> </p> <a href="https://publications.waset.org/abstracts/172097/biocompatibility-of-calcium-phosphate-coatings-with-different-crystallinity-deposited-by-sputtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1138</span> Cytotoxicity of Nano β–Tricalcium Phosphate (β-TCP) on Human Osteoblast (hFOB1.19)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jer%20Ping%20Ooi">Jer Ping Ooi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Rizal%20Bin%20Kasim"> Shah Rizal Bin Kasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Aini%20Saidin"> Nor Aini Saidin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to synthesize nano-sized β-tricalcium phosphate (β-TCP) powder and assess its cytotoxic effects on human osteoblast (hFOB1.19) by using four cytotoxicity assays, namely, lactose dehydrogenase (LDHe), tetrazolium hydroxide (XTT), neutral red (NR), and sulforhodamine B (SRB) assays. β-tricalcium phosphate (β-TCP) is a calcium phosphate compound commonly used as an implant material. To date, bulk-sized β-TCP is reported to be readily tolerated by the osteogenic cells and body based on in vitro, in vivo experiments and clinical studies. However, to what extent of nano-sized β-TCP will react in models as compared to bulk β-TCP is yet to be investigated. Thus, in this project, the cells were treated with nano β-TCP powder within a range of concentrations from 0 to 1000 μg/mL for 24, 48, and 72 h. The cytotoxicity tests showed that loss of cell viability ( > 50%) was high for hFOB1.19 cells in all assays. Cell cycle and apoptosis analysis of hFOB1.19 cells revealed that 50 μg/mL of the compound led to 30.5% of cells being apoptotic after 72 h of incubation, and the percentage was increased to 58.6% when the concentration was increased to 200 μg/mL. When the incubation time was increased from 24 to 72 h, the percentage of apoptotic cells increased from 17.3% to 58.6% when the hFOB1.19 were exposed with 200 μg/mL of nano β-TCP powder. Thus, both concentration and exposure duration affected the cytotoxicity effects of the nano β-TCP powder on hFOB1.19. We hypothesize that these cytotoxic effects on hFOB1.19 are related to the nano-scale size of the β-TCP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-tricalcium%20phosphate" title="β-tricalcium phosphate">β-tricalcium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=hFOB1.19" title=" hFOB1.19"> hFOB1.19</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose-derived%20mesenchymal%20stem%20cells" title=" adipose-derived mesenchymal stem cells"> adipose-derived mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/31013/cytotoxicity-of-nano-v-tricalcium-phosphate-v-tcp-on-human-osteoblast-hfob119" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1137</span> A Ratiometric Inorganic Phosphate Sensor Based on CdSe/ZnS QDs and Rhodamine 6G-Doped Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Dinh%20Duong">Hong Dinh Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Il%20Rhee"> Jong Il Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a ratiometric inorganic phosphate sensor was fabricated by a double layer of the rhodamine 6G-doped nanofibers and the CdSe/ZnS QDs-captured polymer. In which, CdSe/ZnS QDs with emission wavelengths of 595nm were synthesized and ligands on their surface were exchanged with mercaptopropionic acid (MPA). The synthesized MPA-QDs were combined with the mixture of sol-gel of 3-glycidoxypropyl trimethoxysilane (GPTMS), 3-aminopropyltrimethoxysilane (APTMS) and polyurethane (PU) to build a layer for sensing inorganic phosphate. Another sensing layer was of nanofibers doped R6G which were produced from poly(styrene-co-acrylonitrile) by electrospining. The ratio of fluorescence intensities between rhodamin 6G (R6G) and CdSe/ZnS QDs exposed at different phosphate concentrations was used for calculating a linear phosphate concentration range of 0-10mM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title="nanofiber">nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=QDs" title=" QDs"> QDs</a>, <a href="https://publications.waset.org/abstracts/search?q=ratiometric%20phosphate%20sensor" title=" ratiometric phosphate sensor"> ratiometric phosphate sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodamine%206G" title=" rhodamine 6G"> rhodamine 6G</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/36346/a-ratiometric-inorganic-phosphate-sensor-based-on-cdsezns-qds-and-rhodamine-6g-doped-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1136</span> The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mojaddam">M. Mojaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Araei"> M. Araei</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Saki%20Nejad"> T. Saki Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Soltani%20Howyzeh"> M. Soltani Howyzeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications.) The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plan height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20phosphate%20fertilizer%20%28fertile%202%29" title="biological phosphate fertilizer (fertile 2)">biological phosphate fertilizer (fertile 2)</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20super%20phosphate" title=" triple super phosphate"> triple super phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20traits" title=" morphological traits"> morphological traits</a> </p> <a href="https://publications.waset.org/abstracts/31865/the-effect-of-application-of-biological-phosphate-fertilizer-fertile-2-and-triple-super-phosphate-chemical-fertilizers-on-some-morphological-traits-of-corn-sc704" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1135</span> d-Block Metal Nanoparticles Confined in Triphenylphosphine Oxide Functionalized Core-Crosslinked Micelles for the Application in Biphasic Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Joseph%20Abou-Fayssal">C. Joseph Abou-Fayssal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Philippot"> K. Philippot</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Poli"> R. Poli</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Manoury"> E. Manoury</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Riisager"> A. Riisager</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of soluble polymer-supported metal nanoparticles (MNPs) has received significant attention for the ease of catalyst recovery and recycling. Of particular interest are MNPs that are supported on polymers that are either soluble or form stable colloidal dispersion in water, as this allows to combine of the advantages of the aqueous biphasic protocol with the catalytical performances of MNPs. The objective is to achieve good confinement of the catalyst in the nanoreactor cores and, thus, a better catalyst recovery in order to overcome the previously witnessed MNP extraction. Inspired by previous results, we are interested in the design of polymeric nanoreactors functionalized with ligands able to solidly anchor metallic nanoparticles in order to control the activity and selectivity of the developed nanocatalysts. The nanoreactors are core-crosslinked micelles (CCM) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Varying the nature of the core-linked functionalities allows us to get differently stabilized metal nanoparticles and thus compare their performance in the catalyzed aqueous biphasic hydrogenation of model substrates. Particular attention is given to catalyst recyclability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biphasic%20catalysis" title="biphasic catalysis">biphasic catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticles" title=" metal nanoparticles"> metal nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20nanoreactors" title=" polymeric nanoreactors"> polymeric nanoreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20recovery" title=" catalyst recovery"> catalyst recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=RAFT%20polymerization" title=" RAFT polymerization"> RAFT polymerization</a> </p> <a href="https://publications.waset.org/abstracts/158379/d-block-metal-nanoparticles-confined-in-triphenylphosphine-oxide-functionalized-core-crosslinked-micelles-for-the-application-in-biphasic-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1134</span> Can Bone Resorption Reduce with Nanocalcium Particles in Astronauts?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Teja%20Mandapaka">Ravi Teja Mandapaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Kumar%20Kukkamalla"> Prasanna Kumar Kukkamalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor absorption of calcium, elevated levels in serum and loss of bone are major problems of astronauts during space travel. Supplementation of calcium could not reveal this problem. In normal condition only 33% of calcium is absorbed from dietary sources. In this paper effect of space environment on calcium metabolism was discussed. Many surprising study findings were found during literature survey. Clinical trials on ovariectomized mice showed that reduction of calcium particles to nano level make them more absorbable and bioavailable. Control of bone loss in astronauts in critical important In Fortification of milk with nana calcium particles showed reduces urinary pyridinoline, deoxypyridinoline levels. Dietary calcium and supplementation do not show much retention of calcium in zero gravity environment where absorption is limited. So, the fortification of foods with nano calcium particles seemed beneficial for astronauts during and after space travel in their speedy recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20calcium" title="nano calcium">nano calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=astronauts" title=" astronauts"> astronauts</a>, <a href="https://publications.waset.org/abstracts/search?q=fortification" title=" fortification"> fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementation" title=" supplementation"> supplementation</a> </p> <a href="https://publications.waset.org/abstracts/30899/can-bone-resorption-reduce-with-nanocalcium-particles-in-astronauts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biphasic%20calcium%20phosphate&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>