CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 93 results for author: <span class="mathjax">Sanchez, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Sanchez%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sanchez, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sanchez%2C+E&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sanchez, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Sanchez%2C+E&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Sanchez%2C+E&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Sanchez%2C+E&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16991">arXiv:2501.16991</a> <span> [<a href="https://arxiv.org/pdf/2501.16991">pdf</a>, <a href="https://arxiv.org/format/2501.16991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Time-splitting methods for the cold-plasma model using Finite Element Exterior Calculus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E+M">Elena Moral S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+C">Martin Campos Pinto</a>, <a href="/search/physics?searchtype=author&query=G%C3%BC%C3%A7l%C3%BC%2C+Y">Yaman G眉莽l眉</a>, <a href="/search/physics?searchtype=author&query=Maj%2C+O">Omar Maj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16991v1-abstract-short" style="display: inline;"> In this work we propose a high-order structure-preserving discretization of the cold plasma model which describes the propagation of electromagnetic waves in magnetized plasmas. By utilizing B-Splines Finite Elements Exterior Calculus, we derive a space discretization that preserves the underlying Hamiltonian structure of the model, and we study two stable time-splitting geometrical integrators. W… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16991v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16991v1-abstract-full" style="display: none;"> In this work we propose a high-order structure-preserving discretization of the cold plasma model which describes the propagation of electromagnetic waves in magnetized plasmas. By utilizing B-Splines Finite Elements Exterior Calculus, we derive a space discretization that preserves the underlying Hamiltonian structure of the model, and we study two stable time-splitting geometrical integrators. We approximate an incoming wave boundary condition in such a way that the resulting schemes are compatible with a time-harmonic / transient decomposition of the solution, which allows us to establish their long-time stability. This approach readily applies to curvilinear and complex domains. We perform a numerical study of these schemes which compares their cost and accuracy against a standard Crank-Nicolson time integrator, and we run realistic simulations where the long-term behaviour is assessed using frequency-domain solutions. Our solvers are implemented in the Python library Psydac which makes them memory-efficient, parallel and essentially three-dimensional. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16991v1-abstract-full').style.display = 'none'; document.getElementById('2501.16991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01551">arXiv:2501.01551</a> <span> [<a href="https://arxiv.org/pdf/2501.01551">pdf</a>, <a href="https://arxiv.org/format/2501.01551">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Photometry of outer Solar System objects from the Dark Energy Survey II: a joint analysis of trans-Neptunian absolute magnitudes, colors, lightcurves and dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bernardinelli%2C+P+H">Pedro H. Bernardinelli</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+G+M">Gary M. Bernstein</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/physics?searchtype=author&query=Aguena%2C+M">M. Aguena</a>, <a href="/search/physics?searchtype=author&query=Allam%2C+S+S">S. S. Allam</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/physics?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/physics?searchtype=author&query=Carretero%2C+J">J. Carretero</a>, <a href="/search/physics?searchtype=author&query=da+Costa%2C+L+N">L. N. da Costa</a>, <a href="/search/physics?searchtype=author&query=Pereira%2C+M+E+S">M. E. S. Pereira</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+T+M">T. M. Davis</a>, <a href="/search/physics?searchtype=author&query=De+Vicente%2C+J">J. De Vicente</a>, <a href="/search/physics?searchtype=author&query=Desai%2C+S">S. Desai</a>, <a href="/search/physics?searchtype=author&query=Diehl%2C+H+T">H. T. Diehl</a>, <a href="/search/physics?searchtype=author&query=Doel%2C+P">P. Doel</a>, <a href="/search/physics?searchtype=author&query=Everett%2C+S">S. Everett</a>, <a href="/search/physics?searchtype=author&query=Flaugher%2C+B">B. Flaugher</a>, <a href="/search/physics?searchtype=author&query=Frieman%2C+J">J. Frieman</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Bellido%2C+J">J. Garc铆a-Bellido</a>, <a href="/search/physics?searchtype=author&query=Gaztanaga%2C+E">E. Gaztanaga</a>, <a href="/search/physics?searchtype=author&query=Gruendl%2C+R+A">R. A. Gruendl</a>, <a href="/search/physics?searchtype=author&query=Gutierrez%2C+G">G. Gutierrez</a>, <a href="/search/physics?searchtype=author&query=Herner%2C+K">K. Herner</a>, <a href="/search/physics?searchtype=author&query=Hinton%2C+S+R">S. R. Hinton</a>, <a href="/search/physics?searchtype=author&query=Hollowood%2C+D+L">D. L. Hollowood</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01551v1-abstract-short" style="display: inline;"> For the 696 trans-Neptunian objects (TNOs) with absolute magnitudes $5.5 < H_r < 8.2$ detected in the Dark Energy Survey (DES), we characterize the relationships between their dynamical state and physical properties -- namely $H_r$, indicating size; colors, indicating surface composition; and flux variation semi-amplitude $A$, indicating asphericity and surface inhomogeneity. We seek ``birth'' phy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01551v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01551v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01551v1-abstract-full" style="display: none;"> For the 696 trans-Neptunian objects (TNOs) with absolute magnitudes $5.5 < H_r < 8.2$ detected in the Dark Energy Survey (DES), we characterize the relationships between their dynamical state and physical properties -- namely $H_r$, indicating size; colors, indicating surface composition; and flux variation semi-amplitude $A$, indicating asphericity and surface inhomogeneity. We seek ``birth'' physical distributions that can recreate these parameters in every dynamical class. We show that the observed colors of these TNOs are consistent with 2 Gaussian distributions in $griz$ space, ``near-IR bright'' (NIRB) and ``near-IR faint'' (NIRF), presumably an inner and outer birth population, respectively. We find a model in which both the NIRB and NIRF $H_r$ and $A$ distributions are independent of current dynamical states, supporting their assignment as birth populations. All objects are consistent with a common rolling $p(H_r)$, but NIRF objects are significantly more variable. Cold classicals (CCs) are purely NIRF, while hot classical (HC), scattered, and detached TNOs are consistent with $\approx70\%$ NIRB, and resonances' NIRB fractions show significant variation. The NIRB component of the HCs and of some resonances have broader inclination distributions than the NIRFs, i.e. their current dynamics retains information about birth location. We find evidence for radial stratification within the birth NIRB population, in that HC NIRBs are on average redder than detached or scattered NIRBs; a similar effect distinguishes CCs from other NIRFs. We estimate total object counts and masses of each class within our $H_r$ range. These results will strongly constrain models of the outer solar system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01551v1-abstract-full').style.display = 'none'; document.getElementById('2501.01551v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 13 figures, 4 appendices. Abstract abridged. Associated repository: https://github.com/bernardinelli/des_tno_likelihood</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DES-2024-0873 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14871">arXiv:2412.14871</a> <span> [<a href="https://arxiv.org/pdf/2412.14871">pdf</a>, <a href="https://arxiv.org/format/2412.14871">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Exploration of the parameter space of piecewise omnigenous stellarator magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">J. L. Velasco</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14871v1-abstract-short" style="display: inline;"> Piecewise omnigenous fields are stellarator magnetic fields that are optimized with respect to radial neoclassical transport thanks to a second adiabatic invariant that is piecewisely constant on the flux-surface. They are qualitatively different from omnigenous fields (including quasi-isodynamic or quasisymmetric fields), for which the second adiabatic invariant is a flux-surface constant. Piecew… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14871v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14871v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14871v1-abstract-full" style="display: none;"> Piecewise omnigenous fields are stellarator magnetic fields that are optimized with respect to radial neoclassical transport thanks to a second adiabatic invariant that is piecewisely constant on the flux-surface. They are qualitatively different from omnigenous fields (including quasi-isodynamic or quasisymmetric fields), for which the second adiabatic invariant is a flux-surface constant. Piecewise omnigenous fields thus open an alternative path towards stellarator reactors. In this work, piecewise omnigenous fields are characterized and parametrized in a systematic manner. This is a step towards including piecewise omnigenity as an explicit design criterion in stellarator optimization, and towards a systematic study of the properties of nearly piecewise omnigenous stellarator configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14871v1-abstract-full').style.display = 'none'; document.getElementById('2412.14871v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14607">arXiv:2411.14607</a> <span> [<a href="https://arxiv.org/pdf/2411.14607">pdf</a>, <a href="https://arxiv.org/format/2411.14607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Advanced LIGO detector performance in the fourth observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Capote%2C+E">E. Capote</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+W">W. Jia</a>, <a href="/search/physics?searchtype=author&query=Aritomi%2C+N">N. Aritomi</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+M">M. Nakano</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+V">V. Xu</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/physics?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">S. Appert</a>, <a href="/search/physics?searchtype=author&query=Apple%2C+S+K">S. K. Apple</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">M. Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">D. Barker</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">J. Betzwieser</a>, <a href="/search/physics?searchtype=author&query=Bhattacharjee%2C+D">D. Bhattacharjee</a>, <a href="/search/physics?searchtype=author&query=Billingsley%2C+G">G. Billingsley</a>, <a href="/search/physics?searchtype=author&query=Biscans%2C+S">S. Biscans</a>, <a href="/search/physics?searchtype=author&query=Blair%2C+C+D">C. D. Blair</a>, <a href="/search/physics?searchtype=author&query=Bode%2C+N">N. Bode</a>, <a href="/search/physics?searchtype=author&query=Bonilla%2C+E">E. Bonilla</a> , et al. (171 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14607v1-abstract-short" style="display: inline;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14607v1-abstract-full" style="display: none;"> On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14607v1-abstract-full').style.display = 'none'; document.getElementById('2411.14607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05017">arXiv:2411.05017</a> <span> [<a href="https://arxiv.org/pdf/2411.05017">pdf</a>, <a href="https://arxiv.org/format/2411.05017">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neurons and Cognition">q-bio.NC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Time in a bottle. A psychophysics study of human time perception through aging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sanchez%2C+E+E">Enric Espel Sanchez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05017v1-abstract-short" style="display: inline;"> Time perception is crucial for a coherent human experience. As life progresses, our perception of the passage of time becomes increasingly non-uniform, often feeling as though it accelerates with age. While various causes for this phenomenon have been theorized, a comprehensive mathematical and theoretical framework remains underexplored. This study aims to elucidate the mechanisms behind perceive… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05017v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05017v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05017v1-abstract-full" style="display: none;"> Time perception is crucial for a coherent human experience. As life progresses, our perception of the passage of time becomes increasingly non-uniform, often feeling as though it accelerates with age. While various causes for this phenomenon have been theorized, a comprehensive mathematical and theoretical framework remains underexplored. This study aims to elucidate the mechanisms behind perceived time dilation by integrating classical and revised psychophysical theorems with a novel mathematical approach. Utilizing Weber-Fechner laws as foundational elements, we develop a model that transitions from exponential to logarithmic functions to represent changes in time perception across the human lifespan. Our results indicate that the perception of time shifts significantly around the age of mental maturity, aligning with a proposed inversion point where sensitivity to temporal stimuli decreases, eventually plateauing out at a constant rate. This model not only explains the underlying causes of time perception changes but also provides analytical values to quantify this acceleration. These findings offer valuable insights into the cognitive and neurological processes influencing how we experience time as we go through life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05017v1-abstract-full').style.display = 'none'; document.getElementById('2411.05017v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03526">arXiv:2411.03526</a> <span> [<a href="https://arxiv.org/pdf/2411.03526">pdf</a>, <a href="https://arxiv.org/format/2411.03526">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Analysis of thermodiffusive instabilities in hydrogen premixed flames using a tabulated flamelet model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Soplanes%2C+E+M+F">Emiliano Manuel Fortes Soplanes</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E+J+P">Eduardo Javier P茅rez S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Both%2C+A">Ambrus Both</a>, <a href="/search/physics?searchtype=author&query=Grenga%2C+T">Temistocle Grenga</a>, <a href="/search/physics?searchtype=author&query=Mira%2C+D">Daniel Mira</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03526v1-abstract-short" style="display: inline;"> Preferential diffusion plays a critical role in the evolution of lean premixed hydrogen flames, influencing flame surface corrugation and overall flame behavior. Simulating such flames with tabulated chemistry (TC) methods remains challenging due to the complexity of flame dynamics. A detailed assessment of flamelet-based manifolds for capturing these dynamics is still needed. This work incorporat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03526v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03526v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03526v1-abstract-full" style="display: none;"> Preferential diffusion plays a critical role in the evolution of lean premixed hydrogen flames, influencing flame surface corrugation and overall flame behavior. Simulating such flames with tabulated chemistry (TC) methods remains challenging due to the complexity of flame dynamics. A detailed assessment of flamelet-based manifolds for capturing these dynamics is still needed. This work incorporates preferential diffusion via mixture-averaged molecular diffusion within TC to study the propagation and structure of freely propagating hydrogen flames influenced by intrinsic instabilities. Model performance is evaluated against detailed chemistry (DC) calculations, focusing on linear and non-linear regimes and sensitivity to pressure and temperature variations. The impact of mesh resolution on flame response is also examined to assess the method's capabilities without subgrid models. The linear regime is analyzed through the dispersion relation, revealing that higher temperature or pressure extends the range of wave numbers accurately predicted by the model, although some overprediction of flame wrinkling in stable regions is observed. The nonlinear regime is assessed by comparing global flame parameters and flame structure to reference solutions, showing that the model captures key flame descriptors with relative errors under 20%. Overall, the model effectively reproduces key effects governing flames with thermodiffusive instabilities, offering a viable alternative to DC at a significantly reduced computational cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03526v1-abstract-full').style.display = 'none'; document.getElementById('2411.03526v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 8 figures, preprint, submitted to international journal of hydrogen energy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17836">arXiv:2410.17836</a> <span> [<a href="https://arxiv.org/pdf/2410.17836">pdf</a>, <a href="https://arxiv.org/format/2410.17836">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Evaluation of neoclassical transport in nearly quasi-isodynamic stellarator magnetic fields using MONKES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Escoto%2C+F+J">Francisco Javier Escoto</a>, <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">Jos茅 Luis Velasco</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">Iv谩n Calvo</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">Edilberto S谩nchez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17836v1-abstract-short" style="display: inline;"> Stellarator magnetic fields that are perfectly optimized for neoclassical transport (with levels of radial neoclassical transport comparable to tokamaks) are called omnigenous. Quasi-isodynamic magnetic fields are a subset of omnigenous magnetic fields in which the isolines of the magnetic field strength close poloidally, which grants them the additional property of producing zero bootstrap curren… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17836v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17836v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17836v1-abstract-full" style="display: none;"> Stellarator magnetic fields that are perfectly optimized for neoclassical transport (with levels of radial neoclassical transport comparable to tokamaks) are called omnigenous. Quasi-isodynamic magnetic fields are a subset of omnigenous magnetic fields in which the isolines of the magnetic field strength close poloidally, which grants them the additional property of producing zero bootstrap current. A frequent strategy in the quest for quasi-isodynamic configurations is to optimize the magnetic field indirectly by minimizing proxies that vanish in an exactly quasi-isodynamic field. The recently developed code MONKES enables fast computations of the neoclassical radial transport and bootstrap current monoenergetic coefficients, and therefore facilitates enormously to assess the efficiency of such indirect approach. By evaluating the large database of intermediate configurations that led to the configuration CIEMAT-QI, the inefficiency of the indirect optimization strategy for minimizing the bootstrap current is illustrated. In addition, MONKES is used to take the first steps in the exploration of a region of the configuration space of piecewise omnigenous fields, a novel family of optimized magnetic fields that has broadened the configuration space of stellarators with low levels of radial neoclassical transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17836v1-abstract-full').style.display = 'none'; document.getElementById('2410.17836v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12514">arXiv:2406.12514</a> <span> [<a href="https://arxiv.org/pdf/2406.12514">pdf</a>, <a href="https://arxiv.org/format/2406.12514">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> First experimental observation of zonal flows in the optimized stellarator Wendelstein 7-X </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Carralero%2C+D">D. Carralero</a>, <a href="/search/physics?searchtype=author&query=Estrada%2C+T">T. Estrada</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Rega%C3%B1a%2C+J+M">J. M. Garc铆a-Rega帽a</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Windisch%2C+T">T. Windisch</a>, <a href="/search/physics?searchtype=author&query=Alonso%2C+A">A. Alonso</a>, <a href="/search/physics?searchtype=author&query=Maragkoudakis%2C+E">E. Maragkoudakis</a>, <a href="/search/physics?searchtype=author&query=Brandt%2C+C">C. Brandt</a>, <a href="/search/physics?searchtype=author&query=Brunner%2C+K+J">K. J. Brunner</a>, <a href="/search/physics?searchtype=author&query=Gallego-Castillo%2C+C">C. Gallego-Castillo</a>, <a href="/search/physics?searchtype=author&query=Rahbarnia%2C+K">K. Rahbarnia</a>, <a href="/search/physics?searchtype=author&query=Thienpondt%2C+H">H. Thienpondt</a>, <a href="/search/physics?searchtype=author&query=Team%2C+t+W+7">the Wendelstein 7-X Team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12514v1-abstract-short" style="display: inline;"> In this work, we present the first experimental evidence of the presence of zonal flow (ZF) structures in the optimized stellarator Wendelstein 7-X. Using an assortment of diagnostics, flux surface-uniform, electrostatic flow oscillations have been measured, showing a radial scale in the range of tens of ion gyroradii. Such measurements show remarkable agreement with the ZF predicted by local and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12514v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12514v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12514v1-abstract-full" style="display: none;"> In this work, we present the first experimental evidence of the presence of zonal flow (ZF) structures in the optimized stellarator Wendelstein 7-X. Using an assortment of diagnostics, flux surface-uniform, electrostatic flow oscillations have been measured, showing a radial scale in the range of tens of ion gyroradii. Such measurements show remarkable agreement with the ZF predicted by local and global non-linear gyrokinetic simulations. These results represent the first direct measurement of ZF in a large stellarator, suitable for the validation of models in reactor relevant conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12514v1-abstract-full').style.display = 'none'; document.getElementById('2406.12514v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01736">arXiv:2406.01736</a> <span> [<a href="https://arxiv.org/pdf/2406.01736">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Intensity Normalization Techniques and Their Effect on the Robustness and Predictive Power of Breast MRI Radiomics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schwarzhans%2C+F">Florian Schwarzhans</a>, <a href="/search/physics?searchtype=author&query=George%2C+G">Geevarghese George</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+L+E">Lorena Escudero Sanchez</a>, <a href="/search/physics?searchtype=author&query=Zaric%2C+O">Olgica Zaric</a>, <a href="/search/physics?searchtype=author&query=Abraham%2C+J+E">Jean E Abraham</a>, <a href="/search/physics?searchtype=author&query=Woitek%2C+R">Ramona Woitek</a>, <a href="/search/physics?searchtype=author&query=Hatamikia%2C+S">Sepideh Hatamikia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01736v1-abstract-short" style="display: inline;"> Radiomics analysis has emerged as a promising approach for extracting quantitative features from medical images to aid in cancer diagnosis and treatment. However, radiomics research currently lacks standardization, and radiomics features can be highly dependent on the acquisition and pre-processing techniques used. In this study, we aim to investigate the effect of various intensity normalization… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01736v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01736v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01736v1-abstract-full" style="display: none;"> Radiomics analysis has emerged as a promising approach for extracting quantitative features from medical images to aid in cancer diagnosis and treatment. However, radiomics research currently lacks standardization, and radiomics features can be highly dependent on the acquisition and pre-processing techniques used. In this study, we aim to investigate the effect of various intensity normalization techniques on the robustness of radiomics features extracted from MRI scans of breast cancer patients. The images used are from the publicly available I-SPY TRIAL dataset, which contains MRI scans of stage 2 or 3 breast cancer patients and from the Platinum and PARP inhibitor for Neoadjuvant treatment of Triple Negative and / or BRCA positive breast cancer (PARTNER) trial. We compared the effect of commonly used intensity normalization techniques on the robustness of radiomics features using Intraclass Correlation Coefficient (ICC) between multiple combinations of normalization approaches, identified categories that are robust and therefore could be compared between studies regardless of the pre-processing used. We were able to show that while systematic differences between MRI scanners can significantly affect many radiomics features, a combination of Bias Field correction with piecewise linear histogram normalization can mitigate some of the effects compared to other normalization methods investigated in this paper. We were able to demonstrate the importance of carefully selecting and standardizing normalization methods for accurate and reliable radiomics analysis in breast MRI scans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01736v1-abstract-full').style.display = 'none'; document.getElementById('2406.01736v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.07634">arXiv:2405.07634</a> <span> [<a href="https://arxiv.org/pdf/2405.07634">pdf</a>, <a href="https://arxiv.org/format/2405.07634">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Piecewise omnigenous stellarators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">J. L. Velasco</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Escoto%2C+F+J">F. J. Escoto</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Thienpondt%2C+H">H. Thienpondt</a>, <a href="/search/physics?searchtype=author&query=Parra%2C+F+I">F. I. Parra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.07634v2-abstract-short" style="display: inline;"> In omnigeneous magnetic fields, charged particles are perfectly confined in the absence of collisions and turbulence. For this reason, the magnetic configuration is optimized to be close to omnigenity in any candidate for a stellarator fusion reactor. However, approaching omnigenity imposes severe constraints on the spatial variation of the magnetic field. In particular, the topology of the contou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07634v2-abstract-full').style.display = 'inline'; document.getElementById('2405.07634v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.07634v2-abstract-full" style="display: none;"> In omnigeneous magnetic fields, charged particles are perfectly confined in the absence of collisions and turbulence. For this reason, the magnetic configuration is optimized to be close to omnigenity in any candidate for a stellarator fusion reactor. However, approaching omnigenity imposes severe constraints on the spatial variation of the magnetic field. In particular, the topology of the contours of constant magnetic-field-strength on each magnetic surface must be such that there are no particles transitioning between different types of wells. This, in turn, usually leads to complicated plasma shapes and coils. This Letter presents a new family of optimized fields that display tokamak-like collisional energy transport while having transitioning particles. This result radically broadens the space of accessible reactor-relevant configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.07634v2-abstract-full').style.display = 'none'; document.getElementById('2405.07634v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06434">arXiv:2405.06434</a> <span> [<a href="https://arxiv.org/pdf/2405.06434">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Photonic Neuromorphic Accelerator for Convolutional Neural Networks based on an Integrated Reconfigurable Mesh </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tsirigotis%2C+A">Aris Tsirigotis</a>, <a href="/search/physics?searchtype=author&query=Sarantoglou%2C+G">Gerge Sarantoglou</a>, <a href="/search/physics?searchtype=author&query=Deligiannidis%2C+S">Stavros Deligiannidis</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+E">Erica Sanchez</a>, <a href="/search/physics?searchtype=author&query=Gutierrez%2C+A">Ana Gutierrez</a>, <a href="/search/physics?searchtype=author&query=Bogris%2C+A">Adonis Bogris</a>, <a href="/search/physics?searchtype=author&query=Capmany%2C+J">Jose Capmany</a>, <a href="/search/physics?searchtype=author&query=Mesaritakis%2C+C">Charis Mesaritakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06434v1-abstract-short" style="display: inline;"> In this work, we present and experimentally validate a passive photonic-integrated neuromorphic accelerator that uses a hardware-friendly optical spectrum slicing technique through a reconfigurable silicon photonic mesh. The proposed scheme acts as an analogue convolutional engine, enabling information preprocessing in the optical domain, dimensionality reduction and extraction of spatio-temporal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06434v1-abstract-full').style.display = 'inline'; document.getElementById('2405.06434v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06434v1-abstract-full" style="display: none;"> In this work, we present and experimentally validate a passive photonic-integrated neuromorphic accelerator that uses a hardware-friendly optical spectrum slicing technique through a reconfigurable silicon photonic mesh. The proposed scheme acts as an analogue convolutional engine, enabling information preprocessing in the optical domain, dimensionality reduction and extraction of spatio-temporal features. Numerical results demonstrate that utilizing only 7 passive photonic nodes, critical modules of a digital convolutional neural network can be replaced. As a result, a 98.6% accuracy on the MNIST dataset was achieved, with a power consumption reduction of at least 26% compared to digital CNNs. Experimental results confirm these findings, achieving 97.7% accuracy with only 3 passive nodes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06434v1-abstract-full').style.display = 'none'; document.getElementById('2405.06434v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures, submitted to Optica Open</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16440">arXiv:2404.16440</a> <span> [<a href="https://arxiv.org/pdf/2404.16440">pdf</a>, <a href="https://arxiv.org/format/2404.16440">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Reduced turbulent transport in the quasi-isodynamic stellarator configuration CIEMAT-QI4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Rega%C3%B1a%2C+J+M">J. M. Garc铆a-Rega帽a</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Thienpondt%2C+H">H. Thienpondt</a>, <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">J. L. Velasco</a>, <a href="/search/physics?searchtype=author&query=Capit%C3%A1n%2C+J+A">J. A. Capit谩n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16440v2-abstract-short" style="display: inline;"> CIEMAT-QI4 is a quasi-isodynamic stellarator configuration that simultaneously features very good fast-ion confinement in a broad range of $尾$ values, low neoclassical transport and bootstrap current, and ideal magnetohydrodynamic stability up to $尾=5\%$. In this paper it is shown that CIEMAT-QI4 also exhibits reduced turbulent transport. This is demonstrated through nonlinear electrostatic simula… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16440v2-abstract-full').style.display = 'inline'; document.getElementById('2404.16440v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16440v2-abstract-full" style="display: none;"> CIEMAT-QI4 is a quasi-isodynamic stellarator configuration that simultaneously features very good fast-ion confinement in a broad range of $尾$ values, low neoclassical transport and bootstrap current, and ideal magnetohydrodynamic stability up to $尾=5\%$. In this paper it is shown that CIEMAT-QI4 also exhibits reduced turbulent transport. This is demonstrated through nonlinear electrostatic simulations with the gyrokinetic code stella, including kinetic ions and electrons. The relation between reduced turbulent transport and the fact that CIEMAT-QI4 very approximately satisfies the so-called maximum-J property is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16440v2-abstract-full').style.display = 'none'; document.getElementById('2404.16440v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14569">arXiv:2404.14569</a> <span> [<a href="https://arxiv.org/pdf/2404.14569">pdf</a>, <a href="https://arxiv.org/format/2404.14569">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.ado8069">10.1126/science.ado8069 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Squeezing the quantum noise of a gravitational-wave detector below the standard quantum limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jia%2C+W">Wenxuan Jia</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+V">Victoria Xu</a>, <a href="/search/physics?searchtype=author&query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/physics?searchtype=author&query=Nakano%2C+M">Masayuki Nakano</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/physics?searchtype=author&query=Evans%2C+M">Matthew Evans</a>, <a href="/search/physics?searchtype=author&query=Mavalvala%2C+N">Nergis Mavalvala</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">Rich Abbott</a>, <a href="/search/physics?searchtype=author&query=Abouelfettouh%2C+I">Ibrahim Abouelfettouh</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R">Rana Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">Alena Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">Stephen Appert</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">Koji Arai</a>, <a href="/search/physics?searchtype=author&query=Aritomi%2C+N">Naoki Aritomi</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S">Stuart Aston</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">Matthew Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S">Stefan Ballmer</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">David Barker</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+B">Beverly Berger</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">Joseph Betzwieser</a>, <a href="/search/physics?searchtype=author&query=Bhattacharjee%2C+D">Dripta Bhattacharjee</a>, <a href="/search/physics?searchtype=author&query=Billingsley%2C+G">Garilynn Billingsley</a>, <a href="/search/physics?searchtype=author&query=Bode%2C+N">Nina Bode</a>, <a href="/search/physics?searchtype=author&query=Bonilla%2C+E">Edgard Bonilla</a>, <a href="/search/physics?searchtype=author&query=Bossilkov%2C+V">Vladimir Bossilkov</a> , et al. (146 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14569v3-abstract-short" style="display: inline;"> Precision measurements of space and time, like those made by the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental limitations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured, giving rise to an apparent limitation called the Stan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14569v3-abstract-full').style.display = 'inline'; document.getElementById('2404.14569v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14569v3-abstract-full" style="display: none;"> Precision measurements of space and time, like those made by the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental limitations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured, giving rise to an apparent limitation called the Standard Quantum Limit (SQL). Reducing quantum noise below the SQL in gravitational-wave detectors, where photons are used to continuously measure the positions of freely falling mirrors, has been an active area of research for decades. Here we show how the LIGO A+ upgrade reduced the detectors' quantum noise below the SQL by up to 3 dB while achieving a broadband sensitivity improvement, more than two decades after this possibility was first presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14569v3-abstract-full').style.display = 'none'; document.getElementById('2404.14569v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400059 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 385, 1318 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03007">arXiv:2404.03007</a> <span> [<a href="https://arxiv.org/pdf/2404.03007">pdf</a>, <a href="https://arxiv.org/format/2404.03007">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2025/01/145">10.1088/1475-7516/2025/01/145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semi-analytical covariance matrices for two-point correlation function for DESI 2024 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rashkovetskyi%2C+M">M. Rashkovetskyi</a>, <a href="/search/physics?searchtype=author&query=Forero-S%C3%A1nchez%2C+D">D. Forero-S谩nchez</a>, <a href="/search/physics?searchtype=author&query=de+Mattia%2C+A">A. de Mattia</a>, <a href="/search/physics?searchtype=author&query=Eisenstein%2C+D+J">D. J. Eisenstein</a>, <a href="/search/physics?searchtype=author&query=Padmanabhan%2C+N">N. Padmanabhan</a>, <a href="/search/physics?searchtype=author&query=Seo%2C+H">H. Seo</a>, <a href="/search/physics?searchtype=author&query=Ross%2C+A+J">A. J. Ross</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahlen%2C+S">S. Ahlen</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+O">O. Alves</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+U">U. Andrade</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/physics?searchtype=author&query=Burtin%2C+E">E. Burtin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">X. Chen</a>, <a href="/search/physics?searchtype=author&query=Claybaugh%2C+T">T. Claybaugh</a>, <a href="/search/physics?searchtype=author&query=Cole%2C+S">S. Cole</a>, <a href="/search/physics?searchtype=author&query=de+la+Macorra%2C+A">A. de la Macorra</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Z">Z. Ding</a>, <a href="/search/physics?searchtype=author&query=Doel%2C+P">P. Doel</a>, <a href="/search/physics?searchtype=author&query=Fanning%2C+K">K. Fanning</a>, <a href="/search/physics?searchtype=author&query=Ferraro%2C+S">S. Ferraro</a>, <a href="/search/physics?searchtype=author&query=Font-Ribera%2C+A">A. Font-Ribera</a>, <a href="/search/physics?searchtype=author&query=Forero-Romero%2C+J+E">J. E. Forero-Romero</a>, <a href="/search/physics?searchtype=author&query=Garcia-Quintero%2C+C">C. Garcia-Quintero</a>, <a href="/search/physics?searchtype=author&query=Gil-Mar%C3%ADn%2C+H">H. Gil-Mar铆n</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03007v5-abstract-short" style="display: inline;"> We present an optimized way of producing the fast semi-analytical covariance matrices for the Legendre moments of the two-point correlation function, taking into account survey geometry and mimicking the non-Gaussian effects. We validate the approach on simulated (mock) catalogs for different galaxy types, representative of the Dark Energy Spectroscopic Instrument (DESI) Data Release 1, used in 20… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03007v5-abstract-full').style.display = 'inline'; document.getElementById('2404.03007v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03007v5-abstract-full" style="display: none;"> We present an optimized way of producing the fast semi-analytical covariance matrices for the Legendre moments of the two-point correlation function, taking into account survey geometry and mimicking the non-Gaussian effects. We validate the approach on simulated (mock) catalogs for different galaxy types, representative of the Dark Energy Spectroscopic Instrument (DESI) Data Release 1, used in 2024 analyses. We find only a few percent differences between the mock sample covariance matrix and our results, which can be expected given the approximate nature of the mocks, although we do identify discrepancies between the shot-noise properties of the DESI fiber assignment algorithm and the faster approximation (emulator) used in the mocks. Importantly, we find a close agreement (<=8% relative differences) in the projected errorbars for distance scale parameters for the baryon acoustic oscillation measurements. This confirms our method as an attractive alternative to simulation-based covariance matrices, especially for non-standard models or galaxy sample selections, making it particularly relevant to the broad current and future analyses of DESI data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03007v5-abstract-full').style.display = 'none'; document.getElementById('2404.03007v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This DESI Publication is part of the 2024 series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 41 pages, 4 figures. Major rewrite after v2. Accepted to JCAP. Code available at https://github.com/oliverphilcox/RascalC and https://github.com/cosmodesi/RascalC-scripts/tree/DESI2024. Figure and table data available at https://zenodo.org/doi/10.5281/zenodo.10895161</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 01 (2025) 145 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.10221">arXiv:2312.10221</a> <span> [<a href="https://arxiv.org/pdf/2312.10221">pdf</a>, <a href="https://arxiv.org/format/2312.10221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Electrostatic microturbulence in W7-X: comparison of local gyrokinetic simulations with Doppler reflectometry measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gonz%C3%A1lez-Jerez%2C+A">A. Gonz谩lez-Jerez</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Rega%C3%B1a%2C+J+M">J. M. Garc铆a-Rega帽a</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Carralero%2C+D">D. Carralero</a>, <a href="/search/physics?searchtype=author&query=Estrada%2C+T">T. Estrada</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+M">M. Barnes</a>, <a href="/search/physics?searchtype=author&query=Team%2C+t+W">the W7-X Team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.10221v1-abstract-short" style="display: inline;"> The first experimental campaigns of Wendelstein 7-X (W7-X) have shown that turbulence plays a decisive role in the performance of neoclassically optimized stellarators. This stresses the importance of understanding microturbulence from the theoretical and experimental points of view. To this end, this paper addresses a comprehensive characterization of the turbulent fluctuations by means of nonlin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10221v1-abstract-full').style.display = 'inline'; document.getElementById('2312.10221v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.10221v1-abstract-full" style="display: none;"> The first experimental campaigns of Wendelstein 7-X (W7-X) have shown that turbulence plays a decisive role in the performance of neoclassically optimized stellarators. This stresses the importance of understanding microturbulence from the theoretical and experimental points of view. To this end, this paper addresses a comprehensive characterization of the turbulent fluctuations by means of nonlinear gyrokinetic simulations performed with the code stella in two W7-X scenarios. In the first part of the paper, the amplitude of the density fluctuations is calculated and compared with measurements obtained by Doppler reflectometry (DR) in the OP1 experimental campaigns. It is found that the trend of the fluctuations along the radius is explained by the access of the DR system to different regions of the turbulence wavenumber spectrum. In the second part of the article, frequency spectra of the density fluctuations and the zonal component of the turbulent flow are numerically characterized for comparisons against future experimental analyses. Both quantities feature broad frequency spectra with dominant frequencies of O(1)-O(10) kHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.10221v1-abstract-full').style.display = 'none'; document.getElementById('2312.10221v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15401">arXiv:2307.15401</a> <span> [<a href="https://arxiv.org/pdf/2307.15401">pdf</a>, <a href="https://arxiv.org/format/2307.15401">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/ITSC57777.2023.10421940">10.1109/ITSC57777.2023.10421940 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Breathing Green: Maximising Health and Environmental Benefits for Active Transportation Users Leveraging Large Scale Air Quality Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yan%2C+S">Sen Yan</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shaoshu Zhu</a>, <a href="/search/physics?searchtype=author&query=Fernandez%2C+J+B">Jaime B. Fernandez</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E+A">Eric Arazo S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+Y">Yingqi Gu</a>, <a href="/search/physics?searchtype=author&query=O%27Connor%2C+N+E">Noel E. O'Connor</a>, <a href="/search/physics?searchtype=author&query=O%27Connor%2C+D">David O'Connor</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+M">Mingming Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15401v4-abstract-short" style="display: inline;"> Pollution in urban areas can have significant adverse effects on the health and well-being of citizens, with traffic-related air pollution being a major concern in many cities. Pollutants emitted by vehicles, such as nitrogen oxides, carbon monoxide, and particulate matter, can cause respiratory and cardiovascular problems, particularly for vulnerable road users like pedestrians and cyclists. Furt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15401v4-abstract-full').style.display = 'inline'; document.getElementById('2307.15401v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15401v4-abstract-full" style="display: none;"> Pollution in urban areas can have significant adverse effects on the health and well-being of citizens, with traffic-related air pollution being a major concern in many cities. Pollutants emitted by vehicles, such as nitrogen oxides, carbon monoxide, and particulate matter, can cause respiratory and cardiovascular problems, particularly for vulnerable road users like pedestrians and cyclists. Furthermore, recent research has indicated that individuals living in more polluted areas are at a greater risk of developing chronic illnesses such as asthma, allergies, and cancer. Addressing these problems is crucial to protecting public health and maximising environmental benefits. In this project, we explore the feasibility of tackling this challenge by leveraging big data analysis and data-driven methods. Specifically, we investigate the recently released Google Air Quality dataset and devise an optimisation strategy to suggest green travel routes for different types of active transportation users in Dublin. To demonstrate our achievement, we have developed a prototype and have shown that citizens who use our model to plan their outdoor activities can benefit notably, with a significant decrease of 17.87% on average in pollutant intake, from the environmental advantages it offers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15401v4-abstract-full').style.display = 'none'; document.getElementById('2307.15401v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript has been accepted by the IEEE ITSC 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05710">arXiv:2307.05710</a> <span> [<a href="https://arxiv.org/pdf/2307.05710">pdf</a>, <a href="https://arxiv.org/format/2307.05710">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A Vacuum-Compatible Cylindrical Inertial Rotation Sensor with Picoradian Sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ross%2C+M+P">M. P. Ross</a>, <a href="/search/physics?searchtype=author&query=van+Dongen%2C+J">J. van Dongen</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Y. Huang</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+P">P. Zhou</a>, <a href="/search/physics?searchtype=author&query=Chowdhury%2C+Y">Y. Chowdhury</a>, <a href="/search/physics?searchtype=author&query=Apple%2C+S+K">S. K. Apple</a>, <a href="/search/physics?searchtype=author&query=Mow-Lowry%2C+C+M">C. M. Mow-Lowry</a>, <a href="/search/physics?searchtype=author&query=Mitchell%2C+A+L">A. L. Mitchell</a>, <a href="/search/physics?searchtype=author&query=Holland%2C+N+A">N. A. Holland</a>, <a href="/search/physics?searchtype=author&query=Lantz%2C+B">B. Lantz</a>, <a href="/search/physics?searchtype=author&query=Bonilla%2C+E">E. Bonilla</a>, <a href="/search/physics?searchtype=author&query=Engl%2C+A">A. Engl</a>, <a href="/search/physics?searchtype=author&query=Pele%2C+A">A. Pele</a>, <a href="/search/physics?searchtype=author&query=Griffith%2C+D">D. Griffith</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+E">E. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Shaw%2C+E+A">E. A. Shaw</a>, <a href="/search/physics?searchtype=author&query=Gettings%2C+C">C. Gettings</a>, <a href="/search/physics?searchtype=author&query=Gundlach%2C+J+H">J. H. Gundlach</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05710v3-abstract-short" style="display: inline;"> We describe an inertial rotation sensor with a 30-cm cylindrical proof-mass suspended from a pair of 14-$渭$m thick BeCu flexures. The angle between the proof-mass and support structure is measured with a pair of homodyne interferometers which achieve a noise level of $\sim 5\ \text{prad}/\sqrt{\text{Hz}}$. The sensor is entirely made of vacuum compatible materials and the center of mass can be adj… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05710v3-abstract-full').style.display = 'inline'; document.getElementById('2307.05710v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05710v3-abstract-full" style="display: none;"> We describe an inertial rotation sensor with a 30-cm cylindrical proof-mass suspended from a pair of 14-$渭$m thick BeCu flexures. The angle between the proof-mass and support structure is measured with a pair of homodyne interferometers which achieve a noise level of $\sim 5\ \text{prad}/\sqrt{\text{Hz}}$. The sensor is entirely made of vacuum compatible materials and the center of mass can be adjusted remotely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05710v3-abstract-full').style.display = 'none'; document.getElementById('2307.05710v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01753">arXiv:2307.01753</a> <span> [<a href="https://arxiv.org/pdf/2307.01753">pdf</a>, <a href="https://arxiv.org/format/2307.01753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae886">10.1093/mnras/stae886 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local primordial non-Gaussianity from the large-scale clustering of photometric DESI luminous red galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rezaie%2C+M">Mehdi Rezaie</a>, <a href="/search/physics?searchtype=author&query=Ross%2C+A+J">Ashley J. Ross</a>, <a href="/search/physics?searchtype=author&query=Seo%2C+H">Hee-Jong Seo</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+H">Hui Kong</a>, <a href="/search/physics?searchtype=author&query=Porredon%2C+A">Anna Porredon</a>, <a href="/search/physics?searchtype=author&query=Samushia%2C+L">Lado Samushia</a>, <a href="/search/physics?searchtype=author&query=Chaussidon%2C+E">Edmond Chaussidon</a>, <a href="/search/physics?searchtype=author&query=Krolewski%2C+A">Alex Krolewski</a>, <a href="/search/physics?searchtype=author&query=de+Mattia%2C+A">Arnaud de Mattia</a>, <a href="/search/physics?searchtype=author&query=Beutler%2C+F">Florian Beutler</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J+N">Jessica Nicole Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahlen%2C+S">Steven Ahlen</a>, <a href="/search/physics?searchtype=author&query=Alam%2C+S">Shadab Alam</a>, <a href="/search/physics?searchtype=author&query=Avila%2C+S">Santiago Avila</a>, <a href="/search/physics?searchtype=author&query=Bahr-Kalus%2C+B">Benedict Bahr-Kalus</a>, <a href="/search/physics?searchtype=author&query=Bermejo-Climent%2C+J">Jose Bermejo-Climent</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+D">David Brooks</a>, <a href="/search/physics?searchtype=author&query=Claybaugh%2C+T">Todd Claybaugh</a>, <a href="/search/physics?searchtype=author&query=Cole%2C+S">Shaun Cole</a>, <a href="/search/physics?searchtype=author&query=Dawson%2C+K">Kyle Dawson</a>, <a href="/search/physics?searchtype=author&query=de+la+Macorra%2C+A">Axel de la Macorra</a>, <a href="/search/physics?searchtype=author&query=Doel%2C+P">Peter Doel</a>, <a href="/search/physics?searchtype=author&query=Font-Ribera%2C+A">Andreu Font-Ribera</a>, <a href="/search/physics?searchtype=author&query=Forero-Romero%2C+J+E">Jaime E. Forero-Romero</a>, <a href="/search/physics?searchtype=author&query=Gontcho%2C+S+G+A">Satya Gontcho A Gontcho</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01753v3-abstract-short" style="display: inline;"> We use angular clustering of luminous red galaxies from the Dark Energy Spectroscopic Instrument (DESI) imaging surveys to constrain the local primordial non-Gaussianity parameter $\fnl$. Our sample comprises over 12 million targets, covering 14,000 square degrees of the sky, with redshifts in the range $0.2< z < 1.35$. We identify Galactic extinction, survey depth, and astronomical seeing as the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01753v3-abstract-full').style.display = 'inline'; document.getElementById('2307.01753v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01753v3-abstract-full" style="display: none;"> We use angular clustering of luminous red galaxies from the Dark Energy Spectroscopic Instrument (DESI) imaging surveys to constrain the local primordial non-Gaussianity parameter $\fnl$. Our sample comprises over 12 million targets, covering 14,000 square degrees of the sky, with redshifts in the range $0.2< z < 1.35$. We identify Galactic extinction, survey depth, and astronomical seeing as the primary sources of systematic error, and employ linear regression and artificial neural networks to alleviate non-cosmological excess clustering on large scales. Our methods are tested against simulations with and without $\fnl$ and systematics, showing superior performance of the neural network treatment. The neural network with a set of nine imaging property maps passes our systematic null test criteria, and is chosen as the fiducial treatment. Assuming the universality relation, we find $\fnl = 34^{+24(+50)}_{-44(-73)}$ at 68\%(95\%) confidence. We apply a series of robustness tests (e.g., cuts on imaging, declination, or scales used) that show consistency in the obtained constraints. We study how the regression method biases the measured angular power-spectrum and degrades the $\fnl$ constraining power. The use of the nine maps more than doubles the uncertainty compared to using only the three primary maps in the regression. Our results thus motivate the development of more efficient methods that avoid over-correction, protect large-scale clustering information, and preserve constraining power. Additionally, our results encourage further studies of $\fnl$ with DESI spectroscopic samples, where the inclusion of 3D clustering modes should help separate imaging systematics and lessen the degradation in the $\fnl$ uncertainty. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01753v3-abstract-full').style.display = 'none'; document.getElementById('2307.01753v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures, 7 tables (Appendix excluded). Published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17506">arXiv:2306.17506</a> <span> [<a href="https://arxiv.org/pdf/2306.17506">pdf</a>, <a href="https://arxiv.org/format/2306.17506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/acfe8a">10.1088/1741-4326/acfe8a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust stellarator optimization via flat mirror magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">J. L. Velasco</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Parra%2C+F+I">F. I. Parra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17506v1-abstract-short" style="display: inline;"> Stellarator magnetic configurations need to be optimized in order to meet all the required properties of a fusion reactor. In this work, it is shown that a flat-mirror quasi-isodynamic configuration (i.e. a quasi-isodynamic configuration with sufficiently small radial variation of the mirror term) can achieve small radial transport of energy and good confinement of bulk and fast ions even if it is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17506v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17506v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17506v1-abstract-full" style="display: none;"> Stellarator magnetic configurations need to be optimized in order to meet all the required properties of a fusion reactor. In this work, it is shown that a flat-mirror quasi-isodynamic configuration (i.e. a quasi-isodynamic configuration with sufficiently small radial variation of the mirror term) can achieve small radial transport of energy and good confinement of bulk and fast ions even if it is not very close to perfect omnigeneity, and for a wide range of plasma scenarios, including low $尾$ and small radial electric field. This opens the door to constructing better stellarator reactors. On the one hand, they would be easier to design, as they would be robust against error fields. On the other hand, they would be easier to operate since, both during startup and steady-state operation, they would require less auxiliary power, and the damage to plasma-facing components caused by fast ion losses would be reduced to acceptable levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17506v1-abstract-full').style.display = 'none'; document.getElementById('2306.17506v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Fusion 63 126038 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06320">arXiv:2306.06320</a> <span> [<a href="https://arxiv.org/pdf/2306.06320">pdf</a>, <a href="https://arxiv.org/format/2306.06320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2078">10.1093/mnras/stad2078 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Validation of semi-analytical, semi-empirical covariance matrices for two-point correlation function for Early DESI data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rashkovetskyi%2C+M">Michael Rashkovetskyi</a>, <a href="/search/physics?searchtype=author&query=Eisenstein%2C+D+J">Daniel J. Eisenstein</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J+N">Jessica Nicole Aguilar</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+D">David Brooks</a>, <a href="/search/physics?searchtype=author&query=Claybaugh%2C+T">Todd Claybaugh</a>, <a href="/search/physics?searchtype=author&query=Cole%2C+S">Shaun Cole</a>, <a href="/search/physics?searchtype=author&query=Dawson%2C+K">Kyle Dawson</a>, <a href="/search/physics?searchtype=author&query=de+la+Macorra%2C+A">Axel de la Macorra</a>, <a href="/search/physics?searchtype=author&query=Doel%2C+P">Peter Doel</a>, <a href="/search/physics?searchtype=author&query=Fanning%2C+K">Kevin Fanning</a>, <a href="/search/physics?searchtype=author&query=Font-Ribera%2C+A">Andreu Font-Ribera</a>, <a href="/search/physics?searchtype=author&query=Forero-Romero%2C+J+E">Jaime E. Forero-Romero</a>, <a href="/search/physics?searchtype=author&query=Gontcho%2C+S+G+A">Satya Gontcho A Gontcho</a>, <a href="/search/physics?searchtype=author&query=Hahn%2C+C">ChangHoon Hahn</a>, <a href="/search/physics?searchtype=author&query=Honscheid%2C+K">Klaus Honscheid</a>, <a href="/search/physics?searchtype=author&query=Kehoe%2C+R">Robert Kehoe</a>, <a href="/search/physics?searchtype=author&query=Kisner%2C+T">Theodore Kisner</a>, <a href="/search/physics?searchtype=author&query=Landriau%2C+M">Martin Landriau</a>, <a href="/search/physics?searchtype=author&query=Levi%2C+M">Michael Levi</a>, <a href="/search/physics?searchtype=author&query=Manera%2C+M">Marc Manera</a>, <a href="/search/physics?searchtype=author&query=Miquel%2C+R">Ramon Miquel</a>, <a href="/search/physics?searchtype=author&query=Moon%2C+J">Jeongin Moon</a>, <a href="/search/physics?searchtype=author&query=Nadathur%2C+S">Seshadri Nadathur</a>, <a href="/search/physics?searchtype=author&query=Nie%2C+J">Jundan Nie</a>, <a href="/search/physics?searchtype=author&query=Poppett%2C+C">Claire Poppett</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06320v4-abstract-short" style="display: inline;"> We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of Luminous Red Galaxies (LRG) data collected during the initial two months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple effective Zel'dovich (EZ) mock g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06320v4-abstract-full').style.display = 'inline'; document.getElementById('2306.06320v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06320v4-abstract-full" style="display: none;"> We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of Luminous Red Galaxies (LRG) data collected during the initial two months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple effective Zel'dovich (EZ) mock galaxy catalogs with the corresponding cuts applied and compare the results with the mock sample covariance to assess the accuracy and its fluctuations. We propose an extension of the previously developed formalism for catalogs processed with standard reconstruction algorithms. We consider methods for comparing covariance matrices in detail, highlighting their interpretation and statistical properties caused by sample variance, in particular, nontrivial expectation values of certain metrics even when the external covariance estimate is perfect. With improved mocks and validation techniques, we confirm a good agreement between our predictions and sample covariance. This allows one to generate covariance matrices for comparable datasets without the need to create numerous mock galaxy catalogs with matching clustering, only requiring 2PCF measurements from the data itself. The code used in this paper is publicly available at https://github.com/oliverphilcox/RascalC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06320v4-abstract-full').style.display = 'none'; document.getElementById('2306.06320v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 1 figure. Published in MNRAS. Code available at https://github.com/oliverphilcox/RascalC, table and figure data available at https://dx.doi.org/10.5281/zenodo.7750637</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 524, Issue 3, September 2023, Pages 3894-3911 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16363">arXiv:2303.16363</a> <span> [<a href="https://arxiv.org/pdf/2303.16363">pdf</a>, <a href="https://arxiv.org/format/2303.16363">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Data Driven Regional Weather Forecasting: Example using the Shallow Water Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Clark%2C+R">Randall Clark</a>, <a href="/search/physics?searchtype=author&query=Abarbanel%2C+H">Henry Abarbanel</a>, <a href="/search/physics?searchtype=author&query=Fairbanks%2C+L+C">Luke C. Fairbanks</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+R+E">Ramon E Sanchez</a>, <a href="/search/physics?searchtype=author&query=Wacharanan%2C+P">Pacharadech Wacharanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16363v1-abstract-short" style="display: inline;"> Using data alone, without knowledge of underlying physical models, nonlinear discrete time regional forecasting dynamical rules are constructed employing well tested methods from applied mathematics and nonlinear dynamics. Observations of environmental variables such as wind velocity, temperature, pressure, etc allow the development of forecasting rules that predict the future of these variables o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16363v1-abstract-full').style.display = 'inline'; document.getElementById('2303.16363v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16363v1-abstract-full" style="display: none;"> Using data alone, without knowledge of underlying physical models, nonlinear discrete time regional forecasting dynamical rules are constructed employing well tested methods from applied mathematics and nonlinear dynamics. Observations of environmental variables such as wind velocity, temperature, pressure, etc allow the development of forecasting rules that predict the future of these variables only. A regional set of observations with appropriate sensors allows one to forgo standard considerations of spatial resolution and uncertainties in the properties of detailed physical models. Present global or regional models require specification of details of physical processes globally or regionally, and the ensuing, often heavy, computational requirements provide information of the time variation of many quantities not of interest locally. In this paper we formulate the construction of data driven forecasting (DDF) models of geophysical processes and demonstrate how this works within the familiar example of a 'global' model of shallow water flow on a mid-latitude beta plane. A sub-region, where observations are made, of the global flow is selected. A discrete time dynamical forecasting system is constructed from these observations. DDF forecasting accurately predicts the future of observed variables. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16363v1-abstract-full').style.display = 'none'; document.getElementById('2303.16363v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01143">arXiv:2212.01143</a> <span> [<a href="https://arxiv.org/pdf/2212.01143">pdf</a>, <a href="https://arxiv.org/format/2212.01143">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/accd82">10.1088/1741-4326/accd82 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A quasi-isodynamic configuration with good confinement of fast ions at low plasma $尾$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">J. L. Velasco</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Mulas%2C+S">S. Mulas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01143v2-abstract-short" style="display: inline;"> A new quasi-isodynamic stellarator configuration optimized for the confinement of energetic ions at low plasma $尾$ is obtained. The numerical optimization is carried out using the STELLOPT suite of codes. New proxies to measure closeness to quasi-isodynamicity and quality of fast ion confinement have been included. The new configuration has poloidally closed contours of magnetic field strength, lo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01143v2-abstract-full').style.display = 'inline'; document.getElementById('2212.01143v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01143v2-abstract-full" style="display: none;"> A new quasi-isodynamic stellarator configuration optimized for the confinement of energetic ions at low plasma $尾$ is obtained. The numerical optimization is carried out using the STELLOPT suite of codes. New proxies to measure closeness to quasi-isodynamicity and quality of fast ion confinement have been included. The new configuration has poloidally closed contours of magnetic field strength, low magnetic shear and a rotational transform profile allowing an island divertor. It shows ideal and ballooning magnetohydrodynamic stability up to $尾= 5%$, reduced effective ripple, with $蔚_{eff} < 0.5%$ in the plasma core. Even at low $尾$, the configuration approximately satisfies the maximum-$J$ property, and the confinement of fast ions is good at $尾\sim 1.5%$ and becomes excellent at reactor values, $尾\sim 4%$. An evaluation of the $D_{31}$ neoclassical mono-energetic coefficient supports the expectation of a reduced bootstrap current for plasmas confined in quasi-isodynamic configurations. A set of filamentary coils that preserve the good confinement of fast ions in the core is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01143v2-abstract-full').style.display = 'none'; document.getElementById('2212.01143v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05467">arXiv:2210.05467</a> <span> [<a href="https://arxiv.org/pdf/2210.05467">pdf</a>, <a href="https://arxiv.org/format/2210.05467">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/acb44e">10.1088/1741-4326/acb44e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Instabilities and turbulence in stellarators from the perspective of global codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Navarro%2C+A+B">A. Ba帽贸n Navarro</a>, <a href="/search/physics?searchtype=author&query=Wilms%2C+F">F. Wilms</a>, <a href="/search/physics?searchtype=author&query=Borchardt%2C+M">M. Borchardt</a>, <a href="/search/physics?searchtype=author&query=Kleiber%2C+R">R. Kleiber</a>, <a href="/search/physics?searchtype=author&query=Jenko%2C+F">F. Jenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05467v1-abstract-short" style="display: inline;"> In this work, a comparison of the global gyrokinetic codes EUTERPE and GENE-3D in stellarator configurations of LHD and W7-X is carried out. In linear simulations with adiabatic electrons, excellent agreement is found in the mode numbers, growth rate and frequency, mode structure, and spatial localization of the most unstable mode in LHD. In W7-X, the dependence of the growth rate and frequency wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05467v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05467v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05467v1-abstract-full" style="display: none;"> In this work, a comparison of the global gyrokinetic codes EUTERPE and GENE-3D in stellarator configurations of LHD and W7-X is carried out. In linear simulations with adiabatic electrons, excellent agreement is found in the mode numbers, growth rate and frequency, mode structure, and spatial localization of the most unstable mode in LHD. In W7-X, the dependence of the growth rate and frequency with the mode number is well reproduced by both codes. The codes are also compared in linear simulations with kinetic ions and electrons in W7-X using model profiles, and reasonable agreement is found in the wavenumber of the most unstable modes. A stabilization of small-scale modes in kinetic-electron simulations with respect to the adiabatic-electron case is consistently found in both codes. Nonlinear simulations using adiabatic electrons and model profiles are also studied and the heat fluxes are compared. Very good agreement is found in the turbulent ion heat fluxes in both LHD and W7-X. Two problems that cannot be properly accounted for in local flux tube codes are studied: the localization of instabilities and turbulence over the flux surface and the influence of a background long-wavelength electric field. Good agreement between codes is found with respect to the spatial localization of instabilities and turbulence over the flux surface. The localization of saturated turbulence is found in both codes to be much smaller than that of the linear instabilities and smaller than previously reported in full-surface radially-local simulations. The influence of the electric field on the localization is also found to be smaller in the developed turbulent state than in the linear phase, and smaller than in previous works. A stabilizing effect of a constant electric field on the linearly unstable modes is found in both codes. A moderate reduction of turbulent transport by the radial electric field... <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05467v1-abstract-full').style.display = 'none'; document.getElementById('2210.05467v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06897">arXiv:2209.06897</a> <span> [<a href="https://arxiv.org/pdf/2209.06897">pdf</a>, <a href="https://arxiv.org/format/2209.06897">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3228">10.1093/mnras/stac3228 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lessons Learned from the Two Largest Galaxy Morphological Classification Catalogues built by Convolutional Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+T">Ting-Yun Cheng</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+H+D">H. Dom铆nguez S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Vega-Ferrero%2C+J">J. Vega-Ferrero</a>, <a href="/search/physics?searchtype=author&query=Conselice%2C+C+J">C. J. Conselice</a>, <a href="/search/physics?searchtype=author&query=Siudek%2C+M">M. Siudek</a>, <a href="/search/physics?searchtype=author&query=Arag%C3%B3n-Salamanca%2C+A">A. Arag贸n-Salamanca</a>, <a href="/search/physics?searchtype=author&query=Bernardi%2C+M">M. Bernardi</a>, <a href="/search/physics?searchtype=author&query=Cooke%2C+R">R. Cooke</a>, <a href="/search/physics?searchtype=author&query=Ferreira%2C+L">L. Ferreira</a>, <a href="/search/physics?searchtype=author&query=Huertas-Company%2C+M">M. Huertas-Company</a>, <a href="/search/physics?searchtype=author&query=Krywult%2C+J">J. Krywult</a>, <a href="/search/physics?searchtype=author&query=Palmese%2C+A">A. Palmese</a>, <a href="/search/physics?searchtype=author&query=Pieres%2C+A">A. Pieres</a>, <a href="/search/physics?searchtype=author&query=Malag%C3%B3n%2C+A+A+P">A. A. Plazas Malag贸n</a>, <a href="/search/physics?searchtype=author&query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/physics?searchtype=author&query=Gruen%2C+D">D. Gruen</a>, <a href="/search/physics?searchtype=author&query=Thomas%2C+D">D. Thomas</a>, <a href="/search/physics?searchtype=author&query=Bacon%2C+D">D. Bacon</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+D">D. Brooks</a>, <a href="/search/physics?searchtype=author&query=James%2C+D+J">D. J. James</a>, <a href="/search/physics?searchtype=author&query=Hollowood%2C+D+L">D. L. Hollowood</a>, <a href="/search/physics?searchtype=author&query=Friedel%2C+D">D. Friedel</a>, <a href="/search/physics?searchtype=author&query=Suchyta%2C+E">E. Suchyta</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+E">E. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Menanteau%2C+F">F. Menanteau</a> , et al. (32 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06897v1-abstract-short" style="display: inline;"> We compare the two largest galaxy morphology catalogues, which separate early and late type galaxies at intermediate redshift. The two catalogues were built by applying supervised deep learning (convolutional neural networks, CNNs) to the Dark Energy Survey data down to a magnitude limit of $\sim$21 mag. The methodologies used for the construction of the catalogues include differences such as the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06897v1-abstract-full').style.display = 'inline'; document.getElementById('2209.06897v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06897v1-abstract-full" style="display: none;"> We compare the two largest galaxy morphology catalogues, which separate early and late type galaxies at intermediate redshift. The two catalogues were built by applying supervised deep learning (convolutional neural networks, CNNs) to the Dark Energy Survey data down to a magnitude limit of $\sim$21 mag. The methodologies used for the construction of the catalogues include differences such as the cutout sizes, the labels used for training, and the input to the CNN - monochromatic images versus $gri$-band normalized images. In addition, one catalogue is trained using bright galaxies observed with DES ($i<18$), while the other is trained with bright galaxies ($r<17.5$) and `emulated' galaxies up to $r$-band magnitude $22.5$. Despite the different approaches, the agreement between the two catalogues is excellent up to $i<19$, demonstrating that CNN predictions are reliable for samples at least one magnitude fainter than the training sample limit. It also shows that morphological classifications based on monochromatic images are comparable to those based on $gri$-band images, at least in the bright regime. At fainter magnitudes, $i>19$, the overall agreement is good ($\sim$95\%), but is mostly driven by the large spiral fraction in the two catalogues. In contrast, the agreement within the elliptical population is not as good, especially at faint magnitudes. By studying the mismatched cases we are able to identify lenticular galaxies (at least up to $i<19$), which are difficult to distinguish using standard classification approaches. The synergy of both catalogues provides an unique opportunity to select a population of unusual galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06897v1-abstract-full').style.display = 'none'; document.getElementById('2209.06897v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures (1 appendix for galaxy examples including 3 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14945">arXiv:2206.14945</a> <span> [<a href="https://arxiv.org/pdf/2206.14945">pdf</a>, <a href="https://arxiv.org/format/2206.14945">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Continuously tracked, stable, large excursion trajectories of dipolar coupled nuclear spins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sahin%2C+O">Ozgur Sahin</a>, <a href="/search/physics?searchtype=author&query=Asadi%2C+H+A">Hawraa Al Asadi</a>, <a href="/search/physics?searchtype=author&query=Schindler%2C+P">Paul Schindler</a>, <a href="/search/physics?searchtype=author&query=Pillai%2C+A">Arjun Pillai</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+E">Erica Sanchez</a>, <a href="/search/physics?searchtype=author&query=Markham%2C+M">Matthew Markham</a>, <a href="/search/physics?searchtype=author&query=Elo%2C+M">Mark Elo</a>, <a href="/search/physics?searchtype=author&query=McAllister%2C+M">Maxwell McAllister</a>, <a href="/search/physics?searchtype=author&query=Druga%2C+E">Emanuel Druga</a>, <a href="/search/physics?searchtype=author&query=Fleckenstein%2C+C">Christoph Fleckenstein</a>, <a href="/search/physics?searchtype=author&query=Bukov%2C+M">Marin Bukov</a>, <a href="/search/physics?searchtype=author&query=Ajoy%2C+A">Ashok Ajoy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14945v2-abstract-short" style="display: inline;"> We report an experimental approach to excite, stabilize, and continuously track Bloch sphere orbits of dipolar-coupled nuclear spins in a solid. We demonstrate these results on a model system of hyperpolarized 13C nuclear spins in diamond. Without quantum control, inter-spin coupling leads to rapid spin decay in T2*=1.5ms. We elucidate a method to preserve trajectories for over T2'>27s at excursio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14945v2-abstract-full').style.display = 'inline'; document.getElementById('2206.14945v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14945v2-abstract-full" style="display: none;"> We report an experimental approach to excite, stabilize, and continuously track Bloch sphere orbits of dipolar-coupled nuclear spins in a solid. We demonstrate these results on a model system of hyperpolarized 13C nuclear spins in diamond. Without quantum control, inter-spin coupling leads to rapid spin decay in T2*=1.5ms. We elucidate a method to preserve trajectories for over T2'>27s at excursion solid angles up to 16 degrees, even in the presence of strong inter-spin coupling. This exploits a novel spin driving strategy that thermalizes the spins to a long-lived dipolar many-body state, while driving them in highly stable orbits. We show that motion of the spins can be quasi-continuously tracked for over 35s in three dimensions on the Bloch sphere. In this time the spins complete >68,000 closed precession orbits, demonstrating high stability and robustness against error. We experimentally probe the transient approach to such rigid motion, and thereby show the ability to engineer highly stable "designer" spin trajectories. Our results suggest new ways to stabilize and interrogate strongly-coupled quantum systems through periodic driving and portend powerful applications of rigid spin orbits in quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14945v2-abstract-full').style.display = 'none'; document.getElementById('2206.14945v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 16 figures. SI: 4 pages, 7 figures. 1 anc movie file (also available on Youtube)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14521">arXiv:2206.14521</a> <span> [<a href="https://arxiv.org/pdf/2206.14521">pdf</a>, <a href="https://arxiv.org/format/2206.14521">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11733-2">10.1140/epjc/s10052-023-11733-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=AlRashed%2C+M">M. AlRashed</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a> , et al. (1203 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14521v2-abstract-short" style="display: inline;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a char… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'inline'; document.getElementById('2206.14521v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14521v2-abstract-full" style="display: none;"> The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/$c$ charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1$\pm0.6$% and 84.1$\pm0.6$%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14521v2-abstract-full').style.display = 'none'; document.getElementById('2206.14521v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 20 figures. Accepted version. Published version available in Eur. Phys. J. C 83, 618 (2023) https://doi.org/10.1140/epjc/s10052-023-11733-2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-22-488-AD-ESH-LBNF-ND-SCD, CERN-EP-DRAFT-MISC-2022-007 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 618 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11612">arXiv:2112.11612</a> <span> [<a href="https://arxiv.org/pdf/2112.11612">pdf</a>, <a href="https://arxiv.org/format/2112.11612">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-32907-8">10.1038/s41467-022-32907-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-Field Magnetometry with Hyperpolarized Nuclear Spins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sahin%2C+O">Ozgur Sahin</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+E+d+L">Erica de Leon Sanchez</a>, <a href="/search/physics?searchtype=author&query=Conti%2C+S">Sophie Conti</a>, <a href="/search/physics?searchtype=author&query=Akkiraju%2C+A">Amala Akkiraju</a>, <a href="/search/physics?searchtype=author&query=Reshetikhin%2C+P">Paul Reshetikhin</a>, <a href="/search/physics?searchtype=author&query=Druga%2C+E">Emanuel Druga</a>, <a href="/search/physics?searchtype=author&query=Aggarwal%2C+A">Aakriti Aggarwal</a>, <a href="/search/physics?searchtype=author&query=Gilbert%2C+B">Benjamin Gilbert</a>, <a href="/search/physics?searchtype=author&query=Bhave%2C+S">Sunil Bhave</a>, <a href="/search/physics?searchtype=author&query=Ajoy%2C+A">Ashok Ajoy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11612v1-abstract-short" style="display: inline;"> Quantum sensors have attracted broad interest in the quest towards sub-micronscale NMR spectroscopy. Such sensors predominantly operate at low magnetic fields. Instead, however, for high resolution spectroscopy, the high-field regime is naturally advantageous because it allows high absolute chemical shift discrimination. Here we propose and demonstrate a high-field spin magnetometer constructed fr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11612v1-abstract-full').style.display = 'inline'; document.getElementById('2112.11612v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11612v1-abstract-full" style="display: none;"> Quantum sensors have attracted broad interest in the quest towards sub-micronscale NMR spectroscopy. Such sensors predominantly operate at low magnetic fields. Instead, however, for high resolution spectroscopy, the high-field regime is naturally advantageous because it allows high absolute chemical shift discrimination. Here we propose and demonstrate a high-field spin magnetometer constructed from an ensemble of hyperpolarized ${}^{13}C$ nuclear spins in diamond. The ${}^{13}C$ nuclei are initialized via Nitrogen Vacancy (NV) centers and protected along a transverse Bloch sphere axis for minute-long periods. When exposed to a time-varying (AC) magnetic field, they undergo secondary precessions that carry an imprint of its frequency and amplitude. The method harnesses long rotating frame ${}^{13}C$ sensor lifetimes $T_2^{\prime}{>}$20s, and their ability to be continuously interrogated. For quantum sensing at 7T and a single crystal sample, we demonstrate spectral resolution better than 100 mHz (corresponding to a frequency precision ${<}$1ppm) and single-shot sensitivity better than 70pT. We discuss the advantages of nuclear spin magnetometers over conventional NV center sensors, including deployability in randomly-oriented diamond particles and in optically scattering media. Since our technique employs densely-packed ${}^{13}C$ nuclei as sensors, it demonstrates a new approach for magnetometry in the "coupled-sensor" limit. This work points to interesting opportunities for microscale NMR chemical sensors constructed from hyperpolarized nanodiamonds and suggests applications of dynamic nuclear polarization (DNP) in quantum sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11612v1-abstract-full').style.display = 'none'; document.getElementById('2112.11612v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00277">arXiv:2110.00277</a> <span> [<a href="https://arxiv.org/pdf/2110.00277">pdf</a>, <a href="https://arxiv.org/format/2110.00277">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ac4d14">10.1088/1361-6587/ac4d14 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the role of density fluctuations in the core turbulent transport of Wendelstein 7-X </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Carralero%2C+D">D. Carralero</a>, <a href="/search/physics?searchtype=author&query=Estrada%2C+T">T. Estrada</a>, <a href="/search/physics?searchtype=author&query=Maragkoudakis%2C+E">E. Maragkoudakis</a>, <a href="/search/physics?searchtype=author&query=Windisch%2C+T">T. Windisch</a>, <a href="/search/physics?searchtype=author&query=Alonso%2C+J+A">J. A. Alonso</a>, <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">J. L. Velasco</a>, <a href="/search/physics?searchtype=author&query=Ford%2C+O">O. Ford</a>, <a href="/search/physics?searchtype=author&query=Jakubowski%2C+M">M. Jakubowski</a>, <a href="/search/physics?searchtype=author&query=Lazerson%2C+S">S. Lazerson</a>, <a href="/search/physics?searchtype=author&query=Beurskens%2C+M">M. Beurskens</a>, <a href="/search/physics?searchtype=author&query=Bozhenkov%2C+S">S. Bozhenkov</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Damm%2C+H">H. Damm</a>, <a href="/search/physics?searchtype=author&query=Fuchert%2C+G">G. Fuchert</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Rega%C3%B1a%2C+J+M">J. M. Garc铆a-Rega帽a</a>, <a href="/search/physics?searchtype=author&query=H%C3%B6fel%2C+U">U. H枚fel</a>, <a href="/search/physics?searchtype=author&query=Marushchenko%2C+N">N. Marushchenko</a>, <a href="/search/physics?searchtype=author&query=Pablant%2C+N">N. Pablant</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+H+M">H. M. Smith</a>, <a href="/search/physics?searchtype=author&query=Pasch%2C+E">E. Pasch</a>, <a href="/search/physics?searchtype=author&query=Stange%2C+T">T. Stange</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00277v1-abstract-short" style="display: inline;"> A recent characterization of core turbulence carried out with a Doppler reflectometer in the optimized stellarator Wendelstein 7-X (W7-X) found that discharges achieving high ion temperatures at the core featured an ITG-like suppression of density fluctuations driven by a reduction of the gradient ratio $畏_i = L_n/L_{T_i}$ [D. Carralero et al., Nucl. Fusion, 2021]. In order to confirm the role of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00277v1-abstract-full').style.display = 'inline'; document.getElementById('2110.00277v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00277v1-abstract-full" style="display: none;"> A recent characterization of core turbulence carried out with a Doppler reflectometer in the optimized stellarator Wendelstein 7-X (W7-X) found that discharges achieving high ion temperatures at the core featured an ITG-like suppression of density fluctuations driven by a reduction of the gradient ratio $畏_i = L_n/L_{T_i}$ [D. Carralero et al., Nucl. Fusion, 2021]. In order to confirm the role of ITG turbulence in this process, we set out to establish experimentally the relation between core density fluctuations, turbulent heat flux and global confinement. With this aim, we consider the scenarios found in the previous work and carry out power balance analysis for a number of representative ones, including some featuring high ion temperature. As well, we evaluate the global energy confinement time and discuss it in the context of the ISS04 inter-stellarator scaling. We find that, when turbulence is suppressed as a result of a reduction of $畏_i$, there is a reduction of ion turbulent transport, and global performance is improved as a result. This is consistent with ITG turbulence limiting the ion temperature at the core of W7-X. In contrast, when turbulence is reduced following a decrease in collisionality, no changes are observed in transport or confinement. This could be explained by ITG modes being combined with TEM turbulence when the later is destabilized at low collisionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00277v1-abstract-full').style.display = 'none'; document.getElementById('2110.00277v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to PPCF, 47th EPS special issue</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.08743">arXiv:2109.08743</a> <span> [<a href="https://arxiv.org/pdf/2109.08743">pdf</a>, <a href="https://arxiv.org/format/2109.08743">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.241102">10.1103/PhysRevLett.127.241102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Point Absorber Limits to Future Gravitational-Wave Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jia%2C+W">W. Jia</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+H">H. Yamamoto</a>, <a href="/search/physics?searchtype=author&query=Kuns%2C+K">K. Kuns</a>, <a href="/search/physics?searchtype=author&query=Effler%2C+A">A. Effler</a>, <a href="/search/physics?searchtype=author&query=Evans%2C+M">M. Evans</a>, <a href="/search/physics?searchtype=author&query=Fritschel%2C+P">P. Fritschel</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">S. Appert</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">K. Arai</a>, <a href="/search/physics?searchtype=author&query=Areeda%2C+J+S">J. S. Areeda</a>, <a href="/search/physics?searchtype=author&query=Asali%2C+Y">Y. Asali</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S+M">S. M. Aston</a>, <a href="/search/physics?searchtype=author&query=Austin%2C+C">C. Austin</a>, <a href="/search/physics?searchtype=author&query=Baer%2C+A+M">A. M. Baer</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">M. Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S+W">S. W. Ballmer</a>, <a href="/search/physics?searchtype=author&query=Banagiri%2C+S">S. Banagiri</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">D. Barker</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/physics?searchtype=author&query=Bartlett%2C+J">J. Bartlett</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+B+K">B. K. Berger</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">J. Betzwieser</a> , et al. (176 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.08743v1-abstract-short" style="display: inline;"> High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08743v1-abstract-full').style.display = 'inline'; document.getElementById('2109.08743v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.08743v1-abstract-full" style="display: none;"> High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically, and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in-situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational wave detectors that support high optical power, and thus reduce quantum noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.08743v1-abstract-full').style.display = 'none'; document.getElementById('2109.08743v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100331 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.15460">arXiv:2106.15460</a> <span> [<a href="https://arxiv.org/pdf/2106.15460">pdf</a>, <a href="https://arxiv.org/format/2106.15460">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.orgel.2022.106464">10.1016/j.orgel.2022.106464 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analytical Model for Gaussian Disorder Traps in Organic Thin-Film Transistor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Q">Qiusong Chen</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+J+E">Juan E. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+D">Dong Lin</a>, <a href="/search/physics?searchtype=author&query=Lei%2C+Y">Yanlian Lei</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+G">Guodong Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.15460v1-abstract-short" style="display: inline;"> Structural defects and chemical impurities exist in organic semiconductors acting as trap centers for the excited states. This work presents a novel analytical model to calculate the trapping and detrapping rates between two Gaussian density of states. Miller-Abrahams rate and Fermi-Dirac statistics are employed in this model. The introduction of effective filled and empty sites for correlated ban… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15460v1-abstract-full').style.display = 'inline'; document.getElementById('2106.15460v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.15460v1-abstract-full" style="display: none;"> Structural defects and chemical impurities exist in organic semiconductors acting as trap centers for the excited states. This work presents a novel analytical model to calculate the trapping and detrapping rates between two Gaussian density of states. Miller-Abrahams rate and Fermi-Dirac statistics are employed in this model. The introduction of effective filled and empty sites for correlated bands greatly simplifies the expression of recombination rate. A technology computer-aided design simulator was used to simulate the donor-like traps in an organic semiconductor DPP-DTT based thin-film transistor, showing good agreement with the measured transfer characteristic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.15460v1-abstract-full').style.display = 'none'; document.getElementById('2106.15460v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05697">arXiv:2106.05697</a> <span> [<a href="https://arxiv.org/pdf/2106.05697">pdf</a>, <a href="https://arxiv.org/format/2106.05697">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/ac2994">10.1088/1741-4326/ac2994 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A model for the fast evaluation of prompt losses of energetic ions in stellarators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">J. L. Velasco</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Mulas%2C+S">S. Mulas</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Parra%2C+F+I">F. I. Parra</a>, <a href="/search/physics?searchtype=author&query=Cappa%2C+%C3%81">脕. Cappa</a>, <a href="/search/physics?searchtype=author&query=team%2C+t+W">the W7-X team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05697v2-abstract-short" style="display: inline;"> A good understanding of the confinement of energetic ions in non-axisymmetric magnetic fields is key for the design of reactors based on the stellarator concept. In this work, we develop a model that, based on the radially-local bounce-averaged drift-kinetic equation, classifies orbits and succeeds in predicting configuration-dependent aspects of the prompt losses of energetic ions in stellarators… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05697v2-abstract-full').style.display = 'inline'; document.getElementById('2106.05697v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05697v2-abstract-full" style="display: none;"> A good understanding of the confinement of energetic ions in non-axisymmetric magnetic fields is key for the design of reactors based on the stellarator concept. In this work, we develop a model that, based on the radially-local bounce-averaged drift-kinetic equation, classifies orbits and succeeds in predicting configuration-dependent aspects of the prompt losses of energetic ions in stellarators. Such a model could in turn be employed in the optimization stage of the design of new devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05697v2-abstract-full').style.display = 'none'; document.getElementById('2106.05697v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05017">arXiv:2106.05017</a> <span> [<a href="https://arxiv.org/pdf/2106.05017">pdf</a>, <a href="https://arxiv.org/format/2106.05017">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/ac1d84">10.1088/1741-4326/ac1d84 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Turbulent transport of impurities in 3D devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Rega%C3%B1a%2C+J+M">J. M. Garc铆a-Rega帽a</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+M">M. Barnes</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Gonz%C3%A1lez-Jerez%2C+A">A. Gonz谩lez-Jerez</a>, <a href="/search/physics?searchtype=author&query=Thienpondt%2C+H">H. Thienpondt</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Parra%2C+F+I">F. I. Parra</a>, <a href="/search/physics?searchtype=author&query=-Onge%2C+D+S">D. St. -Onge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05017v2-abstract-short" style="display: inline;"> A large diffusive turbulent contribution to the radial impurity transport in Wendelstein 7-X (W7-X) plasmas has been experimentally inferred during the first campaigns and numerically confirmed by means of gyrokinetic simulations with the code stella. In general, the absence of strong impurity accumulation during the initial W7-X campaigns is attributed to this diffusive term. In the present work… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05017v2-abstract-full').style.display = 'inline'; document.getElementById('2106.05017v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05017v2-abstract-full" style="display: none;"> A large diffusive turbulent contribution to the radial impurity transport in Wendelstein 7-X (W7-X) plasmas has been experimentally inferred during the first campaigns and numerically confirmed by means of gyrokinetic simulations with the code stella. In general, the absence of strong impurity accumulation during the initial W7-X campaigns is attributed to this diffusive term. In the present work the diffusive contribution is also calculated in other stellarator plasmas. In particular, the diffusion (D) and convection (V) coefficients of carbon and iron impurities produced by ion-temperature-gradient (ITG) turbulence are obtained for W7-X, LHD, TJ-II and NCSX. The results show that, although the size of D and V can differ across the four devices, inward convection is found for all of them. For W7-X, TJ-II and NCSX the two coefficients are comparable and the turbulent peaking factor is surprisingly similar. In LHD, appreciably weaker diffusive and convective impurity transport and significantly larger turbulent peaking factor are predicted. All this suggests that ITG turbulence, although not strongly, would lead to negative impurity density gradients in stellarators. Then, considering mixed ITG/Trapped Electron Mode (TEM) turbulence for the specific case of W7-X, it has been quantitatively assessed to what degree pellet fueled reduced turbulence scenarios feature reduced turbulent transport of impurities as well. The results for trace iron impurities show that, although their turbulent transport is not entirely suppressed, a significant reduction of V and a stronger decrease of D are found. Although the diffusion is still above neoclassical levels, the neoclassical convection would gain under such conditions a greater specific weight on the dynamics of impurities in comparison with standard ECRH scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05017v2-abstract-full').style.display = 'none'; document.getElementById('2106.05017v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Fusion 61 116019 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.02828">arXiv:2106.02828</a> <span> [<a href="https://arxiv.org/pdf/2106.02828">pdf</a>, <a href="https://arxiv.org/format/2106.02828">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/ac2a87">10.1088/1741-4326/ac2a87 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gyrokinetic simulations in stellarators using different computational domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Rega%C3%B1a%2C+J+M">J. M. Garc铆a-Rega帽a</a>, <a href="/search/physics?searchtype=author&query=Navarro%2C+A+B">A. Ba帽贸n Navarro</a>, <a href="/search/physics?searchtype=author&query=Proll%2C+J+H+E">J. H. E. Proll</a>, <a href="/search/physics?searchtype=author&query=Moreno%2C+C+M">C. Mora Moreno</a>, <a href="/search/physics?searchtype=author&query=Gonz%C3%A1lez-Jerez%2C+A">A. Gonz谩lez-Jerez</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Kleiber%2C+R">R. Kleiber</a>, <a href="/search/physics?searchtype=author&query=Riemann%2C+J">J. Riemann</a>, <a href="/search/physics?searchtype=author&query=Smoniewski%2C+J">J. Smoniewski</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+M">M. Barnes</a>, <a href="/search/physics?searchtype=author&query=Parra%2C+F+I">F. I. Parra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.02828v1-abstract-short" style="display: inline;"> In this work, we compare gyrokinetic simulations in stellarators using different computational domains, namely, flux tube, full-flux-surface, and radially global domains. Two problems are studied: the linear relaxation of zonal flows and the linear stability of ion temperature gradient (ITG) modes. Simulations are carried out with the codes EUTERPE, GENE, GENE-3D, and stella in magnetic configurat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02828v1-abstract-full').style.display = 'inline'; document.getElementById('2106.02828v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.02828v1-abstract-full" style="display: none;"> In this work, we compare gyrokinetic simulations in stellarators using different computational domains, namely, flux tube, full-flux-surface, and radially global domains. Two problems are studied: the linear relaxation of zonal flows and the linear stability of ion temperature gradient (ITG) modes. Simulations are carried out with the codes EUTERPE, GENE, GENE-3D, and stella in magnetic configurations of LHD and W7-X using adiabatic electrons. The zonal flow relaxation properties obtained in different flux tubes are found to differ with each other and with the radially global result, except for sufficiently long flux tubes, in general. The flux tube length required for convergence is configuration-dependent. Similarly, for ITG instabilities, different flux tubes provide different results, but the discrepancy between them diminishes with increasing flux tube length. Full-flux-surface and flux tube simulations show good agreement in the calculation of the growth rate and frequency of the most unstable modes in LHD, while for W7-X differences in the growth rates are found between the flux tube and the full-flux-surface domains. Radially global simulations provide results close to the full-flux-surface ones. The radial scale of unstable ITG modes is studied in global and flux tube simulations finding that in W7-X, the radial scale of the most unstable modes depends on the binormal wavenumber, while in LHD no clear dependency is found. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02828v1-abstract-full').style.display = 'none'; document.getElementById('2106.02828v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Nuclear Fusion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.12052">arXiv:2105.12052</a> <span> [<a href="https://arxiv.org/pdf/2105.12052">pdf</a>, <a href="https://arxiv.org/format/2105.12052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.062006">10.1103/PhysRevD.104.062006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LIGOs Quantum Response to Squeezed States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=McCuller%2C+L">L. McCuller</a>, <a href="/search/physics?searchtype=author&query=Dwyer%2C+S+E">S. E. Dwyer</a>, <a href="/search/physics?searchtype=author&query=Green%2C+A+C">A. C. Green</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+H">Haocun Yu</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">L. Barsotti</a>, <a href="/search/physics?searchtype=author&query=Blair%2C+C+D">C. D. Blair</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+D+D">D. D. Brown</a>, <a href="/search/physics?searchtype=author&query=Effler%2C+A">A. Effler</a>, <a href="/search/physics?searchtype=author&query=Evans%2C+M">M. Evans</a>, <a href="/search/physics?searchtype=author&query=Fernandez-Galiana%2C+A">A. Fernandez-Galiana</a>, <a href="/search/physics?searchtype=author&query=Fritschel%2C+P">P. Fritschel</a>, <a href="/search/physics?searchtype=author&query=Frolov%2C+V+V">V. V. Frolov</a>, <a href="/search/physics?searchtype=author&query=Kijbunchoo%2C+N">N. Kijbunchoo</a>, <a href="/search/physics?searchtype=author&query=Mansell%2C+G+L">G. L. Mansell</a>, <a href="/search/physics?searchtype=author&query=Matichard%2C+F">F. Matichard</a>, <a href="/search/physics?searchtype=author&query=Mavalvala%2C+N">N. Mavalvala</a>, <a href="/search/physics?searchtype=author&query=McClelland%2C+D+E">D. E. McClelland</a>, <a href="/search/physics?searchtype=author&query=McRae%2C+T">T. McRae</a>, <a href="/search/physics?searchtype=author&query=Mullavey%2C+A">A. Mullavey</a>, <a href="/search/physics?searchtype=author&query=Sigg%2C+D">D. Sigg</a>, <a href="/search/physics?searchtype=author&query=Slagmolen%2C+B+J+J">B. J. J. Slagmolen</a>, <a href="/search/physics?searchtype=author&query=Tse%2C+M">M. Tse</a>, <a href="/search/physics?searchtype=author&query=Vo%2C+T">T. Vo</a>, <a href="/search/physics?searchtype=author&query=Ward%2C+R+L">R. L. Ward</a>, <a href="/search/physics?searchtype=author&query=Whittle%2C+C">C. Whittle</a> , et al. (172 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.12052v1-abstract-short" style="display: inline;"> Gravitational Wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to furth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.12052v1-abstract-full').style.display = 'inline'; document.getElementById('2105.12052v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.12052v1-abstract-full" style="display: none;"> Gravitational Wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further expand our gravitational view of the universe. Further reducing quantum noise will require both lowering decoherence from losses as well more sophisticated manipulations to counter the quantum back-action from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed light and the many components of km-scale interferometers. To this end, data from both LIGO observatories in observing run three are expressed using frequency-dependent metrics to analyze each detector's quantum response to squeezed states. The response metrics are derived and used to concisely describe physical mechanisms behind squeezing's simultaneous interaction with transverse-mode selective optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external squeezing, and -- for the first time -- give physical descriptions of every feature so far observed in the quantum noise of the LIGO detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.12052v1-abstract-full').style.display = 'none'; document.getElementById('2105.12052v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100050 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 062006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.05107">arXiv:2105.05107</a> <span> [<a href="https://arxiv.org/pdf/2105.05107">pdf</a>, <a href="https://arxiv.org/format/2105.05107">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/ac112f">10.1088/1741-4326/ac112f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An experimental characterization of core turbulence regimes in Wendelstein 7-X </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Carralero%2C+D">D. Carralero</a>, <a href="/search/physics?searchtype=author&query=Estrada%2C+T">T. Estrada</a>, <a href="/search/physics?searchtype=author&query=Maragkoudakis%2C+E">E. Maragkoudakis</a>, <a href="/search/physics?searchtype=author&query=Windisch%2C+T">T. Windisch</a>, <a href="/search/physics?searchtype=author&query=Alonso%2C+J+A">J. A. Alonso</a>, <a href="/search/physics?searchtype=author&query=Beurskens%2C+M">M. Beurskens</a>, <a href="/search/physics?searchtype=author&query=Bozhenkov%2C+S">S. Bozhenkov</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Damm%2C+H">H. Damm</a>, <a href="/search/physics?searchtype=author&query=Ford%2C+O">O. Ford</a>, <a href="/search/physics?searchtype=author&query=Fuchert%2C+G">G. Fuchert</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Rega%C3%B1a%2C+J+M">J. M. Garc铆a-Rega帽a</a>, <a href="/search/physics?searchtype=author&query=Pablant%2C+N">N. Pablant</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Pasch%2C+E">E. Pasch</a>, <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">J. L. Velasco</a>, <a href="/search/physics?searchtype=author&query=team%2C+t+W+7">the Wendelstein 7-X team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.05107v1-abstract-short" style="display: inline;"> First results from the optimized helias Wendelstein 7-X stellarator (W7-X) have shown that core transport is no longer mostly neoclassical, as is the case in previous kinds of stellarators. Instead, turbulent transport poses a serious limitation to the global performance of the machine. Several studies have found this particularly relevant for ion transport, with core ion temperatures becoming cla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05107v1-abstract-full').style.display = 'inline'; document.getElementById('2105.05107v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.05107v1-abstract-full" style="display: none;"> First results from the optimized helias Wendelstein 7-X stellarator (W7-X) have shown that core transport is no longer mostly neoclassical, as is the case in previous kinds of stellarators. Instead, turbulent transport poses a serious limitation to the global performance of the machine. Several studies have found this particularly relevant for ion transport, with core ion temperatures becoming clamped at relatively low values of $T_{i} \simeq 1.7$ keV, except in the few scenarios in which turbulence can be suppressed. In order to understand turbulent mechanisms at play, it is important to have a clear understanding of the parametric dependencies of turbulent fluctuations, and the relation between them and turbulent transport. In this work we use Doppler reflectometry measurements carried out during a number of relevant operational scenarios to provide a systematic characterization of ion-scale ($k_\perp蟻_i\simeq 1$) density fluctuations in the core of W7-X. Then, we study the relation between fluctuation amplitude and plasma profiles and show how distinct regimes can be defined for the former, depending on normalized gradients $a/L_{ne}$ and $a/L_{Ti}$. Furthermore, we discuss the importance of other potentially relevant parameters such as $T_e/T_i$, $E_r$ or collisionality. Comparing the different regimes, we find that turbulence amplitude depends generally on the gradient ratio $畏_i=L_{ne}/L_{Ti}$, as would be expected for ITG modes, with the exception of a range of discharges, for which turbulence suppression may be better explained by an ITG to TEM transition triggered by a drop in collisionality. Finally, we show a number of scenarios under which $T_{i,core} > 1.7$ keV is achieved and how core fluctuations are suppressed in all of them, thus providing experimental evidence of microturbulence being the main responsible for the limited ion confinement in W7-X. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05107v1-abstract-full').style.display = 'none'; document.getElementById('2105.05107v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript submitted to Nuclear Fusion in May 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05828">arXiv:2101.05828</a> <span> [<a href="https://arxiv.org/pdf/2101.05828">pdf</a>, <a href="https://arxiv.org/format/2101.05828">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/AO.419689">10.1364/AO.419689 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Point absorbers in Advanced LIGO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brooks%2C+A+F">Aidan F. Brooks</a>, <a href="/search/physics?searchtype=author&query=Vajente%2C+G">Gabriele Vajente</a>, <a href="/search/physics?searchtype=author&query=Yamamoto%2C+H">Hiro Yamamoto</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">Rich Abbott</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">Carl Adams</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R+X">Rana X. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">Alena Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">Stephen Appert</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">Koji Arai</a>, <a href="/search/physics?searchtype=author&query=Areeda%2C+J+S">Joseph S. Areeda</a>, <a href="/search/physics?searchtype=author&query=Asali%2C+Y">Yasmeen Asali</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S+M">Stuart M. Aston</a>, <a href="/search/physics?searchtype=author&query=Austin%2C+C">Corey Austin</a>, <a href="/search/physics?searchtype=author&query=Baer%2C+A+M">Anne M. Baer</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">Matthew Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S+W">Stefan W. Ballmer</a>, <a href="/search/physics?searchtype=author&query=Banagiri%2C+S">Sharan Banagiri</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">David Barker</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/physics?searchtype=author&query=Bartlett%2C+J">Jeffrey Bartlett</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+B+K">Beverly K. Berger</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">Joseph Betzwieser</a>, <a href="/search/physics?searchtype=author&query=Bhattacharjee%2C+D">Dripta Bhattacharjee</a>, <a href="/search/physics?searchtype=author&query=Billingsley%2C+G">Garilynn Billingsley</a>, <a href="/search/physics?searchtype=author&query=Biscans%2C+S">Sebastien Biscans</a> , et al. (176 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05828v2-abstract-short" style="display: inline;"> Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nano-meter scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduces the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback contro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05828v2-abstract-full').style.display = 'inline'; document.getElementById('2101.05828v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05828v2-abstract-full" style="display: none;"> Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nano-meter scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduces the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power build-up in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and hence, limit GW sensitivity, but suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05828v2-abstract-full').style.display = 'none'; document.getElementById('2101.05828v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 16 figures. -V2: typographical errors in equations B9 and B10 were corrected (stray exponent of "h" was removed). Caption of Figure 9 was corrected to indicate that 40mW was used for absorption in the model, not 10mW as incorrectly indicated in V1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Report-no: P1900287 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05076">arXiv:2101.05076</a> <span> [<a href="https://arxiv.org/pdf/2101.05076">pdf</a>, <a href="https://arxiv.org/format/2101.05076">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.064071">10.1103/PhysRevApplied.15.064071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&query=Cavanna%2C+F">F. Cavanna</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05076v3-abstract-short" style="display: inline;"> For a large liquid argon time projection chamber (LArTPC) operating on or near the Earth's surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconst… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05076v3-abstract-full').style.display = 'inline'; document.getElementById('2101.05076v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05076v3-abstract-full" style="display: none;"> For a large liquid argon time projection chamber (LArTPC) operating on or near the Earth's surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconstruction for LArTPCs. From an initial 1:20,000 neutrino to cosmic-ray background ratio, we demonstrate these tools on data from the MicroBooNE experiment and create a high performance generic neutrino event selection with a cosmic contamination of 14.9\% (9.7\%) for a visible energy region greater than O(200)~MeV. The neutrino interaction selection efficiency is 80.4\% and 87.6\% for inclusive $谓_渭$ charged-current and $谓_e$ charged-current interactions, respectively. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earth's surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05076v3-abstract-full').style.display = 'none'; document.getElementById('2101.05076v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 064071 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14324">arXiv:2012.14324</a> <span> [<a href="https://arxiv.org/pdf/2012.14324">pdf</a>, <a href="https://arxiv.org/format/2012.14324">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/04/P04004">10.1088/1748-0221/16/04/P04004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Atmospheric Muon Rate with the MicroBooNE Liquid Argon TPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&query=Carr%2C+R">R. Carr</a>, <a href="/search/physics?searchtype=author&query=Fernandez%2C+R+C">R. Castillo Fernandez</a> , et al. (165 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14324v2-abstract-short" style="display: inline;"> MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout detectors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14324v2-abstract-full').style.display = 'inline'; document.getElementById('2012.14324v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14324v2-abstract-full" style="display: none;"> MicroBooNE is a near-surface liquid argon (LAr) time projection chamber (TPC) located at Fermilab. We measure the characterisation of muons originating from cosmic interactions in the atmosphere using both the charge collection and light readout detectors. The data is compared with the CORSIKA cosmic-ray simulation. Good agreement is found between the observation, simulation and previous results. Furthermore, the angular resolution of the reconstructed muons inside the TPC is studied in simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14324v2-abstract-full').style.display = 'none'; document.getElementById('2012.14324v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-626-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MicroBooNE et al 2021 JINST 16 P04004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12213">arXiv:2012.12213</a> <span> [<a href="https://arxiv.org/pdf/2012.12213">pdf</a>, <a href="https://arxiv.org/ps/2012.12213">ps</a>, <a href="https://arxiv.org/format/2012.12213">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0038841">10.1063/5.0038841 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of local and global gyrokinetic calculations of collisionless zonal flow damping in quasi-symmetric stellarators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Smoniewski%2C+J">J. Smoniewski</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Pueschel%2C+M+J">M. J. Pueschel</a>, <a href="/search/physics?searchtype=author&query=Talmadge%2C+J+N">J. N. Talmadge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12213v2-abstract-short" style="display: inline;"> The linear collisionless damping of zonal flows is calculated for quasi-symmetric stellarator equilibria in flux-tube, flux-surface, and full-volume geometry. Equilibria are studied from the quasi-helical symmetry configuration of the Helically Symmetric eXperiment (HSX), a broken symmetry configuration of HSX, and the quasi-axial symmetry geometry of the National Compact Stellarator eXperiment (N… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12213v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12213v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12213v2-abstract-full" style="display: none;"> The linear collisionless damping of zonal flows is calculated for quasi-symmetric stellarator equilibria in flux-tube, flux-surface, and full-volume geometry. Equilibria are studied from the quasi-helical symmetry configuration of the Helically Symmetric eXperiment (HSX), a broken symmetry configuration of HSX, and the quasi-axial symmetry geometry of the National Compact Stellarator eXperiment (NCSX). Zonal flow oscillations and long-time damping affect the zonal flow evolution, and the zonal flow residual goes to zero for small radial wavenumber. The oscillation frequency and damping rate depend on the bounce-averaged radial particle drift in accordance with theory. While each flux tube on a flux surface is unique, several different flux tubes in HSX or NCSX can reproduce the zonal flow damping from a flux-surface calculation given an adequate parallel extent. The flux-surface or flux-tube calculations can accurately reproduce the full-volume long-time residual for moderate $k_x$, but the oscillation and damping time scales are longer in local representations, particularly for small $k_x$ approaching the system size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12213v2-abstract-full').style.display = 'none'; document.getElementById('2012.12213v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The following article has been accepted by Physics of Plasmas. After it is published, it will be found at https://aip.scitation.org/journal/php. 33 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07928">arXiv:2012.07928</a> <span> [<a href="https://arxiv.org/pdf/2012.07928">pdf</a>, <a href="https://arxiv.org/format/2012.07928">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.064071">10.1103/PhysRevApplied.15.064071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-performance Generic Neutrino Detection in a LArTPC near the Earth's Surface with the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&query=Cavanna%2C+F">F. Cavanna</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07928v3-abstract-short" style="display: inline;"> Large Liquid Argon Time Projection Chambers (LArTPCs) are being increasingly adopted in neutrino oscillation experiments because of their superb imaging capabilities through the combination of both tracking and calorimetry in a fully active volume. Active LArTPC neutrino detectors at or near the Earth's surface, such as the MicroBooNE experiment, present a unique analysis challenge because of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07928v3-abstract-full').style.display = 'inline'; document.getElementById('2012.07928v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07928v3-abstract-full" style="display: none;"> Large Liquid Argon Time Projection Chambers (LArTPCs) are being increasingly adopted in neutrino oscillation experiments because of their superb imaging capabilities through the combination of both tracking and calorimetry in a fully active volume. Active LArTPC neutrino detectors at or near the Earth's surface, such as the MicroBooNE experiment, present a unique analysis challenge because of the large flux of cosmic-ray muons and the slow drift of ionization electrons. We present a novel Wire-Cell-based high-performance generic neutrino-detection technique implemented in MicroBooNE. The cosmic-ray background is reduced by a factor of 1.4$\times10^{5}$ resulting in a 9.7\% cosmic contamination in the selected neutrino candidate events, for visible energies greater than 200~MeV, while the neutrino signal efficiency is retained at 88.4\% for $谓_渭$ charged-current interactions in the fiducial volume in the same energy region. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earth's surface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07928v3-abstract-full').style.display = 'none'; document.getElementById('2012.07928v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Expanded into a long paper and published in Phys. Rev. Applied 15, 064071 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.01375">arXiv:2011.01375</a> <span> [<a href="https://arxiv.org/pdf/2011.01375">pdf</a>, <a href="https://arxiv.org/format/2011.01375">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/06/P06043">10.1088/1748-0221/16/06/P06043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino Event Selection in the MicroBooNE Liquid Argon Time Projection Chamber using Wire-Cell 3-D Imaging, Clustering, and Charge-Light Matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&query=Cavanna%2C+F">F. Cavanna</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.01375v4-abstract-short" style="display: inline;"> An accurate and efficient event reconstruction is required to realize the full scientific capability of liquid argon time projection chambers (LArTPCs). The current and future neutrino experiments that rely on massive LArTPCs create a need for new ideas and reconstruction approaches. Wire-Cell, proposed in recent years, is a novel tomographic event reconstruction method for LArTPCs. The Wire-Cell… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01375v4-abstract-full').style.display = 'inline'; document.getElementById('2011.01375v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.01375v4-abstract-full" style="display: none;"> An accurate and efficient event reconstruction is required to realize the full scientific capability of liquid argon time projection chambers (LArTPCs). The current and future neutrino experiments that rely on massive LArTPCs create a need for new ideas and reconstruction approaches. Wire-Cell, proposed in recent years, is a novel tomographic event reconstruction method for LArTPCs. The Wire-Cell 3D imaging approach capitalizes on charge, sparsity, time, and geometry information to reconstruct a topology-agnostic 3D image of the ionization electrons prior to pattern recognition. A second novel method, the many-to-many charge-light matching, then pairs the TPC charge activity to the detected scintillation light signal, thus enabling a powerful rejection of cosmic-ray muons in the MicroBooNE detector. A robust processing of the scintillation light signal and an appropriate clustering of the reconstructed 3D image are fundamental to this technique. In this paper, we describe the principles and algorithms of these techniques and their successful application in the MicroBooNE experiment. A quantitative evaluation of the performance of these techniques is presented. Using these techniques, a 95% efficient pre-selection of neutrino charged-current events is achieved with a 30-fold reduction of non-beam-coincident cosmic-ray muons, and about 80\% of the selected neutrino charged-current events are reconstructed with at least 70% completeness and 80% purity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.01375v4-abstract-full').style.display = 'none'; document.getElementById('2011.01375v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-578-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P06043 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02390">arXiv:2010.02390</a> <span> [<a href="https://arxiv.org/pdf/2010.02390">pdf</a>, <a href="https://arxiv.org/format/2010.02390">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.112013">10.1103/PhysRevD.102.112013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Differential Cross Sections for $谓_渭$-Ar Charged-Current Interactions with Protons and no Pions in the Final State with the MicroBooNE Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&query=Cavanna%2C+F">F. Cavanna</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02390v1-abstract-short" style="display: inline;"> We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0$蟺$Np). This is the first differential cross section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02390v1-abstract-full').style.display = 'inline'; document.getElementById('2010.02390v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02390v1-abstract-full" style="display: none;"> We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0$蟺$Np). This is the first differential cross section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected from a total of approximately $1.6 \times 10^{20}$ protons-on-target, we measure the muon neutrino cross section for the CC0$蟺$Np interaction channel in argon at MicroBooNE in the Booster Neutrino Beam which has a mean energy of around 800 MeV. We present the results from a data sample with estimated efficiency of 29\% and purity of 76\% as differential cross sections in five reconstructed variables: the muon momentum and polar angle, the leading proton momentum and polar angle, and the muon-proton opening angle. We include smearing matrices that can be used to "forward-fold" theoretical predictions for comparison with these data. We compare the measured differential cross sections to a number of recent theory predictions demonstrating largely good agreement with this first-ever data set on argon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02390v1-abstract-full').style.display = 'none'; document.getElementById('2010.02390v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 43 figures, 1 table and supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-505-AD-ND-SCD-TD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 112013 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.13761">arXiv:2008.13761</a> <span> [<a href="https://arxiv.org/pdf/2008.13761">pdf</a>, <a href="https://arxiv.org/format/2008.13761">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/02/P02008">10.1088/1748-0221/16/02/P02008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Continuous Readout Stream of the MicroBooNE Liquid Argon Time Projection Chamber for Detection of Supernova Burst Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&query=Cavanna%2C+F">F. Cavanna</a> , et al. (163 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.13761v2-abstract-short" style="display: inline;"> The MicroBooNE continuous readout stream is a parallel readout of the MicroBooNE liquid argon time projection chamber (LArTPC) which enables detection of non-beam events such as those from a supernova neutrino burst. The low energies of the supernova neutrinos and the intense cosmic-ray background flux due to the near-surface detector location makes triggering on these events very challenging. Ins… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13761v2-abstract-full').style.display = 'inline'; document.getElementById('2008.13761v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.13761v2-abstract-full" style="display: none;"> The MicroBooNE continuous readout stream is a parallel readout of the MicroBooNE liquid argon time projection chamber (LArTPC) which enables detection of non-beam events such as those from a supernova neutrino burst. The low energies of the supernova neutrinos and the intense cosmic-ray background flux due to the near-surface detector location makes triggering on these events very challenging. Instead, MicroBooNE relies on a delayed trigger generated by SNEWS (the Supernova Early Warning System) for detecting supernova neutrinos. The continuous readout of the LArTPC generates large data volumes, and requires the use of real-time compression algorithms (zero suppression and Huffman compression) implemented in an FPGA (field-programmable gate array) in the readout electronics. We present the results of the optimization of the data reduction algorithms, and their operational performance. To demonstrate the capability of the continuous stream to detect low-energy electrons, a sample of Michel electrons from stopping cosmic-ray muons is reconstructed and compared to a similar sample from the lossless triggered readout stream. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.13761v2-abstract-full').style.display = 'none'; document.getElementById('2008.13761v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-446-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P02008 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09765">arXiv:2008.09765</a> <span> [<a href="https://arxiv.org/pdf/2008.09765">pdf</a>, <a href="https://arxiv.org/format/2008.09765">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/12/P12037">10.1088/1748-0221/15/12/P12037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Space Charge Effects in the MicroBooNE LArTPC Using Cosmic Muons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=An%2C+R">R. An</a>, <a href="/search/physics?searchtype=author&query=Anthony%2C+J">J. Anthony</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+C">C. Barnes</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bathe-Peters%2C+L">L. Bathe-Peters</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+L">L. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caratelli%2C+D">D. Caratelli</a>, <a href="/search/physics?searchtype=author&query=Terrazas%2C+I+C">I. Caro Terrazas</a>, <a href="/search/physics?searchtype=author&query=Fernandez%2C+R+C">R. Castillo Fernandez</a>, <a href="/search/physics?searchtype=author&query=Cavanna%2C+F">F. Cavanna</a> , et al. (162 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09765v2-abstract-short" style="display: inline;"> Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacemen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09765v2-abstract-full').style.display = 'inline'; document.getElementById('2008.09765v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09765v2-abstract-full" style="display: none;"> Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors ("spatial distortions"), as well as to variations in the amount of electron-ion recombination experienced by ionization throughout the volume of the TPC. We present techniques that can be used to measure and correct for space charge effects in large LArTPCs by making use of cosmic muons, including the use of track pairs to unambiguously pin down spatial distortions in three dimensions. The performance of these calibration techniques are studied using both Monte Carlo simulation and MicroBooNE data, utilizing a UV laser system as a means to estimate the systematic bias associated with the calibration methodology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09765v2-abstract-full').style.display = 'none'; document.getElementById('2008.09765v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 25 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.07662">arXiv:2008.07662</a> <span> [<a href="https://arxiv.org/pdf/2008.07662">pdf</a>, <a href="https://arxiv.org/ps/2008.07662">ps</a>, <a href="https://arxiv.org/format/2008.07662">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377820001543">10.1017/S0022377820001543 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Turbulent impurity transport simulations in Wendelstein 7-X plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Rega%C3%B1a%2C+J+M">J. M. Garc铆a-Rega帽a</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+M">M. Barnes</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+I">I. Calvo</a>, <a href="/search/physics?searchtype=author&query=Parra%2C+F+I">F. I. Parra</a>, <a href="/search/physics?searchtype=author&query=Alcus%C3%B3n%2C+J">J. Alcus贸n</a>, <a href="/search/physics?searchtype=author&query=Davies%2C+R">R. Davies</a>, <a href="/search/physics?searchtype=author&query=Gonz%C3%A1lez-Jerez%2C+A">A. Gonz谩lez-Jerez</a>, <a href="/search/physics?searchtype=author&query=Moll%C3%A9n%2C+A">A. Moll茅n</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Velasco%2C+J+L">J. L. Velasco</a>, <a href="/search/physics?searchtype=author&query=Zocco%2C+A">A. Zocco</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.07662v1-abstract-short" style="display: inline;"> A study of turbulent impurity transport by means of quasilinear and nonlinear gyrokinetic simulations is presented for Wendelstein 7-X (W7-X). The calculations have been carried out with the recently developed gyrokinetic code stella. Different impurity species are considered in the presence of various types of background instabilities: ITG, TEM and ETG modes for the quasilinear part of the work;… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07662v1-abstract-full').style.display = 'inline'; document.getElementById('2008.07662v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.07662v1-abstract-full" style="display: none;"> A study of turbulent impurity transport by means of quasilinear and nonlinear gyrokinetic simulations is presented for Wendelstein 7-X (W7-X). The calculations have been carried out with the recently developed gyrokinetic code stella. Different impurity species are considered in the presence of various types of background instabilities: ITG, TEM and ETG modes for the quasilinear part of the work; ITG and TEM for the nonlinear results. While the quasilinear approach allows one to draw qualitative conclusions about the sign or relative importance of the various contributions to the flux, the nonlinear simulations quantitatively determine the size of the turbulent flux and check the extent to which the quasilinear conclusions hold. Although the bulk of the nonlinear simulations are performed at trace impurity concentration, nonlinear simulations are also carried out at realistic effective charge values, in order to know to what degree the conclusions based on the simulations performed for trace impurities can be extrapolated to realistic impurity concentrations. The presented results conclude that the turbulent radial impurity transport in W7-X is mainly dominated by ordinary diffusion, which is close to that measured during the recent W7-X experimental campaigns. It is also confirmed that thermo-diffusion adds a weak inward flux contribution and that, in the absence of impurity temperature and density gradients, ITG- and TEM-driven turbulence push the impurities inwards and outwards, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.07662v1-abstract-full').style.display = 'none'; document.getElementById('2008.07662v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Plasma Phys. 87 (2021) 855870103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06647">arXiv:2008.06647</a> <span> [<a href="https://arxiv.org/pdf/2008.06647">pdf</a>, <a href="https://arxiv.org/format/2008.06647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09166-w">10.1140/epjc/s10052-021-09166-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+collaboration"> DUNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a> , et al. (949 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06647v3-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The gen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06647v3-abstract-full').style.display = 'inline'; document.getElementById('2008.06647v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06647v3-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the $谓_e$ spectral parameters of the neutrino burst will be considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06647v3-abstract-full').style.display = 'none'; document.getElementById('2008.06647v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures; paper based on DUNE Technical Design Report. arXiv admin note: substantial text overlap with arXiv:2002.03005</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-380-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.12847">arXiv:2007.12847</a> <span> [<a href="https://arxiv.org/pdf/2007.12847">pdf</a>, <a href="https://arxiv.org/format/2007.12847">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/abbc8c">10.1088/1361-6382/abbc8c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving the Robustness of the Advanced LIGO Detectors to Earthquakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schwartz%2C+E">Eyal Schwartz</a>, <a href="/search/physics?searchtype=author&query=Pele%2C+A">A Pele</a>, <a href="/search/physics?searchtype=author&query=Warner%2C+J">J Warner</a>, <a href="/search/physics?searchtype=author&query=Lantz%2C+B">B Lantz</a>, <a href="/search/physics?searchtype=author&query=Betzwieser%2C+J">J Betzwieser</a>, <a href="/search/physics?searchtype=author&query=Dooley%2C+K+L">K L Dooley</a>, <a href="/search/physics?searchtype=author&query=Biscans%2C+S">S Biscans</a>, <a href="/search/physics?searchtype=author&query=Coughlin%2C+M">M Coughlin</a>, <a href="/search/physics?searchtype=author&query=Mukund%2C+N">N Mukund</a>, <a href="/search/physics?searchtype=author&query=Abbott%2C+R">R Abbott</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">C Adams</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R+X">R X Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ananyeva%2C+A">A Ananyeva</a>, <a href="/search/physics?searchtype=author&query=Appert%2C+S">S Appert</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+K">K Arai</a>, <a href="/search/physics?searchtype=author&query=Areeda%2C+J+S">J S Areeda</a>, <a href="/search/physics?searchtype=author&query=Asali%2C+Y">Y Asali</a>, <a href="/search/physics?searchtype=author&query=Aston%2C+S+M">S M Aston</a>, <a href="/search/physics?searchtype=author&query=Austin%2C+C">C Austin</a>, <a href="/search/physics?searchtype=author&query=Baer%2C+A+M">A M Baer</a>, <a href="/search/physics?searchtype=author&query=Ball%2C+M">M Ball</a>, <a href="/search/physics?searchtype=author&query=Ballmer%2C+S+W">S W Ballmer</a>, <a href="/search/physics?searchtype=author&query=Banagiri%2C+S">S Banagiri</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+D">D Barker</a>, <a href="/search/physics?searchtype=author&query=Barsotti%2C+L">L Barsotti</a> , et al. (174 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.12847v1-abstract-short" style="display: inline;"> Teleseismic, or distant, earthquakes regularly disrupt the operation of ground--based gravitational wave detectors such as Advanced LIGO. Here, we present \emph{EQ mode}, a new global control scheme, consisting of an automated sequence of optimized control filters that reduces and coordinates the motion of the seismic isolation platforms during earthquakes. This, in turn, suppresses the differenti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12847v1-abstract-full').style.display = 'inline'; document.getElementById('2007.12847v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.12847v1-abstract-full" style="display: none;"> Teleseismic, or distant, earthquakes regularly disrupt the operation of ground--based gravitational wave detectors such as Advanced LIGO. Here, we present \emph{EQ mode}, a new global control scheme, consisting of an automated sequence of optimized control filters that reduces and coordinates the motion of the seismic isolation platforms during earthquakes. This, in turn, suppresses the differential motion of the interferometer arms with respect to one another, resulting in a reduction of DARM signal at frequencies below 100\,mHz. Our method greatly improved the interferometers' capability to remain operational during earthquakes, with ground velocities up to 3.9\,$渭\mbox{m/s}$ rms in the beam direction, setting a new record for both detectors. This sets a milestone in seismic controls of the Advanced LIGO detectors' ability to manage high ground motion induced by earthquakes, opening a path for further robust operation in other extreme environmental conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12847v1-abstract-full').style.display = 'none'; document.getElementById('2007.12847v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.06722">arXiv:2007.06722</a> <span> [<a href="https://arxiv.org/pdf/2007.06722">pdf</a>, <a href="https://arxiv.org/format/2007.06722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/12/P12004">10.1088/1748-0221/15/12/P12004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adrien%2C+P">P. Adrien</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">A. Ariga</a> , et al. (970 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.06722v4-abstract-short" style="display: inline;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of $7.2\times 6.0\times 6.9$ m$^3$. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV$/c$ to 7 GeV/$c$. Beam line instrumentation provides accurate momentum measurements… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06722v4-abstract-full').style.display = 'inline'; document.getElementById('2007.06722v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.06722v4-abstract-full" style="display: none;"> The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of $7.2\times 6.0\times 6.9$ m$^3$. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV$/c$ to 7 GeV/$c$. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, $dE/dx$ calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.06722v4-abstract-full').style.display = 'none'; document.getElementById('2007.06722v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">93 pages, 70 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-059-AD-ESH-LBNF-ND-SCD, CERN-EP-2020-125 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 15 (2020) P12004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15052">arXiv:2006.15052</a> <span> [<a href="https://arxiv.org/pdf/2006.15052">pdf</a>, <a href="https://arxiv.org/format/2006.15052">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.092003">10.1103/PhysRevD.102.092003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino interaction classification with a convolutional neural network in the DUNE far detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Alion%2C+T">T. Alion</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/physics?searchtype=author&query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/physics?searchtype=author&query=Andringa%2C+S">S. Andringa</a>, <a href="/search/physics?searchtype=author&query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Antusch%2C+S">S. Antusch</a>, <a href="/search/physics?searchtype=author&query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/physics?searchtype=author&query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a> , et al. (951 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15052v2-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure $CP$-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15052v2-abstract-full').style.display = 'inline'; document.getElementById('2006.15052v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15052v2-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure $CP$-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to $CP$-violating effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15052v2-abstract-full').style.display = 'none'; document.getElementById('2006.15052v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 092003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.14605">arXiv:2004.14605</a> <span> [<a href="https://arxiv.org/pdf/2004.14605">pdf</a>, <a href="https://arxiv.org/format/2004.14605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377820000926">10.1017/S0022377820000926 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear gyrokinetic PIC simulations in stellarators with the code EUTERPE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+E">E. S谩nchez</a>, <a href="/search/physics?searchtype=author&query=Mishchenko%2C+A">A. Mishchenko</a>, <a href="/search/physics?searchtype=author&query=Garc%C3%ADa-Rega%C3%B1a%2C+J+M">J. M. Garc铆a-Rega帽a</a>, <a href="/search/physics?searchtype=author&query=Kleiber%2C+R">R. Kleiber</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+A">A. Bottino</a>, <a href="/search/physics?searchtype=author&query=Villard%2C+L">L. Villard</a>, <a href="/search/physics?searchtype=author&query=team%2C+t+W">the W7-X team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.14605v1-abstract-short" style="display: inline;"> In this work, the first nonlinear particle-in-cell simulations carried out in a stellarator with the global gyrokinetic code EUTERPE using realistic plasma parameters are reported. Several studies are conducted with the aim of enabling reliable nonlinear simulations in stellarators with this code. First, EUTERPE is benchmarked against ORB5 in both linear and nonlinear settings in a tokamak configu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.14605v1-abstract-full').style.display = 'inline'; document.getElementById('2004.14605v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.14605v1-abstract-full" style="display: none;"> In this work, the first nonlinear particle-in-cell simulations carried out in a stellarator with the global gyrokinetic code EUTERPE using realistic plasma parameters are reported. Several studies are conducted with the aim of enabling reliable nonlinear simulations in stellarators with this code. First, EUTERPE is benchmarked against ORB5 in both linear and nonlinear settings in a tokamak configuration. Next, the use of noise control and stabilization tools, a Krook-type collision operator, markers weight smoothing and heating sources is investigated. It is studied in detail how these tools influence the linear growth rate of instabilities in both tokamak and stellarator geometries and their influence on the linear zonal flow evolution in a stellarator. Then, it is studied how these tools allow improving the quality of the results in a set of nonlinear simulations of electrostatic turbulence in a stellarator configuration. Finally, these tools are applied to a W7-X magnetic configuration using experimental plasma parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.14605v1-abstract-full').style.display = 'none'; document.getElementById('2004.14605v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Sanchez%2C+E&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Sanchez%2C+E&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Sanchez%2C+E&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>