CINXE.COM

Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst - Peeref

<!DOCTYPE html> <html lang="zh-cn"> <head> <link rel="dns-prefetch" href="//www.peeref.com"> <link rel="dns-prefetch" href="//peeref-open.s3.amazonaws.com"> <link rel="dns-prefetch" href="//www.w3.org"> <link rel="dns-prefetch" href="//doi.org"> <link rel="dns-prefetch" href="//www.linkedin.com"> <link rel="dns-prefetch" href="//twitter.com"> <link rel="dns-prefetch" href="//api.qrserver.com"> <link rel="dns-prefetch" href="//www.facebook.com"> <link rel="dns-prefetch" href="//www.googletagmanager.com"> <meta charset="utf-8"> <title>Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst - Peeref</title> <meta http-equiv="X-UA-Compatible" content="IE=edge, chrome=1"> <meta name="keywords" content="文章、文章评论、研究论文"> <meta name="description" content=""> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" /> <meta property="og:locale" content="zh"> <meta property="og:title" content="Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst - Peeref"> <meta property="og:description" content=""> <meta property="og:url" content="https://www.peeref.com/zh/works/4795046"> <meta property="og:site_name" content="Peeref"> <meta property="og:image" content=""> <meta name="csrf-token" content="625dm9f2CY4K0mo4xbA67tYWx3kh10zEMZiQGlFd"> <meta http-equiv="Cache-Control" content="no-transform" /> <meta http-equiv="Cache-Control" content="no-siteapp" /> <link rel="shortcut icon" href="https://www.peeref.com/favicon.ico"> <link href="https://peeref-open.s3.amazonaws.com/css/frameworks.f126215c4d22b328086c.css" rel="stylesheet"> <link href="https://peeref-open.s3.amazonaws.com/css/app.6d48e91925108fb40388.css" rel="stylesheet"> <script> if(window.self !== window.top) { location.href = '/static/html/forbidden.html'; } </script> <script> window.Config = { token: "625dm9f2CY4K0mo4xbA67tYWx3kh10zEMZiQGlFd", url: "https://www.peeref.com/zh/works/4795046", lang: "zh", prefix: "/zh", isMobile: "", assetDomain: "https://peeref-open.s3.amazonaws.com/" }; </script> </head> <body> <div id="app"> <div class="bg-warning position-relative w-100 text-center py-2" style="top: 0; z-index: 100000;"> <strong class="text-danger">Peeref no longer supports Internet Explorer. </strong> <a href="/static/html/browser.html">Please upgrade your browser.</a> </div> <nav id="nav" class="navbar navbar-default navbar-static-top navbar-inverse"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#app-navbar-collapse" aria-expanded="false"> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand p-3" href="https://www.peeref.com/zh"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="108px" viewBox="0 0 1052 302"><g fill="#FFF"><path d="M227.6,92.9c5.2,13,17.9,22.1,32.7,22.1c19.4,0,35.2-15.8,35.2-35.2s-15.8-35.2-35.2-35.2 c-19.4,0-35.2,15.8-35.2,35.2c0,2.3,0.2,4.5,0.6,6.7l-98.1,24.6L154,59c3.2,1.1,6.6,1.8,10.1,1.8c16.4,0,29.7-13.3,29.7-29.7c0-16.4-13.3-29.7-29.7-29.7s-29.7,13.3-29.7,29.7c0,10.5,5.4,19.7,13.6,25l-27.9,55.1L90.5,94.2c1.4-3.2,2.1-6.8,2.1-10.6 c0-14.9-12.1-27-27-27c-14.9,0-27,12.1-27,27c0,14.9,12.1,27,27,27c8.8,0,16.6-4.2,21.6-10.7l28.5,16.3l-62.2,49.9 c-5.6-5.3-13.1-8.6-21.4-8.6c-17.1,0-30.9,13.8-30.9,30.9c0,17.1,13.8,30.9,30.9,30.9S63,205.4,63,188.4c0-6.3-1.9-12.3-5.2-17.2 l60-48.1l-7.5,106.4c-19.1,0.6-34.4,16.2-34.4,35.5c0,19.6,15.9,35.5,35.5,35.5c19.6,0,35.5-15.9,35.5-35.5c0-17.7-13-32.4-30-35.1 l7.6-107.5l87,67.9c-4.1,6.1-6.4,13.5-6.4,21.4c0,21.4,17.4,38.8,38.8,38.8s38.8-17.4,38.8-38.8c0-21.4-17.4-38.8-38.8-38.8 c-11.1,0-21.2,4.7-28.2,12.2L129,117.6L227.6,92.9z"></path></g><g fill="#FFF"><path d="M368.2,232.3V70.6h52.4c19.9,0,32.8,0.8,38.8,2.4c9.3,2.4,17,7.7,23.3,15.8c6.2,8.1,9.4,18.6,9.4,31.5c0,9.9-1.8,18.3-5.4,25c-3.6,6.8-8.2,12.1-13.7,15.9c-5.6,3.9-11.2,6.4-16.9,7.7c-7.8,1.5-19.1,2.3-33.9,2.3h-21.3v61H368.2z M400.8,98v45.9h17.9c12.9,0,21.5-0.8,25.8-2.5c4.3-1.7,7.7-4.3,10.2-7.9c2.5-3.6,3.7-7.8,3.7-12.6c0-5.9-1.7-10.7-5.2-14.6c-3.5-3.8-7.8-6.2-13.1-7.2c-3.9-0.7-11.7-1.1-23.5-1.1H400.8z"></path><path d="M586.5,195l30.9,5.2c-4,11.3-10.2,19.9-18.8,25.9c-8.6,5.9-19.3,8.9-32.2,8.9c-20.4,0-35.4-6.7-45.2-20c-7.7-10.7-11.6-24.1-11.6-40.4c0-19.4,5.1-34.6,15.2-45.6c10.1-11,23-16.5,38.5-16.5c17.4,0,31.2,5.8,41.3,17.3c10.1,11.5,14.9,29.1,14.5,52.9h-77.7c0.2,9.2,2.7,16.3,7.5,21.5c4.8,5.1,10.7,7.7,17.9,7.7c4.9,0,8.9-1.3,12.2-4S584.8,200.9,586.5,195z M588.3,163.7c-0.2-9-2.5-15.8-6.9-20.5c-4.4-4.7-9.8-7-16.1-7c-6.8,0-12.4,2.5-16.8,7.4c-4.4,4.9-6.6,11.6-6.5,20.1H588.3z"></path><path d="M712.2,195l30.9,5.2c-4,11.3-10.2,19.9-18.8,25.9c-8.6,5.9-19.3,8.9-32.2,8.9c-20.4,0-35.4-6.7-45.2-20c-7.7-10.7-11.6-24.1-11.6-40.4c0-19.4,5.1-34.6,15.2-45.6c10.1-11,23-16.5,38.5-16.5c17.4,0,31.2,5.8,41.3,17.3c10.1,11.5,14.9,29.1,14.5,52.9H667c0.2,9.2,2.7,16.3,7.5,21.5c4.8,5.1,10.7,7.7,17.9,7.7c4.9,0,8.9-1.3,12.2-4S710.5,200.9,712.2,195z M713.9,163.7c-0.2-9-2.5-15.8-6.9-20.5c-4.4-4.7-9.8-7-16.1-7c-6.8,0-12.4,2.5-16.8,7.4c-4.4,4.9-6.6,11.6-6.5,20.1H713.9z"></path><path d="M799.6,232.3h-31V115.2h28.8v16.7c4.9-7.9,9.4-13.1,13.3-15.6c3.9-2.5,8.4-3.8,13.4-3.8c7.1,0,13.9,1.9,20.4,5.8l-9.6,27c-5.2-3.4-10.1-5.1-14.6-5.1c-4.3,0-8,1.2-11,3.6c-3,2.4-5.4,6.7-7.1,13c-1.7,6.3-2.6,19.3-2.6,39.3V232.3z"></path><path d="M925.7,195l30.9,5.2c-4,11.3-10.2,19.9-18.8,25.9c-8.6,5.9-19.3,8.9-32.2,8.9c-20.4,0-35.4-6.7-45.2-20c-7.7-10.7-11.6-24.1-11.6-40.4c0-19.4,5.1-34.6,15.2-45.6c10.1-11,23-16.5,38.5-16.5c17.4,0,31.2,5.8,41.3,17.3c10.1,11.5,14.9,29.1,14.5,52.9h-77.7c0.2,9.2,2.7,16.3,7.5,21.5c4.8,5.1,10.7,7.7,17.9,7.7c4.9,0,8.9-1.3,12.2-4S924,200.9,925.7,195z M927.5,163.7c-0.2-9-2.5-15.8-6.9-20.5c-4.4-4.7-9.8-7-16.1-7c-6.8,0-12.4,2.5-16.8,7.4c-4.4,4.9-6.6,11.6-6.5,20.1H927.5z"></path><path d="M970,115.2h17.2v-8.8c0-9.9,1-17.2,3.1-22.1c2.1-4.9,6-8.8,11.6-11.9c5.6-3.1,12.7-4.6,21.3-4.6c8.8,0,17.5,1.3,25.9,4l-4.2,21.6c-4.9-1.2-9.7-1.8-14.2-1.8c-4.5,0-7.7,1-9.7,3.1c-1.9,2.1-2.9,6.1-2.9,12.1v8.3h23.2v24.4h-23.2v92.8h-31v-92.8H970V115.2z"></path></g></svg> </a> </div> <ul class="collapse navbar-collapse mb-0" id="app-navbar-collapse"> <ul class="nav navbar-nav"> <li><a href="https://www.peeref.com/zh/works">论文</a></li> <li><a href="https://www.peeref.com/zh/posters">海报</a></li> <li><a href="https://www.peeref.com/zh/webinars">研讨会</a></li> <li><a href="https://www.peeref.com/zh/funding">基金</a></li> <li class="dropdown dropdown-hover"> <a href="javascript:">讨论 <span class="caret"></span></a> <ul class="dropdown-menu dropdown-menu-inverse"> <li><a href="https://www.peeref.com/zh/hubs">讨论圈</a></li> <li><a href="https://www.peeref.com/zh/questions">问题</a></li> </ul> </li> <li class="dropdown dropdown-hover"> <a href="javascript:">出版工具 <span class="caret"></span></a> <ul class="dropdown-menu dropdown-menu-inverse"> <li><a href="https://www.peeref.com/zh/journals">期刊</a></li> <li><a href="https://www.peeref.com/zh/connect">科研社交</a></li> <li><a href="https://www.peeref.com/zh/e-collections">资讯集成</a></li> <li><a href="https://www.peeref.com/zh/reviewer">审稿人</a></li> </ul> </li> </ul> <ul id="auth-menu" class="nav navbar-nav navbar-right" style="display: inline-flex; align-items: center;"> <li> <a href="https://www.peeref.com/zh/login"> <strong>我的账户</strong> </a> </li> </ul> <ul class="nav navbar-nav navbar-right" style="display: inline-flex; align-items: center; margin-left: 20px;"> <li id="language"> <a href="javascript:"> <div class="current"> <i class="ivu-icon ivu-icon-md-globe"></i> 中文 </div> </a> <div class="selection"> <a rel="alternate" hreflang="en" href="https://www.peeref.com/works/4795046" > <span>English</span> </a> <a rel="alternate" hreflang="zh" href="https://www.peeref.com/zh/works/4795046" > <span>中文</span> </a> </div> </li> </ul> </ul> </div> </nav> <main> <div id="top-info-banner" class="container-fluid mb-0"> <div class="container"> <div class="d-flex align-items-center" style="margin-top: 30px;"> <span class="text-white"> <strong class="f18">☆</strong> <span class="f16">4.6</span> </span> <span class="mx-3"></span> <span class="tag">Article</span> </div> <h1 class="title title-for-article"> Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst </h1> <div class="help-links-left"> <p class="pub-info"> JOURNAL OF MATERIALS CHEMISTRY A (2017) </p> </div> </div> </div> <div id="article-sticky-navbar"> <div class="container"> <div class="d-flex justify-content-between flex-wrap flex-md-nowrap"> <div class="d-flex align-items-center mb-2"> <ul class="nav nav-underline f16 font-weight-bold"> <li class="active"> <a href="javascript:;"> 总览 </a> </li> <li class=""> <a href="https://www.peeref.com/zh/works/4795046/comments"> 撰写评论 </a> </li> </ul> </div> <div class="d-flex align-items-center justify-content-md-end flex-wrap flex-md-nowrap"> <div class="mr-3 mt-3 mt-md-0 flex-shrink-0"> <a href="https://doi.org/10.1039/c7ta01013c" target="_blank" class="btn btn-warning btn-circle"> <i class="ivu-icon ivu-icon-md-copy f16"></i> <strong>获取全文</strong> </a> </div> <div class="mr-3 mt-3 mt-md-0 flex-shrink-0"> <a href="https://www.peeref.com/zh/works/4795046/add-to-collection" class="btn btn-success btn-circle"> <strong>添加到收藏夹</strong> </a> </div> <div class="mr-3 mt-3 mt-md-0 flex-shrink-0"> <button class="btn btn-success btn-circle" id="reading-btn"> <strong>更多阅读</strong> </button> </div> <div class="flex-shrink-0 mt-3 mt-md-0"> <div class="dropdown"> <button class="font-weight-bold f24 ivu-btn ivu-btn-default ivu-btn-circle ivu-btn-large ivu-btn-icon-only dropdown-toggle" data-toggle="dropdown"> <i class="ivu-icon ivu-icon-md-more"></i> </button> <ul class="dropdown-menu dropdown-menu-right"> <li> <a href="#" data-target="#export-citation" data-toggle="modal"> <i class="ivu-icon ivu-icon-md-quote text-muted mr-1"></i> 导出引文 </a> </li> <li> <a href="#" data-target="#share-paper" data-toggle="modal"> <i class="ivu-icon ivu-icon-md-share-alt text-muted mr-1"></i> 分享论文 </a> </li> <li> <a href="https://www.peeref.com/zh/works/4795046/references"> <i class="ivu-icon ivu-icon-md-list text-muted mr-1"></i> 参考文献 </a> </li> </ul> </div> </div> </div> </div> </div> </div> <div id="article-details" class="container"> <div class="col-md-4 px-0 pr-md-3"> <div class="f15 panel-box rounded shadow-none border"> <div class="mb-3 pb-3"> <h4 class="mt-0">期刊</h4> <div class="f16"> <h5 class="title f16"> <a href="https://www.peeref.com/zh/journals/9524/journal-of-materials-chemistry-a"> JOURNAL OF MATERIALS CHEMISTRY A </a> </h5> <span> 卷 5, 期 16, 页码 7416-7422 </span> </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">出版社</h4> <div class="f16"> <h5 class="title f16 text-primary"> ROYAL SOC CHEMISTRY </h5> <div class="my-2"> DOI: 10.1039/c7ta01013c </div> </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">关键词</h4> <div class="f16"> - </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">类别</h4> <div class="f16"> <span class="d-block"> <a href="https://www.peeref.com/zh/works/list?category=Chemistry%2C+Physical" target="_blank" class="text-dark btn btn-link p-0 text-left"> Chemistry, Physical </a> </span> <span class="d-block"> <a href="https://www.peeref.com/zh/works/list?category=Energy+%26+Fuels" target="_blank" class="text-dark btn btn-link p-0 text-left"> Energy &amp; Fuels </a> </span> <span class="d-block"> <a href="https://www.peeref.com/zh/works/list?category=Materials+Science%2C+Multidisciplinary" target="_blank" class="text-dark btn btn-link p-0 text-left"> Materials Science, Multidisciplinary </a> </span> </div> </div> <div class="mb-3 pb-3"> <h4 class="mt-0">资金</h4> <div class="f16"> <ol class=""> <li>National Key Basic Research Program of China [2013CB934104]</li> <li>Natural Science Foundation of China [21322311, 21473038]</li> <li>Science and Technology Commission of Shanghai Municipality [14JC1490500]</li> <li>Pujiang Program of Shanghai Municipality [15PJ1400600]</li> <li>Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning</li> <li>Collaborative Innovation Center of Chemistry for Energy Materials [2011-iChem]</li> <li>International Scientific Partnership Program ISPP at King Saud University through ISPP [0017]</li> </ol> </div> </div> </div> <div class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 text-center">向作者/读者索取更多资源</h4> <div class="requests"> <div class="requests-item"> <div class="icon"> <img src="https://peeref-open.s3.amazonaws.com/images/file.png" alt=""> </div> <h4>Protocol</h4> <p> <a href="https://www.peeref.com/zh/works/4795046/resource" class="btn btn-outline-primary btn-sm"> 社区支持 </a> </p> </div> <div class="requests-item"> <div class="icon"> <img src="https://peeref-open.s3.amazonaws.com/images/experiment.png" alt=""> </div> <h4>Reagent</h4> <p> <a href="https://www.peeref.com/zh/works/4795046/resource" class="btn btn-outline-primary btn-sm"> 社区支持 </a> </p> </div> </div> </div> </div> <div class="col-md-8 px-0 pl-md-3"> <div id="article-summary-panel" class="mb-4"> <ul class="nav nav-tabs" style="list-style: none; padding-left: 0;"> <li class="active"> <a href="#raw_abstract" data-toggle="tab" class="abstract-tab mx-0 f16 text-dark"> <strong>摘要</strong> </a> </li> </ul> <div class="tab-content border border-top-0"> <div id="raw_abstract" class="tab-pane active"> <div class="abstract-panel panel-box mb-0 rounded shadow-none"> <div class="f16">Cubic cobalt oxide nanocrystals (NCs) with bridged-multi-octahedral structures were prepared by a cooperative mechanism between the particle-based oriented attachment and the atom-mediated crystal growth. The obtained bridged-multi-octahedral NCs show high crystallinity and Co-terminated {111} facets enclosing the octahedrons. Compared to conventional cobalt oxide prepared hydrothermally, this bridged-multi-octahedral NC structure exhibits enhanced electrocatalytic performances towards oxygen evolution and reduction reactions, which is attributed to their preferential exposure of the Co-terminated {111} facets with a low Co coordination number, high electrochemically active surface area, and the reduced charge transfer resistance from the catalytic active sites to the underlying electrode, thus suggesting the tuning of crystal growth for the electrocatalytic enhancement.</div> </div> </div> </div> </div> <div class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 heading-count">作者</h4> <div class="mb-3"> <article-authors tid="4795046" list="[{&quot;name&quot;:&quot; Yiligum&quot;,&quot;sequence&quot;:1},{&quot;name&quot;:&quot;Zhijie Wang&quot;,&quot;sequence&quot;:2},{&quot;name&quot;:&quot;Wenhao Xu&quot;,&quot;sequence&quot;:3},{&quot;name&quot;:&quot;Yuhang Wang&quot;,&quot;sequence&quot;:4},{&quot;name&quot;:&quot;Xiaoqi Cui&quot;,&quot;sequence&quot;:5},{&quot;name&quot;:&quot;Abdullah M. Al-Enizi&quot;,&quot;sequence&quot;:6},{&quot;name&quot;:&quot;Yun Tang&quot;,&quot;sequence&quot;:7},{&quot;name&quot;:&quot;Gengfeng Zheng&quot;,&quot;sequence&quot;:8}]" verified="[]" page="work" ></article-authors> </div> <div class="alert alert-warning mb-0"> <h5 class="mt-0 bg-warning text-dark px-3 rounded d-inline-block"> 我是这篇论文的作者 </h5> <div class="font-weight-bold f13"> 点击您的名字以认领此论文并将其添加到您的个人资料中。 </div> </div> </div> <div class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 heading-count">评论</h4> <div class="d-flex flex-wrap flex-md-nowrap"> <div class="flex-grow-1"> <h4 class="f16"> 主要评分 <a href="javascript:;" data-toggle="tooltip" data-placement="right" title="主要评分表示论文的整体质量水平。"> <i class="ivu-icon ivu-icon-md-help-circle f18 ml-2"></i> </a> </h4> <div class="d-flex flex-wrap flex-md-nowrap align-items-center alert mb-0"> <div class="d-flex align-items-center justify-content-center"> <Rate disabled allow-half value="4.6" style="font-size: 28px;"></Rate> <strong class="f20 m-3" style="color: #f5a623;">4.6</strong> </div> <div class="text-muted mx-4"> 评分不足 </div> </div> <h4 class="f16"> 次要评分 <a href="javascript:;" data-toggle="tooltip" data-placement="right" title="次要评分独立反映论文的优点或缺点。"> <i class="ivu-icon ivu-icon-md-help-circle f18 ml-2"></i> </a> </h4> <div class="d-flex flex-wrap flex-md-nowrap alert"> <div class="d-flex flex-shrink-0 align-items-center mr-3"> <h5 class="my-0">新颖性</h5> <strong class="mx-4">-</strong> </div> <div class="d-flex flex-shrink-0 align-items-center mr-3"> <h5 class="my-0">重要性</h5> <strong class="mx-4">-</strong> </div> <div class="d-flex flex-shrink-0 align-items-center mr-3"> <h5 class="my-0">科学严谨性</h5> <strong class="mx-4">-</strong> </div> </div> </div> <div class="flex-shrink-0"> <div class="border bg-light py-2 px-4"> <h5 class="mb-1">评价这篇论文</h5> <Rate class="f24" @on-change="function(value){ location.href='https://www.peeref.com/zh/works/4795046/comments?rating='+value }"></Rate> </div> </div> </div> </div> <div id="collection" class="f15 panel-box rounded shadow-none border"> <h4 class="mt-0 heading-count">推荐</h4> <div class="my-3"> <ul class="nav nav-pills border-bottom pb-3" style="list-style: none; padding-left: 0;"> <li class="active"> <a href="#articles_from_related" data-toggle="tab" class="mx-0 f15"> <strong>相关</strong> </a> </li> <li class=""> <a href="#articles_from_authors" data-toggle="tab" class="mx-0 f15"> <strong>来自同一作者</strong> </a> </li> <li class=""> <a href="#articles_from_journal" data-toggle="tab" class="mx-0 f15"> <strong>来自同一期刊</strong> </a> </li> </ul> <div class="tab-content"> <div id="articles_from_related" class="tab-pane active"> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/34932297" class="text-dark hover-underline">Construction of three-dimensional cobalt sulfide/multi-heteroatom co-doped porous carbon as an efficient trifunctional electrocatalyst</a> </h4> <p class="text-ellipsis-2">Jiakun Zhang, Bolan Cui, Shang Jiang, Haitao Liu, Meiling Dou</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/6037.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Exploring cost-effective non-precious metal electrocatalysts is vital for large-scale clean energy conversion devices. In this study, a three-dimensional cobalt sulfide/multi-heteroatom co-doped carbon composite was synthesized and exhibited outstanding electrocatalytic performance for the oxygen reduction, oxygen evolution, and hydrogen evolution reactions. The optimized material showed comparable or even superior performance to commercial counterparts and also demonstrated excellent anti-poisoning capability. The results provide an effective strategy for the design and synthesis of efficient and durable cobalt chalcogenide-based electrocatalysts. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">NANOSCALE</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/34932297/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/20830590" class="text-dark hover-underline">Poly-active centric Co3O4-CeO2/Co-N-C composites as superior oxygen reduction catalysts for Zn-air batteries</a> </h4> <p class="text-ellipsis-2">Guanzhou Li, Yangchang Mu, Zongxiong Huang, Naiguang Wang, Yuanye Chen, Jun Liu, Guoping Liu, Oi Lun Li, Minhua Shao, Zhicong Shi</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/10207.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A poly-active centric Co3O4-CeO2/Co-N-C catalyst with high oxygen reduction reaction (ORR) catalytic activity was prepared and showed excellent performance in Zinc-air batteries, attributed to the synergistic effect among Co3O4, CeO2, and Co-N-C, outstanding electrical conductivity, and large surface area. This catalyst has great potential in the application of metal-air batteries due to its high catalytic activity, environmental friendliness, and facile synthesis process. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SCIENCE CHINA-MATERIALS</span> (2021) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/20830590/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Energy &amp; Fuels </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26516009" class="text-dark hover-underline">MOF-derived Co/Co3O4/C hollow structural composite as an efficient electrocatalyst for hydrogen evolution reaction</a> </h4> <p class="text-ellipsis-2">Ha Huu Do, Mahider Asmare Tekalgne, Vy Anh Tran, Quyet Van Le, Jin Hyuk Cho, Sang Hyun Ahn, Soo Young Kim</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/2950.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study demonstrates that a hollow-structured Co/Co3O4/C composite can serve as an efficient catalyst for hydrogen production, exhibiting low overpotential and moderate Tafel slope. The composite also shows remarkable durability due to the synergy of Co, Co3O4, and the hollow morphological architecture. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">FUEL</span> (2022) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26516009/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Inorganic &amp; Nuclear </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26472354" class="text-dark hover-underline">Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: A critical review</a> </h4> <p class="text-ellipsis-2">Asim Shahzad, Faiza Zulfiqar, Muhammad Arif Nadeem</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/2055.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This review focuses on cobalt-based bimetallic ZIFs and discusses their advantages, synthesis and modification methods, derived compounds, synergistic effects, and activity of electrocatalysts during OER. Cobalt-based bimetallic ZIFs exhibit better water oxidation performance and stability compared to monometallic ZIFs. The application of bimetallic ZIFs and their derivatives in oxygen evolution reaction has sparked significant interest in this field. Finally, the future prospective of bimetallic ZIF-derived carbon-based materials for OER electrocatalysis is briefly discussed. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">COORDINATION CHEMISTRY REVIEWS</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26472354/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/22548757" class="text-dark hover-underline">Co-Co3O4 nanostructure with nitrogen-doped carbon as bifunctional catalyst for oxygen electrocatalysis</a> </h4> <p class="text-ellipsis-2">Anil U. Kumar, Asis Sethi, Reen Maria Lawrence, Vishal M. Dhavale</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/3771.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A Co-Co3O4/NC catalyst with high stability and low overvoltage has been synthesized and shown to be efficient for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline conditions, potentially leading to energy savings compared to traditional Pt/C and IrO2 catalysts. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">INTERNATIONAL JOURNAL OF HYDROGEN ENERGY</span> (2021) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/22548757/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Engineering, Environmental </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26450425" class="text-dark hover-underline">Synergistic effect of trimetallic-based CuxMox/Co1_xO nanoparticles/reduced graphene oxide as high efficient electrocatalyst for oxygen evolution reaction</a> </h4> <p class="text-ellipsis-2">Theophile Niyitanga, Haekyoung Kim</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1639.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> In this study, a trimetallic CuxMox/Co1_xO nanoparticle catalyst grown on reduced graphene oxide was fabricated for the oxygen evolution reaction (OER). The catalyst exhibited outstanding electrochemical activity for the OER due to the conductive network provided by reduced graphene oxide and the additional active sites from the Cu and Mo dopants. This study provides a novel strategy for the development of efficient OER electrocatalysts for large-scale applications. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEMICAL ENGINEERING JOURNAL</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26450425/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82081629" class="text-dark hover-underline">Superior Catalytic Performance and Methanol Tolerance of Co@Mesoporous Graphene Nanocomposites toward Oxygen Reduction Reaction</a> </h4> <p class="text-ellipsis-2">Fangying Yuan, Wei Chen, Lining Fan, Xiaoxiao Guo, Hui Zheng, Peng Zheng, Liang Zheng, Yang Zhang</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/10318.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study fabricated cobalt-loaded mesoporous graphene nanocomposites using vacuum heat treatment technology. The catalytic performance of these nanocomposites is superior to that of Pt-C, with better stability and methanol tolerance. The excellent catalytic performance of the nanocomposites is attributed to the four-electron transfer within the material and the interface interaction between Co nanoparticles and Gs. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEMISTRYSELECT</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82081629/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82991253" class="text-dark hover-underline">Waxberry-like hydrophilic Co-doped ZnFe2O4 as bifunctional electrocatalysts for water splitting</a> </h4> <p class="text-ellipsis-2">Xiao Lyu, Yongbin Hu, Yun Han, Xuning Li, Qi Yu, Bo Wen, Xin Zhao, Qinglong Dong, Aijun Du</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/4339.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study synthesized waxberry-like hydrophilic Co-doped ZnFe2O4 electrocatalysts, which exhibited excellent catalytic activity in water splitting. The active sites were enhanced by electronic structure tuning and modified super-hydrophilic characteristics. The electrocatalyst performed well in both OER and HER, outperforming commercial IrO2||Pt/C. This work demonstrates a facile and effective approach to synthesize spinel TMOs as excellent bifunctional electrocatalysts for water splitting. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF COLLOID AND INTERFACE SCIENCE</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82991253/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Biochemistry &amp; Molecular Biology </span> </div> <h4> <a href="https://www.peeref.com/zh/works/27534431" class="text-dark hover-underline">Mesoporous Surface-Sulfurized Fe-Co3O4 Nanosheets Integrated with N/S Co-Doped Graphene as a Robust Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions</a> </h4> <p class="text-ellipsis-2">Lingxue Meng, Yige Wang, Wenwei Liu, Chunlei Fan, Haoxiong Nan, Jiang Wang, Jia Yu</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/5991.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Mesoporous surface-sulfurized Fe-Co3O4 nanosheets integrated with N/S co-doped graphene (Fe-Co3O4-S/NSG) were designed as composite bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). The Fe-Co3O4-S/NSG catalyst exhibited superior activity in alkaline electrolytes, delivering an OER overpotential of 289 mV at 10 mA cm(-2) and an ORR half-wave potential of 0.77 V vs. RHE. It also demonstrated excellent stability at 4.2 mA cm(-2) for 12 hours without significant attenuation. This study provides new insights for the design of efficient OER/ORR bifunctional electrocatalysts. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">MOLECULES</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/27534431/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/28474155" class="text-dark hover-underline">NaCl sealing Strategy-Assisted synthesis CoO-Co heterojunctions as efficient oxygen electrocatalysts for Zn air batteries</a> </h4> <p class="text-ellipsis-2">Lechen Diao, Wei Zhou, Biao Zhang, Chunsheng Shi, Zhichao Miao, Jin Zhou, Chunnian He</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/4339.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Developing highly efficient, low-cost, and stable bifunctional oxygen electrocatalysts is crucial for the widespread adoption of rechargeable Zn-air batteries. The combination of zero-dimensional metal nanoparticles with two-dimensional metal oxide nanosheets offers a promising solution to balance performance and cost. However, the construction of these composites remains challenging, and their interaction mechanisms require further investigation. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF COLLOID AND INTERFACE SCIENCE</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/28474155/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/21283977" class="text-dark hover-underline">V Bridged Co-O to Eliminate Charge Transfer Barriers and Drive Lattice Oxygen Oxidation during Water-Splitting</a> </h4> <p class="text-ellipsis-2">Zhongtao Li, Jun Yang, Zhou Chen, Caiyan Zheng, Liang Qin Wei, Yingchun Yan, Han Hu, Mingbo Wu, Zhenpeng Hu</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/208.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A Co-V oxide structure has been successfully established to eliminate the energy barrier caused by sluggish charge carrier transfer mobility during the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), and to stimulate the OER through a more effective lattice oxygen oxidation mechanism. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ADVANCED FUNCTIONAL MATERIALS</span> (2021) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/21283977/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83321963" class="text-dark hover-underline">Spinel oxide modified FeCoNi alloy composites prepared with one-step pyrolytic reduction as bifunctional catalyst for ORR/OER</a> </h4> <p class="text-ellipsis-2">Qing Chen, Mao Peng, Qiongyu Liu, Ming Wan, Maocong Hu, Zhenhua Yao</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/4110.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper presents a noble metal-free composite consisting of nano-FeCoNi alloy and spinel oxide, which was successfully prepared through a simple one-step pyrolytic reduction strategy. The composite shows excellent electrocatalytic performance in ORR and OER, and has bifunctional catalytic potential. The study also found that the reduction temperature has an impact on the structure and performance of the composite. In addition, DFT calculations further confirmed the synergistic effect between FeCoNi and MnAl2O4. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF ALLOYS AND COMPOUNDS</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83321963/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Applied </span> </div> <h4> <a href="https://www.peeref.com/zh/works/19583179" class="text-dark hover-underline">Incorporating inactive Nd2O3 into Co/N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable Zn-air battery</a> </h4> <p class="text-ellipsis-2">Jiabin Tan, Xiaobo He, Fengxiang Yin, Biaohua Chen, Guoru Li, Xin Liang, Huaqiang Yin</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/1555.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> The Co-Nd2O3/N-doped carbon electrocatalyst showed excellent bifunctional oxygen electrocatalytic activity, with high OER/ORR activity, capacity, and cycling stability. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CATALYSIS TODAY</span> (2021) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/19583179/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/34038416" class="text-dark hover-underline">Setaria viridis-like cobalt complex derived Co/ N-doped carbon nanotubes as efficient ORR/OER electrocatalysts for long-life rechargeable Zn-air batteries</a> </h4> <p class="text-ellipsis-2">Shicheng Yi, Rong Xin, Xuxin Li, Yuying Sun, Mei Yang, Bei Liu, Hongbiao Chen, Huaming Li, Yijiang Liu</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/6037.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study presents a simple method to synthesize cobalt and nitrogen codoped carbon nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. The resulting batteries exhibit high power density, large specific capacity, and long cycling life. This work opens up a promising avenue for the development of high-performance electrocatalysts. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">NANOSCALE</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/34038416/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 "> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Electrochemistry </span> </div> <h4> <a href="https://www.peeref.com/zh/works/28331395" class="text-dark hover-underline">A Co3O4-x/Co nanocomposite with synergistically enhanced electrochemical activity for reduction of nitrite to ammonia</a> </h4> <p class="text-ellipsis-2">Si-Si Shi, Zhi-Xiang Yuan, Fei Zhang, Ping Chen</p> <div class="d-flex mb-3"> <div class="flex-shrink-0 d-none d-sm-block"> <img src="https://peeref-open.s3.amazonaws.com/storage/images/covers/2449.jpg" alt="" class="border mr-3" width="100"> </div> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> In this study, a new nano-electrocatalyst was prepared, which exhibited superior electrocatalytic activity for the reduction of NO2- to ammonia in a neutral electrolyte, potentially due to the synergistic enhancement between Co3O4-x and Co. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ELECTROCHIMICA ACTA</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/28331395/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> </div> <div id="articles_from_authors" class="tab-pane "> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/81858404" class="text-dark hover-underline">Over-Reduced Core-Shell Au@CoO x -Co with Strong Interfacial Interactions for Photoassisted Peroxymonosulfate Activation</a> </h4> <p class="text-ellipsis-2">Wenhao Xu, Yujie Cao, Binhang Wang, Zitao Zhang, Xiang Li, Libo Sun, Guangnan Liu, Yun Tang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study designed and fabricated an over-reduced Au@CoOx-Co core-shell nanostructure by improving the seed growth process. The Au core promotes the over-reduction of the CoOx-Co shell, and the interfacial interaction introduces oxygen vacancies to provide reaction sites. The Au core generates excitons under light irradiation, which enhances the activation of peroxymonosulfate for degrading fluorine-containing pollutants. This design integrates structural design, photoelectronic regulation, and catalytic enhancement, and has application prospects. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF PHYSICAL CHEMISTRY C</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/81858404/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83158310" class="text-dark hover-underline">Hydrogen-Bonded Mesoporous Frameworks with Tunable Pore Sizes and Architectures from Nanocluster Assembly Units</a> </h4> <p class="text-ellipsis-2">Jie Zhang, LiangLiang Liu, Zaiwang Zhao, Chin-Te Hung, Binhang Wang, Linlin Duan, Kexin Lv, Xiao-Ming Cao, Yun Tang, Dongyuan Zhao</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study reports a micelle-directed nanocluster modular self-assembly approach for the synthesis of two-dimensional hydrogen-bonded mesoporous frameworks (HMFs). The method is based on nanoscale cluster units, which can form uniform hexagonal arrays. By controlling the block lengths and concentrations of the micelles, the size and shape of the mesopores can be precisely controlled. This method is versatile and can be used to synthesize various HMFs with different configurations and compositions. The titanium-oxo cluster-based HMFs show efficient photocatalytic activity for hydrogen evolution, with a conversion rate about 2 times higher than that of the unassembled titanium-oxo clusters. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF THE AMERICAN CHEMICAL SOCIETY</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83158310/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82203775" class="text-dark hover-underline">Enhanced Carbon-Carbon Coupling at Interfaces with Abrupt Coordination Number Changes</a> </h4> <p class="text-ellipsis-2">Xuan Wang, Ruihu Lu, Binbin Pan, Chao Yang, Mengjiao Zhuansun, Jun Li, Yi Xu, Sung-Fu Hung, Gengfeng Zheng, Yanguang Li, Ziyun Wang, Yuhang Wang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study reduces the applied potential required to achieve high C2+ Faradaic efficiency by designing interfaces with abrupt coordination number changes. The interface between OD-Cu and PD-Cu is found to be favorable for CO* adsorption and *OCCOH formation, thereby improving the Faradaic efficiency of C2+. In a zero-gap CO2 electrolyzer, the designed catalyst achieves a C2+ FE of 85 +/- 2% at 220 mA cm(-2) and operates stably for 45 hours. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CHEMSUSCHEM</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82203775/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Engineering, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26208158" class="text-dark hover-underline">A novel method for fabrication of electrospun cadmium sulfide nanoparticles- decorated zinc oxide nanofibers as effective photocatalyst for water photosplitting</a> </h4> <p class="text-ellipsis-2">Abdullah M. Al-Enizi, Alamgir Karim, Ayman Yousef</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This research investigates the use of CdS nanoparticles-decorated ZnO nanofibers as a novel photocatalyst for water splitting. The nanofibers were prepared using electrospinning, and the CdS nanoparticles were synthesized through a colloidal solution. The resulting CdS NPs-decorated ZnO NFs exhibited favorable photocatalytic performance for hydrogen production compared to native ZnO NFs and CdS NPs. The excellent photostability of the NFs was attributed to their nanofibrous morphology, which facilitated photocarrier transport and increased the number of active sites. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ALEXANDRIA ENGINEERING JOURNAL</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26208158/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/34157793" class="text-dark hover-underline">Nitrogen-Adsorbed Hydrogen Species Promote CO2 Methanation on Cu Single-Atom Electrocatalyst</a> </h4> <p class="text-ellipsis-2">Anxiang Guan, Yalei Fan, Shibo Xi, Haoliang Huang, Quan Zhang, Naixin Lyu, Bowen Wu, Yangshen Chen, Zhengzheng Liu, Chao Yang, Yali Ji, Miao Kan, Linjuan Zhang, Gengfeng Zheng</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study develops a facile strategy for the large-scale preparation of Cu single-atom catalysts with a high Cu content. The Cu single atoms are coordinated by four nitrogen atoms, enabling accelerated water dissociation and stabilization of key intermediates, which leads to enhanced efficiency of CO2 electroreduction to CH4. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS MATERIALS LETTERS</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/34157793/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Materials Science, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/27447671" class="text-dark hover-underline">Structure, microstructure, magnetic and low temperature Mo?ssbauer spectroscopy studies of Bismuth substituted zinc ferrite composite</a> </h4> <p class="text-ellipsis-2">V. S. Veena, H. J. Amith Yadav, S. P. Kubrin, Mohd Ubaidullah, Abdullah M. Al-Enizi, Bidhan Pandit, Harjot Singh Gill, K. Manjunatha, V. Jagadeesha Angadi</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study investigates the structural, microstructural, and magnetic property modifications in Bismuth(3 + )-substituted ZnFe2O4 composites. Bi@ZnFe2O4 is synthesized using the solution combustion method and sintered at 500 degrees C for two hours. XRD patterns confirm the cubic symmetry and spinel structure of the samples. Structural parameters are calculated using fundamental formulas. The samples exhibit porous character and significantly agglomerated particles, as revealed by SEM and HRTEM images. The magnetic properties of the composite are described by Neel&#039;s two sublattice model based on the cation occupancies. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/27447671/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/25770357" class="text-dark hover-underline">Electrocatalytic CO2 Upgrading to Triethanolamine by Bromine-Assisted C2H4 Oxidation</a> </h4> <p class="text-ellipsis-2">Qihao Wang, Chao Yang, Yaqin Yan, Haisheng Yu, Anxiang Guan, Miao Kan, Quan Zhang, Linjuan Zhang, Gengfeng Zheng</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This article demonstrates the electrocatalytic oxidation of ethylene to produce 2-bromoethanol with the assistance of bromine, followed by coupling with the electrocatalytic reduction of nitrite to ammonia, achieving the upgrading of CO2 and nitrite into triethanolamine. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ANGEWANDTE CHEMIE-INTERNATIONAL EDITION</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/25770357/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26396300" class="text-dark hover-underline">Chiral Frustrated Lewis Pair@Metal-Organic Framework as a New Platform for Heterogeneous Asymmetric Hydrogenation</a> </h4> <p class="text-ellipsis-2">Yin Zhang, Songbo Chen, Abdullah M. Al-Enizi, Ayman Nafady, Zhiyong Tang, Shengqian Ma</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> In this study, a strategy for integrating molecular chiral frustrated Lewis pair (CFLP) with porous metal-organic framework (MOF) was proposed and the catalyst CFLP@MOF was successfully constructed, which enables heterogeneous asymmetric hydrogenation. The developed CFLP@MOF catalyst exhibits high activity/enantio-selectivity and excellent recyclability/regenerability, providing a new avenue for the design and preparation of advanced catalysts for asymmetric catalysis. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ANGEWANDTE CHEMIE-INTERNATIONAL EDITION</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26396300/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26737726" class="text-dark hover-underline">Promoting Electrocatalytic CO2 Reduction to CH4 by Copper Porphyrin with Donor-Acceptor Structures</a> </h4> <p class="text-ellipsis-2">Pinger Yu, Ximeng Lv, Qihao Wang, Haoliang Huang, Weijun Weng, Chen Peng, Linjuan Zhang, Gengfeng Zheng</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Molecular catalysts have gained increasing attention in the electrochemical CO2 reduction reaction due to their precise catalytic sites and tunable ligands. However, the current challenge lies in the insufficient activity and low selectivity of deep reduction products. In this study, a donor-acceptor modified Cu porphyrin catalyst is developed, which exhibits excellent CO2-to-CH4 electroreduction performance by enhancing the activity of the central CuN4 site. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SMALL</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26737726/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Inorganic &amp; Nuclear </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26478139" class="text-dark hover-underline">Gd3+-substituted BiFeO3 perovskite nanoparticles: facile synthesis, characterization, and applications in heterogeneous catalysis</a> </h4> <p class="text-ellipsis-2">N. Subhashini, S. Revathi, Mohd Ubaidullah, Abdullah M. Al-Enizi, S. Muthulakshmi, D. Thiripurasundari, Shoyebmohamad F. Shaikh, Ayman Nafady, Meera Moydeen Abdulhameed, Nouf B. B. Alanzi, Rayana Ibrahim Alkhalifah, Chandra Sekhar Dash, M. Sundararajan, M. Sukumar</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> The combustion-based synthesis of BiFeO3 (BFO) and Gd:BFO perovskite nanoparticles was presented. XRD analysis showed that the undoped BFO sample had a single perovskite phase with a rhombohedral structure, while the Gd-doped samples exhibited a structural phase transformation from rhombohedral to orthorhombic. The presence of Bi3+, Gd3+, Fe2+, and O2+ ions in the perovskite samples was confirmed by XPS, and elemental functional groups were detected by FT-IR spectroscopy. The direct band gap decreased as the Gd concentration increased. The synthesized catalysts, particularly Gd:BFO (x = 0.25), exhibited higher conversion and selectivity efficiencies for glycerol in catalytic oxidation studies. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">DALTON TRANSACTIONS</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26478139/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26738162" class="text-dark hover-underline">One Stone, Two Birds: A Peptide-Au(I) Infinite Coordination Supermolecule for the Confederate Physical and Biological Radiosensitization in Cancer Radiation Therapy</a> </h4> <p class="text-ellipsis-2">Jing Wang, Jing Zhao, Fang Ma, Liuyun Gong, Yinliang Lu, Weiping Xiao, Hanmin Tang, Chengyi Gao, Yuetong Chen, Jun Ma, Zhan Gao, Jin Yan, Suxia Han</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> A new drug called PAICS has been developed for tumor radiotherapy, combining physical and biological radiosensitization methods. PAICS has shown strong sensitizing ability and controllable safety profile in vivo. Therefore, PAICS could provide a feasible solution to overcome the limitations of physical and biological radiosensitizers, enabling the development of tumor radiotherapy sensitization drugs. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">SMALL</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26738162/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/28815083" class="text-dark hover-underline">High Performance of Nanostructured Cu2O-Based Photodetectors Grown on a Ti/Mo Metallic Substrate</a> </h4> <p class="text-ellipsis-2">Alhoda Abdelmoneim, Mohamed Sh. Abdel-wahab, June Key Lee, Meera Moydeen Abdul Hameed, Badr M. Thamer, Abdullah M. Al-Enizi, Rayana Ibrahim Alkhalifah, Wael Z. Tawfik</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> In this study, cuprous oxide (Cu2O) thin films were fabricated using a simple sputtering technique. The films were deposited on both traditional fluorine-doped tin oxide (FTO) and Ti-metallic substrates. X-ray diffraction analysis confirmed the cubic crystal structure of the Cu2O layer. Optical properties were characterized using a UV-Vis spectrophotometer, and the optical bandgap was determined to be approximately 2.15 eV. XPS and scanning electron microscopy were employed for structural and morphological investigations. Optoelectronic behavior was evaluated using a Keithley source meter, and various parameters such as external quantum efficiency, sensitivity, responsivity, and detectivity were calculated based on experimental data. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">CATALYSTS</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/28815083/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/25778598" class="text-dark hover-underline">Multi-microenvironment synergistically promoting CO2 electroreduction activity on porous Cu nanosheets</a> </h4> <p class="text-ellipsis-2">Dan Wang, Jianing Gui, Binbin Pan, Mengxuan Li, Yun Kuang, Chenchen Zhang, Junjun Mao, Yang Lou, Chengsi Pan, Fengwang Li, Yanguang Li, Yuhang Wang, Yongfa Zhu, Ying Zhang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Adjusting the microstructure of Cu/Cu-based catalysts is a common method to improve ECO2RR performance, but the relationship between microstructure and the induced multi-microenvironment variations is still unclear. In this study, a controllable approach of introducing nanoporous structures on Cu nanosheets (Cu NSs) is proposed to modulate the surface and reaction microenvironment, synergistically enhancing ECO2RR activity. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">APPLIED CATALYSIS B-ENVIRONMENTAL</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/25778598/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/28200343" class="text-dark hover-underline">Promoting CO2 Electroreduction to Multi-Carbon Products by Hydrophobicity-Induced Electro-Kinetic Retardation</a> </h4> <p class="text-ellipsis-2">Mengjiao Zhuansun, Yue Liu, Ruihu Lu, Fan Zeng, Zhanyou Xu, Ying Wang, Yaoyue Yang, Ziyun Wang, Gengfeng Zheng, Yuhang Wang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Increasing the surface availability for CO(2) by using cation-exchange ionomers can enhance the C(2+) product formation rates in Cu-catalyzed electrochemical CO(2) reduction reaction (CO2RR). However, it also shortens the residence of *CO, leading to lower C(2+) selectivity. This study discovers that using quaternary ammonium group-functionalized hydrophobic polynorbornene ionomers can prolong the *CO residence time on Cu, resulting in significantly improved C(2+) Faradaic efficiencies. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ANGEWANDTE CHEMIE-INTERNATIONAL EDITION</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/28200343/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 "> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Multidisciplinary </span> </div> <h4> <a href="https://www.peeref.com/zh/works/26374332" class="text-dark hover-underline">Strain in Copper/Ceria Heterostructure Promotes Electrosynthesis of Multicarbon Products</a> </h4> <p class="text-ellipsis-2">Haibin Wang, Hao Zhang, Yan Huang, Haiyu Wang, Adnan Ozden, Kaili Yao, Huamin Li, Qianying Guo, Yongchang Liu, Alberto Vomiero, Yuhang Wang, Zhao Qian, Jun Li, Ziyun Wang, Xuhui Sun, Hongyan Liang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Elastic strains in metallic catalysts can enhance the selectivity for valuable multicarbon (C2+) products in carbon dioxide reduction (CO2R). However, the structure of catalysts often undergoes reconstruction under harsh conditions, leading to the loss of initial strain. In this study, a metal/metal oxide synthetic strategy is developed to introduce and maintain tensile strain in a copper/ceria heterostructure, resulting in improved C2+ selectivity and efficiency in CO2R. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">ACS NANO</span> (2023) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/26374332/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> </div> <div id="articles_from_journal" class="tab-pane "> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83068602" class="text-dark hover-underline">Balancing the relationship between the activity and stability of anode oxide-based electrocatalysts in acid for PEMWE electrolyzers</a> </h4> <p class="text-ellipsis-2">Yingying Xu, Yingxia Zhao, Zihui Yuan, Yue Sun, Shaomin Peng, Yuanhong Zhong, Ming Sun, Lin Yu</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This article discusses the importance and challenges of green hydrogen production via water electrolysis, especially the issue of improving the efficiency of proton exchange membrane water electrolysis, including catalyst stability and activity. It also reviews the recent progress of noble and non-noble metal oxides for acidic oxygen evolution reaction and strategies to enhance catalyst performance. Finally, the article addresses the indirect challenges of current anode catalysts and future research directions. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83068602/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83120811" class="text-dark hover-underline">A novel LaCl3-based oxychloride solid-state electrolyte enables fast Li-ion transport and is compatible with lithium metal</a> </h4> <p class="text-ellipsis-2">Xuxia Hao, Kai Chen, Min Jiang, Yanping Tang, Yuexin Liu, Kefeng Cai</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study reports a cost-effective Zr4+ and O2- co-doped LaCl3-based oxychloride Li+ superionic conductor with high ionic conductivity, low activation energy, and good compatibility with lithium metal. The conductor shows good performance in Li-Li symmetric cells and all-solid-state batteries. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83120811/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82933096" class="text-dark hover-underline">Scalable, low-cost synthesis of high volumetric capacity LiMn0.5Fe0.5PO4 cathode for lithium-ion batteries</a> </h4> <p class="text-ellipsis-2">Seth Reed, Kevin Scanlan, Arumugam Manthiram</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study presents a scalable and wastewater-free synthesis method for high-energy-density LMFP cathodes using a spinel LiMnFeO4 precursor. The S-LMFP cathode shows a similar electrode-level energy density improvement of 15% due to its exceptional electrode packing density, despite having a slightly lower specific capacity than the P-LMFP cathode. Rate capability testing reveals that electrode density is more important than specific capacity in determining the energy density of LMFP cathodes at low rates. Further optimization of synthesis conditions is expected to enhance the performance of LMFP. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82933096/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83033216" class="text-dark hover-underline">Halide perovskite for enhancing photocatalytic efficiency: basic characteristics, nanostructure engineering and applications</a> </h4> <p class="text-ellipsis-2">Yuxin Zhang, Zhihao Yu, Ming Zhang, Runyu Liu, Jian Xiong, Yina Qiao, Xuebin Lu</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This review summarizes the research progress of halide perovskites, including their fundamental properties, nanostructure engineering (morphology engineering, composition engineering, and interface engineering), and applications in the field of photocatalysis. In addition, the stability issues of halide perovskites are also discussed, and stable passivation strategies are summarized. Finally, the future development direction of halide perovskites in the field of photocatalysis is prospected. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83033216/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83590793" class="text-dark hover-underline">Cu MOF-based electrocatalysts for CO2 reduction to multi-carbon products</a> </h4> <p class="text-ellipsis-2">Li-Xia Liu, Chengyu Qin, Taojiang Deng, Liming Sun, Zifan Chen, Xiguang Han</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This article reviews the recent progress of Cu MOF-based electrocatalysts for the electrocatalytic reduction of CO2 to C2+ products, including the types of electrolyzers, performance evaluation parameters, and reaction mechanisms, as well as the performance enhancement strategies and mechanisms of three types of Cu MOF-based catalysts. Finally, the critical challenges and potential opportunities in this field are highlighted. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83590793/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82960755" class="text-dark hover-underline">Structural design of biomass-derived hard carbon anode materials for superior sodium storage via increasing crystalline cellulose and closing the open pores</a> </h4> <p class="text-ellipsis-2">Xiaoying Li, Sijing Zhang, Jingjing Tang, Juan Yang, Kang Wen, Jiong Wang, Peng Wang, Xiangyang Zhou, Yaguang Zhang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study modulated the properties of biomass precursors and designed the structure of hard carbon materials through two-step acid treatment and two-stage heat treatment processes, enhancing the consistency and sodium-ion storage performance of hard carbon. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82960755/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83075657" class="text-dark hover-underline">Design and mechanism of photothermal soft actuators and their applications</a> </h4> <p class="text-ellipsis-2">Rajaram S. Sutar, Sanjay S. Latthe, Xinna Wu, Kazuya Nakata, Ruimin Xing, Shanhu Liu, Akira Fujishima</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> Photothermal soft actuators are a research hotspot with unique features such as photothermal conversion, and have applications in multiple fields. This article provides an overview of their principles and progress, introduces different types of photothermal actuation, discusses their design and mechanisms, and also elaborates on the significance and challenges of photothermal soft actuators, as well as their applications in various fields. Finally, it draws conclusions and looks forward to future development directions. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83075657/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83143832" class="text-dark hover-underline">Synergistic optimization of the thermoelectric performance of BiSbSe3 using doping and multi-scale defect engineering</a> </h4> <p class="text-ellipsis-2">Xiaowei Shi, Zhen Tian, Quanwei Jiang, Yu Yan, Huijun Kang, Enyu Guo, Zongning Chen, Tongmin Wang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper investigates the thermoelectric properties of Te-free BiSbSe3 materials and optimizes their performance through doping and multi-scale defect engineering. The results show that codoping of Br and I elements can effectively enhance the electrical conductivity, and the all-scale hierarchical defects-full-frequency phonon scattering mechanism can minimize the lattice thermal conductivity. Finally, Bi SbSe2.76Br0.18I0.06 achieves an ultralow lattice thermal conductivity and a high ZT value at 673 K. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83143832/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/82964181" class="text-dark hover-underline">Flexible electrode materials for emerging electronics: materials, fabrication and applications</a> </h4> <p class="text-ellipsis-2">Kai Liu, Tianyi Duan, Fengran Zhang, Xiaozhu Tian, Hui Li, Min Feng, Rui Wang, Benshuai Jiang, Kewei Zhang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper analyzes the development of flexible electrode materials for electronics in the last 10 years by literature visualization, focusing on various aspects of flexible electrodes, including flexible substrates and active materials, and discusses their manufacturing methods and application fields. Finally, the major challenges and future prospects of fabricating a new generation of flexible electronics are also discussed. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/82964181/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83095012" class="text-dark hover-underline">Structural stabilities, electronic structures, and superconductivity properties of GexS1-x compounds under high pressure</a> </h4> <p class="text-ellipsis-2">Yibo Sun, Bohan Cao, Xinwei Wang, Jiajin Chen, Defang Duan, Fubo Tian, Tian Cui</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study investigates the thermodynamic stability, electronic properties, and superconducting characteristics of germanium sulfide compounds under various pressures. The results show that these compounds undergo phase transitions under pressure, leading to metallization and changes in the electronic structure, which may facilitate the transition from semiconductor to metal states. In addition, the study finds that the metallization process of the Pnma-2 phase of GeS exhibits an interesting band structure variation within the pressure range of 6-19 GPa, and the Pm(3)overbarm phase of GeS shows superconductivity under certain pressures. These findings provide a basis for future studies on the practical application of these materials in the field of electronic and superconducting devices. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83095012/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83750722" class="text-dark hover-underline">Review on the synthesis of Li-rich layered oxide cathodes</a> </h4> <p class="text-ellipsis-2">Kexin Gu, Zhepu Shi, Xiao Li, Bao Qiu, Zhaoping Liu</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper focuses on the cathode materials for enhancing the volumetric/gravimetric energy density of batteries. Lithium-rich layered oxides (LLOs) have attracted much attention due to their high specific capacity. However, the reaction process during the synthesis of LLOs is not well understood. To achieve the controllable preparation of LLOs, this paper discusses the lithiation reaction process based on the mechanism and kinetic constraints of solid-phase reactions, and analyzes the phase transitions, elemental valence changes, ion diffusion and migration paths, and particle morphology evolution during the calcination process. The paper also discusses the key factors affecting the lithiation reaction and proposes relevant strategies. This information is valuable for the controlled synthesis of LLOs and the commercialization of LLO cathode materials for next-generation Li-ion batteries. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83750722/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83109744" class="text-dark hover-underline">Heterostructured electrocatalysts for the oxygen evolution reaction</a> </h4> <p class="text-ellipsis-2">Shao-Lan Zheng, Hui-Min Xu, Hong-Rui Zhu, Ting-Yu Shuai, Qi-Ni Zhan, Chen-Jin Huang, Gao-Ren Li</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This paper introduces the importance of green hydrogen and the bottlenecks in the process of hydrogen production from water electrolysis, emphasizing the necessity of developing efficient oxygen evolution catalysts. The advantages of heterostructured electrocatalysts in the OER process, including synergistic effects, strain effects, and electronic interactions, are reviewed, and their preparation methods and the relationship between structure and performance are discussed. Finally, the opportunities and challenges for the future development of OER heterostructured catalysts are pointed out. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83109744/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83124751" class="text-dark hover-underline">Ultrahigh energy storage capacities in high-entropy relaxor ferroelectrics</a> </h4> <p class="text-ellipsis-2">Yunyao Huang, Kaili Shang, Yule Yang, Wenjing Shi, Leiyang Zhang, Vladimir Laletin, Vladimir Shur, Ruiyi Jing, Li Jin</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study enhances the energy-storage performance of lead-free BNT-based dielectrics via entropy engineering, achieving a recoverable energy density of 11.24 J cm-3 and 88.3% efficiency, with excellent stability and rapid discharge. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83124751/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 border-bottom"> <div> <span class="d-inline-block badge badge-blue"> Review </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/84082025" class="text-dark hover-underline">From structure to function: MOF-based and COF-based catalysts for efficient electrocatalytic H2O2 production via 2e- ORR</a> </h4> <p class="text-ellipsis-2">Yan Xu, Zeyu Sun, Shuyan Fan, Xinping Han, Ling Li, Zhu Gao, Cuijuan Wang</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This article introduces an innovative method for producing H2O2 through the two-electron oxygen reduction reaction, which utilizes water and renewable electricity to safely and environmentally friendly produce H2O2, achieving on-site production and in-situ utilization. The article also introduces the application of Metal-Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) as highly ordered porous materials in electrocatalysis, especially in the 2e(-) ORR process. Finally, the article proposes future research directions and practical applications. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/84082025/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> <div class="my-4 "> <div> <span class="d-inline-block badge badge-blue"> Article </span> <span class="d-inline-block badge badge-cyan"> Chemistry, Physical </span> </div> <h4> <a href="https://www.peeref.com/zh/works/83167537" class="text-dark hover-underline">Achieving long-lived photogenerated holes in ZnIn2S4 loaded with CoOx clusters for enhanced photocatalytic pure water splitting</a> </h4> <p class="text-ellipsis-2">Qingsheng Zhang, Shuya Yuan, Huabing Yin, Jianjun Yang, Zhongjie Guan</p> <div class="d-flex mb-3"> <div class="p-3 rounded" style="background-color: #e8f3ff;"> <strong>Summary:</strong> This study achieved efficient photocatalytic pure water splitting performance by decorating ultrasmall CoOx clusters on ZnIn2S4. Experimental and theoretical studies demonstrated that CoOx clusters can effectively capture holes, prolong their lifetime, and promote the surface water oxidation reaction. The optimized CoOx/ZIS exhibited higher H-2 and H2O2 evolution rates than pure ZIS, demonstrating the significance of efficient hole extraction in improving photocatalytic performance. </div> </div> <div class="d-flex justify-content-between"> <p class="font-weight-bold"> <span class="text-primary">JOURNAL OF MATERIALS CHEMISTRY A</span> (2024) </p> <div class="flex-shrink-0"> <a class="btn btn-outline-primary btn-sm" href="https://www.peeref.com/zh/works/83167537/add-to-collection" target="_blank"> <strong>添加到收藏夹</strong> </a> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="modal fade" id="export-citation" tabindex="-1"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal"><span>&times;</span></button> <h4 class="modal-title">导出引文 <b class="text-primary"></b></h4> </div> <div class="modal-body"> <div class="my-3 px-4 f16"> <form action="https://www.peeref.com/zh/works/citation/download" method="GET" target="_blank"> <div class="radio"> <label> <input type="radio" name="fileType" value="PlainText" checked> <strong>纯文本</strong> </label> </div> <div class="radio"> <label> <input type="radio" name="fileType" value="RIS"> <strong>RIS</strong> <span>- 导出格式兼容大多数主要的参考管理软件,如Endnote和Zotero</span> </label> </div> <div class="radio"> <label> <input type="radio" name="fileType" value="BibTeX"> <strong>BibTeX</strong> <span>- 导出格式兼容LaTeX</span> </label> </div> <input type="hidden" name="articleId" value="4795046"> <div class="mt-lg-4 text-center"> <button class="citation-download-btn btn btn-primary"> 导出 </button> </div> </form> </div> </div> </div> </div> </div> <div class="modal fade" id="share-paper" tabindex="-1"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal"><span>&times;</span></button> <h4 class="modal-title">分享论文 <b class="text-primary"></b></h4> </div> <div class="modal-body"> <div class="my-4"> <div class="social-share"> <a class="social-share-item email" href="mailto:?subject=Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst&amp;body=https://www.peeref.com/zh/works/4795046" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-email.svg" height="16"> </a> <a class="social-share-item linkedin" href="https://www.linkedin.com/shareArticle/?url=https://www.peeref.com/zh/works/4795046" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-linkedin.svg" height="16"> </a> <a class="social-share-item twitter" href="https://twitter.com/share?url=https://www.peeref.com/zh/works/4795046" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-twitter.svg" height="16"> </a> <a class="social-share-item wechat" href="javascipt:;" onclick="window.open('https://api.qrserver.com/v1/create-qr-code/?size=154x154&data=https://www.peeref.com/zh/works/4795046', 'newwindow', 'height=300, width=300')"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-wechat.svg" height="16"> </a> <a class="social-share-item facebook" href="https://www.facebook.com/sharer/sharer.php?u=https://www.peeref.com/zh/works/4795046" target="_blank"> <img src="https://peeref-open.s3.amazonaws.com/images/social-share-facebook.svg" height="16"> </a> </div> </div> </div> </div> </div> </div> <back-top-button></back-top-button> </main> <div class="container"> <div class="footer"> <div class="col-md-10"> <div class="d-flex flex-wrap" style="font-size: 15px;"> <a href="https://www.peeref.com/zh/webinars" class="mx-3 px-2"> 研讨会 </a> <a href="https://www.peeref.com/zh/posters" class="mx-3 px-2"> 海报 </a> <a href="https://www.peeref.com/zh/questions" class="mx-3 px-2"> 问题 </a> <a href="https://www.peeref.com/zh/hubs" class="mx-3 px-2"> 讨论圈 </a> <a href="https://www.peeref.com/zh/funding" class="mx-3 px-2"> 基金 </a> <a href="https://www.peeref.com/zh/journals" class="mx-3 px-2"> 期刊 </a> <a href="https://www.peeref.com/zh/works" class="mx-3 px-2"> 论文 </a> <a href="https://www.peeref.com/zh/connect" class="mx-3 px-2"> 科研社交 </a> <a href="https://www.peeref.com/zh/e-collections" class="mx-3 px-2"> 资讯集成 </a> <a href="https://www.peeref.com/zh/reviewer" class="mx-3 px-2"> 审稿人 </a> <a href="https://www.peeref.com/zh/about" class="mx-3 px-2"> 关于我们 </a> <a href="https://www.peeref.com/zh/about/faq" class="mx-3 px-2"> 常见问题 </a> <a href="https://www.peeref.com/zh/mobile-app" class="mx-3 px-2"> 移动App </a> <a href="https://www.peeref.com/zh/about/privacy" class="mx-3 px-2"> 隐私条款 </a> <a href="https://www.peeref.com/zh/about/terms-of-use" class="mx-3 px-2"> 使用条款 </a> </div> </div> <div class="col-md-2"> <div class="d-flex justify-content-end"> <div class="sns"> <a href="https://www.facebook.com/Peeref-113216326987528" target="_blank"> <i class="ivu-icon ivu-icon-logo-facebook"></i> </a> <a href="https://twitter.com/Peeref1" target="_blank"> <i class="ivu-icon ivu-icon-logo-twitter"></i> </a> </div> </div> </div> </div> <div class="copyright"> © Peeref 2019-2024. All rights reserved. </div> </div> </div> <script src="https://peeref-open.s3.amazonaws.com/js/manifest.67eafd9867e36d42d1cc.js"></script> <script src="https://peeref-open.s3.amazonaws.com/js/vendor.6fa15e83ed55bb851873.js"></script> <script src="https://peeref-open.s3.amazonaws.com/js/app.fed128cc2083a53c4af4.js"></script> <script> $(function() { $('#reading-btn').click(function() { const navHeight = $("#article-sticky-navbar").height(); const readingAreaTop = $("#collection").offset().top; const readingAreaHeight = readingAreaTop - navHeight - 30; $("html, body").animate( { scrollTop: readingAreaHeight }, 400 ); return false; }) }); </script> <script src="https://peeref-open.s3.amazonaws.com/vendor/MathJax-274/MathJax.js?config=default" async></script> <script async src="https://www.googletagmanager.com/gtag/js?id=UA-152048790-1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-152048790-1'); </script> <script type="text/javascript" id="cookiebanner" src="https://peeref-open.s3.amazonaws.com/js/cookiebanner.min.js" data-position="bottom" data-cookie="_uc_" data-expires="Wed, 31 Dec 2025 00:00:00 GMT" data-font-size="15px" data-close-text="接受" data-close-precedes="false" data-close-style="border-radius: 5px; margin: 3px 15px; padding: 3px 10px; display: inline-block; font-weight: bold; background: rgb(245, 207, 71); color: rgb(16, 75, 125);" data-linkmsg="" data-moreinfo-decoration="underline" data-moreinfo="https://www.peeref.com/zh/about/privacy" data-bg="rgb(16, 75, 125)" data-link="rgb(255, 255, 255)" data-message="Peeref 使用 cookies 改善你的使用体验。请阅读 &lt;a&gt;隐私条款&lt;/a&gt; 获取更多信息。"> </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10