CINXE.COM

Search results for: silicone nanostructured

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: silicone nanostructured</title> <meta name="description" content="Search results for: silicone nanostructured"> <meta name="keywords" content="silicone nanostructured"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="silicone nanostructured" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="silicone nanostructured"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 240</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: silicone nanostructured</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Selim">Mohamed S. Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreen%20A.%20Fatthallah"> Nesreen A. Fatthallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20A.%20Higazy"> Shimaa A. Higazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhifeng%20Hao"> Zhifeng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Jing%20Mo"> Ping Jing Mo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic%20nanocomposite" title="superhydrophobic nanocomposite">superhydrophobic nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20release" title=" fouling release"> fouling release</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title=" surface coating"> surface coating</a> </p> <a href="https://publications.waset.org/abstracts/142921/preparation-of-novel-siliconegraphene-based-nanostructured-surfaces-as-fouling-release-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Comparison of Early Silicon Oil Removal and Late Silicon Oil Removal in Patients With Rhegmatogenous Retinal Detachment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Torabi">Hamidreza Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Moghtaderi"> Mohsen Moghtaderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Currently, deep vitrectomy with silicone oil tamponade is the standard treatment method for patients with Rhegmatogenous Retinal Detachment (RRD). After retinal repair, it is necessary to remove silicone oil from the eye, but the appropriate time to remove the oil and complications related to that time has been less studied. The aim of this study was to compare the results of the early removal of silicone oil with the delayed removal of silicone oil in patients with RRD. Method & material: Patients who were referred to the Ophthalmology Clinic of Baqiyatallah Hospital, Tehran, Iran, due to RRD with detached macula in 2021 & 2022 were evaluated. These patients were treated with deep vitrectomy and silicone oil tamponade. Patients whose retinas were attached after the passage of time were candidates for silicone oil removal (SOR) surgery. For patients in the early SOR group, SOR surgery was performed 3-6 months after the initial vitrectomy surgery, and for the late SOR group, SOR was performed after 6 months after the initial vitrectomy surgery. Results: In this study, 60 patients with RRD were evaluated. 23 (38.3%) patients were in the early group, and 37 (61.7%) patients were in the late group. Based on our findings, it was seen that the mean visual acuity of patients based on the Snellen chart in the early group (0.48 ± 0.23 Decimal) was better than the late group (0.33 ± 0.18 Decimal) (P-value=0.009). Retinal re-detachment has happened only in one patient with early SOR. Conclusion: Early removal of silicone oil (less than 6 months) from the eyes of patients undergoing RRD surgery has been associated with better vision results compared to late removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinal%20detachment" title="retinal detachment">retinal detachment</a>, <a href="https://publications.waset.org/abstracts/search?q=vitrectomy" title=" vitrectomy"> vitrectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20oil" title=" silicone oil"> silicone oil</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20oil%20removal" title=" silicone oil removal"> silicone oil removal</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20acuity" title=" visual acuity"> visual acuity</a> </p> <a href="https://publications.waset.org/abstracts/165024/comparison-of-early-silicon-oil-removal-and-late-silicon-oil-removal-in-patients-with-rhegmatogenous-retinal-detachment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> SO2 Sensing Performance of Nanostructured CdSnO3 Thin Films Prepared by Spray Pyrolysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20H.%20Bari">R. H. Bari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanostructured thin films of CdSnO3 are sensitive to change in their environment. CdSnO3 is successfully used as gas sensor due to the dependence of the electrical conductivity on the ambient gas composition. Nanostructured CdSnO3 thin films of different substrate temperature (300 0C, 350 0C, 400 0C and 450 0C) were deposited onto heated glass substrate by simple spray pyrolysis (SP) technique. Sensing elements of nanostructured CdSnO3 were annealed at 500 0C for 1 hrs. Characterization includes a different analytical technique such as, X-ray diffractogram (XRD), energy dispersive X-ray analysis (EDAX), and Field emission scanning electron microscope (FE-SEM). The average grain size observed from XRD and FF-SEM was found to be less than 18.36 and 23 nm respectively. The films sprayed at substrate temperature for 400 0C was observed to be most sensitive (S = 530) to SO2 for 500 ppm at 300 0C. The response and recovery time is 4 sec, 8 sec respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20CdSnO3" title="nanostructured CdSnO3">nanostructured CdSnO3</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title=" spray pyrolysis"> spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SO2%20gas%20sensing" title=" SO2 gas sensing"> SO2 gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=quick%20response" title=" quick response"> quick response</a> </p> <a href="https://publications.waset.org/abstracts/22298/so2-sensing-performance-of-nanostructured-cdsno3-thin-films-prepared-by-spray-pyrolysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Effects of Surface Insulation of Silicone Rubber Composites in HVDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Hae%20Park">Min-Hae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Na%20Hwang"> Ju-Na Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheong-won%20Seo"> Cheong-won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Ho%20Kim"> Ji-Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Joe%20Lim"> Kee-Joe Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric insulators are high hardness, corrosion resistant, lightweight and also good dielectric strength in electric equipment. For such reasons, the amount of polymeric insulators is increased consistently abroad. The current outdoor insulators are replaced by polymeric insulators. Silicone rubber of polymeric insulators is widely used in insulation materials for outdoor application since it has excellent electrical characteristics and high surface hydrophobic. However, it can be evade exposure to pollutant on surface using at outdoor. It also improve the pollution for dust and smoke due to the large are increasing, because most of the industrial area in which the electric power loads are concentrated are located at the coastal area with salt attack. Thus it is important to detect the main cause of the deterioration for outdoor insulation materials. But there has no standards for valuation to apply reliably and determine accurately deterioration under DC, still lacks DC characteristic researches in proportion to AC. In addition, a lot of ATH was added to improve tracking resistivity of silicone rubber, although the problem has been brought up about falling sharply mechanical properties. Therefore, we might compare surface resistivities of silicone rubber compounding of three kinds of filler. In this paper, specimens of silicone rubber composite usable as outdoor insulators were prepared. Micro-silica (SiO2), nano- alumina (Al2O3) and nano-ATH (Al(OH)3) were used in additives. The study aims to investigate properties of DC surface insulation on silicone rubber composite which were filled with various fillers from surface resistivity measurement and salt-fog test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20rubber" title=" silicone rubber"> silicone rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20insulation" title=" surface insulation"> surface insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC" title=" HVDC"> HVDC</a> </p> <a href="https://publications.waset.org/abstracts/6213/effects-of-surface-insulation-of-silicone-rubber-composites-in-hvdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Aouabed">Fatiha Aouabed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Bayadi"> Abdelhafid Bayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Boudissa"> Rabah Boudissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=flashover" title=" flashover"> flashover</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20rubber%20insulators" title=" silicone rubber insulators"> silicone rubber insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20droplets" title=" water droplets"> water droplets</a> </p> <a href="https://publications.waset.org/abstracts/13301/flashover-voltage-of-silicone-insulating-surface-covered-by-water-drops-under-ac-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Low Nonlinear Effects Index-Guiding Nanostructured Photonic Crystal Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Olyaee">S. Olyaee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Seifouri"> M. Seifouri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nikoosohbat"> A. Nikoosohbat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shams%20Esfand%20Abadi"> M. Shams Esfand Abadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photonic Crystal Fibers (PCFs) can be used in optical communications as transmission lines. For this reason, the PCFs with low confinement loss, low chromatic dispersion, and low nonlinear effects are highly suitable transmission media. In this paper, we introduce a new design of index-guiding nanostructured photonic crystal fiber (IG-NPCF) with ultra-low chromatic dispersion, low nonlinearity effects, and low confinement loss. Relatively low dispersion is achieved in the wavelength range of 1200 to 1600nm using the proposed design. According to the new structure of nanostructured PCF presented in this study, the chromatic dispersion slope is -30(ps/km.nm) and the confinement loss reaches below 10-7 dB/km. While in the wavelength range mentioned above at the same time an effective area of more than 50.2μm2 is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20communication%20systems" title="optical communication systems">optical communication systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured" title=" nanostructured"> nanostructured</a>, <a href="https://publications.waset.org/abstracts/search?q=index-guiding" title=" index-guiding"> index-guiding</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=confinement%20loss" title=" confinement loss"> confinement loss</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20fiber" title=" photonic crystal fiber"> photonic crystal fiber</a> </p> <a href="https://publications.waset.org/abstracts/18766/low-nonlinear-effects-index-guiding-nanostructured-photonic-crystal-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Selim">Mohamed S. Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesreen%20A.%20Fatthallah"> Nesreen A. Fatthallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20A.%20Higazy"> Shimaa A. Higazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hekmat%20R.%20Madian"> Hekmat R. Madian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20A.%20El-Safty"> Sherif A. El-Safty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Shenashen"> Mohamed A. Shenashen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silicone%20antifouling" title="silicone antifouling">silicone antifouling</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally%20friendly" title=" environmentally friendly"> environmentally friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20repellency" title=" fouling repellency"> fouling repellency</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/159063/eco-friendly-siliconegraphene-based-nanocomposites-as-superhydrophobic-antifouling-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Low-Temperature Silanization of Medical Vials: Chemical Bonding and Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanping%20Yang">Yuanping Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruolin%20Zhou"> Ruolin Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingyu%20Liu"> Xingyu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianbin%20Wu"> Lianbin Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the challenges of silanization of pharmaceutical glass packaging materials, the silicone oil high-temperature baking method consumes a lot of energy; silicone oil is generally physically adsorbed on the inner surface of the medical vials, leading to protein adsorption on the surface of the silicone oil and fall off, so that the number of particles in the drug solution increases, which brings potential risks to people. In this paper, a new silanizing method is proposed. High-efficiency silanization is achieved by grafting trimethylsilyl groups to the inner surface of medical vials by chemical bond at low temperatures. The inner wall of the vial successfully obtained stable hydrophobicity, and the water contact Angle of the surface reached 100°~110°. With the increase of silicified reagent concentration, the water resistance of corresponding treatment vials increased gradually. This treatment can effectively reduce the risk of pH value increase and sodium ion leaching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20silanization" title="low-temperature silanization">low-temperature silanization</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20vials" title=" medical vials"> medical vials</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20bonding" title=" chemical bonding"> chemical bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/164544/low-temperature-silanization-of-medical-vials-chemical-bonding-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Preparation of 1D Nano-Polyaniline/Dendritic Silver Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Bin%20Liau">Wen-Bin Liau</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan-Ting%20Wang"> Wan-Ting Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiang-Jen%20Hsiao"> Chiang-Jen Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Mao%20Tseng"> Sheng-Mao Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an interesting and easy method to prepare one-dimensional nanostructured polyaniline/dendritic silver composites is reported. It is well known that the morphology of metal particle is a very important factor to influence the properties of polymer-metal composites. Usually, the dendritic silver is prepared by kinetic control in reduction reaction. It is not a thermodynamically stable structure. It is the goal to reduce silver ion to dendritic silver by polyaniline polymer via kinetic control and form one-dimensional nanostructured polyaniline/dendritic silver composites. The preparation is a two steps sequential reaction. First step, the polyaniline networks composed of nano fibrillar polyaniline are synthesized from aniline monomers aqueous with ammonium persulfate as the initiator at room temperature. In second step, the silver nitrate is added into polyaniline networks dispersed in deionized water. The dendritic silver is formed via reduction by polyaniline networks under the kinetic control. The formation of polyaniline is discussed via transmission electron microscopy (TEM). Nanosheets, nanotubes, nanospheres, nanosticks, and networks are observed via TEM. Then, the mechanism of formation of one-dimensional nanostructured polyaniline/dendritic silver composites is discussed. The formation of dendritic silver is observed by TEM and X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1D%20nanostructured%20polyaniline" title="1D nanostructured polyaniline">1D nanostructured polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=dendritic%20silver" title=" dendritic silver"> dendritic silver</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/24911/preparation-of-1d-nano-polyanilinedendritic-silver-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Impact of Silicon Surface Modification on the Catalytic Performance Towards CO₂ Conversion of Cu₂S/Si-Based Photocathodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Benfadel">Karima Benfadel</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Talbi"> Lamia Talbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Anas%20Boussaa"> Sabiha Anas Boussaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Afaf%20Brik"> Afaf Brik</a>, <a href="https://publications.waset.org/abstracts/search?q=Assia%20Boukezzata"> Assia Boukezzata</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahia%20Ouadah"> Yahia Ouadah</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Kaci"> Samira Kaci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to prevent global warming, which is mainly caused by the increase in carbon dioxide levels in the atmosphere, it is interesting to produce renewable energy in the form of chemical energy by converting carbon dioxide into alternative fuels and other energy-dense products. Photoelectrochemical reduction of carbon dioxide to value-added products and fuels is a promising and current method. The objective of our study is to develop Cu₂S-based photoélectrodes, in which Cu₂S is used as a CO₂ photoelectrocatalyst deposited on nanostructured silicon substrates. Cu₂S thin layers were deposited using the chemical bath deposition (CBD) technique. Silicon nanowires and nanopyramids were obtained by alkaline etching. SEM and UV-visible spectroscopy was used to analyse the morphology and optical characteristics. By using a potentiostat station, we characterized the photoelectrochemical properties. We performed cyclic voltammetry in the presence and without CO₂ purging as well as linear voltammetry (LSV) in the dark and under white light irradiation. We perform chronoamperometry to study the stability of our photocathodes. The quality of the nanowires and nanopyramids was visible in the SEM images, and after Cu₂S deposition, we could see how the deposition was distributed over the textured surfaces. The inclusion of the Cu₂S layer applied on textured substrates significantly reduces the reflectance (R%). The catalytic performance towards CO₂ conversion of Cu₂S/Si-based photocathodes revealed that the texturing of the silicon surface with nanowires and pyramids has a better photoelectrochemical behavior than those without surface modifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20conversion" title="CO₂ conversion">CO₂ conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%E2%82%82S%20photocathode" title=" Cu₂S photocathode"> Cu₂S photocathode</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20nanostructured" title=" silicone nanostructured"> silicone nanostructured</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a> </p> <a href="https://publications.waset.org/abstracts/170801/impact-of-silicon-surface-modification-on-the-catalytic-performance-towards-co2-conversion-of-cu2ssi-based-photocathodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Roller Pump-Induced Tubing Rupture during Cardiopulmonary Bypass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20G.%20Kim">W. G. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Jo"> C. H. Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analyzed the effects of variations in the diameter of silicone rubber and polyvinyl chloride (PVC) tubings on the likelihood of tubing rupture during modeling of accidental arterial line clamping in cardiopulmonary bypass with a roller pump. A closed CPB circuit constructed with a roller pump was tested with both PVC and silicone rubber tubings of 1/2, 3/8, and 1/4 inch internal diameter. Arterial line pressure was monitored, and an occlusive clamp was placed across the tubing distal to the pressure monitor site to model an accidental arterial line occlusion. A CCD camera with 512(H) x 492(V) pixels was installed above the roller pump to measure tubing diameters at pump outlet, where the maximum deformations (distension) of the tubings occurred. Quantitative measurement of the changes of tubing diameters with the change of arterial line pressure was performed using computerized image processing techniques. A visible change of tubing diameter was generally noticeable by around 250 psi of arterial line pressure, which was already very high. By 1500 psi, the PVC tubings showed an increase of diameter of between 5-10 %, while the silicone rubber tubings showed an increase between 20-25 %. Silicone rubber tubings of all sizes showed greater distensibility than PVC tubings of equivalent size. In conclusion, although roller-pump induced tubing rupture remains a theoretical problem during cardiopulmonary bypass in terms of the inherent mechanism of the pump, in reality such an occurrence is impossible in real clinical conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roller%20pump" title="roller pump">roller pump</a>, <a href="https://publications.waset.org/abstracts/search?q=tubing%20rupture" title=" tubing rupture"> tubing rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiopulmonary%20bypass" title=" cardiopulmonary bypass"> cardiopulmonary bypass</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20line" title=" arterial line"> arterial line</a> </p> <a href="https://publications.waset.org/abstracts/9927/roller-pump-induced-tubing-rupture-during-cardiopulmonary-bypass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> A Study of the Carbon Footprint from a Liquid Silicone Rubber Compounding Facility in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q.%20R.%20Cheah">Q. R. Cheah</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20F.%20Tan"> Y. F. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern times, the push for a low carbon footprint entails achieving carbon neutrality as a goal for future generations. One possible step towards carbon footprint reduction is the use of more durable materials with longer lifespans, for example, silicone data cableswhich show at least double the lifespan of similar plastic products. By having greater durability and longer lifespans, silicone data cables can reduce the amount of trash produced as compared to plastics. Furthermore, silicone products don’t produce micro contamination harmful to the ocean. Every year the electronics industry produces an estimated 5 billion data cables for USB type C and lightning data cables for tablets and mobile phone devices. Material usage for outer jacketing is 6 to 12 grams per meter. Tests show that the product lifespan of a silicone data cable over plastic can be doubled due to greater durability. This can save at least 40,000 tonnes of material a year just on the outer jacketing of the data cable. The facility in this study specialises in compounding of liquid silicone rubber (LSR) material for the extrusion process in jacketing for the silicone data cable. This study analyses the carbon emissions from the facility, which is presently capable of producing more than 1,000 tonnes of LSR annually. This study uses guidelines from the World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) to define the boundaries of the scope. The scope of emissions is defined as 1. Emissions from operations owned or controlled by the reporting company, 2. Emissions from the generation of purchased or acquired energy such as electricity, steam, heating, or cooling consumed by the reporting company, and 3. All other indirect emissions occurring in the value chain of the reporting company, including both upstream and downstream emissions. As the study is limited to the compounding facility, the system boundaries definition according to GHG protocol is cradle-to-gate instead of cradle-to-grave exercises. Malaysia’s present electricity generation scenario was also used, where natural gas and coal constitute the bulk of emissions. Calculations show the LSR produced for the silicone data cable with high fire retardant capability has scope 1 emissions of 0.82kg CO2/kg, scope 2 emissions of 0.87kg CO2/kg, and scope 3 emissions of 2.76kg CO2/kg, with a total product carbon footprint of 4.45kg CO2/kg. This total product carbon footprint (Cradle-to-gate) is comparable to the industry and to plastic materials per tonne of material. Although per tonne emission is comparable to plastic material, due to greater durability and longer lifespan, there can be significantly reduced use of LSR material. Suggestions to reduce the calculated product carbon footprint in the scope of emissions involve 1. Incorporating the recycling of factory silicone waste into operations, 2. Using green renewable energy for external electricity sources and 3. Sourcing eco-friendly raw materials with low GHG emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title="carbon footprint">carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20silicone%20rubber" title=" liquid silicone rubber"> liquid silicone rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20data%20cable" title=" silicone data cable"> silicone data cable</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia%20facility" title=" Malaysia facility"> Malaysia facility</a> </p> <a href="https://publications.waset.org/abstracts/150583/a-study-of-the-carbon-footprint-from-a-liquid-silicone-rubber-compounding-facility-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Surgical Outcome of Heavy Silicone Oil in Rhegmatogenous Retinal Detachment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pheeraphat%20Ussadamongkol">Pheeraphat Ussadamongkol</a>, <a href="https://publications.waset.org/abstracts/search?q=Suthasinee%20Sinawat"> Suthasinee Sinawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The purpose of this study is to evaluate the anatomical and visual outcomes associated with the use of heavy silicone oil (HSO) during pars plana vitrectomy (PPV) in patients with rhegmatogenous retinal detachment (RRD). Materials and methods: A Total of 66 eyes of 66 patients with RRD patients who underwent PPV with HSO from 2018-2023 were included in this retrospective study. Risk factors of surgical outcomes were also investigated. Results: The mean age of the recruited patients was 55.26 ± 13.05 years. The most common diagnosis was recurrent RRD, with 43 patients (65.15%), and the majority of these patients (81.39%) had a history of multiple vitreoretinal surgeries. Inferior breaks and PVR grade ≧ C were present in 65.15% and 42.42% of cases, respectively. The mean duration of HSO tamponade was 7.77+5.19 months. The retinal attachment rate after surgery was 71.21%, with a final attachment rate of 87.88%. The mean final VA was 1.62 ± 1.11 logMAR. 54.54% of patients could achieve a final visual acuity (VA)  6/60. Multivariate analysis revealed that proliferative vitreoretinopathy (PVR) and multiple breaks were significantly associated with retinal redetachment, while initial good VA (  6/60) was associated with good visual outcome ( 6/60). The most common complications were glaucoma (30.3%) and epimacular membrane (7.58%). Conclusion: The use of heavy silicone oil in pars plana vitrectomy for rhegmatogenous retinal detachment yields favorable anatomical and visual outcomes. Factors associated with retinal redetachment are proliferative vitreoretinopathy and multiple breaks. Good initial VA can predict good visual outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhegmatogenous%20retinal%20detachment" title="rhegmatogenous retinal detachment">rhegmatogenous retinal detachment</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20silicone%20oil" title=" heavy silicone oil"> heavy silicone oil</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20outcome" title=" surgical outcome"> surgical outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20outcome" title=" visual outcome"> visual outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors"> risk factors</a> </p> <a href="https://publications.waset.org/abstracts/194417/surgical-outcome-of-heavy-silicone-oil-in-rhegmatogenous-retinal-detachment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Photoelectrochemical Study of Nanostructured Acropora-Like Lead Sulfide Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kaci">S. Kaci</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Keffous"> A. Keffous</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Fellahi"> O. Fellahi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bozetine"> I. Bozetine</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Menari"> H. Menari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report the fabrication and characterization of Acropora-like lead sulfide nanostructured thin films using chemical bath deposition. The method has the strong points of low temperature and no surfactant, comparing with the other method. The preferential growth directions of the broad branches were indexed as along (200) directions. The photoelectrochemical property of the as-deposited thin films was also investigated. Photoelectrochemical characterization was performed in the aim to determine the flat band potential (Vfb) and to confirm the n-type character of PbS, elucidated from the J(V) curves both in the dark and under illumination. The apparition of the photocurrent Jph started at a potential VON of −0.41 V/ECS and increased towards the anodic direction, which is typical of n-type behavior. The near infrared absorbance spectrum displayed an absorbance edge at 1959 nm, showing blue shift comparing to bulk PbS (3020 nm). These nanostructured lead sulfide thin films may have potential application as dispersed photoelectrode capable of generating H2 under visible light. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lead%20sulfide" title="lead sulfide">lead sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-conversion" title=" photo-conversion"> photo-conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/32984/photoelectrochemical-study-of-nanostructured-acropora-like-lead-sulfide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Neck Thinning Dynamics of Janus Droplets under Multiphase Interface Coupling in Cross Junction Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Ru">Jiahe Ru</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Pang"> Yan Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomiao%20Liu"> Zhaomiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Necking processes of the Janus droplet generation in the cross-junction microchannels are experimentally and theoretically investigated. The two dispersed phases that are simultaneously shear by continuous phases are liquid paraffin wax and 100cs silicone oil, in which 80% glycerin aqueous solution is used as continuous phases. According to the variation of minimum neck width and thinning rate, the necking process is divided into two stages, including the two-dimensional extrusion and the three-dimensional extrusion. In the two-dimensional extrusion stage, the evolutions of the tip extension length for the two discrete phases begin with the same trend, and then the length of liquid paraffin is larger than silicone oil. The upper and lower neck interface profiles in Janus necking process are asymmetrical when the tip extension velocity of paraffin oil is greater than that of silicone oil. In the three-dimensional extrusion stage, the neck of the liquid paraffin lags behind that of the silicone oil because of the higher surface tension, and finally, the necking fracture position gradually synchronizes. When the Janus droplets pinch off, the interfacial tension becomes positive to drive the neck thinning. The interface coupling of the three phases can cause asymmetric necking of the neck interface, which affects the necking time and, ultimately, the droplet volume. This paper mainly investigates the thinning dynamics of the liquid-liquid interface in confined microchannels. The revealed results could help to enhance the physical understanding of the droplet generation phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neck%20interface" title="neck interface">neck interface</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20coupling" title=" interface coupling"> interface coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=janus%20droplets" title=" janus droplets"> janus droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a> </p> <a href="https://publications.waset.org/abstracts/163142/neck-thinning-dynamics-of-janus-droplets-under-multiphase-interface-coupling-in-cross-junction-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Development of Nanostructured Materials for the Elimination of Emerging Pollutants in Water through Adsorption Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Morillo">J. Morillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Otal%20E."> Otal E.</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Caballero"> A. Caballero</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Pere%C3%B1iguez"> R. M. Pereñiguez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Usero"> J. Usero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work shows in the first place, the manufacture of the perovskitic material used as adsorbent, by means of two different methods to obtain two types of perovskites (LaFeO₃ and BiFeO₃). The results of this work show the characteristics of this manufactured material, as well as the synthesis yields obtained, achieving a better result for the self-combustion synthesis. Secondly, from the manufactured perovskites, an adsorption system has been developed, at the laboratory level, for the adsorption of the emerging pollutants Trimethoprim, Ciprofloxacin and Ibuprofen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20materials" title="nanostructured materials">nanostructured materials</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20pollutants" title=" emerging pollutants"> emerging pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20processes" title=" adsorption processes"> adsorption processes</a> </p> <a href="https://publications.waset.org/abstracts/143630/development-of-nanostructured-materials-for-the-elimination-of-emerging-pollutants-in-water-through-adsorption-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Study of the Nanostructured Fe₅₀Cr₃₅Ni₁₅ Powder Alloy Developed by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20Triaa">Salim Triaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fella%20Kali-Ali"> Fella Kali-Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanostructured Fe₅₀Cr3₃₅Ni₁₅ alloys were prepared from pure elemental powders using high energy mechanical alloying. The mixture powders obtained are characterized by several techniques. X-ray diffraction analysis revelated the formation of the Fe₁Cr₁ compound with BBC structure after one hour of milling. A second compound Fe₃Ni₂ with FCC structure was observed after 12 hours of milling. The size of crystallite determined by Williamson Hall method was about 5.1 nm after 48h of mill. SEM observations confirmed the growth of crushed particles as a function of milling time, while the homogenization of our powders into different constituent elements was verified by the EDX analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-Cr-Ni%20alloy" title="Fe-Cr-Ni alloy">Fe-Cr-Ni alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/101771/study-of-the-nanostructured-fe50cr35ni15-powder-alloy-developed-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Evaluation of TRIS-DMA-NVP Hydrogels for Making Silicone-Based Contact Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20D.%20Tran">N. P. D. Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Q.%20D.%20Nguyen"> H. Q. D. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Yang"> M. C. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, contact lenses were prepared through the polymerization of tris-(trimethyl-silyl-propyl-methacrylate) (TRIS), N,N-dimethylacrylamide (DMA), N-vinylpyrrolidone (NVP), and cross-linked with ethylene glycol dimethylacrylate (EGDMA). The equilibrium water content (EWC), oxygen permeability (Dk), light transmittance, and <em>in vitro</em> cytotoxicity of TRIS-DMA-NVP with various ratios were measured. The results showed that the EWC increased while the Dk decreased with the increase of NVP content. For the sample with 25 wt% NVP, the EWC attained 53% whereas the Dk decreased to 46 barrers. All these lenses exhibited light transmittance over than 95%. In addition, all these lenses exhibited no inhibition to the growth of L292 fibroblasts. Thus, this study showed that TRIS-DMA-NVP can be applicable for making contact lens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DMA" title="DMA">DMA</a>, <a href="https://publications.waset.org/abstracts/search?q=TRIS" title=" TRIS"> TRIS</a>, <a href="https://publications.waset.org/abstracts/search?q=NVP" title=" NVP"> NVP</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20hydrogel" title=" silicone hydrogel"> silicone hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20lens" title=" contact lens"> contact lens</a> </p> <a href="https://publications.waset.org/abstracts/74916/evaluation-of-tris-dma-nvp-hydrogels-for-making-silicone-based-contact-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> The Effect of Si Content on the Physical Properties of Nanostructured (Ni75Fe25)100-xSix Alloy Elaborated by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kaibi">A. Kaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guittoum"> A. Guittoum</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hemmous"> M. Hemmous</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mart%C3%ADnez-Blanco"> D. Martínez-Blanco</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Gorria"> P. Gorria</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Blanco"> J. A. Blanco</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kechouane"> M. Kechouane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the effect of Si content on the physical properties of nanostructured (Ni75Fe25)100-x Six (x=0, 3.5, 6.5, 9, 12, and 15 at %) powders elaborated by mechanical alloying for a milling time of 96 h. The microstructure, hyperfine, and magnetic properties of the powders were investigated as a function of Si content by means of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Mössbauer Spectroscopy, and Vibrating Sample magnetometry (VSM). From XRD spectra, the formation of FCC disordered Ni (Fe,Si) solid solution was evidenced after 96 h. As Si content increases, the lattice parameter and the grain size decrease (from ~28 to 15 nm), while the microstrain level decreases from 0.98% to 0.65%. From SEM micrographs, we showed that powder particles become round in shape and decrease in size with increasing Si content. For all Si content, the adjustment of Mössbauer spectra confirmed the formation of a disordered ferromagnetic NiFeSi phase. From hysteresis curves, we have extracted the values of saturation magnetization and coercive field for all powders. The evolution of Ms and Hc as a function of Si content will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20powders" title="nanostructured powders">nanostructured powders</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Ni75Fe25%29100-xSix%20alloy" title=" (Ni75Fe25)100-xSix alloy"> (Ni75Fe25)100-xSix alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/192107/the-effect-of-si-content-on-the-physical-properties-of-nanostructured-ni75fe25100-xsix-alloy-elaborated-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Chultheera">P. Chultheera</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Rirksomboon"> T. Rirksomboon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kulprathipanja"> S. Kulprathipanja</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Liu"> C. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Chinsirikul"> W. Chinsirikul</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kerddonfag"> N. Kerddonfag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO<sub>2</sub>/CH<sub>4</sub> separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20matrix%20membrane" title="mixed matrix membrane">mixed matrix membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%2FCH%E2%82%84%20separation" title=" CO₂/CH₄ separation"> CO₂/CH₄ separation</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/66253/solid-liquid-polymer-mixed-matrix-membrane-using-liquid-additive-adsorbed-on-activated-carbon-dispersed-in-polymeric-membrane-for-co2ch4-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Growth Nanostructured CdO Thin Film via Solid-Vapor Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Obaid">A. S. Obaid</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20T.%20Hassan"> K. H. T. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Asij"> A. M. Asij</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Salih"> B. M. Salih</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bououdina"> M. Bououdina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cadmium Oxide (CdO) thin films have been prepared by vacuum evaporation method on Si (111) substrate at room temperature using CdCl2 as a source of Cd. Detailed structural properties of the films are presented using XRD and SEM. The films was pure polycrystalline CdO phase with high crystallinity. The lattice constant average crystallite size of the nanocrystalline CdO thin films were calculated. SEM image confirms the formation nanostructure. Energy dispersive X-ray analysis spectra of CdO thin films shows the presence of Cd and O peaks only, no additional peaks attributed to impurities or contamination are observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20CdO" title="nanostructured CdO">nanostructured CdO</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-vapor%20deposition" title=" solid-vapor deposition"> solid-vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20size%20effect" title=" quantum size effect"> quantum size effect</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium%20oxide" title=" cadmium oxide"> cadmium oxide</a> </p> <a href="https://publications.waset.org/abstracts/24649/growth-nanostructured-cdo-thin-film-via-solid-vapor-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Influence of Resin Finishes on Properties of Khadi Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivi%20Rastogi">Shivi Rastogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Suman%20Pant"> Suman Pant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Khadi is an Indian fabric and also known by another name “Khaddar”. During pre-independence era, the movement of khadi manufacturing gained momentum. Over the years, khadi fabrics that were generally considered as the “second skin” of the Swadesh revolutionists changed its uniqueness. It underwent a metamorphosis from that of a patriot’s fabric, and a farmer’s apparel, to become a “fashion fabric”. Drape of garment is governed by draping quality of fabric used. Drape is an essential parameter to decide both appearance and handle of fabric. It is also a secondary determinant of fabric mechanical properties as influenced by the low stress properties, like bending length, formability, tensile and shear properties and compressibility of the fabric. In finishing, fabric is treated to add something to coat the fabric or fiber and thereby temporarily or permanently fix. Film forming agents such as thermoplastic and thermosetting resins and other surface deposits alter hand. In this study, resins were used to modify fabric hand. Three types of resins have been applied on the khadi fabric at three concentration. The effect of these finishes on drapeability, crease recovery, stiffness, tearing strength and smoothness of khadi fabrics were assessed. Silicone gave good results in imparting properties specially drape, smoothness and softness and hand of cotton and khadi fabric. KES result also showed that silicone treated samples enhanced THV rating amongst all treated samples when compared to the control fabric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crease%20recovery" title="crease recovery">crease recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=drapeability" title=" drapeability"> drapeability</a>, <a href="https://publications.waset.org/abstracts/search?q=KES" title=" KES"> KES</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone" title=" silicone"> silicone</a>, <a href="https://publications.waset.org/abstracts/search?q=THV" title=" THV"> THV</a> </p> <a href="https://publications.waset.org/abstracts/47301/influence-of-resin-finishes-on-properties-of-khadi-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Comparative Study of Dermal Regeneration Template Made by Bovine Collagen with and without Silicone Layer in the Treatment of Post-Burn Contracture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elia%20Caldini">Elia Caldini</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A1udia%20N.%20Battlehner"> Cláudia N. Battlehner</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20A.%20Ferreira"> Marcelo A. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolf%20Gemperli"> Rolf Gemperli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nivaldo%20Alonso"> Nivaldo Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20P.%20Vana"> Luiz P. Vana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advent of dermal regenerate templates has fostered major advances in the treatment of acute burns and their sequelae, in the last two decades. Both data on morphological aspects of the newly-formed tissue, and clinical trials comparing different templates, are still lacking. The goal of this study was to prospectively analyze the outcome of patients treated with two of the existing templates, followed by thin skin autograft. They are both made of bovine collagen, one includes a superficial silicone layer. Surgery was performed on patients with impaired mobility resulting from burn sequelae (n = 12 per template). Negative pressure therapy was applied post-surgically; patients were monitored for 12 months. Data on scar skin quality (Vancouver and POSAS evaluation scales), rate of joint mobility recovery, and graft contraction were recorded. Improvement in mobility and skin quality were demonstrated along with graft contraction, in all patients. The silicone-coupled template showed the best performance in all aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dermal%20regeneration%20template" title="dermal regeneration template">dermal regeneration template</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20skin" title=" artificial skin"> artificial skin</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20quality" title=" skin quality"> skin quality</a>, <a href="https://publications.waset.org/abstracts/search?q=scar%20contracture" title=" scar contracture"> scar contracture</a> </p> <a href="https://publications.waset.org/abstracts/103937/comparative-study-of-dermal-regeneration-template-made-by-bovine-collagen-with-and-without-silicone-layer-in-the-treatment-of-post-burn-contracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Alpha-To-Omega Phase Transition in Bulk Nanostructured Ti and (α+β) Ti Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Askar%20Kilmametov">Askar Kilmametov</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Ivanisenko"> Julia Ivanisenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Straumal"> Boris Straumal</a>, <a href="https://publications.waset.org/abstracts/search?q=Horst%20Hahn"> Horst Hahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-pressure α- to ω-phase transition was discovered in elemental Ti and Zr fifty years ago using static high pressure and then observed to appear between 2 and 12 GPa at room temperature, depending on the experimental technique, the pressure environment, and the sample purity. The fact that ω-phase is retained in a metastable state in ambient condition after the removal of the pressure has been used to check the changes in magnetic and superconductive behavior, electron band structure and mechanical properties. However, the fundamental knowledge on a combination of both mechanical treatment and high applied pressure treatments for ω-phase formation in Ti alloys is currently lacking and has to be studied in relation to improved mechanical properties of bulk nanostructured states. In the present study, nanostructured (α+β) Ti alloys containing β-stabilizing elements such as Co, Fe, Cr, Nb were performed by severe plastic deformation, namely high pressure torsion (HPT) technique. HPT-induced α- to ω-phase transformation was revealed in dependence on applied pressure and shear strains by means of X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The transformation kinetics was compared with the kinetics of pressure-induced transition. Orientation relationship between α-, β- and ω-phases was taken into consideration and analyzed according to theoretical calculation proposed earlier. The influence of initial state before HPT appeared to be considerable for subsequent α- to ω-phase transition. Thermal stability of the HPT-induced ω-phase was discussed as well in the frame of mechanical behavior of Ti and Ti-based alloys produced by shear deformation under high applied pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20nanostructured%20materials" title="bulk nanostructured materials">bulk nanostructured materials</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20phase%20transitions" title=" high pressure phase transitions"> high pressure phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/55970/alpha-to-omega-phase-transition-in-bulk-nanostructured-ti-and-av-ti-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Developing an Automated Protocol for the Wristband Extraction Process Using Opentrons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tei%20Kim">Tei Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Brooklynn%20McNeil"> Brooklynn McNeil</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathryn%20Dunn"> Kathryn Dunn</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20I.%20Walker"> Douglas I. Walker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To better characterize the relationship between complex chemical exposures and disease, our laboratory uses an approach that combines low-cost, polydimethylsiloxane (silicone) wristband samplers that absorb many of the chemicals we are exposed to with untargeted high-resolution mass spectrometry (HRMS) to characterize 1000’s of chemicals at a time. In studies with human populations, these wristbands can provide an important measure of our environment: however, there is a need to use this approach in large cohorts to study exposures associated with the disease. To facilitate the use of silicone samplers in large scale population studies, the goal of this research project was to establish automated sample preparation methods that improve throughput, robustness, and scalability of analytical methods for silicone wristbands. Using the Opentron OT2 automated liquid platform, which provides a low-cost and opensource framework for automated pipetting, we created two separate workflows that translate the manual wristband preparation method to a fully automated protocol that requires minor intervention by the operator. These protocols include a sequence generation step, which defines the location of all plates and labware according to user-specified settings, and a transfer protocol that includes all necessary instrument parameters and instructions for automated solvent extraction of wristband samplers. These protocols were written in Python and uploaded to GitHub for use by others in the research community. Results from this project show it is possible to establish automated and open source methods for the preparation of silicone wristband samplers to support profiling of many environmental exposures. Ongoing studies include deployment in longitudinal cohort studies to investigate the relationship between personal chemical exposure and disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=opentrons" title=" opentrons"> opentrons</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a> </p> <a href="https://publications.waset.org/abstracts/157079/developing-an-automated-protocol-for-the-wristband-extraction-process-using-opentrons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> The High Strength Biocompatible Wires of Commercially Pure Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Pal%C3%A1n">J. Palán</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zemko"> M. Zemko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050&nbsp;MPa. Ti Grade 4 reaches ultimate strengths of up to 1250&nbsp;MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CONFORM" title="CONFORM">CONFORM</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20swaging" title=" rotary swaging"> rotary swaging</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/73209/the-high-strength-biocompatible-wires-of-commercially-pure-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Formation of Nanostructured Surface Layers of a Material with TiNi-Based Shape Memory by Diffusion Metallization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zh.%20M.%20Blednova">Zh. M. Blednova</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20O.%20Rusinov"> P. O. Rusinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Results of research on the formation of the surface layers of a material with shape memory effect (SME) based on TiNi diffusion metallization in molten Pb-Bi under isothermal conditions in an argon atmosphere are presented. It is shown that this method allows obtaining of uniform surface layers in nanostructured state of internal surfaces on the articles of complex shapes with stress concentrators. Structure, chemical and phase composition of the surface layers provide a manifestation of TiNi shape memory. The average grain size of TiNi coatings ranges between 60 ÷ 160 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20metallization" title="diffusion metallization">diffusion metallization</a>, <a href="https://publications.waset.org/abstracts/search?q=nikelid%20titanium%20surface%20layers" title=" nikelid titanium surface layers"> nikelid titanium surface layers</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20effect" title=" shape memory effect"> shape memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/9419/formation-of-nanostructured-surface-layers-of-a-material-with-tini-based-shape-memory-by-diffusion-metallization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Self-Healing Composites of Silicone Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Strakowska">Anna Strakowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Zaborski"> Marian Zaborski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This abstract focuses an overview of the methods used to create self-healing silicone composites. It has been shown how incorporating of polyhedral oligomeric silsesquioxanes (POSS) molecules with acid and basic groups to silicone rubber affects the barrier properties, mechanical properties in room and reduced temperature or the influence on relaxation rates of the methylvinylsilicone rubber vulcanizates. Moreover, the presence of silsesquioxanes, their content and the way of composites preparing affect the amount of ionic bonds, as indicated by dynamic - mechanical thermal analysis (DMTA) as well as measurements of equilibrium swelling in toluene. The aim of this work was to study the influence of concentration and different functional groups types selected silsesquioxanes compounds on self-healing effect of silicone rubber and obtain elastomers with good barrier and mechanical properties. Composites based on the methylvinylsilicone rubber with fumed silica as the fillers were manufactured and studied. To obtain self-healing effect various silsesquioxanes with amino and acid groups were used. Every tested sample demonstrated the ability to the self-treatment. The most significant effect was observed for system containing amic-acid isobytyl POSS/ aminopropylisobutyl POSS. Composite with this silsesquioxanes was exhibited the best improvement of gas permeability after heal. Moreover, the addition of POSS with acid and basic groups clearly affects the mechanical properties of the vulcanizates. The most significant effect was observed for the composite material consisting of amic-acid isobytyl POSS / aminoethylaminopropylisobutyl POSS, which tensile strength was even greater than the reference vulcanizate with fumed silica. The development of autonomous self-healing materials could have an enormous influence on all industry branches from motorization to power industry. Self-repairing materials would have a massive impact on lengthening product lifetimes, increasing safety, and lowering product costs by reducing maintenance requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barrier%20properties" title="barrier properties">barrier properties</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=POSS" title=" POSS"> POSS</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing%20composites" title=" self-healing composites"> self-healing composites</a> </p> <a href="https://publications.waset.org/abstracts/51047/self-healing-composites-of-silicone-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Characterization of Nanostructured and Conventional TiAlN and AlCrN Coated ASTM-SA213-T-11 Boiler Steel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Chawla">Vikas Chawla</a>, <a href="https://publications.waset.org/abstracts/search?q=Buta%20Singh%20Sidhu"> Buta Singh Sidhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amita%20Rani"> Amita Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Handa"> Amit Handa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the present work is microstructural and mechanical characterization of the conventional and nanostructured TiAlN and AlCrN coatings deposited on T-11 boiler steel. In case of conventional coatings, Al-Cr and Ti-Al metallic powders were deposited using plasma spray process followed by gas nitriding of the surface which was done in the lab with optimized parameters after conducting several trials on plasma-sprayed coated specimens. The physical vapor deposition process (PAPVD) was employed for depositing nanostructured TiAlN and AlCrN coatings. The field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray analysis (EDAX) attachment, X-ray diffraction (XRD) analysis, atomic force microscopy (AFM) analysis and the X-Ray mapping analysis techniques have been used to study surface and cross-sectional morphology of the coatings. The surface roughness and micro-hardness were also measured. A good adhesion of the conventional thick TiAlN and AlCrN coatings was found. The coatings under study are recommended for the applications to super-heater and re-heater tubes of the boilers based upon the outcomes of the research work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title="nanostructure">nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20vapour%20deposition" title=" physical vapour deposition"> physical vapour deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides" title=" oxides"> oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/112764/characterization-of-nanostructured-and-conventional-tialn-and-alcrn-coated-astm-sa213-t-11-boiler-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> X-Ray Diffraction and Mӧssbauer Studies of Nanostructured Ni45Al45Fe10 Powders Elaborated by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ammouchi">N. Ammouchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the effect of milling time on the structural and hyperfine properties of Ni45Al45Fe10 compound elaborated by mechanical alloying. The elaboration was performed by using the planetary ball mill at different milling times. The as milled powders were characterized by X-ray diffraction (XRD) and Mӧssbauer spectroscopy. From XRD diffraction spectra, we show that the β NiAl(Fe) was completely formed after 24 h of milling time. When the milling time increases, the lattice parameter increases, whereas the grain size decreases to a few nanometres and the mean level of microstrains increases. The analysis of Mӧssbauer spectra indicates that, in addition to a ferromagnetic phase, α-Fe, a paramagnetic disordered phase Ni Al (Fe) solid solution is observed after 2h and only this phase is present after 12h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiAlFe" title="NiAlFe">NiAlFe</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20powders" title=" nanostructured powders"> nanostructured powders</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=M%D3%A7ssbauer%20spectroscopy" title=" Mӧssbauer spectroscopy"> Mӧssbauer spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/17005/x-ray-diffraction-and-mssbauer-studies-of-nanostructured-ni45al45fe10-powders-elaborated-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silicone%20nanostructured&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silicone%20nanostructured&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silicone%20nanostructured&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silicone%20nanostructured&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silicone%20nanostructured&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silicone%20nanostructured&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silicone%20nanostructured&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silicone%20nanostructured&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10