CINXE.COM
Search results for: Tomaž Tollazzi
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Tomaž Tollazzi</title> <meta name="description" content="Search results for: Tomaž Tollazzi"> <meta name="keywords" content="Tomaž Tollazzi"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Tomaž Tollazzi" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Tomaž Tollazzi"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Tomaž Tollazzi</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Slovenia Rider/Driver Gaze Behavior Comparative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toma%C5%BE%20Tollazzi">Tomaž Tollazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Matja%C5%BE%20%C5%A0raml"> Matjaž Šraml</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Gruden"> Chiara Gruden</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20Ren%C4%8Delj"> Marko Renčelj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motorcycle riders are an increasing group of road users. The intrinsic characteristics of powered two-wheelers (PTW) allow them to be particularly flexible, both in urban and extra-urban environments. Nevertheless, crash statistics indicate that riders involved in road accidents are highly likely to suffer severe injuries, underlining the vulnerability of this group of road users. An element that can greatly affect the safety of PTW users is road design, as roads are usually designed for two-track vehicles (cars, buses, and lorries) and usually do not consider the needs of PTWs. Additionally, handling a motorcycle is quite different from driving a car; thus, the behavior of riders is different from that of drivers. The aim of this research was to compare how different road designs are perceived by riders and drivers and to preliminarily assess if riders’ behavior and attention allocation are related. For this research, an eye-tracking experiment was developed outdoors. Both drivers and riders travelled along a route comprising four different road designs and various road layouts, and the output was analyzed both qualitatively and quantitatively. Although it was not possible to carry out a statistical analysis due to the limited number of participants, the results demonstrate that there is a difference in the gaze behavior of drivers and riders, with the latter being far more focused on the left-hand side of the road and concentrating on defined elements of road design. Furthermore, the experiment demonstrated that a higher number of fixations is related to lower speeds. Finally, it was noted that both kinds of road users focus well on the carriageway, leading to the conclusion that the indications given through road markings may be much more effective than vertical signalization, which has rarely been observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title="road safety">road safety</a>, <a href="https://publications.waset.org/abstracts/search?q=powered%20two-wheelers" title=" powered two-wheelers"> powered two-wheelers</a>, <a href="https://publications.waset.org/abstracts/search?q=eye-tracking" title=" eye-tracking"> eye-tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=gaze%20behavior" title=" gaze behavior"> gaze behavior</a> </p> <a href="https://publications.waset.org/abstracts/162504/slovenia-riderdriver-gaze-behavior-comparative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matja%C5%BE%20%C5%A0raml">Matjaž Šraml</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20Ren%C4%8Delj"> Marko Renčelj</a>, <a href="https://publications.waset.org/abstracts/search?q=Toma%C5%BE%20Tollazzi"> Tomaž Tollazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Gruden"> Chiara Gruden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistant%20systems" title="advanced driver assistant systems">advanced driver assistant systems</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20simulator" title=" driving simulator"> driving simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20tolerance%20zone" title=" safety tolerance zone"> safety tolerance zone</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title=" traffic safety"> traffic safety</a> </p> <a href="https://publications.waset.org/abstracts/162481/safety-tolerance-zone-for-driver-vehicle-environment-interactions-under-challenging-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Limestone Briquette Production and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20C.%20Silva">André C. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20R.%20Barros"> Mariana R. Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=Elenice%20M.%20S.%20Silva"> Elenice M. S. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas.%20Y.%20Marinho"> Douglas. Y. Marinho</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20F.%20Lopes"> Diego F. Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20N.%20Sousa"> Débora N. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20S.%20Tom%C3%A1z"> Raphael S. Tomáz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern agriculture requires productivity, efficiency and quality. Therefore, there is need for agricultural limestone implementation that provides adequate amounts of calcium and magnesium carbonates in order to correct soil acidity. During the limestone process, fine particles (with average size under 400#) are generated. These particles do not have economic value in agricultural and metallurgical sectors due their size. When limestone is used for agriculture purposes, these fine particles can be easily transported by wind generated air pollution. Therefore, briquetting, a mineral processing technique, was used to mitigate this problem resulting in an agglomerated product suitable for agriculture use. Briquetting uses compressive pressure to agglomerate fine particles. It can be aided by agglutination agents, allowing adjustments in shape, size and mechanical parameters of the mass. Briquettes can generate extra profits for mineral industry, presenting as a distinct product for agriculture, and can reduce the environmental liabilities of the fine particles storage or disposition. The produced limestone briquettes were subjected to shatter and water action resistance tests. The results show that after six minutes completely submerged in water, the briquettes where fully diluted, a highly favorable result considering its use for soil acidity correction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title="agglomeration">agglomeration</a>, <a href="https://publications.waset.org/abstracts/search?q=briquetting" title=" briquetting"> briquetting</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone" title=" limestone"> limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20acidity%20correction" title=" soil acidity correction"> soil acidity correction</a> </p> <a href="https://publications.waset.org/abstracts/50898/limestone-briquette-production-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Development of a Classification Model for Value-Added and Non-Value-Added Operations in Retail Logistics: Insights from a Supermarket Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helena%20Macedo">Helena Macedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Larissa%20Tomaz"> Larissa Tomaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Levi%20Guimar%C3%A3es"> Levi Guimarães</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Cerqueira-Pinto"> Luís Cerqueira-Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Dinis-Carvalho"> José Dinis-Carvalho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of retail logistics, the pursuit of operational efficiency and cost optimization involves a rigorous distinction between value-added and non-value-added activities. In today's competitive market, optimizing efficiency and reducing operational costs are paramount for retail businesses. This research paper focuses on the development of a classification model adapted to the retail sector, specifically examining internal logistics processes. Based on a comprehensive analysis conducted in a retail supermarket located in the north of Portugal, which covered various aspects of internal retail logistics, this study questions the concept of value and the definition of wastes traditionally applied in a manufacturing context and proposes a new way to assess activities in the context of internal logistics. This study combines quantitative data analysis with qualitative evaluations. The proposed classification model offers a systematic approach to categorize operations within the retail logistics chain, providing actionable insights for decision-makers to streamline processes, enhance productivity, and allocate resources more effectively. This model contributes not only to academic discourse but also serves as a practical tool for retail businesses, aiding in the enhancement of their internal logistics dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20retail" title="lean retail">lean retail</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20logisitcs" title=" lean logisitcs"> lean logisitcs</a>, <a href="https://publications.waset.org/abstracts/search?q=retail%20logistics" title=" retail logistics"> retail logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=value-added%20and%20non-value-added" title=" value-added and non-value-added"> value-added and non-value-added</a> </p> <a href="https://publications.waset.org/abstracts/185235/development-of-a-classification-model-for-value-added-and-non-value-added-operations-in-retail-logistics-insights-from-a-supermarket-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20C.%20Silva">André C. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20N.%20Sousa"> Débora N. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Elenice%20M.%20S.%20Silva"> Elenice M. S. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Thales%20P.%20Fontes"> Thales P. Fontes</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20S.%20Tomaz"> Raphael S. Tomaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 <sup>o</sup>C. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title="froth flotation">froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatinization" title=" gelatinization"> gelatinization</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=starches%20and%20flours" title=" starches and flours"> starches and flours</a> </p> <a href="https://publications.waset.org/abstracts/50896/optimal-consume-of-naoh-in-starches-gelatinization-for-froth-flotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Development of Liquid Chromatography Tandem Mass Spectrometry Method for Citrinin Determination in Dry-Fermented Meat Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Vulic">Ana Vulic</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Lesic"> Tina Lesic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Kudumija"> Nina Kudumija</a>, <a href="https://publications.waset.org/abstracts/search?q=Maja%20Kis"> Maja Kis</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Zadravec"> Manuela Zadravec</a>, <a href="https://publications.waset.org/abstracts/search?q=Nada%20Vahcic"> Nada Vahcic</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomaz%20Polak"> Tomaz Polak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelka%20Pleadin"> Jelka Pleadin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycotoxins are toxic secondary metabolites produced by numerous types of molds. They can contaminate both food and feed so that they represent a serious public health concern. Production of dry-fermented meat products involves ripening, during which molds can overgrow the product surface, produce mycotoxins, and consequently contaminate the final product. Citrinin is a mycotoxin produced mainly by the Penicillium citrinum. Data on citrinin occurrence in both food and feed are limited. Therefore, there is a need for research on citrinin occurrence in these types of meat products. The LC-MS/MS method for citrinin determination was developed and validated. Sample preparation was performed using immunoaffinity columns, which resulted in clean sample extracts. Method validation included the determination of the limit of detection (LOD), the limit of quantification (LOQ), recovery, linearity, and matrix effect in accordance to the latest validation guidance. The determined LOD and LOQ were 0.60 µg/kg and 1.98 µg/kg, respectively, showing a good method sensitivity. The method was tested for its linearity in the calibration range of 1 µg/L to 10 µg/L. The recovery was 100.9 %, while the matrix effect was 0.7 %. This method was employed in the analysis of 47 samples of dry-fermented sausages collected from local households. Citrinin wasn’t detected in any of these samples, probably because of the short ripening period of the tested sausages that takes three months tops. The developed method shall be used to test other types of traditional dry-cured products, such as prosciuttos, whose surface is usually more heavily overgrown by surface molds due to the longer ripening period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=citrinin" title="citrinin">citrinin</a>, <a href="https://publications.waset.org/abstracts/search?q=dry-fermented%20meat%20products" title=" dry-fermented meat products"> dry-fermented meat products</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS%2FMS" title=" LC-MS/MS"> LC-MS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title=" mycotoxins"> mycotoxins</a> </p> <a href="https://publications.waset.org/abstracts/125278/the-development-of-liquid-chromatography-tandem-mass-spectrometry-method-for-citrinin-determination-in-dry-fermented-meat-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Isolation, Selection and Identification of Bacteria for Bioaugmentation of Paper Mills White Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nada%20Verdel">Nada Verdel</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomaz%20Rijavec"> Tomaz Rijavec</a>, <a href="https://publications.waset.org/abstracts/search?q=Albin%20Pintar"> Albin Pintar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ales%20Lapanje"> Ales Lapanje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: White water circuits of woodfree paper mills contain suspended, dissolved, and colloidal particles, such as cellulose, starch, paper sizings, and dyes. By closing the white water circuits, these particles start to accumulate and affect the production. Due to high amount of organic matter that scavenge radicals and adsorbs onto catalyst surfaces, treatment of white water with photocatalysis is inappropriate. The most suitable approach should be bioaugmentation-assisted bioremediation. Accordingly, objectives were: - to isolate bacteria capable of degrading organic compounds used for the papermaking process - to select the most active bacteria for bioaugmentation. Status: The state-of-the-art of bioaugmentation of pulp and paper mill effluents is mostly based on biodegradation of lignin. Whereas in white water circuits of woodfree paper mills only papermaking compounds are present. As far as one can tell from the literature, the study on degradation activities of bacteria for all possible compounds of the papermaking process is a novelty. Methodology: The main parameters of the selected white water were systematically analyzed during a period of two months. Bacteria were isolated on selective media with particular carbon source. Organic substances used as carbon source either enter white water circuits as base paper or as recycled broke. The screening of bacterial activities for starch, cellulose, latex, polyvinyl alcohol, alkyl ketene dimers, and resin acids was followed by addition of lugol. Degraders of polycyclic aromatic dyes were selected by cometabolism tests; cometabolism is simultaneous biodegradation of two compounds, in which the degradation of the second compound depends on the presence of the first. The obtained strains were identified by 16S rRNA sequencing. Findings: 335 autochthonous strains were isolated on plates with selected carbon source. The isolated strains were selected according to degradation of the particular carbon source. The ultimate degraders of cationic starch, cellulose, and sizings are Pseudomonas sp. NV-CE12-CF and Aeromonas sp. NV-RES19-BTP. The most active strains capable of degrading azo dyes are Aeromonas sp. NV-RES19-BTP and Sphingomonas sp. NV-B14-CF. Klebsiella sp. NV-Y14A-BTP degrade polycyclic aromatic direct blue 15 and also yellow dye, Agromyces sp. NV-RED15A-BF and Cellulosimicrobium sp. NV-A4-BF are specialists for whitener and Aeromonas sp. NV-RES19-BTP is general degrader of all compounds. To the white water adapted bacteria were isolated and selected according to their degradation activities for particular organic substances. Mostly isolated bacteria are specialized to lower the competition in the microbial community. Degraders of readily-biodegradable compounds do not degrade recalcitrant polycyclic aromatic dyes and vice versa. General degraders are rare. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioaugmentation" title="bioaugmentation">bioaugmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation%20of%20azo%20dyes" title=" biodegradation of azo dyes"> biodegradation of azo dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=cometabolism" title=" cometabolism"> cometabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20wastewater%20treatment%20technologies" title=" smart wastewater treatment technologies"> smart wastewater treatment technologies</a> </p> <a href="https://publications.waset.org/abstracts/117740/isolation-selection-and-identification-of-bacteria-for-bioaugmentation-of-paper-mills-white-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stojan%20Kravanja">Stojan Kravanja</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrej%20Ivani%C4%8D"> Andrej Ivanič</a>, <a href="https://publications.waset.org/abstracts/search?q=Toma%C5%BE%20%C5%BDula"> Tomaž Žula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MINLP" title="MINLP">MINLP</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-integer%20non-linear%20programming" title=" mixed-integer non-linear programming"> mixed-integer non-linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/185274/optimization-of-structures-with-mixed-integer-non-linear-programming-minlp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Analysis of the Evolution of Techniques and Review in Cleft Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomaz%20Oliveira">Tomaz Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Medeiros"> Rui Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Lacerda"> André Lacerda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Cleft lip and/or palate are the most frequent forms of congenital craniofacial anomalies, affecting mainly the middle third of the face and manifesting by functional and aesthetic changes. Bilateral cleft lip represents a reconstructive surgical challenge, not only for the labial component but also for the associated nasal deformation. Recently, the paradigm of the approach to this pathology has changed, placing the focus on muscle reconstruction and anatomical repositioning of the nasal cartilages in order to obtain the best aesthetic and functional results. The aim of this study is to carry out a systematic review of the surgical approach to bilateral cleft lip, retrospectively analyzing the case series of Plastic Surgery Service at Hospital Santa Maria (Lisbon, Portugal) regarding this pathology, the global assessment of the characteristics of the operated patients and the study of the different surgical approaches and their complications in the last 20 years. Methods: The present work demonstrates a retrospective and descriptive study of patients who underwent at least one reconstructive surgery for cleft lip and/or palate, in the CPRE service of the HSM, in the period between January 1 of 1997 and December 31 of 2017, in which the data relating to 361 individuals were analyzed who, after applying the exclusion criteria, constituted a sample of 212 participants. The variables analyzed were the year of the first surgery, gender, age, type of orofacial cleft, surgical approach, and its complications. Results: There was a higher overall prevalence in males, with cleft lip and cleft palate occurring in greater proportion in males, with the cleft palate being more common in females. The most frequently recorded malformation was cleft lip and palate, which is complete in most cases. Regarding laterality, alterations with a unilateral labial component were the most commonly observed, with the left lip being described as the most affected. It was found that the vast majority of patients underwent primary intervention up to 12 months of age. The surgical techniques used in the approach to this pathology showed an important chronological variation over the years. Discussion: Cleft lip and/or palate is a medical condition associated with high aesthetic and functional morbidity, which requires early treatment in order to optimize the long-term outcome. The existence of a nasolabial component and its respective surgical correction plays a central role in the treatment of this pathology. The high rates of post-surgical complications and unconvincing aesthetic results have motivated an evolution of the surgical technique, increasingly evident in recent years, allowing today to achieve satisfactory aesthetic results, even in bilateral cleft lip with high deformation complexity. The introduction of techniques that favor nasolabial reconstruction based on anatomical principles has been producing increasingly convincing results. The analyzed sample shows that most of the results obtained in this study are, in general, compatible with the results published in the literature. Conclusion: This work showed that the existence of small variations in the surgical technique can bring significant improvements in the functional and aesthetic results in the treatment of bilateral cleft lip. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cleft%20lip" title="cleft lip">cleft lip</a>, <a href="https://publications.waset.org/abstracts/search?q=palate%20lip" title=" palate lip"> palate lip</a>, <a href="https://publications.waset.org/abstracts/search?q=congenital%20abnormalities" title=" congenital abnormalities"> congenital abnormalities</a>, <a href="https://publications.waset.org/abstracts/search?q=cranofacial%20malformations" title=" cranofacial malformations"> cranofacial malformations</a> </p> <a href="https://publications.waset.org/abstracts/150961/analysis-of-the-evolution-of-techniques-and-review-in-cleft-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Pe%C4%8Denko">Robert Pečenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Karin%20Toma%C5%BEi%C4%8D"> Karin Tomažič</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Planinc"> Igor Planinc</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabina%20Hu%C4%8D"> Sabina Huč</a>, <a href="https://publications.waset.org/abstracts/search?q=Toma%C5%BE%20Hozjan"> Tomaž Hozjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20numerical%20modelling" title="advanced numerical modelling">advanced numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20fire%20exposure" title=" parametric fire exposure"> parametric fire exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20structures" title=" timber structures"> timber structures</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20strength%20layer" title=" zero strength layer"> zero strength layer</a> </p> <a href="https://publications.waset.org/abstracts/81429/numerical-investigation-on-design-method-of-timber-structures-exposed-to-parametric-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Numerical Modeling of Timber Structures under Varying Humidity Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabina%20Hu%C4%8D">Sabina Huč</a>, <a href="https://publications.waset.org/abstracts/search?q=Staffan%20Svensson"> Staffan Svensson</a>, <a href="https://publications.waset.org/abstracts/search?q=Toma%C5%BE%20Hozjan"> Tomaž Hozjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Timber structures may be exposed to various environmental conditions during their service life. Often, the structures have to resist extreme changes in the relative humidity of surrounding air, with simultaneously carrying the loads. Wood material response for this load case is seen as increasing deformation of the timber structure. Relative humidity variations cause moisture changes in timber and consequently shrinkage and swelling of the material. Moisture changes and loads acting together result in mechano-sorptive creep, while sustained load gives viscoelastic creep. In some cases, magnitude of the mechano-sorptive strain can be about five times the elastic strain already at low stress levels. Therefore, analyzing mechano-sorptive creep and its influence on timber structures’ long-term behavior is of high importance. Relatively many one-dimensional rheological models for rheological behavior of wood can be found in literature, while a number of models coupling creep response in each material direction is limited. In this study, mathematical formulation of a coupled two-dimensional mechano-sorptive model and its application to the experimental results are presented. The mechano-sorptive model constitutes of a moisture transport model and a mechanical model. Variation of the moisture content in wood is modelled by multi-Fickian moisture transport model. The model accounts for processes of the bound-water and water-vapor diffusion in wood, that are coupled through sorption hysteresis. Sorption defines a nonlinear relation between moisture content and relative humidity. Multi-Fickian moisture transport model is able to accurately predict unique, non-uniform moisture content field within the timber member over time. Calculated moisture content in timber members is used as an input to the mechanical analysis. In the mechanical analysis, the total strain is assumed to be a sum of the elastic strain, viscoelastic strain, mechano-sorptive strain, and strain due to shrinkage and swelling. Mechano-sorptive response is modelled by so-called spring-dashpot type of a model, that proved to be suitable for describing creep of wood. Mechano-sorptive strain is dependent on change of moisture content. The model includes mechano-sorptive material parameters that have to be calibrated to the experimental results. The calibration is made to the experiments carried out on wooden blocks subjected to uniaxial compressive loaded in tangential direction and varying humidity conditions. The moisture and the mechanical model are implemented in a finite element software. The calibration procedure gives the required, distinctive set of mechano-sorptive material parameters. The analysis shows that mechano-sorptive strain in transverse direction is present, though its magnitude and variation are substantially lower than the mechano-sorptive strain in the direction of loading. The presented mechano-sorptive model enables observing real temporal and spatial distribution of the moisture-induced strains and stresses in timber members. Since the model’s suitability for predicting mechano-sorptive strains is shown and the required material parameters are obtained, a comprehensive advanced analysis of the stress-strain state in timber structures, including connections subjected to constant load and varying humidity is possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20analysis" title="mechanical analysis">mechanical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechano-sorptive%20creep" title=" mechano-sorptive creep"> mechano-sorptive creep</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20transport%20model" title=" moisture transport model"> moisture transport model</a>, <a href="https://publications.waset.org/abstracts/search?q=timber" title=" timber"> timber</a> </p> <a href="https://publications.waset.org/abstracts/81491/numerical-modeling-of-timber-structures-under-varying-humidity-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>