CINXE.COM

Search results for: distributed algorithms

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: distributed algorithms</title> <meta name="description" content="Search results for: distributed algorithms"> <meta name="keywords" content="distributed algorithms"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="distributed algorithms" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="distributed algorithms"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3984</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: distributed algorithms</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3984</span> Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Tanaka">Richard Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhu"> Ying Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20randomized%20algorithms" title="distributed randomized algorithms">distributed randomized algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=peer-to-peer%20networks" title=" peer-to-peer networks"> peer-to-peer networks</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20container%20technology" title=" virtual container technology"> virtual container technology</a>, <a href="https://publications.waset.org/abstracts/search?q=resilient%20networks" title=" resilient networks"> resilient networks</a> </p> <a href="https://publications.waset.org/abstracts/133527/implementation-of-distributed-randomized-algorithms-for-resilient-peer-to-peer-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3983</span> A Survey on Concurrency Control Methods in Distributed Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohsen%20Jameii">Seyed Mohsen Jameii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last years, remarkable improvements have been made in the ability of distributed database systems performance. A distributed database is composed of some sites which are connected to each other through network connections. In this system, if good harmonization is not made between different transactions, it may result in database incoherence. Nowadays, because of the complexity of many sites and their connection methods, it is difficult to extend different models in distributed database serially. The principle goal of concurrency control in distributed database is to ensure not interfering in accessibility of common database by different sites. Different concurrency control algorithms have been suggested to use in distributed database systems. In this paper, some available methods have been introduced and compared for concurrency control in distributed database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20database" title="distributed database">distributed database</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20locking%20protocol" title=" two phase locking protocol"> two phase locking protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=transaction" title=" transaction"> transaction</a>, <a href="https://publications.waset.org/abstracts/search?q=concurrency" title=" concurrency"> concurrency</a> </p> <a href="https://publications.waset.org/abstracts/69917/a-survey-on-concurrency-control-methods-in-distributed-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3982</span> A High-Level Co-Evolutionary Hybrid Algorithm for the Multi-Objective Job Shop Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a hybrid distributed algorithm has been suggested for the multi-objective job shop scheduling problem. Many new approaches are used at design steps of the distributed algorithm. Co-evolutionary structure of the algorithm and competition between different communicated hybrid algorithms, which are executed simultaneously, causes to efficient search. Using several machines for distributing the algorithms, at the iteration and solution levels, increases computational speed. The proposed algorithm is able to find the Pareto solutions of the big problems in shorter time than other algorithm in the literature. Apache Spark and Hadoop platforms have been used for the distribution of the algorithm. The suggested algorithm and implementations have been compared with results of the successful algorithms in the literature. Results prove the efficiency and high speed of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms" title="distributed algorithms">distributed algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=Apache%20Spark" title=" Apache Spark"> Apache Spark</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20shop%20scheduling" title=" job shop scheduling"> job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/72317/a-high-level-co-evolutionary-hybrid-algorithm-for-the-multi-objective-job-shop-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3981</span> Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yitao%20Lei">Yitao Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingxiang%20Zhai"> Xingxiang Zhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Burra%20Venkata%20Durga%20Kumar"> Burra Venkata Durga Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resource%20scheduling" title="resource scheduling">resource scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/152538/distributed-system-computing-resource-scheduling-algorithm-based-on-deep-reinforcement-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3980</span> A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Viswanathan">Aditi Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shree%20Ranjani"> Shree Ranjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruna%20Govada"> Aruna Govada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20algorithm" title="distributed algorithm">distributed algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-class" title=" multi-class"> multi-class</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/17433/a-unique-multi-class-support-vector-machine-algorithm-using-mapreduce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3979</span> A Hybrid Distributed Algorithm for Solving Job Shop Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a distributed hybrid algorithm is proposed for solving the job shop scheduling problem. The suggested method executes different artificial neural networks, heuristics and meta-heuristics simultaneously on more than one machine. The neural networks are used to control the constraints of the problem while the meta-heuristics search the global space and the heuristics are used to prevent the premature convergence. To attain an efficient distributed intelligent method for solving big and distributed job shop scheduling problems, Apache Spark and Hadoop frameworks are used. In the algorithm implementation and design steps, new approaches are applied. Comparison between the proposed algorithm and other efficient algorithms from the literature shows its efficiency, which is able to solve large size problems in short time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms" title="distributed algorithms">distributed algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=Apache%20Spark" title=" Apache Spark"> Apache Spark</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20shop%20scheduling" title=" job shop scheduling"> job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/72320/a-hybrid-distributed-algorithm-for-solving-job-shop-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3978</span> A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms" title="distributed algorithms">distributed algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=apache-spark" title=" apache-spark"> apache-spark</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20dynamic%20job%20shop%20scheduling" title=" flexible dynamic job shop scheduling"> flexible dynamic job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/72319/a-hybrid-distributed-algorithm-for-multi-objective-dynamic-flexible-job-shop-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3977</span> Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shams%20Esfand%20Abadi">Mohammad Shams Esfand Abadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ranjbar"> Mohammad Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ebrahimpour"> Reza Ebrahimpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=selective%20partial%20update" title="selective partial update">selective partial update</a>, <a href="https://publications.waset.org/abstracts/search?q=affine%20projection" title=" affine projection"> affine projection</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20selection" title=" dynamic selection"> dynamic selection</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20distributed%20networks" title=" adaptive distributed networks"> adaptive distributed networks</a> </p> <a href="https://publications.waset.org/abstracts/20231/diffusion-adaptation-strategies-for-distributed-estimation-based-on-the-family-of-affine-projection-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">707</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3976</span> The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadidja%20Belbachir">Khadidja Belbachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafida%20Belbachir"> Hafida Belbachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20data%20mining" title=" distributed data mining"> distributed data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=partition" title=" partition"> partition</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20algorithms" title=" parallel algorithms"> parallel algorithms</a> </p> <a href="https://publications.waset.org/abstracts/34591/the-parallelization-of-algorithm-based-on-partition-principle-for-association-rules-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3975</span> A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Komaki">G. M. Komaki</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mobin"> S. Mobin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Teymourian"> E. Teymourian</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sheikh"> S. Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20permutation%20flow%20shop" title="distributed permutation flow shop">distributed permutation flow shop</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=makespan" title=" makespan"> makespan</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20variable%20neighborhood%20search%20algorithm" title=" general variable neighborhood search algorithm"> general variable neighborhood search algorithm</a> </p> <a href="https://publications.waset.org/abstracts/37025/a-general-variable-neighborhood-search-algorithm-to-minimize-makespan-of-the-distributed-permutation-flowshop-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3974</span> Selection of Relevant Servers in Distributed Information Retrieval System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benhamouda%20Sara">Benhamouda Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Guezouli%20Larbi"> Guezouli Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the dissemination of information touches the distributed world, where selecting the relevant servers to a user request is an important problem in distributed information retrieval. During the last decade, several research studies on this issue have been launched to find optimal solutions and many approaches of collection selection have been proposed. In this paper, we propose a new collection selection approach that takes into consideration the number of documents in a collection that contains terms of the query and the weights of those terms in these documents. We tested our method and our studies show that this technique can compete with other state-of-the-art algorithms that we choose to test the performance of our approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20information%20retrieval" title="distributed information retrieval">distributed information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=relevance" title=" relevance"> relevance</a>, <a href="https://publications.waset.org/abstracts/search?q=server%20selection" title=" server selection"> server selection</a>, <a href="https://publications.waset.org/abstracts/search?q=collection%20selection" title=" collection selection"> collection selection</a> </p> <a href="https://publications.waset.org/abstracts/37133/selection-of-relevant-servers-in-distributed-information-retrieval-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3973</span> A Highly Efficient Broadcast Algorithm for Computer Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Nandakumaran">Ganesh Nandakumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Karaata"> Mehmet Karaata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20computing" title="distributed computing">distributed computing</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-node%20broadcast" title=" multi-node broadcast"> multi-node broadcast</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20of%20information%20with%20feedback%20and%20cleaning%20%28PFC%29" title=" propagation of information with feedback and cleaning (PFC)"> propagation of information with feedback and cleaning (PFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20algorithms" title=" wave algorithms"> wave algorithms</a> </p> <a href="https://publications.waset.org/abstracts/22312/a-highly-efficient-broadcast-algorithm-for-computer-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3972</span> Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsin-Yi%20Huang">Hsin-Yi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Sheng%20Liu"> Ming-Sheng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Yan%20Shiau"> Jiun-Yan Shiau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Planning the order picking lists of warehouses to achieve when the costs associated with logistics on the operational performance is a significant challenge. In e-commerce era, this task is especially important productive processes are high. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, the definition of which features should be processed by such algorithms is not a simple task, being crucial to the proposed technique’s success. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A Zone2 picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=order%20picking" title="order picking">order picking</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse" title=" warehouse"> warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised%20learning" title=" unsupervised learning"> unsupervised learning</a> </p> <a href="https://publications.waset.org/abstracts/136656/double-clustering-as-an-unsupervised-approach-for-order-picking-of-distributed-warehouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3971</span> The Primitive Code-Level Design Patterns for Distributed Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Li">Bing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primitive code-level design patterns (PDP) are the rudimentary programming elements to develop any distributed systems in the generic distributed programming environment, GreatFree. The PDP works with the primitive distributed application programming interfaces (PDA), the distributed modeling, and the distributed concurrency for scaling-up. They not only hide developers from underlying technical details but also support sufficient adaptability to a variety of distributed computing environments. Programming with them, the simplest distributed system, the lightweight messaging two-node client/server (TNCS) system, is constructed rapidly with straightforward and repeatable behaviors, copy-paste-replace (CPR). As any distributed systems are made up of the simplest ones, those PDAs, as well as the PDP, are generic for distributed programming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=primitive%20APIs" title="primitive APIs">primitive APIs</a>, <a href="https://publications.waset.org/abstracts/search?q=primitive%20code-level%20design%20patterns" title=" primitive code-level design patterns"> primitive code-level design patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=generic%20distributed%20programming" title=" generic distributed programming"> generic distributed programming</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20systems" title=" distributed systems"> distributed systems</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20patterned%20development%20environment" title=" highly patterned development environment"> highly patterned development environment</a>, <a href="https://publications.waset.org/abstracts/search?q=messaging" title=" messaging"> messaging</a> </p> <a href="https://publications.waset.org/abstracts/135687/the-primitive-code-level-design-patterns-for-distributed-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3970</span> Parallel Querying of Distributed Ontologies with Shared Vocabulary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharjeel%20Aslam">Sharjeel Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vassil%20Vassilev"> Vassil Vassilev</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Ouazzane"> Karim Ouazzane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ontologies and various semantic repositories became a convenient approach for implementing model-driven architectures of distributed systems on the Web. SPARQL is the standard query language for querying such. However, although SPARQL is well-established standard for querying semantic repositories in RDF and OWL format and there are commonly used APIs which supports it, like Jena for Java, its parallel option is not incorporated in them. This article presents a complete framework consisting of an object algebra for parallel RDF and an index-based implementation of the parallel query engine capable of dealing with the distributed RDF ontologies which share common vocabulary. It has been implemented in Java, and for validation of the algorithms has been applied to the problem of organizing virtual exhibitions on the Web. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20ontologies" title="distributed ontologies">distributed ontologies</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20querying" title=" parallel querying"> parallel querying</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20indexing" title=" semantic indexing"> semantic indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20vocabulary" title=" shared vocabulary"> shared vocabulary</a>, <a href="https://publications.waset.org/abstracts/search?q=SPARQL" title=" SPARQL"> SPARQL</a> </p> <a href="https://publications.waset.org/abstracts/105046/parallel-querying-of-distributed-ontologies-with-shared-vocabulary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3969</span> An Algorithm for Herding Cows by a Swarm of Quadcopters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeryes%20Danial">Jeryes Danial</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosi%20Ben%20Asher"> Yosi Ben Asher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algorithms for controlling a swarm of robots is an active research field, out of which cattle herding is one of the most complex problems to solve. In this paper, we derive an independent herding algorithm that is specifically designed for a swarm of quadcopters. The algorithm works by devising flight trajectories that cause the cows to run-away in the desired direction and hence herd cows that are distributed in a given field towards a common gathering point. Unlike previously proposed swarm herding algorithms, this algorithm does not use a flocking model but rather stars each cow separately. The effectiveness of this algorithm is verified experimentally using a simulator. We use a special set of experiments attempting to demonstrate that the herding times of this algorithm correspond to field diameter small constant regardless of the number of cows in the field. This is an optimal result indicating that the algorithm groups the cows into intermediate groups and herd them as one forming ever closing bigger groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swarm" title="swarm">swarm</a>, <a href="https://publications.waset.org/abstracts/search?q=independent" title=" independent"> independent</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed" title=" distributed"> distributed</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/134795/an-algorithm-for-herding-cows-by-a-swarm-of-quadcopters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3968</span> Cloud Computing in Data Mining: A Technical Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghaemi%20Reza">Ghaemi Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollahi%20Hamid"> Abdollahi Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Dashti%20Elham"> Dashti Elham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=computing%20models" title=" computing models"> computing models</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20services" title=" cloud services"> cloud services</a> </p> <a href="https://publications.waset.org/abstracts/17331/cloud-computing-in-data-mining-a-technical-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3967</span> Sync Consensus Algorithm: Trying to Reach an Agreement at Full Speed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Zinchenko">Yuri Zinchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, distributed storage systems have been used more and more in various aspects of everyday life. They provide such necessary properties as Scalability, Fault Tolerance, Durability, and others. At the same time, not only reliable but also fast data storage remains one of the most pressing issues in this area. That brings us to the consensus algorithm as one of the most important components that has a great impact on the functionality of a distributed system. This paper is the result of an analysis of several well-known consensus algorithms, such as Paxos and Raft. The algorithm it offers, called Sync, promotes, but does not insist on simultaneous writing to the nodes (which positively affects the overall writing speed) and tries to minimize the system's inactive time. This allows nodes to reach agreement on the system state in a shorter period, which is a critical factor for distributed systems. Also when developing Sync, a lot of attention was paid to such criteria as simplicity and intuitiveness, the importance of which is difficult to overestimate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sync" title="sync">sync</a>, <a href="https://publications.waset.org/abstracts/search?q=consensus%20algorithm" title=" consensus algorithm"> consensus algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=leader-based" title=" leader-based"> leader-based</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization." title=" synchronization."> synchronization.</a> </p> <a href="https://publications.waset.org/abstracts/179045/sync-consensus-algorithm-trying-to-reach-an-agreement-at-full-speed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3966</span> Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20M.%20Bazzi">Wael M. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Rastegarnia"> Amir Rastegarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Khalili"> Azam Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20filter" title="adaptive filter">adaptive filter</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20estimation" title=" distributed estimation"> distributed estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%0D%0Anetwork" title=" sensor network"> sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=IDLMS%20algorithm" title=" IDLMS algorithm"> IDLMS algorithm</a> </p> <a href="https://publications.waset.org/abstracts/27648/considering-the-reliability-of-measurements-issue-in-distributed-adaptive-estimation-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3965</span> Hierarchical Clustering Algorithms in Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdullah">Z. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Hamdan"> A. R. Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised%20learning" title=" unsupervised learning"> unsupervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical" title=" hierarchical"> hierarchical</a> </p> <a href="https://publications.waset.org/abstracts/31217/hierarchical-clustering-algorithms-in-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">885</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3964</span> An Investigation Enhancing E-Voting Application Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Verma">Aditya Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20bft" title=" parallel bft"> parallel bft</a>, <a href="https://publications.waset.org/abstracts/search?q=consensus%20algorithms" title=" consensus algorithms"> consensus algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/132393/an-investigation-enhancing-e-voting-application-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3963</span> HPPDFIM-HD: Transaction Distortion and Connected Perturbation Approach for Hierarchical Privacy Preserving Distributed Frequent Itemset Mining over Horizontally-Partitioned Dataset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Ali%20Mohammed%20Al-Yarimi">Fuad Ali Mohammed Al-Yarimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many algorithms have been proposed to provide privacy preserving in data mining. These protocols are based on two main approaches named as: the perturbation approach and the Cryptographic approach. The first one is based on perturbation of the valuable information while the second one uses cryptographic techniques. The perturbation approach is much more efficient with reduced accuracy while the cryptographic approach can provide solutions with perfect accuracy. However, the cryptographic approach is a much slower method and requires considerable computation and communication overhead. In this paper, a new scalable protocol is proposed which combines the advantages of the perturbation and distortion along with cryptographic approach to perform privacy preserving in distributed frequent itemset mining on horizontally distributed data. Both the privacy and performance characteristics of the proposed protocol are studied empirically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anonymity%20data" title="anonymity data">anonymity data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20frequent%20itemset%20mining" title=" distributed frequent itemset mining"> distributed frequent itemset mining</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20perturbation" title=" gaussian perturbation"> gaussian perturbation</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20approach" title=" perturbation approach"> perturbation approach</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20preserving%20data%20mining" title=" privacy preserving data mining"> privacy preserving data mining</a> </p> <a href="https://publications.waset.org/abstracts/20805/hppdfim-hd-transaction-distortion-and-connected-perturbation-approach-for-hierarchical-privacy-preserving-distributed-frequent-itemset-mining-over-horizontally-partitioned-dataset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3962</span> Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Olshansky">Daniel Olshansky</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramiro%20Rodr%C4%B1guez%20Colmeiro"> Ramiro Rodrıguez Colmeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20procedure%20call" title="remote procedure call">remote procedure call</a>, <a href="https://publications.waset.org/abstracts/search?q=crypto-economic" title=" crypto-economic"> crypto-economic</a>, <a href="https://publications.waset.org/abstracts/search?q=commit-reveal" title=" commit-reveal"> commit-reveal</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralization" title=" decentralization"> decentralization</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20limiting" title=" rate limiting"> rate limiting</a>, <a href="https://publications.waset.org/abstracts/search?q=token%20bucket" title=" token bucket"> token bucket</a> </p> <a href="https://publications.waset.org/abstracts/177065/relay-mining-verifiable-multi-tenant-distributed-rate-limiting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3961</span> A Preliminary Conceptual Scale to Discretize the Distributed Manufacturing Continuum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ijaz%20Ul%20Haq">Ijaz Ul Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiorenzo%20Franceschini"> Fiorenzo Franceschini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distributed manufacturing methodology brings a new concept of decentralized manufacturing operations close to the proximity of end users. A preliminary scale, to measure distributed capacity and evaluate positioning of firms, is developed in this research. In the first part of the paper, a literature review has been performed which highlights the explorative nature of the studies conducted to present definitions and classifications due to novelty of this topic. From literature, five dimensions of distributed manufacturing development stages have been identified: localization, manufacturing technologies, customization and personalization, digitalization and democratization of design. Based on these determinants a conceptual scale is proposed to measure the status of distributed manufacturing of a generic firm. A multiple case study is then conducted in two steps to test the conceptual scale and to identify the corresponding level of distributed potential in each case study firm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20manufacturing" title="distributed manufacturing">distributed manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20capacity" title=" distributed capacity"> distributed capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20production" title=" localized production"> localized production</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinal%20scale" title=" ordinal scale"> ordinal scale</a> </p> <a href="https://publications.waset.org/abstracts/89405/a-preliminary-conceptual-scale-to-discretize-the-distributed-manufacturing-continuum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3960</span> Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouahab%20Kadri">Ouahab Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Hayet%20Mouss"> Leila Hayet Mouss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20algorithms" title="ant colony algorithms">ant colony algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20and%20dynamic%20systems" title=" complex and dynamic systems"> complex and dynamic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/42293/fault-diagnosis-of-manufacturing-systems-using-anttreestoch-with-parameter-optimization-by-aco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3959</span> Performance Analysis of Ad-Hoc Network Routing Protocols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Baddari">I. Baddari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Riahla"> A. Riahla</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mezghich"> M. Mezghich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today in the literature, we discover a lot of routing algorithms which some have been the subject of normalization. Two great classes Routing algorithms are defined, the first is the class reactive algorithms and the second that of algorithms proactive. The aim of this work is to make a comparative study between some routing algorithms. Two comparisons are considered. The first will focus on the protocols of the same class and second class on algorithms of different classes (one reactive and the other proactive). Since they are not based on analytical models, the exact evaluation of some aspects of these protocols is challenging. Simulations have to be done in order to study their performances. Our simulation is performed in NS2 (Network Simulator 2). It identified a classification of the different routing algorithms studied in a metrics such as loss of message, the time transmission, mobility, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ad-hoc%20network%20routing%20protocol" title="ad-hoc network routing protocol">ad-hoc network routing protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=NS2" title=" NS2"> NS2</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=packet%20loss" title=" packet loss"> packet loss</a>, <a href="https://publications.waset.org/abstracts/search?q=wideband" title=" wideband"> wideband</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a> </p> <a href="https://publications.waset.org/abstracts/23093/performance-analysis-of-ad-hoc-network-routing-protocols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3958</span> Distributed Real-time Framework for Experimental Multi Aerial Robotic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Knox">Samuel Knox</a>, <a href="https://publications.waset.org/abstracts/search?q=Verdon%20Crann"> Verdon Crann</a>, <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Amiri"> Peyman Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Crowther"> William Crowther</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There exists a shortage of open-source firmware for allowing researchers to focus on implementing high-level planning and control strategies for multi aerial robotic systems in simulation and experiment. Within this body of work, practical firmware is presented, which performs all supplementary tasks, including communications, pre and post-experiment procedures, and emergency safety measures. This allows researchers to implement high-level planning and control algorithms for path planning, traffic management, flight formation and swarming of aerial robots. The framework is built in Python using the MAVSDK library, which is compatible with flight controllers running PX4 firmware and onboard computers based on Linux. Communication is performed using Wi-Fi and the MQTT protocol, currently implemented using a centralized broker. Finally, a graphical user interface (GUI) has been developed to send general commands and monitor the agents. This framework enables researchers to prepare customized planning and control algorithms in a modular manner. Studies can be performed experimentally and in simulation using PX4 software in the loop (SITL) and the Gazebo simulator. An example experimental use case of the framework is presented using novel distributed planning and control strategies. The demonstration is performed using off-the-shelf components and minimal setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20robotics" title="aerial robotics">aerial robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20framework" title=" distributed framework"> distributed framework</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=planning%20and%20control" title=" planning and control"> planning and control</a> </p> <a href="https://publications.waset.org/abstracts/147410/distributed-real-time-framework-for-experimental-multi-aerial-robotic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3957</span> Semi-Supervised Hierarchical Clustering Given a Reference Tree of Labeled Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhao">Ying Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingyan%20Bin"> Xingyan Bin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semi-supervised clustering algorithms have been shown effective to improve clustering process with even limited supervision. However, semi-supervised hierarchical clustering remains challenging due to the complexities of expressing constraints for agglomerative clustering algorithms. This paper proposes novel semi-supervised agglomerative clustering algorithms to build a hierarchy based on a known reference tree. We prove that by enforcing distance constraints defined by a reference tree during the process of hierarchical clustering, the resultant tree is guaranteed to be consistent with the reference tree. We also propose a framework that allows the hierarchical tree generation be aware of levels of levels of the agglomerative tree under creation, so that metric weights can be learned and adopted at each level in a recursive fashion. The experimental evaluation shows that the additional cost of our contraint-based semi-supervised hierarchical clustering algorithm (HAC) is negligible, and our combined semi-supervised HAC algorithm outperforms the state-of-the-art algorithms on real-world datasets. The experiments also show that our proposed methods can improve clustering performance even with a small number of unevenly distributed labeled data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-supervised%20clustering" title="semi-supervised clustering">semi-supervised clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%0D%0Aagglomerative%20clustering" title=" hierarchical agglomerative clustering"> hierarchical agglomerative clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20trees" title=" reference trees"> reference trees</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20constraints" title=" distance constraints "> distance constraints </a> </p> <a href="https://publications.waset.org/abstracts/19478/semi-supervised-hierarchical-clustering-given-a-reference-tree-of-labeled-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3956</span> Emotion Recognition in Video and Images in the Wild</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faizan%20Tariq">Faizan Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Moayid%20Ali%20Zaidi"> Moayid Ali Zaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title="face recognition">face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20recognition" title=" emotion recognition"> emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a> </p> <a href="https://publications.waset.org/abstracts/152635/emotion-recognition-in-video-and-images-in-the-wild" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3955</span> Optimizing Communications Overhead in Heterogeneous Distributed Data Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashi%20Bhalla">Rashi Bhalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Russel%20Pears"> Russel Pears</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Asif%20Naeem"> M. Asif Naeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20inference" title=" bayesian inference"> bayesian inference</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20data%20stream%20mining" title=" distributed data stream mining"> distributed data stream mining</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous-distributed%20data" title=" heterogeneous-distributed data"> heterogeneous-distributed data</a> </p> <a href="https://publications.waset.org/abstracts/124886/optimizing-communications-overhead-in-heterogeneous-distributed-data-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=132">132</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=133">133</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=distributed%20algorithms&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10