CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 99 results for author: <span class="mathjax">Agashe, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&amp;query=Agashe%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Agashe, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Agashe%2C+K&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Agashe, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Agashe%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Agashe%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Agashe%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00960">arXiv:2410.00960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00960">pdf</a>, <a href="https://arxiv.org/format/2410.00960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Conformal Leptogenesis in Composite Higgs Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ekhterachian%2C+M">Majid Ekhterachian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fong%2C+C+S">Chee Sheng Fong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Vecchi%2C+L">Luca Vecchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00960v1-abstract-short" style="display: inline;"> We study the generation of the baryon asymmetry in Composite Higgs models with partial compositeness of the Standard Model (SM) fermions and heavy right-handed neutrinos, developing for the first time a complete picture of leptogenesis in that setup. The asymmetry is induced by the out of equilibrium decays of the heavy right-handed neutrinos into a plasma of the nearly conformal field theory (CFT&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00960v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00960v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00960v1-abstract-full" style="display: none;"> We study the generation of the baryon asymmetry in Composite Higgs models with partial compositeness of the Standard Model (SM) fermions and heavy right-handed neutrinos, developing for the first time a complete picture of leptogenesis in that setup. The asymmetry is induced by the out of equilibrium decays of the heavy right-handed neutrinos into a plasma of the nearly conformal field theory (CFT), i.e. the deconfined phase of the Composite Higgs dynamics. This exotic mechanism, which we call Conformal Leptogenesis, admits a reliable description in terms of a set of ``Boltzmann equations&#39;&#39; whose coefficients can be expressed in terms of correlation functions of the CFT. The asymmetry thus generated is subsequently affected by the supercooling resulting from the confining phase transition of the strong Higgs sector as well as by the washout induced by the resonances formed after the transition. Nevertheless, a qualitative description of the latter effects suggests that conformal leptogenesis can successfully reproduce the observed baryon asymmetry in a wide region of parameter space. A distinctive signature of our scenarios is a sizable compositeness for all the generations of SM neutrinos, which is currently consistent with all constraints but may be within reach of future colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00960v1-abstract-full').style.display = 'none'; document.getElementById('2410.00960v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13811">arXiv:2409.13811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.13811">pdf</a>, <a href="https://arxiv.org/format/2409.13811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Light in the Shadows: Primordial Black Holes Making Dark Matter Shine </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Buen-Abad%2C+M">Manuel Buen-Abad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chang%2C+J+H">Jae Hyeok Chang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Clark%2C+S+J">Steven J. Clark</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dutta%2C+B">Bhaskar Dutta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tsai%2C+Y">Yuhsin Tsai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xu%2C+T">Tao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13811v1-abstract-short" style="display: inline;"> We consider the possibility of indirect detection of dark sector processes by investigating a novel form of interaction between ambient dark matter (DM) and primordial black holes (PBHs). The basic scenario we envisage is that the ambient DM is ``dormant&#39;&#39;, \ie, it has interactions with the SM, but its potential for an associated SM signal is not realized for various reasons. We argue that the pre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13811v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13811v1-abstract-full" style="display: none;"> We consider the possibility of indirect detection of dark sector processes by investigating a novel form of interaction between ambient dark matter (DM) and primordial black holes (PBHs). The basic scenario we envisage is that the ambient DM is ``dormant&#39;&#39;, \ie, it has interactions with the SM, but its potential for an associated SM signal is not realized for various reasons. We argue that the presence of PBHs with active Hawking radiation (independent of any DM considerations) can act as a catalyst in this regard by overcoming the aforementioned bottlenecks. The central point is that PBHs radiate all types of particles, whether in the standard model (SM) or beyond (BSM), which have a mass at or below their Hawking temperature. The emission of such radiation is ``democratic&#34; (up to the particle spin), since it is based on a coupling of sorts of gravitational origin. In particular, such shining of (possibly dark sector) particles onto ambient DM can then activate the latter into giving potentially observable SM signals. We illustrate this general mechanism with two specific models. First, we consider asymmetric DM, which is characterized by an absence of ambient anti-DM, and consequently the absence of DM indirect detection signals. In this case, PBHs can ``resurrect&#39;&#39; such a signal by radiating anti-DM, which then annihilates with ambient DM in order to give SM particles such as photons. In our second example, we consider the PBH emission of dark gauge bosons which can excite ambient DM into a heavier state (which is, again, not ambient otherwise), this heavier state later decays back into DM and photons. Finally, we demonstrate that we can obtain observable signals of these BSM models from asteroid-mass PBHs (Hawking radiating currently with $\sim \mathcal{O}(\mathrm{MeV})$ temperatures) at gamma-ray experiments such as AMEGO-X. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13811v1-abstract-full').style.display = 'none'; document.getElementById('2409.13811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages + 3 appendices, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-024-09, FERMILAB-PUB-24-0548-T-V, MI-HET-838 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17574">arXiv:2404.17574</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.17574">pdf</a>, <a href="https://arxiv.org/format/2404.17574">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> &#34;Unification&#34; of BSM Searches and SM Measurements: the case of lepton$+MET$ and $m_W$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Airen%2C+S">Sagar Airen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kotwal%2C+A+V">Ashutosh V. Kotwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ricci%2C+L">Lorenzo Ricci</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sathyan%2C+D">Deepak Sathyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17574v1-abstract-short" style="display: inline;"> We develop the idea that the unprecedented precision in Standard Model (SM) measurements, with further improvement at the HL-LHC, enables new searches for physics Beyond the Standard Model (BSM).As an illustration, we demonstrate that the measured kinematic distributions of the lepton$+MET$ final state not only determine the mass of the $W$ boson, but are also sensitive to light new physics. Such&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17574v1-abstract-full').style.display = 'inline'; document.getElementById('2404.17574v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17574v1-abstract-full" style="display: none;"> We develop the idea that the unprecedented precision in Standard Model (SM) measurements, with further improvement at the HL-LHC, enables new searches for physics Beyond the Standard Model (BSM).As an illustration, we demonstrate that the measured kinematic distributions of the lepton$+MET$ final state not only determine the mass of the $W$ boson, but are also sensitive to light new physics. Such a search for new physics thus requires a simultaneous fit to the BSM and SM parameters, &#34;unifying&#34; searches and measurements at the LHC and Tevatron. In this paper, we complete the program initiated in our earlier work arXiv:2310.13687. In particular, we analyze ($i$) novel decay modes of the $W$ boson with a neutrinophilic invisible scalar or with a heavy neutrino; ($ii$) modified production of $W$ bosons, namely, associated with a hadrophilic invisible $Z^\prime$ gauge boson; and ($iii$) scenarios without an on-shell $W$ boson, such as slepton-sneutrino production in the Minimal Supersymmetric Standard Model (MSSM). Here, we complement our previous MSSM analysis in arXiv:2310.13687 by considering a different kinematic region. Our results highlight that new physics can still be directly discovered at the LHC, including light new physics,via SM precision measurements. Furthermore, we illustrate that such BSM signals are subtle, yet potentially large enough to affect the precision measurements of SM parameters themselves, such as the $W$ boson mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17574v1-abstract-full').style.display = 'none'; document.getElementById('2404.17574v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13687">arXiv:2310.13687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13687">pdf</a>, <a href="https://arxiv.org/format/2310.13687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A new purpose for the $W$-boson mass measurement: searching for New Physics in lepton+$MET$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Airen%2C+S">Sagar Airen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kotwal%2C+A+V">Ashutosh V. Kotwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ricci%2C+L">Lorenzo Ricci</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sathyan%2C+D">Deepak Sathyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13687v1-abstract-short" style="display: inline;"> We show that the $m_W$ measurement is a direct probe of New Physics (NP) contributing to lepton and missing transverse momentum ($\ell+MET$), independently from indirect tests via the electroweak fit. Such NP modifies the kinematic distributions used to extract $m_W$, necessitating a simultaneous fit to $m_W$ and NP. This effect can in principle bias the $m_W$ measurement, but only to a limited ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13687v1-abstract-full').style.display = 'inline'; document.getElementById('2310.13687v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13687v1-abstract-full" style="display: none;"> We show that the $m_W$ measurement is a direct probe of New Physics (NP) contributing to lepton and missing transverse momentum ($\ell+MET$), independently from indirect tests via the electroweak fit. Such NP modifies the kinematic distributions used to extract $m_W$, necessitating a simultaneous fit to $m_W$ and NP. This effect can in principle bias the $m_W$ measurement, but only to a limited extent for our considered models. Given that, we demonstrate that the agreement at high-precision with SM-predicted shapes results in bounds competitive to, if not exceeding, existing ones for two examples: anomalous $W$ decay involving a $L_渭 - L_蟿$ gauge boson and $\tilde谓_{l} \tilde{l}$ production in the MSSM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13687v1-abstract-full').style.display = 'none'; document.getElementById('2310.13687v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-023-04, MI-HET-817 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11980">arXiv:2212.11980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11980">pdf</a>, <a href="https://arxiv.org/format/2212.11980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.023014">10.1103/PhysRevD.108.023014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting Axion-Like Particles with Primordial Black Holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chang%2C+J+H">Jae Hyeok Chang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Clark%2C+S+J">Steven J. Clark</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dutta%2C+B">Bhaskar Dutta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tsai%2C+Y">Yuhsin Tsai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xu%2C+T">Tao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11980v1-abstract-short" style="display: inline;"> Future gamma-ray experiments, such as the e-ASTROGAM and AMEGO telescopes, can detect the Hawking radiation of photons from primordial black holes (PBHs) if they make up a fraction or all of dark matter. PBHs can analogously also Hawking radiate new particles, which is especially interesting if these particles are mostly secluded from the Standard Model (SM) sector, since they might therefore be l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11980v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11980v1-abstract-full" style="display: none;"> Future gamma-ray experiments, such as the e-ASTROGAM and AMEGO telescopes, can detect the Hawking radiation of photons from primordial black holes (PBHs) if they make up a fraction or all of dark matter. PBHs can analogously also Hawking radiate new particles, which is especially interesting if these particles are mostly secluded from the Standard Model (SM) sector, since they might therefore be less accessible otherwise. A well-motivated example of this type is axion-like particles (ALPs) with a tiny coupling to photons. We assume that the ALPs produced by PBHs decay into photons well before reaching the earth, so these will augment the photons directly radiated by the PBHs. Remarkably, we find that the peaks in the energy distributions of ALPs produced from PBHs are different than the corresponding ones for Hawking radiated photons due to the spin-dependent greybody factor. Therefore, we demonstrate that this process will in fact distinctively modify the PBHs&#39; gamma-ray spectrum relative to the SM prediction. We use monochromatic asteroid-mass PBHs as an example to show that e-ASTROGAM can observe the PBH-produced ALP gamma-ray signal (for masses up to ~60 MeV) and further distinguish it from Hawking radiation without ALPs. By measuring the gamma-ray signals, e-ASTROGAM can thereby probe yet unexplored parameters in the ALP mass and photon coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11980v1-abstract-full').style.display = 'none'; document.getElementById('2212.11980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages + references, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-12, MI-HET-792 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03929">arXiv:2212.03929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03929">pdf</a>, <a href="https://arxiv.org/format/2212.03929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2023)021">10.1007/JHEP06(2023)021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy-peak based method to measure top quark mass via B-hadron decay lengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Airen%2C+S">Sagar Airen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Incandela%2C+J">Joesph Incandela</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sathyan%2C+D">Deepak Sathyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03929v3-abstract-short" style="display: inline;"> We develop a method for the determination of the top quark mass using the distribution of the decay length of the $B$-hadrons originating from its decay. This technique is based on our earlier observation regarding the location of the peak of the $b$ quark energy distribution. Such &#34;energy-peak&#34; methods enjoy a greater degree of model-independence with respect to the kinematics of top quark produc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03929v3-abstract-full').style.display = 'inline'; document.getElementById('2212.03929v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03929v3-abstract-full" style="display: none;"> We develop a method for the determination of the top quark mass using the distribution of the decay length of the $B$-hadrons originating from its decay. This technique is based on our earlier observation regarding the location of the peak of the $b$ quark energy distribution. Such &#34;energy-peak&#34; methods enjoy a greater degree of model-independence with respect to the kinematics of top quark production compared to earlier proposals. The CMS experiment has implemented the energy-peak method using associated $b$-jet energy as an approximation for $b$ quark energy. The new method uses $B$-hadron decay lengths, which are related to $b$ quark energies by convolution. The advantage of the new decay length method is that it can be applied in a way that evades jet-energy scale (JES) uncertainties. Indeed, CMS has measured the top quark mass using $B$-hadron decay lengths, but they did not incorporate the energy-peak method. Therefore, mismodeling of top quark transverse momentum remains a large uncertainty in their result. We demonstrate that, using energy-peak methods, this systematic uncertainty can become negligible. We show that with the current LHC data set, a sub-GeV statistical uncertainty on the top quark mass can be attained with this method. To achieve a comparable systematic uncertainty as is true for many methods based on exclusive or semi-inclusive observables using hadrons, we find that the quark-hadron transition needs to be described significantly better than is the case with current fragmentation functions and hadronization models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03929v3-abstract-full').style.display = 'none'; document.getElementById('2212.03929v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-10; MI-HEE-790 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13128">arXiv:2209.13128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13128">pdf</a>, <a href="https://arxiv.org/format/2209.13128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bose%2C+T">Tulika Bose</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boveia%2C+A">Antonio Boveia</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Doglioni%2C+C">Caterina Doglioni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Griso%2C+S+P">Simone Pagan Griso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hirschauer%2C+J">James Hirschauer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lipeles%2C+E">Elliot Lipeles</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shah%2C+N+R">Nausheen R. Shah</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+L">Lian-Tao Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alimena%2C+J">Juliette Alimena</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baum%2C+S">Sebastian Baum</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berkat%2C+M">Mohamed Berkat</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Black%2C+K">Kevin Black</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gardner%2C+G">Gwen Gardner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gherghetta%2C+T">Tony Gherghetta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Greaves%2C+J">Josh Greaves</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Haehn%2C+M">Maxx Haehn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harris%2C+P+C">Phil C. Harris</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harris%2C+R">Robert Harris</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hogan%2C+J">Julie Hogan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jayawardana%2C+S">Suneth Jayawardana</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kahn%2C+A">Abraham Kahn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kalinowski%2C+J">Jan Kalinowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Knapen%2C+S">Simon Knapen</a> , et al. (297 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13128v2-abstract-short" style="display: inline;"> This is the Snowmass2021 Energy Frontier (EF) Beyond the Standard Model (BSM) report. It combines the EF topical group reports of EF08 (Model-specific explorations), EF09 (More general explorations), and EF10 (Dark Matter at Colliders). The report includes a general introduction to BSM motivations and the comparative prospects for proposed future experiments for a broad range of potential BSM mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13128v2-abstract-full').style.display = 'inline'; document.getElementById('2209.13128v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13128v2-abstract-full" style="display: none;"> This is the Snowmass2021 Energy Frontier (EF) Beyond the Standard Model (BSM) report. It combines the EF topical group reports of EF08 (Model-specific explorations), EF09 (More general explorations), and EF10 (Dark Matter at Colliders). The report includes a general introduction to BSM motivations and the comparative prospects for proposed future experiments for a broad range of potential BSM models and signatures, including compositeness, SUSY, leptoquarks, more general new bosons and fermions, long-lived particles, dark matter, charged-lepton flavor violation, and anomaly detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13128v2-abstract-full').style.display = 'none'; document.getElementById('2209.13128v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">108 pages + 38 pages references and appendix, 37 figures, Report of the Topical Group on Beyond the Standard Model Physics at Energy Frontier for Snowmass 2021. The first nine authors are the Conveners, with Contributions from the other authors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11267">arXiv:2209.11267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.11267">pdf</a>, <a href="https://arxiv.org/format/2209.11267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Report of the Topical Group on Top quark physics and heavy flavor production for Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Schwienhorst%2C+R">Reinhard Schwienhorst</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wackeroth%2C+D">Doreen Wackeroth</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alioli%2C+S">Simone Alioli</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aparisi%2C+J">Javier Aparisi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bevilacqua%2C+G">Giuseppe Bevilacqua</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bi%2C+H">Huan-Yu Bi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brock%2C+R">Raymond Brock</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Camacho%2C+A+G">Abel Gutierrez Camacho</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cordero%2C+F+F">Fernando Febres Cordero</a>, <a href="/search/hep-ph?searchtype=author&amp;query=de+Blas%2C+J">Jorge de Blas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Demina%2C+R">Regina Demina</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+Y">Yong Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Durieux%2C+G">Gauthier Durieux</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fein%2C+J">Jarrett Fein</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fuster%2C+J">Juan Fuster</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Garzelli%2C+M+V">Maria Vittoria Garzelli</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gavardi%2C+A">Alessandro Gavardi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gombas%2C+J">Jason Gombas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grojean%2C+C">Christoph Grojean</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gu%2C+J">Jiale Gu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Guzzi%2C+M">Marco Guzzi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hartanto%2C+H+B">Heribertus Bayu Hartanto</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hoang%2C+A">Andre Hoang</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11267v3-abstract-short" style="display: inline;"> This report summarizes the work of the Energy Frontier Topical Group on EW Physics: Heavy flavor and top quark physics (EF03) of the 2021 Community Summer Study (Snowmass). It aims to highlight the physics potential of top-quark studies and heavy-flavor production processes (bottom and charm) at the HL-LHC and possible future hadron and lepton colliders and running scenarios. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11267v3-abstract-full" style="display: none;"> This report summarizes the work of the Energy Frontier Topical Group on EW Physics: Heavy flavor and top quark physics (EF03) of the 2021 Community Summer Study (Snowmass). It aims to highlight the physics potential of top-quark studies and heavy-flavor production processes (bottom and charm) at the HL-LHC and possible future hadron and lepton colliders and running scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11267v3-abstract-full').style.display = 'none'; document.getElementById('2209.11267v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01318">arXiv:2209.01318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01318">pdf</a>, <a href="https://arxiv.org/format/2209.01318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Muon Collider Forum Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Black%2C+K+M">K. M. Black</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jindariani%2C+S">S. Jindariani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Maltoni%2C+F">F. Maltoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meade%2C+P">P. Meade</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Stratakis%2C+D">D. Stratakis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acosta%2C+D">D. Acosta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agarwal%2C+R">R. Agarwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">K. Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aime%2C+C">C. Aime</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ally%2C+D">D. Ally</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Apresyan%2C+A">A. Apresyan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Apyan%2C+A">A. Apyan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Asadi%2C+P">P. Asadi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Athanasakos%2C+D">D. Athanasakos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bao%2C+Y">Y. Bao</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bartosik%2C+N">N. Bartosik</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bauerdick%2C+L+A+T">L. A. T. Bauerdick</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Beacham%2C+J">J. Beacham</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Belomestnykh%2C+S">S. Belomestnykh</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berg%2C+J+S">J. S. Berg</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berryhill%2C+J">J. Berryhill</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bertolin%2C+A">A. Bertolin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhat%2C+P+C">P. C. Bhat</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01318v3-abstract-short" style="display: inline;"> A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently availab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01318v3-abstract-full').style.display = 'inline'; document.getElementById('2209.01318v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01318v3-abstract-full" style="display: none;"> A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&amp;D. Findings of the Forum are summarized in this report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01318v3-abstract-full').style.display = 'none'; document.getElementById('2209.01318v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.02928">arXiv:2204.02928</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.02928">pdf</a>, <a href="https://arxiv.org/format/2204.02928">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 - White Paper, Implications of Energy Peak for Collider Phenomenology: Top Quark Mass Determination and Beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Airen%2C+S">Sagar Airen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sathyan%2C+D">Deepak Sathyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.02928v1-abstract-short" style="display: inline;"> We first review the decade-old, broad collider physics research program dubbed energy-peaks. We consider the energy distribution of a massless particle in the lab frame arising from the two-body decay of a heavy particle produced unpolarized, whose boost distribution is arbitrary. Remarkably, the location of the peak of this child particle&#39;s energy distribution is identical to its single-valued en&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.02928v1-abstract-full').style.display = 'inline'; document.getElementById('2204.02928v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.02928v1-abstract-full" style="display: none;"> We first review the decade-old, broad collider physics research program dubbed energy-peaks. We consider the energy distribution of a massless particle in the lab frame arising from the two-body decay of a heavy particle produced unpolarized, whose boost distribution is arbitrary. Remarkably, the location of the peak of this child particle&#39;s energy distribution is identical to its single-valued energy in the rest frame of the parent, which is a function of the parent&#39;s mass and that of the other decay product. We summarize generalizations to other types of decay and a variety of applications to BSM. The energy-peak idea can also furnish a measurement of the top quark via the energy of the bottom quark from its decay, which, based on the &#34;parent-boost-invariance,&#34; is less sensitive to details of the production mechanism of the top quark (cf.~most other methods assume purely SM production of the top quarks, hence are subject to uncertainties therein, including a possible BSM contribution). The original proposal along this line was to simply use the $b$-jet energy as a very good approximation to the bottom quark energy. This method has been successfully implemented by the CMS collaboration. However, the $b$-jet energy-peak method is afflicted by the jet-energy scale (JES) uncertainty. Fortunately, this drawback can be circumvented by using the decay length of a $B$-hadron contained in the $b$-jet as a proxy for the bottom quark energy. An interesting proposal is to then appropriately dovetail the above two ideas resulting in a &#34;best of both worlds&#34; determination of the top quark mass, i.e., based on a measurement of the $B$-hadron decay length, but improved by the energy-peak concept: this would be free of JES uncertainty and largely independent of the top quark production model. We summarize here the results of such an analysis which is to appear in a forthcoming paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.02928v1-abstract-full').style.display = 'none'; document.getElementById('2204.02928v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13305">arXiv:2203.13305</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.13305">pdf</a>, <a href="https://arxiv.org/format/2203.13305">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 White Paper: Collider Physics Opportunities of Extended Warped Extra-Dimensional Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Collins%2C+J+H">Jack H. Collins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ekhterachian%2C+M">Majid Ekhterachian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mishra%2C+R+K">Rashmish K. Mishra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sathyan%2C+D">Deepak Sathyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13305v1-abstract-short" style="display: inline;"> While the warped extra-dimensional models provide an attractive solution to both the gauge and the flavor hierarchy problems, the mass scale of new particles predicted by the minimal models would be beyond the reach of the LHC. Models of extended warped extra dimensions have been proposed to evade these issues and their collider implications have been investigated for the last decade. This white p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13305v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13305v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13305v1-abstract-full" style="display: none;"> While the warped extra-dimensional models provide an attractive solution to both the gauge and the flavor hierarchy problems, the mass scale of new particles predicted by the minimal models would be beyond the reach of the LHC. Models of extended warped extra dimensions have been proposed to evade these issues and their collider implications have been investigated for the last decade. This white paper summarizes the recent developments in the context of collider phenomenology. The strategies and lessons are broad, and provide a template to extend the experimental program, to cover a wider class of signals in other new physics scenarios as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13305v1-abstract-full').style.display = 'none'; document.getElementById('2203.13305v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07622">arXiv:2203.07622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07622">pdf</a>, <a href="https://arxiv.org/format/2203.07622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The International Linear Collider: Report to Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Aryshev%2C+A">Alexander Aryshev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Behnke%2C+T">Ties Behnke</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berggren%2C+M">Mikael Berggren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brau%2C+J">James Brau</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Craig%2C+N">Nathaniel Craig</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Freitas%2C+A">Ayres Freitas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gaede%2C+F">Frank Gaede</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gessner%2C+S">Spencer Gessner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gori%2C+S">Stefania Gori</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grojean%2C+C">Christophe Grojean</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Heinemeyer%2C+S">Sven Heinemeyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jeans%2C+D">Daniel Jeans</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kruger%2C+K">Katja Kruger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=List%2C+B">Benno List</a>, <a href="/search/hep-ph?searchtype=author&amp;query=List%2C+J">Jenny List</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Michizono%2C+S">Shinichiro Michizono</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miller%2C+D+W">David W. Miller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Moult%2C+I">Ian Moult</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Murayama%2C+H">Hitoshi Murayama</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nakada%2C+T">Tatsuya Nakada</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nanni%2C+E">Emilio Nanni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nojiri%2C+M">Mihoko Nojiri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Padamsee%2C+H">Hasan Padamsee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Perelstein%2C+M">Maxim Perelstein</a> , et al. (487 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07622v3-abstract-short" style="display: inline;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This docu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'inline'; document.getElementById('2203.07622v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07622v3-abstract-full" style="display: none;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'none'; document.getElementById('2203.07622v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">356 pages, Large pdf file (40 MB) submitted to Snowmass 2021; v2 references to Snowmass contributions added, additional authors; v3 references added, some updates, additional authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-045, IFT--UAM/CSIC--22-028, KEK Preprint 2021-61, PNNL-SA-160884, SLAC-PUB-17662 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01796">arXiv:2203.01796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.01796">pdf</a>, <a href="https://arxiv.org/format/2203.01796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2022)142">10.1007/JHEP09(2022)142 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sleptonic SUSY: From UV Framework to IR Phenomenology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ekhterachian%2C+M">Majid Ekhterachian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sundrum%2C+R">Raman Sundrum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01796v3-abstract-short" style="display: inline;"> We study an attractive scenario, &#34;Sleptonic SUSY&#34;, which reconciles the $125$ GeV Higgs scalar and the non-observation of superpartners thus far with potentially pivotal roles for slepton phenomenology: providing viable ongoing targets for LHC discovery, incorporating a co-annihilation partner for detectable thermal relic dark matter, and capable of mediating the potential muon $g-2$ anomaly. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01796v3-abstract-full').style.display = 'inline'; document.getElementById('2203.01796v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01796v3-abstract-full" style="display: none;"> We study an attractive scenario, &#34;Sleptonic SUSY&#34;, which reconciles the $125$ GeV Higgs scalar and the non-observation of superpartners thus far with potentially pivotal roles for slepton phenomenology: providing viable ongoing targets for LHC discovery, incorporating a co-annihilation partner for detectable thermal relic dark matter, and capable of mediating the potential muon $g-2$ anomaly. This is accomplished by a modestly hierarchical spectrum, with sub-TeV sleptons and electroweakinos and with multi-TeV masses for the other new states. We study new elements in the UV MSSM realization of Sleptonic SUSY based on higher-dimensional sequestering and the synergy between the resulting gaugino-mediation, hypercharge $D$-term mediation and Higgs-mediation of SUSY-breaking, so as to more fully capture the range of possibilities. This framework stands out by harmoniously solving the flavor, CP and $渭- B渭$ problems of the supersymmetric paradigm. We discuss its extension to orbifold GUTs, including gauge-coupling and $b$-tau unification. We also develop a non-minimal model with extra Higgs fields, in which the electroweak vacuum is more readily cosmologically stable against decay to a charge-breaking vacuum, allowing a broader range of sleptonic spectra than in the MSSM alone. We survey the rich set of signals possible at the LHC and future colliders, covering both $R$-parity conservation and violation, as well as for dark matter detection. While the multi-TeV squarks imply a Little Hierarchy Problem, intriguingly, small changes in parameter space to improve naturalness result in dramatic phase transitions to either electroweak-preservation or charge-breaking. In a Multiverse setting, the modest unnaturalness may then be explained by the &#34;principle of living dangerously&#34;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01796v3-abstract-full').style.display = 'none'; document.getElementById('2203.01796v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">56 pages, 4 figures. v3: journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-022-03 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 09(2022)142 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04653">arXiv:2202.04653</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04653">pdf</a>, <a href="https://arxiv.org/format/2202.04653">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.123009">10.1103/PhysRevD.105.123009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlating Gravitational Wave and Gamma-ray Signals from Primordial Black Holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chang%2C+J+H">Jae Hyeok Chang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Clark%2C+S+J">Steven J. Clark</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dutta%2C+B">Bhaskar Dutta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tsai%2C+Y">Yuhsin Tsai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Xu%2C+T">Tao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04653v2-abstract-short" style="display: inline;"> Asteroid-mass primordial black holes (PBH) can explain the observed dark matter abundance while being consistent with the current indirect detection constraints. These PBH can produce gamma-ray signals from Hawking radiation that are within the sensitivity of future measurements by the AMEGO and e-ASTROGAM experiments. PBH which give rise to such observable gamma-ray signals have a cosmic origin f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04653v2-abstract-full').style.display = 'inline'; document.getElementById('2202.04653v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04653v2-abstract-full" style="display: none;"> Asteroid-mass primordial black holes (PBH) can explain the observed dark matter abundance while being consistent with the current indirect detection constraints. These PBH can produce gamma-ray signals from Hawking radiation that are within the sensitivity of future measurements by the AMEGO and e-ASTROGAM experiments. PBH which give rise to such observable gamma-ray signals have a cosmic origin from large primordial curvature fluctuations. There must then be a companion, stochastic gravitational wave (GW) background produced by the same curvature fluctuations. We demonstrate that the resulting GW signals will be well within the sensitivity of future detectors such as LISA, DECIGO, BBO, and the Einstein Telescope. The multi-messenger signal from the observed gamma-rays and GW will allow a precise measurement of the primordial curvature perturbation that produces the PBH. Indeed, we argue that the resulting correlation between the two types of observations can provide a smoking-gun signal of PBH. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04653v2-abstract-full').style.display = 'none'; document.getElementById('2202.04653v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures. v2: version published in PRD, fixed a typo in Eq.28</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-022-01, MI-TH-2112 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04083">arXiv:2010.04083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.04083">pdf</a>, <a href="https://arxiv.org/format/2010.04083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2021)051">10.1007/JHEP02(2021)051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase Transitions from the Fifth Dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ekhterachian%2C+M">Majid Ekhterachian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kumar%2C+S">Soubhik Kumar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sundrum%2C+R">Raman Sundrum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04083v2-abstract-short" style="display: inline;"> We study the cosmological transition of 5D warped compactifications, from the high-temperature black-brane phase to the low-temperature Randall-Sundrum I phase. The transition proceeds via percolation of bubbles of IR-brane nucleating from the black-brane horizon. The violent bubble dynamics can be a powerful source of observable stochastic gravitational waves. While bubble nucleation is non-pertu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04083v2-abstract-full').style.display = 'inline'; document.getElementById('2010.04083v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04083v2-abstract-full" style="display: none;"> We study the cosmological transition of 5D warped compactifications, from the high-temperature black-brane phase to the low-temperature Randall-Sundrum I phase. The transition proceeds via percolation of bubbles of IR-brane nucleating from the black-brane horizon. The violent bubble dynamics can be a powerful source of observable stochastic gravitational waves. While bubble nucleation is non-perturbative in 5D gravity, it is amenable to semiclassical treatment in terms of a &#34;bounce&#34; configuration interpolating between the two phases. We demonstrate how such a bounce configuration can be smooth enough to maintain 5D effective field theory control, and how a simple ansatz for it places a rigorous lower-bound on the transition rate in the thin-wall regime, and gives plausible estimates more generally. When applied to the Hierarchy Problem, the minimal Goldberger-Wise stabilization of the warped throat leads to a slow transition with significant supercooling. We demonstrate that a simple generalization of the Goldberger-Wise potential modifies the IR-brane dynamics so that the transition completes more promptly. Supercooling determines the dilution of any (dark) matter abundances generated before the transition, potentially at odds with data, while the prompter transition resolves such tensions. We discuss the impact of the different possibilities on the strength of the gravitational wave signals. Via AdS/CFT duality the warped transition gives a theoretically tractable holographic description of the 4D Composite Higgs (de)confinement transition. Our generalization of the Goldberger-Wise mechanism is dual to, and concretely models, our earlier proposal in which the composite dynamics is governed by separate UV and IR RG fixed points. The smooth 5D bounce configuration we introduce complements the 4D dilaton/radion dominance derivation presented in our earlier work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04083v2-abstract-full').style.display = 'none'; document.getElementById('2010.04083v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-020-5, YITP-SB-2020-29 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 02 (2021) 051 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.06480">arXiv:2008.06480</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.06480">pdf</a>, <a href="https://arxiv.org/format/2008.06480">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2020)109">10.1007/JHEP11(2020)109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LHC Signals for KK Graviton from an Extended Warped Extra Dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ekhterachian%2C+M">Majid Ekhterachian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sathyan%2C+D">Deepak Sathyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.06480v1-abstract-short" style="display: inline;"> We analyze signals at the Large Hadron Collider (LHC) from production and decay of Kaluza-Klein (KK) gravitons in the context of &#34;extended&#34; warped extra-dimensional models, where the standard model (SM) Higgs and fermion fields are restricted to be in-between the usual ultraviolet/Planck brane and a $\sim O(10)$ TeV (new, &#34;intermediate&#34;) brane, whereas the SM gauge fields (and gravity) propagate f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06480v1-abstract-full').style.display = 'inline'; document.getElementById('2008.06480v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.06480v1-abstract-full" style="display: none;"> We analyze signals at the Large Hadron Collider (LHC) from production and decay of Kaluza-Klein (KK) gravitons in the context of &#34;extended&#34; warped extra-dimensional models, where the standard model (SM) Higgs and fermion fields are restricted to be in-between the usual ultraviolet/Planck brane and a $\sim O(10)$ TeV (new, &#34;intermediate&#34;) brane, whereas the SM gauge fields (and gravity) propagate further down to the $\sim O( \hbox{TeV} )$ infrared brane. Such a framework suppresses flavor violation stemming from KK particle effects, while keeping the KK gauge bosons and gravitons accessible to the LHC. We find that the signals from KK graviton are significantly different than in the standard warped model. This is because the usually dominant decay modes of KK gravitons into top quark, Higgs and longitudinal $W/Z$ particles are suppressed by the above spatial separation between these two sets of particles, thus other decay channels are allowed to shine themselves. In particular, we focus on two novel decay channels of the KK graviton. The first one is the decay into a pair of radions, each of which decays (dominantly) into a pair of SM gluons, resulting in a resonant 4-jet final state consisting of two pairs of dijet resonance. On the other hand, if the radion is heavier and/or KK gluon is lighter, then the KK graviton mostly decays into a KK gluon and a SM gluon. The resulting KK gluon has a significant decay branching fraction into radion and SM gluon, thereby generating (again) a 4-jet signature, but with a different underlying event topology, i.e., featuring now three different resonances. We demonstrate that the High-Luminosity LHC (HL-LHC) has sensitivity to KK graviton of (up to) $\sim 4$ TeV in both channels, whereas it is unlikely to have sensitivity in the standard dijet resonance search channel from KK graviton decay into two gluons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.06480v1-abstract-full').style.display = 'none'; document.getElementById('2008.06480v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-020-3, MI-TH-2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04971">arXiv:2007.04971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.04971">pdf</a>, <a href="https://arxiv.org/format/2007.04971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.083006">10.1103/PhysRevD.103.083006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> &#34;Non-Local&#34; Effects from Boosted Dark Matter in Indirect Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Clark%2C+S+J">Steven J. Clark</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dutta%2C+B">Bhaskar Dutta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tsai%2C+Y">Yuhsin Tsai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04971v1-abstract-short" style="display: inline;"> Indirect dark matter (DM) detection typically involves the observation of standard model (SM) particles emerging from DM annihilation/decay inside regions of high dark matter concentration. We consider an annihilation scenario in which this reaction has to be initiated by one of the DMs involved being boosted while the other is an ambient non-relativistic particle. This &#34;trigger&#34; DM must be create&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04971v1-abstract-full').style.display = 'inline'; document.getElementById('2007.04971v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04971v1-abstract-full" style="display: none;"> Indirect dark matter (DM) detection typically involves the observation of standard model (SM) particles emerging from DM annihilation/decay inside regions of high dark matter concentration. We consider an annihilation scenario in which this reaction has to be initiated by one of the DMs involved being boosted while the other is an ambient non-relativistic particle. This &#34;trigger&#34; DM must be created, for example, in a previous annihilation or decay of a heavier component of DM. Remarkably, boosted DM annihilating into gamma-rays at a specific point in a galaxy could actually have traveled from its source at another point in the same galaxy or even from another galaxy. Such a &#34;non-local&#34; behavior leads to a non-trivial dependence of the resulting photon signal on the galactic halo parameters, such as DM density and core size, encoded in the so-called &#34;astrophysical&#34; $J$-factor. These non-local $J$-factors are strikingly different than the usual scenario. A distinctive aspect of this model is that the signal from dwarf galaxies relative to the Milky Way tends to be suppressed from the typical value to various degrees depending on their characteristics. This feature can thus potentially alleviate the mild tension between the DM annihilation explanation of the observed excess of $\sim$ GeV photons from the Milky Way&#39;s galactic center vs. the apparent non-observation of the corresponding signal from dwarf galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04971v1-abstract-full').style.display = 'none'; document.getElementById('2007.04971v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-020-1, MI-TH-2016 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 083006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.06238">arXiv:1910.06238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.06238">pdf</a>, <a href="https://arxiv.org/format/1910.06238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2020)086">10.1007/JHEP05(2020)086 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmological Phase Transition of Spontaneous Confinement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ekhterachian%2C+M">Majid Ekhterachian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kumar%2C+S">Soubhik Kumar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sundrum%2C+R">Raman Sundrum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.06238v2-abstract-short" style="display: inline;"> The dynamics of a cosmological (de)confinement phase transition is studied in nearly conformally invariant field theories, where confinement is predominantly spontaneously generated and associated with a light &#34;dilaton&#34; field. We show how the leading contribution to the transition rate can be computed within the dilaton effective theory. In the context of Composite Higgs theories, we demonstrate t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06238v2-abstract-full').style.display = 'inline'; document.getElementById('1910.06238v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.06238v2-abstract-full" style="display: none;"> The dynamics of a cosmological (de)confinement phase transition is studied in nearly conformally invariant field theories, where confinement is predominantly spontaneously generated and associated with a light &#34;dilaton&#34; field. We show how the leading contribution to the transition rate can be computed within the dilaton effective theory. In the context of Composite Higgs theories, we demonstrate that a simple scenario involving two renormalization-group fixed points can make the transition proceed much more rapidly than in the minimal scenario, thereby avoiding excessive dilution of matter abundances generated before the transition. The implications for gravitational wave phenomenology are discussed. In general, we find that more (less) rapid phase transitions are associated with weaker (stronger) gravitational wave signals. The various possible features of the strongly coupled composite Higgs phase transition discussed here can be concretely modeled at weak coupling within the AdS/CFT dual Randall-Sundrum extra-dimensional description, which offers important insights into the nature of the transition and its theoretical control. These aspects will be presented in a companion paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06238v2-abstract-full').style.display = 'none'; document.getElementById('1910.06238v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-019-05, YITP-SB-19-32 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP05(2020)086 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.08204">arXiv:1812.08204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.08204">pdf</a>, <a href="https://arxiv.org/format/1812.08204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2019)029">10.1007/JHEP04(2019)029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Natural Seesaw and Leptogenesis from Hybrid of High-Scale Type I and TeV-Scale Inverse </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ekhterachian%2C+M">Majid Ekhterachian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fong%2C+C+S">Chee Sheng Fong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Vecchi%2C+L">Luca Vecchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.08204v1-abstract-short" style="display: inline;"> We develop an extension of the basic inverse seesaw model which addresses simultaneously two of its drawbacks, namely, the lack of explanation of the tiny Majorana mass term $渭$ for the TeV-scale singlet fermions and the difficulty in achieving successful leptogenesis. Firstly, we investigate systematically leptogenesis within the inverse (and the related linear) seesaw models and show that a succ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08204v1-abstract-full').style.display = 'inline'; document.getElementById('1812.08204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.08204v1-abstract-full" style="display: none;"> We develop an extension of the basic inverse seesaw model which addresses simultaneously two of its drawbacks, namely, the lack of explanation of the tiny Majorana mass term $渭$ for the TeV-scale singlet fermions and the difficulty in achieving successful leptogenesis. Firstly, we investigate systematically leptogenesis within the inverse (and the related linear) seesaw models and show that a successful scenario requires either small Yukawa couplings, implying loss of experimental signals, and/or quasi-degeneracy among singlets mass of different generations, suggesting extra structure must be invoked. Then we move to the analysis of our new framework, which we refer to as hybrid seesaw. This combines the TeV degrees of freedom of the inverse seesaw with those of a high-scale ($M_N\gg$ TeV) seesaw module in such a way as to retain the main features of both pictures: naturally small neutrino masses, successful leptogenesis, and accessible experimental signatures. We show how the required structure can arise from a more fundamental theory with a gauge symmetry or from warped extra dimensions/composite Higgs. We provide a detailed derivation of all the analytical formulae necessary to analyze leptogenesis in this new framework, and discuss the entire gamut of possibilities our scenario encompasses: including scenarios with singlet masses in the enlarged range $M_N \sim 10^6 - 10^{16}$ GeV. The idea of hybrid seesaw was proposed by us in arXiv:1804.06847; here, we substantially elaborate upon and extend earlier results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.08204v1-abstract-full').style.display = 'none'; document.getElementById('1812.08204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">84 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07334">arXiv:1809.07334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.07334">pdf</a>, <a href="https://arxiv.org/format/1809.07334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2018)027">10.1007/JHEP11(2018)027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting a Boosted Diboson Resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Collins%2C+J+H">Jack H. Collins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mishra%2C+R+K">Rashmish K. Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07334v1-abstract-short" style="display: inline;"> New light scalar particles in the mass range of hundreds of GeV, decaying into a pair of $W/Z$ bosons can appear in several extensions of the SM. The focus of collider studies for such a scalar is often on its direct production, where the scalar is typically only mildly boosted. The observed $W/Z$ are therefore well-separated, allowing analyses for the scalar resonance in a standard fashion as a l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07334v1-abstract-full').style.display = 'inline'; document.getElementById('1809.07334v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07334v1-abstract-full" style="display: none;"> New light scalar particles in the mass range of hundreds of GeV, decaying into a pair of $W/Z$ bosons can appear in several extensions of the SM. The focus of collider studies for such a scalar is often on its direct production, where the scalar is typically only mildly boosted. The observed $W/Z$ are therefore well-separated, allowing analyses for the scalar resonance in a standard fashion as a low-mass diboson resonance. In this work we instead focus on the scenario where the direct production of the scalar is suppressed, and it is rather produced via the decay of a significantly heavier (a few TeV mass) new particle, in conjunction with SM particles. Such a process results in the scalar being highly boosted, rendering the $W/Z$&#39;s from its decay merged. The final state in such a decay is a &#34;fat&#34; jet, which can be either four-pronged (for fully hadronic $W/Z$ decays), or may be like a $W/Z$ jet, but with leptons buried inside (if one of the $W/Z$ decays leptonically). In addition, this fat jet has a jet mass that can be quite different from that of the $W/Z$/Higgs/top quark-induced jet, and may be missed by existing searches. In this work, we develop dedicated algorithms for tagging such multi-layered &#34;boosted dibosons&#34; at the LHC. As a concrete application, we discuss an extension of the standard warped extra-dimensional framework where such a light scalar can arise. We demonstrate that the use of these algorithms gives sensitivity in mass ranges that are otherwise poorly constrained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07334v1-abstract-full').style.display = 'none'; document.getElementById('1809.07334v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-018-05, CERN-TH-2018-194 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.06847">arXiv:1804.06847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.06847">pdf</a>, <a href="https://arxiv.org/format/1804.06847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2018.09.006">10.1016/j.physletb.2018.09.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrid seesaw leptogenesis and TeV singlets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ekhterachian%2C+M">Majid Ekhterachian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fong%2C+C+S">Chee Sheng Fong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Vecchi%2C+L">Luca Vecchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.06847v1-abstract-short" style="display: inline;"> The appealing feature of inverse seesaw models is that the Standard Model (SM) neutrino mass emerges from the exchange of TeV scale singlets with sizable Yukawa couplings, which can be tested at colliders. However, the tiny Majorana mass splitting between TeV singlets, introduced to accommodate small neutrino masses, is left unexplained. Moreover, we argue that these models suffer from a structura&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.06847v1-abstract-full').style.display = 'inline'; document.getElementById('1804.06847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.06847v1-abstract-full" style="display: none;"> The appealing feature of inverse seesaw models is that the Standard Model (SM) neutrino mass emerges from the exchange of TeV scale singlets with sizable Yukawa couplings, which can be tested at colliders. However, the tiny Majorana mass splitting between TeV singlets, introduced to accommodate small neutrino masses, is left unexplained. Moreover, we argue that these models suffer from a structural limitation that prevents a successful leptogenesis if one insists on having unsuppressed Yukawa couplings and TeV scale singlets. In this work we propose a hybrid seesaw model, where we replace the mass splitting with a coupling to a high scale seesaw module including a TeV scalar. We show that this structure achieves the goal of filling both the above gaps with couplings of order unity. The necessary structure automatically arises embedding the seesaw mechanism in composite Higgs models, but may also be enforced by new gauge symmetries in a weakly-coupled theory. Our hybrid seesaw models have distinguishing features compared to the standard high scale type-I seesaw and inverse seesaw. Firstly, they have much richer phenomenology. Indeed, they generally predict new TeV scale physics (including scalars) potentially accessible at present and future colliders, whereas weakly-coupled versions may also have astrophysical and cosmological signatures due to the presence of a light Nambu-Goldstone boson coupled to neutrinos. Secondly, our scenario features an interesting interplay between high scale and TeV scale physics in leptogenesis and enlarges the range of allowed high scale singlet masses beyond the usual $\sim 10^9-10^{ 15 }$ GeV, without large hierarchies in the Yukawa couplings nor small mass splitting among the singlets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.06847v1-abstract-full').style.display = 'none'; document.getElementById('1804.06847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.09920">arXiv:1711.09920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.09920">pdf</a>, <a href="https://arxiv.org/format/1711.09920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.075016">10.1103/PhysRevD.99.075016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dedicated Strategies for Triboson Signals from Cascade Decays of Vector Resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Collins%2C+J+H">Jack H. Collins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mishra%2C+R+K">Rashmish K. Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.09920v1-abstract-short" style="display: inline;"> New colorless electroweak (EW) charged spin-1 particles with mass of a few TeV arise in numerous extensions of the Standard Model (SM). Decays of such a vector into a pair of SM particles, either fermions or EW bosons, are well studied. Many of these models have an additional scalar, which can lead to (and even dominate in certain parameter regions) a novel decay channel for the heavy vector parti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.09920v1-abstract-full').style.display = 'inline'; document.getElementById('1711.09920v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.09920v1-abstract-full" style="display: none;"> New colorless electroweak (EW) charged spin-1 particles with mass of a few TeV arise in numerous extensions of the Standard Model (SM). Decays of such a vector into a pair of SM particles, either fermions or EW bosons, are well studied. Many of these models have an additional scalar, which can lead to (and even dominate in certain parameter regions) a novel decay channel for the heavy vector particles instead - into a SM EW boson and the scalar, which subsequently decays into a SM EW boson pair. In this work, we focus on the scalar being relatively heavy, roughly factor of two lighter than the vector particles, rendering its decay products well separated. Such a cascade decay results in a final state with three isolated bosons. We argue that for this &#34;triboson&#34; signal the existing diboson searches are not quite optimal due to combinatorial ambiguity for three identical bosons, and in addition, due to a relatively small signal cross-section determined by the heaviness of the decaying vector particle. In order to isolate the signal, we demonstrate that tagging all three bosons, followed by use of the full triboson invariant mass distribution as well as that of appropriate subsets of dibosons, is well motivated. We develop these general strategies in detail within the context of a specific class of models that are based on extensions of the standard warped extra-dimensional scenario. We also point out that a similar analysis would apply to models with an enlarged EW gauge sector in four dimensions, even if they involve a different Lorentz structure for the relevant couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.09920v1-abstract-full').style.display = 'none'; document.getElementById('1711.09920v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 075016 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07763">arXiv:1703.07763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.07763">pdf</a>, <a href="https://arxiv.org/format/1703.07763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.075033">10.1103/PhysRevD.97.075033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LHC Signals for Singlet Neutrinos from a Natural Warped Seesaw (II) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07763v1-abstract-short" style="display: inline;"> A natural seesaw mechanism for obtaining the observed size of SM neutrino masses can arise in a warped extra dimensional/composite Higgs framework. In a previous paper, we initiated the study of signals at the LHC for the associated $\sim$ TeV mass SM singlet neutrinos, within a canonical model of $SU(2)_L \times SU(2)_R \times U(1)_{ B - L }$ (LR) symmetry in the composite sector, as motivated by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07763v1-abstract-full').style.display = 'inline'; document.getElementById('1703.07763v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07763v1-abstract-full" style="display: none;"> A natural seesaw mechanism for obtaining the observed size of SM neutrino masses can arise in a warped extra dimensional/composite Higgs framework. In a previous paper, we initiated the study of signals at the LHC for the associated $\sim$ TeV mass SM singlet neutrinos, within a canonical model of $SU(2)_L \times SU(2)_R \times U(1)_{ B - L }$ (LR) symmetry in the composite sector, as motivated by consistency with the EW precision tests. Here, we investigate LHC signals in a different region of parameter space for the same model, where production of singlet neutrinos can occur from particles beyond those in usual LR models. Specifically, we assume that composite $(B - L)$ gauge boson is lighter than all the others in the EW sector. We show that the composite $(B - L)$ gauge boson can acquire a significant coupling to light quarks simply via mixing with elementary hypercharge gauge boson. Thus, the singlet neutrino can be pair-produced via decays of $(B - L)$ gauge boson, without a charged current counterpart. Furthermore, there is no decay for $(B - L)$ gauge boson directly into dibosons, unlike for the usual case of $W_R^{ \pm }$ and $Z^{ \prime }$. Independently of the above extension of the EW sector, we analyze production of singlet neutrinos in decays of composite partners of $SU(2)_L$ doublet leptons, which are absent in the usual LR models. In turn, these doublet leptons can be produced in composite $W_L$ decays. We show that $4 - 5 蟽$ signal can be achieved for both cases described above for the following spectrum with 3000 fb$^{-1}$ luminosity: $2 - 2.5$ TeV composite gauge bosons, $1$ TeV composite doublet lepton (for the second case) and $500 - 750$ GeV singlet neutrino. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07763v1-abstract-full').style.display = 'none'; document.getElementById('1703.07763v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-017-018 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 075033 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.04810">arXiv:1612.04810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.04810">pdf</a>, <a href="https://arxiv.org/format/1612.04810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.075032">10.1103/PhysRevD.97.075032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LHC signals for Singlet Neutrinos from a Natural Warped Seesaw (I) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.04810v1-abstract-short" style="display: inline;"> Recently, it was shown in arXiv:1512.06742 that a straightforward implementation of the type I seesaw mechanism in a warped extra dimensional framework is in reality a {\em natural} realization of &#34;inverse&#34; seesaw, i.e., the Standard Model (SM) neutrino mass is dominantly generated by exchange of pseudo-Dirac {\em TeV}-mass SM singlet neutrinos. By the AdS/CFT correspondence, this scenario is {\em&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04810v1-abstract-full').style.display = 'inline'; document.getElementById('1612.04810v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.04810v1-abstract-full" style="display: none;"> Recently, it was shown in arXiv:1512.06742 that a straightforward implementation of the type I seesaw mechanism in a warped extra dimensional framework is in reality a {\em natural} realization of &#34;inverse&#34; seesaw, i.e., the Standard Model (SM) neutrino mass is dominantly generated by exchange of pseudo-Dirac {\em TeV}-mass SM singlet neutrinos. By the AdS/CFT correspondence, this scenario is {\em dual} to these singlet particles being composites of some new strong dynamics, along with the SM Higgs boson, with the rest of the SM particles being mostly elementary. We study signals from production of these heavy neutrinos at the Large Hadron Collider (LHC). We focus on the scenario where the strong sector has a global $SU(2)_{\rm L} \times SU(2)_{\rm R} \times U(1)_{\rm X}$ symmetry; such a left-right (LR) structure being motivated by consistency with the electroweak (EW) precision tests. The singlet neutrinos are charged under $SU(2)_{\rm R} \times U(1)_{\rm X}$ symmetry, thus can be produced from $W^{ \pm }_R$ exchange, as in four-dimensional (4D) LR symmetric models. However, the direct coupling of light quarks to $W^{ \pm }_R$ is negligible, due to $W^{ \pm }_R$ also being composite; nonetheless, a sizable coupling can be induced by mixings among the various types of $W^{ \pm }$ bosons. Furthermore, $W^{ \pm }_R$ decays dominantly into the singlet and {\em composite} partner of charged lepton. This heavy charged lepton, in turn, decays into SM lepton, {\em plus} $Z$/Higgs, thus the latter can be used for extra identification of the signal. For a benchmark scenario with $W^{ \pm }_R$ of mass 2 TeV and singlet neutrino of mass 750 GeV, we find that, in both the di-lepton + di-jet + Higgs and tri-lepton + Higgs channels, significant evidence can be seen at the LHC14 for an integrated luminosity of 300/fb and that even discovery is possible with slightly more luminosity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04810v1-abstract-full').style.display = 'none'; document.getElementById('1612.04810v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 075032 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.00047">arXiv:1612.00047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.00047">pdf</a>, <a href="https://arxiv.org/format/1612.00047">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP05(2017)078">10.1007/JHEP05(2017)078 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LHC Signals from Cascade Decays of Warped Vector Resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K+S">Kaustubh S. Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Collins%2C+J">Jack Collins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mishra%2C+R+K">Rashmish K. Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.00047v1-abstract-short" style="display: inline;"> Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with &#34;bulk&#34; standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10 TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields prop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00047v1-abstract-full').style.display = 'inline'; document.getElementById('1612.00047v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.00047v1-abstract-full" style="display: none;"> Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with &#34;bulk&#34; standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10 TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel - decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a &#34;double&#34; resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.00047v1-abstract-full').style.display = 'none'; document.getElementById('1612.00047v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.00526">arXiv:1608.00526</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.00526">pdf</a>, <a href="https://arxiv.org/format/1608.00526">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2017)016">10.1007/JHEP01(2017)016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flavor Universal Resonances and Warped Gravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sundrum%2C+R">Raman Sundrum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.00526v1-abstract-short" style="display: inline;"> Warped higher-dimensional compactifications with &#34;bulk&#34; standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 sugges&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00526v1-abstract-full').style.display = 'inline'; document.getElementById('1608.00526v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.00526v1-abstract-full" style="display: none;"> Warped higher-dimensional compactifications with &#34;bulk&#34; standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a &#34;little hierarchy problem&#34; remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of &#34;vectorlike confinement&#34;, with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at $\sim O(10)$ TeV, with subdominant resonance decays into Higgs/top-rich final states, giving the LHC an early &#34;preview&#34; of the nature of the resolution of the hierarchy problem. Discoveries of this type at LHC Run 2 would thereby anticipate (and set a target for) even more explicit explorations of Higgs compositeness at a 100 TeV collider, or for next-generation flavor tests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.00526v1-abstract-full').style.display = 'none'; document.getElementById('1608.00526v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.03445">arXiv:1603.03445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.03445">pdf</a>, <a href="https://arxiv.org/format/1603.03445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-016-4494-x">10.1140/epjc/s10052-016-4494-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schulze%2C+M">Markus Schulze</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.03445v1-abstract-short" style="display: inline;"> We analyze the energy spectra of $single$ b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the &#34;energy-peak&#34; as an observable to determine the top quark mass. Such a method is motivated by our previous work where&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03445v1-abstract-full').style.display = 'inline'; document.getElementById('1603.03445v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.03445v1-abstract-full" style="display: none;"> We analyze the energy spectra of $single$ b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the &#34;energy-peak&#34; as an observable to determine the top quark mass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it is higher-order QCD effects or new physics contributions. As part of the NLO improvement over the original proposal, we assess the residual sensitivity of the extracted top quark mass to perturbative effects both in top quark production and decay. For a 1% jet energy scale uncertainty (and assuming negligible statistical error), the top quark mass can then be extracted using the energy-peak of b-jets with an error +- (1.2 (exp) + 0.6(th)) GeV. We note that recently the CMS collaboration reported a top quark mass measurement based on the original proposal (with b-jets) so that our result contributes to a precise evaluation of the associated theory uncertainty. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy-peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass. Future improvement of the treatment of bottom quark hadronization can reduce this uncertainty, rendering methods based on the B-hadron energy-peak competitive for the top quark mass measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.03445v1-abstract-full').style.display = 'none'; document.getElementById('1603.03445v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2016-041, UMD-PP-016-003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.06742">arXiv:1512.06742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.06742">pdf</a>, <a href="https://arxiv.org/format/1512.06742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.013001">10.1103/PhysRevD.94.013001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Warped Seesaw is Physically Inverted </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Vecchi%2C+L">Luca Vecchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.06742v1-abstract-short" style="display: inline;"> Warped extra dimensions can address both the Planck-weak and flavor hierarchies of the Standard Model (SM). In this paper we discuss the SM neutrino mass generation in a scenario in which a SM singlet bulk fermion - coupled to the Higgs and the lepton doublet near the IR brane - is given a Majorana mass of order the Planck scale on the UV brane. Despite the resemblance to a type I seesaw mechanism&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06742v1-abstract-full').style.display = 'inline'; document.getElementById('1512.06742v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.06742v1-abstract-full" style="display: none;"> Warped extra dimensions can address both the Planck-weak and flavor hierarchies of the Standard Model (SM). In this paper we discuss the SM neutrino mass generation in a scenario in which a SM singlet bulk fermion - coupled to the Higgs and the lepton doublet near the IR brane - is given a Majorana mass of order the Planck scale on the UV brane. Despite the resemblance to a type I seesaw mechanism, a careful investigation based on the mass basis for the singlet 4D modes reveals a very different picture. Namely, the SM neutrino masses are generated dominantly by the exchange of the TeV-scale mass eigenstates of the singlet, that are pseudo-Dirac and have a sizable Higgs- induced mixing with the SM doublet neutrino: remarkably, in warped 5D models the anticipated type I seesaw morphs into a natural realization of the so-called &#34;inverse&#34; seesaw. This understanding uncovers an intriguing and direct link between neutrino mass generation (and possibly leptogenesis) and TeV-scale physics. We also perform estimates using the dual CFT picture of our framework, which back-up our 5D calculation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.06742v1-abstract-full').style.display = 'none'; document.getElementById('1512.06742v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42pages, 5figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 013001 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.03782">arXiv:1512.03782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.03782">pdf</a>, <a href="https://arxiv.org/format/1512.03782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/718/4/042041">10.1088/1742-6596/718/4/042041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> (In)Direct Detection of Boosted Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+Y">Yanou Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Necib%2C+L">Lina Necib</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Thaler%2C+J">Jesse Thaler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.03782v1-abstract-short" style="display: inline;"> We present a new multi-component dark matter model with a novel experimental signature that mimics neutral current interactions at neutrino detectors. In our model, the dark matter is composed of two particles, a heavier dominant component that annihilates to produce a boosted lighter component that we refer to as boosted dark matter. The lighter component is relativistic and scatters off electron&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03782v1-abstract-full').style.display = 'inline'; document.getElementById('1512.03782v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.03782v1-abstract-full" style="display: none;"> We present a new multi-component dark matter model with a novel experimental signature that mimics neutral current interactions at neutrino detectors. In our model, the dark matter is composed of two particles, a heavier dominant component that annihilates to produce a boosted lighter component that we refer to as boosted dark matter. The lighter component is relativistic and scatters off electrons in neutrino experiments to produce Cherenkov light. This model combines the indirect detection of the dominant component with the direct detection of the boosted dark matter. Directionality can be used to distinguish the dark matter signal from the atmospheric neutrino background. We discuss the viable region of parameter space in current and future experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03782v1-abstract-full').style.display = 'none'; document.getElementById('1512.03782v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings at TAUP conference, Turin, Italy Sept 7-11, 2015. 5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.02265">arXiv:1512.02265</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.02265">pdf</a>, <a href="https://arxiv.org/format/1512.02265">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2016)151">10.1007/JHEP04(2016)151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy spectra of massive two-body decay products and mass measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hong%2C+S">Sungwoo Hong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.02265v1-abstract-short" style="display: inline;"> We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.02265v1-abstract-full').style.display = 'inline'; document.getElementById('1512.02265v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.02265v1-abstract-full" style="display: none;"> We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the SM particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial because (in general) both the above- mentioned properties are no longer valid. Nonetheless, we propose a suitably modified parametrization of the energy distribution that was used successfully for the massless case, which can deal with the massive case as well. We establish the accuracy of this parametrization using concrete examples of energy spectra of Z bosons from the decay of a heavier stop into a Z boson and a lighter stop. We then study a realistic application for the same process, but now including dominant backgrounds and using foreseeable statistics at LHC14, in order to determine the performance of this method for an actual mass measurement. The upshot of our present and previous work is that, in spite of energy being a Lorentz-variant quantity, its distribution emerges as a powerful tool for mass measurement at hadron colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.02265v1-abstract-full').style.display = 'none'; document.getElementById('1512.02265v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-015-015, CERN-PH-TH-2015-288 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.03836">arXiv:1503.03836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.03836">pdf</a>, <a href="https://arxiv.org/format/1503.03836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Mass Measurement Using Energy Spectra in Three-body Decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wardlow%2C+K">Kyle Wardlow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.03836v2-abstract-short" style="display: inline;"> In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this work we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay produc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03836v2-abstract-full').style.display = 'inline'; document.getElementById('1503.03836v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.03836v2-abstract-full" style="display: none;"> In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this work we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay products and the factorization of the multi-body phase space. The mass measurement strategy that we propose is distinct from alternative methods because it does not require an accurate reconstruction of the entire event, as it does not involve, for instance, the missing transverse momentum, but rather requires measuring only the visible decay products of the decay of interest. To demonstrate the general strategy, we study a supersymmetric model wherein pair-produced gluinos each decay to a stable neutralino and a bottom quark-antiquark pair via an off-shell bottom squark. The combinatorial background stemming from the indistinguishable visible final states on both decay sides can be treated by an &#34;event mixing&#34; technique, the performance of which is discussed in detail. Taking into account dominant backgrounds, we are able to show that the mass of the gluino and, in favorable cases, that of the neutralino can be determined by this mass measurement strategy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03836v2-abstract-full').style.display = 'none'; document.getElementById('1503.03836v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 12 figures, Journal-submitted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-015-004, CERN-PH-TH-2015-033 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1605 (2016) 138 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.6468">arXiv:1412.6468</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.6468">pdf</a>, <a href="https://arxiv.org/format/1412.6468">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Warped Dipole Completed, with a Tower of Higgs Bosons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Azatov%2C+A">Aleksandr Azatov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+Y">Yanou Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Randall%2C+L">Lisa Randall</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Son%2C+M">Minho Son</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.6468v1-abstract-short" style="display: inline;"> In the context of warped extra-dimensional models which address both the Planck-weak- and flavor-hierarchies of the Standard Model (SM), it has been argued that certain observables can be calculated within the 5D effective field theory only with the Higgs field propagating in the bulk of the extra dimension, just like other SM fields. The related studies also suggested an interesting form of decou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6468v1-abstract-full').style.display = 'inline'; document.getElementById('1412.6468v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.6468v1-abstract-full" style="display: none;"> In the context of warped extra-dimensional models which address both the Planck-weak- and flavor-hierarchies of the Standard Model (SM), it has been argued that certain observables can be calculated within the 5D effective field theory only with the Higgs field propagating in the bulk of the extra dimension, just like other SM fields. The related studies also suggested an interesting form of decoupling of the heavy Kaluza-Klein (KK) fermion states in the warped 5D SM in the limit where the profile of the SM Higgs approaches the IR brane. We demonstrate that a similar phenomenon occurs when we include the mandatory KK excitations of the SM Higgs in loop diagrams giving dipole operators for SM fermions, where the earlier work only considered the SM Higgs (zero mode). In particular, in the limit of a quasi IR-localized SM Higgs, the effect from summing over KK Higgs modes is unsuppressed (yet finite), in contrast to the naive expectation that KK Higgs modes decouple as their masses become large. In this case, a wide range of KK Higgs modes have quasi-degenerate masses and enhanced couplings to fermions relative to those of the SM Higgs, which contribute to the above remarkable result. In addition, we find that the total contribution from KK Higgs modes in general can be comparable to that from the SM Higgs alone. It is also interesting that KK Higgs couplings to KK fermions of the same chirality as the corresponding SM modes have an unsuppressed overall contribution, in contrast to the result from the earlier studies involving the SM Higgs. Our studies suggest that KK Higgs bosons are generally an indispensable part of the warped 5D SM, and their phenomenology such as signals at the LHC are worth further investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6468v1-abstract-full').style.display = 'none'; document.getElementById('1412.6468v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text 35 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-014-020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.6215">arXiv:1412.6215</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.6215">pdf</a>, <a href="https://arxiv.org/format/1412.6215">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.076002">10.1103/PhysRevD.91.076002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon Cascade Decay of the Warped Graviton at LHC14 and a 100 TeV Hadron Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chen%2C+C">Chien-Yi Chen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Davoudiasl%2C+H">Hooman Davoudiasl</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.6215v2-abstract-short" style="display: inline;"> In warped 5D models of hierarchy and flavor, the first Kaluza-Klein (KK) state of the graviton $G_1$ is heavy enough to decay into a photon and its first KK mode $纬_1$ on-shell: $G_1 \to 纬_1 纬$. The volume-suppression of the rate for this process [relative to 2-body decay into heavy Standard Model (SM) final states ($W/Z/t/H$)] may be partially compensated by the simplicity of the photon final sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6215v2-abstract-full').style.display = 'inline'; document.getElementById('1412.6215v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.6215v2-abstract-full" style="display: none;"> In warped 5D models of hierarchy and flavor, the first Kaluza-Klein (KK) state of the graviton $G_1$ is heavy enough to decay into a photon and its first KK mode $纬_1$ on-shell: $G_1 \to 纬_1 纬$. The volume-suppression of the rate for this process [relative to 2-body decay into heavy Standard Model (SM) final states ($W/Z/t/H$)] may be partially compensated by the simplicity of the photon final state. We consider $纬_1 \to W^+W^-$, with a typical O(1) branching fraction, and focus on the semi-leptonic final state $W(\to jj) W(\to \ell, 谓)$ with $\ell=e,渭$. The SM background originates from $2\to 3$ parton processes and is relatively suppressed compared to those for 2-body decays of $G_1$. Moreover, to further reduce the background, we can impose an invariant mass window cut for $纬_1$ (in addition to that for $G_1$) in this new channel. We emphasize that this &#34;photon cascade&#34; decay probes a different combination of (bulk and brane) interactions of the KK states than the decays into two heavy SM states. Thus, in combination with other channels, the cascade decay could be used to extract the individual underlying geometric parameters. The $3蟽$ reach for $G_1$ in our channel is up to 1.5 TeV at the high luminosity (14 TeV) LHC, and can be extended to about 4 TeV, at $5蟽$, at a future 100 TeV hadron collider. Along the way, we point out the novel feature that the invariant mass distribution of KK graviton decay products becomes skewed from the Breit-Wigner form, due to the KK graviton coupling growing with energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6215v2-abstract-full').style.display = 'none'; document.getElementById('1412.6215v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures and 2 tables, various editorial changes, references added, physics results and conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-014-027 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 91, 076002 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.7370">arXiv:1405.7370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.7370">pdf</a>, <a href="https://arxiv.org/format/1405.7370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2014/10/062">10.1088/1475-7516/2014/10/062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> (In)direct Detection of Boosted Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+Y">Yanou Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Necib%2C+L">Lina Necib</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Thaler%2C+J">Jesse Thaler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.7370v4-abstract-short" style="display: inline;"> We initiate the study of novel thermal dark matter (DM) scenarios where present-day annihilation of DM in the galactic center produces boosted stable particles in the dark sector. These stable particles are typically a subdominant DM component, but because they are produced with a large Lorentz boost in this process, they can be detected in large volume terrestrial experiments via neutral-current-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.7370v4-abstract-full').style.display = 'inline'; document.getElementById('1405.7370v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.7370v4-abstract-full" style="display: none;"> We initiate the study of novel thermal dark matter (DM) scenarios where present-day annihilation of DM in the galactic center produces boosted stable particles in the dark sector. These stable particles are typically a subdominant DM component, but because they are produced with a large Lorentz boost in this process, they can be detected in large volume terrestrial experiments via neutral-current-like interactions with electrons or nuclei. This novel DM signal thus combines the production mechanism associated with indirect detection experiments (i.e. galactic DM annihilation) with the detection mechanism associated with direct detection experiments (i.e. DM scattering off terrestrial targets). Such processes are generically present in multi-component DM scenarios or those with non-minimal DM stabilization symmetries. As a proof of concept, we present a model of two-component thermal relic DM, where the dominant heavy DM species has no tree-level interactions with the standard model and thus largely evades direct and indirect DM bounds. Instead, its thermal relic abundance is set by annihilation into a subdominant lighter DM species, and the latter can be detected in the boosted channel via the same annihilation process occurring today. Especially for dark sector masses in the 10 MeV-10 GeV range, the most promising signals are electron scattering events pointing toward the galactic center. These can be detected in experiments designed for neutrino physics or proton decay, in particular Super-K and its upgrade Hyper-K, as well as the PINGU/MICA extensions of IceCube. This boosted DM phenomenon highlights the distinctive signatures possible from non-minimal dark sectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.7370v4-abstract-full').style.display = 'none'; document.getElementById('1405.7370v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 11 figures, 1 table; v2: references added, appendix B revised; v3: improved presentation of signal/background, added section 4.4 on earth attenuation, version to appear in JCAP; v4: typos fixed, appendix B bounds weakened, conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP 4538, UMD-PP-014-005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.6081">arXiv:1401.6081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.6081">pdf</a>, <a href="https://arxiv.org/format/1401.6081">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Brock%2C+R">R. Brock</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Peskin%2C+M+E">M. E. Peskin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">K. Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Artuso%2C+M">M. Artuso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Campbell%2C+J">J. Campbell</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dawson%2C+S">S. Dawson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Erbacher%2C+R">R. Erbacher</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gerber%2C+C">C. Gerber</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gershtein%2C+Y">Y. Gershtein</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gritsan%2C+A">A. Gritsan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hatakeyama%2C+K">K. Hatakeyama</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Huston%2C+J">J. Huston</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kotwal%2C+A">A. Kotwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Logan%2C+H">H. Logan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Luty%2C+M">M. Luty</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Melnikov%2C+K">K. Melnikov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Narain%2C+M">M. Narain</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Papucci%2C+M">M. Papucci</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petriello%2C+F">F. Petriello</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Prell%2C+S">S. Prell</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Qian%2C+J">J. Qian</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schwienhorst%2C+R">R. Schwienhorst</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tully%2C+C">C. Tully</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Van+Kooten%2C+R">R. Van Kooten</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wackeroth%2C+D">D. Wackeroth</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.6081v1-abstract-short" style="display: inline;"> These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields (&#34;Snowmass 2013&#34;) on the future program of particle physics in the U.S. Chapter 3, on the Energy Frontier, discusses the program of research with high-energy colliders. This area includes experiments on the Higgs boson, the electroweak and strong interactions, and the top quark. It also&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.6081v1-abstract-full').style.display = 'inline'; document.getElementById('1401.6081v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.6081v1-abstract-full" style="display: none;"> These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields (&#34;Snowmass 2013&#34;) on the future program of particle physics in the U.S. Chapter 3, on the Energy Frontier, discusses the program of research with high-energy colliders. This area includes experiments on the Higgs boson, the electroweak and strong interactions, and the top quark. It also encompasses direct searches for new particles and interactions at high energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.6081v1-abstract-full').style.display = 'none'; document.getElementById('1401.6081v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.2028">arXiv:1311.2028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.2028">pdf</a>, <a href="https://arxiv.org/format/1311.2028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2013 Top quark working group report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">K. Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Erbacher%2C+R">R. Erbacher</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gerber%2C+C+E">C. E. Gerber</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Melnikov%2C+K">K. Melnikov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schwienhorst%2C+R">R. Schwienhorst</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mitov%2C+A">A. Mitov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Vos%2C+M">M. Vos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wimpenny%2C+S">S. Wimpenny</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adelman%2C+J">J. Adelman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baumgart%2C+M">M. Baumgart</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Garcia-Bellido%2C+A">A. Garcia-Bellido</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Loginov%2C+A">A. Loginov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jung%2C+A">A. Jung</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Schulze%2C+M">M. Schulze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shelton%2C+J">J. Shelton</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Craig%2C+N">N. Craig</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Velasco%2C+M">M. Velasco</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Golling%2C+T">T. Golling</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hubisz%2C+J">J. Hubisz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ivanov%2C+A">A. Ivanov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Perelstein%2C+M">M. Perelstein</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chekanov%2C+S">S. Chekanov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dolen%2C+J">J. Dolen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pilot%2C+J">J. Pilot</a>, <a href="/search/hep-ph?searchtype=author&amp;query=P%C3%B6schl%2C+R">R. P枚schl</a> , et al. (145 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.2028v1-abstract-short" style="display: inline;"> This report summarizes the work of the Energy Frontier Top Quark working group of the 2013 Community Summer Study (Snowmass). </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.2028v1-abstract-full" style="display: none;"> This report summarizes the work of the Energy Frontier Top Quark working group of the 2013 Community Summer Study (Snowmass). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2028v1-abstract-full').style.display = 'none'; document.getElementById('1311.2028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.0299">arXiv:1311.0299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.0299">pdf</a>, <a href="https://arxiv.org/format/1311.0299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> New Particles Working Group Report of the Snowmass 2013 Community Summer Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Gershtein%2C+Y">Y. Gershtein</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Luty%2C+M">M. Luty</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Narain%2C+M">M. Narain</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+L+-">L. -T. Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Whiteson%2C+D">D. Whiteson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">K. Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Apanasevich%2C+L">L. Apanasevich</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Artoni%2C+G">G. Artoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Avetisyan%2C+A">A. Avetisyan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baer%2C+H">H. Baer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bartels%2C+C">C. Bartels</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bauer%2C+M">M. Bauer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berge%2C+D">D. Berge</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berggren%2C+M">M. Berggren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhattacharya%2C+S">S. Bhattacharya</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Black%2C+K">K. Black</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bose%2C+T">T. Bose</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brau%2C+J">J. Brau</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brock%2C+R">R. Brock</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brownson%2C+E">E. Brownson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cahill-Rowley%2C+M">M. Cahill-Rowley</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cakir%2C+A">A. Cakir</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chaus%2C+A">A. Chaus</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cohen%2C+T">T. Cohen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Coleppa%2C+B">B. Coleppa</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.0299v1-abstract-short" style="display: inline;"> This report summarizes the work of the Energy Frontier New Physics working group of the 2013 Community Summer Study (Snowmass). </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.0299v1-abstract-full" style="display: none;"> This report summarizes the work of the Energy Frontier New Physics working group of the 2013 Community Summer Study (Snowmass). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.0299v1-abstract-full').style.display = 'none'; document.getElementById('1311.0299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.1070">arXiv:1310.1070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.1070">pdf</a>, <a href="https://arxiv.org/format/1310.1070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Constraining RS Models by Future Flavor and Collider Measurements: A Snowmass Whitepaper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bauer%2C+M">Martin Bauer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Goertz%2C+F">Florian Goertz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lee%2C+S+J">Seung J. Lee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Vecchi%2C+L">Luca Vecchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+L">Lian-Tao Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yu%2C+F">Felix Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.1070v1-abstract-short" style="display: inline;"> Randall-Sundrum models are models of quark flavor, because they explain the hierarchies in the quark masses and mixings in terms of order one localization parameters of extra dimensional wavefunctions. The same small numbers which generate the light quark masses suppress contributions to flavor violating tree level amplitudes. In this note we update universal constraints from electroweak precision&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.1070v1-abstract-full').style.display = 'inline'; document.getElementById('1310.1070v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.1070v1-abstract-full" style="display: none;"> Randall-Sundrum models are models of quark flavor, because they explain the hierarchies in the quark masses and mixings in terms of order one localization parameters of extra dimensional wavefunctions. The same small numbers which generate the light quark masses suppress contributions to flavor violating tree level amplitudes. In this note we update universal constraints from electroweak precision parameters and demonstrate how future measurements of flavor violation in ultra rare decay channels of Kaons and B mesons will constrain the parameter space of this type of models. We show how collider signatures are correlated with these flavor measurements and compute projected limits for direct searches at the 14 TeV LHC run, a 14 TeV LHC luminosity upgrade, a 33 TeV LHC energy upgrade, and a potential 100 TeV machine. We further discuss the effects of a warped model of leptons in future measurements of lepton flavor violation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.1070v1-abstract-full').style.display = 'none'; document.getElementById('1310.1070v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-13-435-T </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.7847">arXiv:1309.7847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.7847">pdf</a>, <a href="https://arxiv.org/format/1309.7847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Warped Extra Dimensional Benchmarks for Snowmass 2013 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antipin%2C+O">Oleg Antipin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Backovi%C4%87%2C+M">Mihailo Backovi膰</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Effron%2C+A">Aaron Effron</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Emerman%2C+A">Alex Emerman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Erdmann%2C+J">Johannes Erdmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Golling%2C+T">Tobias Golling</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gopalakrishna%2C+S">Shrihari Gopalakrishna</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hapola%2C+T">Tuomas Hapola</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hsu%2C+S">Shih-Chieh Hsu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Juknevich%2C+J">Jos茅 Juknevich</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lee%2C+S+J">Seung J. Lee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+T">Tanumoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miller%2C+A">August Miller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Moyse%2C+E">Edward Moyse</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mukherjee%2C+T+S">Tuhin Subhra Mukherjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pollard%2C+C">Chris Pollard</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sadhukhan%2C+S">Soumya Sadhukhan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Whiteson%2C+D">Daniel Whiteson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Willocq%2C+S">Stephane Willocq</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.7847v1-abstract-short" style="display: inline;"> The framework of a warped extra dimension with the Standard Model (SM) fields propagating in it is a very well-motivated extension of the SM since it can address both the Planck-weak and flavor hierarchy problems of the SM. We consider signals at the 14 and 33 TeV large hadron collider (LHC) resulting from the direct production of the new particles in this framework, i.e.,Kaluza-Klein (KK) excitat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.7847v1-abstract-full').style.display = 'inline'; document.getElementById('1309.7847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.7847v1-abstract-full" style="display: none;"> The framework of a warped extra dimension with the Standard Model (SM) fields propagating in it is a very well-motivated extension of the SM since it can address both the Planck-weak and flavor hierarchy problems of the SM. We consider signals at the 14 and 33 TeV large hadron collider (LHC) resulting from the direct production of the new particles in this framework, i.e.,Kaluza-Klein (KK) excitations of the SM particles. We focus on spin-1 (gauge boson) and spin-2 (graviton) KK particles and their decays to top/bottom quarks (flavor-conserving) and W/Z and Higgs bosons, in particular. We propose two benchmarks for this purpose, with the right-handed (RH) or LH top quark, respectively, being localized very close to the TeV end of the extra dimension. We present some new results at the 14 TeV (with 300 fb$^-1$ and 3000 fb$^-1$) and 33 TeV LHC. We find that the prospects for discovery of these particles are quite promising, especially at the high-luminosity upgrade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.7847v1-abstract-full').style.display = 'none'; document.getElementById('1309.7847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 29 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.4776">arXiv:1309.4776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.4776">pdf</a>, <a href="https://arxiv.org/format/1309.4776">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP11(2014)059">10.1007/JHEP11(2014)059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using Energy Peaks to Measure New Particle Masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.4776v2-abstract-short" style="display: inline;"> We discussed in arXiv:1209.0772 that the laboratory frame distribution of the energy of a massless particle from a two-body decay at a hadron collider has a peak whose location is identical to the value of this daughter&#39;s (fixed) energy in the rest frame of the corresponding mother particle. For that result to hold we assumed that the mother is unpolarized and has a generic boost distribution in t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4776v2-abstract-full').style.display = 'inline'; document.getElementById('1309.4776v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.4776v2-abstract-full" style="display: none;"> We discussed in arXiv:1209.0772 that the laboratory frame distribution of the energy of a massless particle from a two-body decay at a hadron collider has a peak whose location is identical to the value of this daughter&#39;s (fixed) energy in the rest frame of the corresponding mother particle. For that result to hold we assumed that the mother is unpolarized and has a generic boost distribution in the laboratory frame. In this work we discuss how this observation can be applied for determination of masses of new particles, without requiring a full reconstruction of their decay chains or information about the rest of the event. We focus on a two-step cascade decay of a massive particle that has one invisible particle in the final state: C -&gt; Bb -&gt; Aab, where C, B and A are new particles of which A is invisible and a, b are visible particles. Combining the measurements of the peaks of energy distributions of a and b with that of the edge in their invariant mass distribution, we demonstrate that it is in principle possible to determine separately all three masses of the new particles, in particular, without using any measurement of missing transverse momentum. Furthermore, we show how the use of the peaks in an inclusive energy distribution is generically less affected by combinatorial issues as compared to other mass measurement strategies. For some simplified, yet interesting, scenarios we find that these combinatorial issues are absent altogether. As an example of this general strategy, we study SUSY models where gluino decays to an invisible lightest neutralino via an on-shell bottom squark. Taking into account the dominant backgrounds, we show how the mass of the bottom squark, the gluino and (for some class of spectra) that of the neutralino can be determined using this technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4776v2-abstract-full').style.display = 'none'; document.getElementById('1309.4776v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-013-013, CERN-PH-TH-2013-220 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1411 (2014) 059 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.5230">arXiv:1212.5230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.5230">pdf</a>, <a href="https://arxiv.org/format/1212.5230">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.dark.2013.03.003">10.1016/j.dark.2013.03.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using Energy Peaks to Count Dark Matter Particles in Decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wardlow%2C+K">Kyle Wardlow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.5230v1-abstract-short" style="display: inline;"> We study the determination of the symmetry that stabilizes a dark matter (DM) candidate produced at colliders. Our question is motivated per se, and by several alternative symmetries that appear in models that provide a DM particle. To this end, we devise a strategy to determine whether a heavy mother particle decays into one visible massless particle and one or two DM particles. The counting of D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5230v1-abstract-full').style.display = 'inline'; document.getElementById('1212.5230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.5230v1-abstract-full" style="display: none;"> We study the determination of the symmetry that stabilizes a dark matter (DM) candidate produced at colliders. Our question is motivated per se, and by several alternative symmetries that appear in models that provide a DM particle. To this end, we devise a strategy to determine whether a heavy mother particle decays into one visible massless particle and one or two DM particles. The counting of DM particles in these decays is relevant to distinguish the minimal choice of Z_2, from a Z_3, stabilization symmetry, under which the heavy particle and the DM are charged and the visible particle is not. Our method is novel in that it chiefly uses the peak of the energy spectrum of the visible particle and only secondarily uses the M_T2 endpoint of events in which the heavy mother particles are pair-produced. We present new theoretical results concerning the energy distribution of the decay products of a three-body decay, which are crucial for our method. To demonstrate the feasibility of our method in investigating the stabilization symmetry, we apply it in distinguishing the decay of a bottom quark partner into a b quark and one or two DM particles. The method can be applied generally to distinguish two- and three-body decays, irrespective of DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5230v1-abstract-full').style.display = 'none'; document.getElementById('1212.5230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-012-027 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Dark Univ. 2 (2013) 72-82 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.2115">arXiv:1209.2115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.2115">pdf</a>, <a href="https://arxiv.org/format/1209.2115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2013)031">10.1007/JHEP02(2013)031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Natural Islands for a 125 GeV Higgs in the scale-invariant NMSSM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+Y">Yanou Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.2115v2-abstract-short" style="display: inline;"> We study whether a 125 GeV standard model-like Higgs boson can be accommodated within the scale-invariant NMSSM in a way that is natural in all respects, i.e., not only is the stop mass and hence its loop contribution to Higgs mass of natural size, but we do not allow significant tuning of NMSSM parameters as well. We pursue as much as possible an analytic approach which gives clear insights on va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.2115v2-abstract-full').style.display = 'inline'; document.getElementById('1209.2115v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.2115v2-abstract-full" style="display: none;"> We study whether a 125 GeV standard model-like Higgs boson can be accommodated within the scale-invariant NMSSM in a way that is natural in all respects, i.e., not only is the stop mass and hence its loop contribution to Higgs mass of natural size, but we do not allow significant tuning of NMSSM parameters as well. We pursue as much as possible an analytic approach which gives clear insights on various ways to accommodate such a Higgs mass, while conducting complementary numerical analyses. We consider both scenarios with singlet-like state being heavier and lighter than SM-like Higgs. With A-terms being small, we find for the NMSSM to be perturbative up to GUT scale, it is not possible to get 125 GeV Higgs mass, which is true even if we tune parameters of NMSSM. If we allow some of the couplings to become non-perturbative below the GUT scale, then the non-tuned option implies that the singlet self-coupling, kappa, is larger than the singlet-Higgs coupling, lambda, which itself is order 1. This leads to a Landau pole for these couplings close to the weak scale, in particular below ~10^4 TeV. In both the perturbative and non-perturbative NMSSM, allowing large A_lambda, A_kappa gives &#34;more room&#34; to accommodate a 125 GeV Higgs, but a tuning of these A-terms may be needed. In our analysis we also conduct a careful study of the constraints on the parameter space from requiring global stability of the desired vacuum fitting a 125 GeV Higgs, which is complementary to existing literature. In particular, as the singlet-Higgs coupling lambda increases, vacuum stability becomes more serious of an issue. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.2115v2-abstract-full').style.display = 'none'; document.getElementById('1209.2115v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 4 figures, references added, minor corrections to text and figures, version to be published in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-012-021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.0772">arXiv:1209.0772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.0772">pdf</a>, <a href="https://arxiv.org/format/1209.0772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.057701">10.1103/PhysRevD.88.057701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A simple, yet subtle &#34;invariance&#34; of two-body decay kinematics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Franceschini%2C+R">Roberto Franceschini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.0772v2-abstract-short" style="display: inline;"> We study the two-body decay of a mother particle into a massless daughter. We further assume that the mother particle is unpolarized and has a generic boost distribution in the laboratory frame. In this case, we show analytically that the laboratory frame energy distribution of the massless decay product has a peak, whose location is identical to the (fixed) energy of that particle in the rest fra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.0772v2-abstract-full').style.display = 'inline'; document.getElementById('1209.0772v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.0772v2-abstract-full" style="display: none;"> We study the two-body decay of a mother particle into a massless daughter. We further assume that the mother particle is unpolarized and has a generic boost distribution in the laboratory frame. In this case, we show analytically that the laboratory frame energy distribution of the massless decay product has a peak, whose location is identical to the (fixed) energy of that particle in the rest frame of the corresponding mother particle. Given its simplicity and &#34;invariance&#34; under variations of the boost distribution of the mother particle, our finding should be useful for the determination of masses of mother particles. In particular, we anticipate that such a procedure will then not require a full reconstruction of this two-body decay chain (or for that matter, information about the rest of the event). With this eventual goal in mind, we make a proposal for extracting the peak position by fitting the data to a well-motivated analytic function describing the shape of such energy distribution. This fitting function is then tested on the theoretical prediction for top quark pair production and its decay and it is found to be quite successful in this regard. As a proof of principle of the usefulness of our observation, we apply it for measuring the mass of the top quark at the LHC, using simulated data and including experimental effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.0772v2-abstract-full').style.display = 'none'; document.getElementById('1209.0772v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, discussions and references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-012-020 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. D88 (2013) 5, 057701 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1205.2671">arXiv:1205.2671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1205.2671">pdf</a>, <a href="https://arxiv.org/format/1205.2671">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Fundamental Physics at the Intensity Frontier </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Hewett%2C+J+L">J. L. Hewett</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Weerts%2C+H">H. Weerts</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brock%2C+R">R. Brock</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Butler%2C+J+N">J. N. Butler</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Casey%2C+B+C+K">B. C. K. Casey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Collar%2C+J">J. Collar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=de+Gouvea%2C+A">A. de Gouvea</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Essig%2C+R">R. Essig</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grossman%2C+Y">Y. Grossman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Haxton%2C+W">W. Haxton</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jaros%2C+J+A">J. A. Jaros</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jung%2C+C+K">C. K. Jung</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lu%2C+Z+T">Z. T. Lu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Pitts%2C+K">K. Pitts</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ligeti%2C+Z">Z. Ligeti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Patterson%2C+J+R">J. R. Patterson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ramsey-Musolf%2C+M">M. Ramsey-Musolf</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ritchie%2C+J+L">J. L. Ritchie</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Roodman%2C+A">A. Roodman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Scholberg%2C+K">K. Scholberg</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wagner%2C+C+E+M">C. E. M. Wagner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zeller%2C+G+P">G. P. Zeller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aefsky%2C+S">S. Aefsky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Afanasev%2C+A">A. Afanasev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">K. Agashe</a> , et al. (443 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1205.2671v1-abstract-short" style="display: inline;"> The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1205.2671v1-abstract-full" style="display: none;"> The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1205.2671v1-abstract-full').style.display = 'none'; document.getElementById('1205.2671v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">229 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ANL-HEP-TR-12-25, SLAC-R-991 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.2842">arXiv:1109.2842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1109.2842">pdf</a>, <a href="https://arxiv.org/ps/1109.2842">ps</a>, <a href="https://arxiv.org/format/1109.2842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.115024">10.1103/PhysRevD.84.115024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving the tunings of the MSSM by adding triplets and singlet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Azatov%2C+A">Aleksandr Azatov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Katz%2C+A">Andrey Katz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.2842v2-abstract-short" style="display: inline;"> We study an extension of the MSSM which includes both new SU(2) triplets with hypercharge $\pm 1$ and a SM gauge singlet (a la NMSSM) which are coupled to each other. We are motivated by the little hierarchy problem, as well as by the $渭$ problem of the MSSM. We show that the NMSSM and the triplet-extended MSSM can successfully solve problems of one another: while triplets are responsible for larg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.2842v2-abstract-full').style.display = 'inline'; document.getElementById('1109.2842v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.2842v2-abstract-full" style="display: none;"> We study an extension of the MSSM which includes both new SU(2) triplets with hypercharge $\pm 1$ and a SM gauge singlet (a la NMSSM) which are coupled to each other. We are motivated by the little hierarchy problem, as well as by the $渭$ problem of the MSSM. We show that the NMSSM and the triplet-extended MSSM can successfully solve problems of one another: while triplets are responsible for large correction to the lightest physical Higgs mass, the singlet&#39;s VEV explains why the $渭$ terms (for the Higgs doublets and the new triplets) are naturally of order the electroweak (EW) scale. We also show that singlet-triplet coupling significantly changes the RG evolution of the singlet mass squared, helping to render this mass squared negative, as required for the singlet to acquire a VEV. We analyze constrains on this scenario from EW precision measurements and find that a relatively large region of the parameter space of this model is viable, especially with the triplet fermions (including doubly-charged) being light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.2842v2-abstract-full').style.display = 'none'; document.getElementById('1109.2842v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 6 figures, 2 tables. V2: minor corrections and references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-011-013 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D84:115024,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.4460">arXiv:1012.4460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1012.4460">pdf</a>, <a href="https://arxiv.org/ps/1012.4460">ps</a>, <a href="https://arxiv.org/format/1012.4460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.84.055020">10.1103/PhysRevD.84.055020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using M_T2 to Distinguish Dark Matter Stabilization Symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Walker%2C+D+G+E">Devin G. E. Walker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+L">Lijun Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.4460v2-abstract-short" style="display: inline;"> We examine the potential of using colliders to distinguish models with parity (Z_2) stabilized dark matter (DM) from models in which the DM is stabilized by other symmetries, taking the latter to be a Z_3 symmetry for illustration. The key observation is that a heavier mother particle charged under a Z_3 stabilization symmetry can decay into one or two DM particles along with Standard Model (SM) p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.4460v2-abstract-full').style.display = 'inline'; document.getElementById('1012.4460v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.4460v2-abstract-full" style="display: none;"> We examine the potential of using colliders to distinguish models with parity (Z_2) stabilized dark matter (DM) from models in which the DM is stabilized by other symmetries, taking the latter to be a Z_3 symmetry for illustration. The key observation is that a heavier mother particle charged under a Z_3 stabilization symmetry can decay into one or two DM particles along with Standard Model (SM) particles. This can be contrasted with the decay of a mother particle charged under a parity symmetry; typically, only one DM particle appears in the decay chain. In arXiv:1003.0899, some of us studied the distributions of visible invariant mass from the decay of a single such mother particle in order to highlight the resulting distinctive signatures of Z_3 symmetry versus parity symmetry stabilized dark matter candidates. We now describe a complementary study which focuses on decay chains of the two mother particles which are necessarily present in these events. We also include in our analyss the missing energy/momentum in the event. For the Z_3 symmetry stabilized mothers, the resulting inclusive final state can have two, three or four DM particles. In contrast, models with Z_2 symmetry can have only two. We show that the shapes and edges of the distribution of M_T2-type variables, along with ratio of the visible momentum/energy on the two sides of the event, are powerful in distinguishing these different scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.4460v2-abstract-full').style.display = 'none'; document.getElementById('1012.4460v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">58 pages, 19 figures, journal reference added, references added, typos corrected, section 6 expanded, and clarifications/more explanations, e.g., Z_4 faking Z_3 added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-10-015 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 84, 055020 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1005.1229">arXiv:1005.1229</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1005.1229">pdf</a>, <a href="https://arxiv.org/format/1005.1229">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> New Physics at the LHC. A Les Houches Report: Physics at TeV Colliders 2009 - New Physics Working Group </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Brooijmans%2C+G">G. Brooijmans</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grojean%2C+C">C. Grojean</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kribs%2C+G+D">G. D. Kribs</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shepherd-Themistocleous%2C+C">C. Shepherd-Themistocleous</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">K. Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Basso%2C+L">L. Basso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Belanger%2C+G">G. Belanger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Belyaev%2C+A">A. Belyaev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Black%2C+K">K. Black</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bose%2C+T">T. Bose</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bruneli%C3%A8re%2C+R">R. Bruneli猫re</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cacciapaglia%2C+G">G. Cacciapaglia</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Carrera%2C+E">E. Carrera</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+S+P">S. P. Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Deandrea%2C+A">A. Deandrea</a>, <a href="/search/hep-ph?searchtype=author&amp;query=De+Curtis%2C+S">S. De Curtis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Etienvre%2C+A+-">A. -I. Etienvre</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Espinosa%2C+J+R">J. R. Espinosa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fichet%2C+S">S. Fichet</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gauthier%2C+L">L. Gauthier</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gopalakrishna%2C+S">S. Gopalakrishna</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gray%2C+H">H. Gray</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gripaios%2C+B">B. Gripaios</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Guchait%2C+M">M. Guchait</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harper%2C+S+J">S. J. Harper</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1005.1229v1-abstract-short" style="display: inline;"> We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. First, are presented various tools developed to measure new particle masses in scenarios where all decays include an unobservable particle. Second, various aspects of supersymmetric models are discussed. Third, some signatures of models of strong electroweak symmetry are discussed. In t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1229v1-abstract-full').style.display = 'inline'; document.getElementById('1005.1229v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1005.1229v1-abstract-full" style="display: none;"> We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. First, are presented various tools developed to measure new particle masses in scenarios where all decays include an unobservable particle. Second, various aspects of supersymmetric models are discussed. Third, some signatures of models of strong electroweak symmetry are discussed. In the fourth part, a special attention is devoted to high mass resonances, as the ones appearing in models with warped extra dimensions. Finally, prospects for models with a hidden sector/valley are presented. Our report, which includes brief experimental and theoretical reviews as well as original results, summarizes the activities of the &#34;New Physics&#34; working group for the &#34;Physics at TeV Colliders&#34; workshop (Les Houches, France, 8-26 June, 2009). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1005.1229v1-abstract-full').style.display = 'none'; document.getElementById('1005.1229v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">189 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-PH-TH/2010-096 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.0899">arXiv:1003.0899</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1003.0899">pdf</a>, <a href="https://arxiv.org/ps/1003.0899">ps</a>, <a href="https://arxiv.org/format/1003.0899">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.82.015007">10.1103/PhysRevD.82.015007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinguishing Dark Matter Stabilization Symmetries Using Multiple Kinematic Edges and Cusps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">Doojin Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Toharia%2C+M">Manuel Toharia</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Walker%2C+D+G+E">Devin G. E. Walker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.0899v2-abstract-short" style="display: inline;"> We emphasize that the stabilizing symmetry for dark matter (DM) particles does not have to be the commonly used parity (Z_2) symmetry. We therefore examine the potential of the colliders to distinguish models with parity stabilized DM from models in which the DM is stabilized by other symmetries. We often take the latter to be a Z_3 symmetry for illustration. We focus on signatures where a single&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.0899v2-abstract-full').style.display = 'inline'; document.getElementById('1003.0899v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.0899v2-abstract-full" style="display: none;"> We emphasize that the stabilizing symmetry for dark matter (DM) particles does not have to be the commonly used parity (Z_2) symmetry. We therefore examine the potential of the colliders to distinguish models with parity stabilized DM from models in which the DM is stabilized by other symmetries. We often take the latter to be a Z_3 symmetry for illustration. We focus on signatures where a single particle, charged under the DM stabilization symmetry decays into the DM and Standard Model (SM) particles. Such a Z_3-charged &#34;mother&#34; particle can decay into one or two DM particles along with the same SM particles. This can be contrasted with the decay of a Z_2-charged mother particle, where only one DM particle appears. Thus, if the intermediate particles in these decay chains are off-shell, then the reconstructed invariant mass of the SM particles exhibits two kinematic edges for the Z_3 case but only one for the Z_2 case. For the case of on-shell intermediate particles, distinguishing the two symmetries requires more than the kinematic edges. In this case, we note that certain decay chain &#34;topologies&#34; of the mother particle which are present for the Z_3 case (but absent for the Z_2 case) generate a &#34;cusp&#34; in the invariant mass distribution of the SM particles. We demonstrate that this cusp is generally invariant of the various spin configurations. We further apply these techniques within the context of explicit models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.0899v2-abstract-full').style.display = 'none'; document.getElementById('1003.0899v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-10-003, UCB-PTH-09/27 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D82:015007,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0912.3070">arXiv:0912.3070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0912.3070">pdf</a>, <a href="https://arxiv.org/ps/0912.3070">ps</a>, <a href="https://arxiv.org/format/0912.3070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.81.075012">10.1103/PhysRevD.81.075012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Astrophysical Implications of a Visible Dark Matter Sector from a Custodially Warped-GUT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Blum%2C+K">Kfir Blum</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lee%2C+S+J">Seung J. Lee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Perez%2C+G">Gilad Perez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0912.3070v1-abstract-short" style="display: inline;"> We explore, within the warped extra dimensional framework, the possibility of finding anti-matter signals in cosmic rays (CRs) from dark matter (DM) annihilation. Exchange of order 100 GeV radion, an integral part of our setup, generically results in Sommerfeld enhancement of the annihilation rate for TeV DM mass. No dark sector is required to obtain boosted annihilation cross sections. A mild h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.3070v1-abstract-full').style.display = 'inline'; document.getElementById('0912.3070v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0912.3070v1-abstract-full" style="display: none;"> We explore, within the warped extra dimensional framework, the possibility of finding anti-matter signals in cosmic rays (CRs) from dark matter (DM) annihilation. Exchange of order 100 GeV radion, an integral part of our setup, generically results in Sommerfeld enhancement of the annihilation rate for TeV DM mass. No dark sector is required to obtain boosted annihilation cross sections. A mild hierarchy between the radion and DM masses can be natural due to the pseudo-Goldstone boson nature of the radion. Implications of Sommerfeld enhancement in warped grand unified theory (GUT) models, where proton stability implies a DM candidate, are studied. We show, via partially unified Pati-Salam group, how to incorporate a custodial symmetry for Z-&gt;b\bar b into the GUT framework such that a few TeV Kaluza-Klein (KK) mass scale is allowed by precision tests. The model with smallest fully unified SO(10) representation allows us to decouple the DM from the electroweak sector. Thus, a correct DM relic density is obtained and direct detection bounds are satisfied. Looking at robust CR observables, a possible future signal in the \bar p / p flux ratio is found. We show how to embed a similar custodial symmetry for the right handed tau, allowing it to be strongly coupled to KK particles. Such a scenario might lead to observed signal in CR positrons; however, the DM candidate in this case can not constitute all of the DM in the universe. Independently of the above, the strong coupling between KK particles and tau&#39;s can lead to striking LHC signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0912.3070v1-abstract-full').style.display = 'none'; document.getElementById('0912.3070v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-09-063 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D81:075012,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0911.0059">arXiv:0911.0059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0911.0059">pdf</a>, <a href="https://arxiv.org/ps/0911.0059">ps</a>, <a href="https://arxiv.org/format/0911.0059">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.81.096002">10.1103/PhysRevD.81.096002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LHC Signals for Coset Electroweak Gauge Bosons in Warped/Composite PGB Higgs Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Azatov%2C+A">Aleksandr Azatov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Han%2C+T">Tao Han</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+Y">Yingchuan Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Si%2C+Z">Zong-Guo Si</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhu%2C+L">Lijun Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0911.0059v2-abstract-short" style="display: inline;"> The framework of a warped extra dimension with the Standard Model (SM) fields propagating in it is a very well-motivated extension of the SM since it can address both the Planck-weak and flavor hierarchy problems of the SM. Within this framework, solution to the little hierarchy problem motivates extending the SM electroweak (EW) 5D gauge symmetry in such a way that its breakdown to the SM deliver&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.0059v2-abstract-full').style.display = 'inline'; document.getElementById('0911.0059v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0911.0059v2-abstract-full" style="display: none;"> The framework of a warped extra dimension with the Standard Model (SM) fields propagating in it is a very well-motivated extension of the SM since it can address both the Planck-weak and flavor hierarchy problems of the SM. Within this framework, solution to the little hierarchy problem motivates extending the SM electroweak (EW) 5D gauge symmetry in such a way that its breakdown to the SM delivers the SM Higgs boson. We study signals at the large hadron collider (LHC) for the extra EW (called coset) gauge bosons, a fundamental ingredient of this framework. The coset gauge bosons, due to their unique EW gauge quantum numbers [doublets of SU(2)_L], do not couple at leading order to two SM particles. We find that, using the associated production of the charged coset gauge bosons via their coupling to SM bottom quark and a (light) KK top quark, the LHC can have a 3蟽reach of \sim 2 (2.6) TeV for the coset gauge boson masses with \sim 100 (1000) fb^{-1} luminosity. Since current theoretical framework(s) suggest an {\em indirect} lower limit on coset gauge boson masses of &gt;3 TeV, luminosity or energy upgrade of LHC is likely to be crucial in observing these states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0911.0059v2-abstract-full').style.display = 'none'; document.getElementById('0911.0059v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2010; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 9 figures, added references, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UMD-PP-09-057, MADPH-09-1547, NPAC-09-14 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D81:096002,2010 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Agashe%2C+K&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Agashe%2C+K&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Agashe%2C+K&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10