CINXE.COM

Search results for: okra

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: okra</title> <meta name="description" content="Search results for: okra"> <meta name="keywords" content="okra"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="okra" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="okra"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: okra</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Response of Okra (Abelmoschus Esculentus (L). Moench) to Soil Amendments and Weeding Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Raphael%20Adeyemi">Olusegun Raphael Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Oluwaseun%20Osunleti"> Samuel Oluwaseun Osunleti</a>, <a href="https://publications.waset.org/abstracts/search?q=Abiddin%20Adekunle%20Bashiruddin">Abiddin Adekunle Bashiruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field trials were conducted in 2020 and 2021 at the Teaching and Research Farm of the Federal University of Agriculture Abeokuta, Ogun State, Nigeria to evaluate the effect of biochar application under different weeding regimes on growth and yield of okra. Treatments were laid out in split- plot in a randomized complete block design with three replications. Main plot treatments were three levels of biochar namely 0t/ha, 10t/ha and 20t/ha while sub-plots treatments consisted of four weeding regimes (weeding at 3, 6 and 9 WAS, weeding at 3 and 6 WAS, weeding at 3 WAS and weedy check as control). Data collected on growth and yield of okra, and weed parameters were subjected to analysis of variance and treatment means were separated using least significant difference at p < 0.05. Results showed that biochar applied at 20 t/ha increased okra yield by 47.5% compared to the control. Weeding at 3, 6 and 9 WAS gave the highest okra yield. Uncontrolled weed infestation throughout crop growth resulted in 87.3% yield reduction in okra. It is concluded that weed suppression , growth and yield of okra can be enhanced by the application of biochar at 20t/ha and weeding at 3, 6 and 9 WAS hence recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=okra" title=" okra"> okra</a>, <a href="https://publications.waset.org/abstracts/search?q=weeding" title=" weeding"> weeding</a>, <a href="https://publications.waset.org/abstracts/search?q=weed%20competition" title=" weed competition"> weed competition</a> </p> <a href="https://publications.waset.org/abstracts/181280/response-of-okra-abelmoschus-esculentus-l-moench-to-soil-amendments-and-weeding-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Response of Okra (Abelmoschus Esculentus (L). Moench) to Soil Amendments and Weeding Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Raphael%20Adeyemi">Olusegun Raphael Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Oluwaseun%20Osunleti"> Samuel Oluwaseun Osunleti</a>, <a href="https://publications.waset.org/abstracts/search?q=Abiddin%20Adekunle%20Bashiruddin"> Abiddin Adekunle Bashiruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field trials were conducted in 2020 and 2021 at the Teaching and Research Farm of the Federal University of Agriculture Abeokuta, Ogun State, Nigeria, to evaluate the effect of biochar application under different weeding regimes on the growth and yield of okra. Treatments were laid out in a split- plot in a randomized complete block design with three replications. Main plot treatments were three levels of biochar, namely 0t/ha, 10t/ha and 20t/ha while sub-plot treatments consisted of four weeding regimes (weeding at 3, 6 and 9 WAS, weeding at 3 and 6 WAS, weeding at 3 WAS and weedy check as control). Data collected on growth and yield of okra and weed parameters were subjected to analysis of variance, and treatment means were separated using the least significant difference at p < 0.05. Results showed that biochar applied at 20 t/ha increased okra yield by 47.5% compared to the control. Weeding at 3, 6 and 9 WAS gave the highest okra yield. Uncontrolled weed infestation throughout crop growth resulted in an 87.3% yield reduction in okra. It is concluded that weed suppression, growth and yield of okra can be enhanced by the application of biochar at 20t/ha and weeding at 3, 6 and 9 WAS hence recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=okra" title=" okra"> okra</a>, <a href="https://publications.waset.org/abstracts/search?q=weeding" title=" weeding"> weeding</a>, <a href="https://publications.waset.org/abstracts/search?q=weed%20competition" title=" weed competition"> weed competition</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/184663/response-of-okra-abelmoschus-esculentus-l-moench-to-soil-amendments-and-weeding-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Comparative Analysis of the Treatment of Okra Seed and Soy Beans Oil with Crude Enzyme Extract from Malted Rice </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduzor%20Esther">Eduzor Esther</a>, <a href="https://publications.waset.org/abstracts/search?q=Uhiara%20Ngozi"> Uhiara Ngozi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya%E2%80%99u%20Abubakar%20Umar"> Ya’u Abubakar Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anayo%20Jacob%20Gabriel"> Anayo Jacob Gabriel</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20Ahmed"> Umar Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the characteristic effect of treating okra seed and soybeans seed oil with crude enzymes extract from malted rice. The oils from okra seeds and soybeans were obtained by solvent extraction method using N-hexane solvent. Soybeans seeds had higher percentage oil yield than okra seed. 250ml of each oil was thoroughly mixed with 5ml of the malted rice extract at 400C for 5mins and then filtered and regarded as treated oil while another batch of 250ml of each oil was not mixed with the malted rice extract and regarded as untreated oil. All the oils were analyzed for specific gravity, refractive index, emulsification capacity, absortivity, TSS and viscosity. Treated okra seed and soybeans oil gave higher values for specific gravity, than the untreated oil for okra seed and soybeans oil respectively. The emulsification capacity values were also higher for treated oils, when compared to the untreated oil, for okra seed and soybeans oil respectively. Treated okra seed and soybeans oil also had higher range of values for absorptivity, than the untreated oil for okra seed and soybeans respectively. The ranges of T.S.S values of the treated oil were also higher, than those of the untreated oil for okra seed and soybeans respectively. The results of viscosity showed that the treated oil had higher values, than the untreated oil for okra seed and soybeans oil respectively. However, the results of refractive index showed that the untreated oils had higher values ranges of than the treated oils for okra seed and soybeans respectively. Treated oil show better quality in respect to the parameters analyst, except the refractive index which is slightly less but also is within the rangiest of standard, the oils are high in unsaturation especially okra oil when compared with soya beans oil. It is recommended that, treated oil of okra seeds and soya beans can serve better than many oils that presently in use such as ground nut oil, palm oil and cotton seeds oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extract" title="extract">extract</a>, <a href="https://publications.waset.org/abstracts/search?q=malted" title=" malted"> malted</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=okra" title=" okra"> okra</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=seed" title=" seed"> seed</a>, <a href="https://publications.waset.org/abstracts/search?q=soybeans" title=" soybeans "> soybeans </a> </p> <a href="https://publications.waset.org/abstracts/28903/comparative-analysis-of-the-treatment-of-okra-seed-and-soy-beans-oil-with-crude-enzyme-extract-from-malted-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Role of Okra (Abelmoschus esculentus Linn.) on Lipopolysaccharide-Induced Reactive Oxygen Species and Inflammatory Mediator in BV2 Microglial Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nootchanat%20Mairuae">Nootchanat Mairuae</a>, <a href="https://publications.waset.org/abstracts/search?q=Walaiporn%20Tongjaroenbuangam"> Walaiporn Tongjaroenbuangam</a>, <a href="https://publications.waset.org/abstracts/search?q=Chalisa%20Louicharoen%20Cheepsunthorn"> Chalisa Louicharoen Cheepsunthorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonlarp%20Cheepsunthorn"> Poonlarp Cheepsunthorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the anti-oxidative effect, the anti-inflammatory effects, and the molecular mechanisms of okra (Abelmoschus esculentus Linn.) on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The BV2 cells were treated with LPS in the presence or absence of okra. Reactive oxygen species (ROS) and nitric oxide (NO) production were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. The phosphorylation levels of nuclear factor-kappa B (NF-kB) p65 was detected by Western blot assay. Treatment of BV2 microglia cells with okra was found to significantly suppress the LPS-induced inflammatory mediator NO as well as ROS compared to untreated cells. The levels of LPS-induced NF-kB p65 phosphorylation were significantly decreased following okra treatment too. These results show that okra exerts anti-oxidative and anti-inflammatory effects in LPS-stimulated BV2 microglial cells by suppressing the NF-κB pathway. This suggests okra might be a valuable agent for treatment of anti-neuroinflammatory diseases mediated by microglial cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abelmoschus%20esculentus%20Linn" title="Abelmoschus esculentus Linn">Abelmoschus esculentus Linn</a>, <a href="https://publications.waset.org/abstracts/search?q=microglia" title=" microglia"> microglia</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20spicy" title=" reactive oxygen spicy"> reactive oxygen spicy</a> </p> <a href="https://publications.waset.org/abstracts/53945/the-role-of-okra-abelmoschus-esculentus-linn-on-lipopolysaccharide-induced-reactive-oxygen-species-and-inflammatory-mediator-in-bv2-microglial-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Cloning, Expression and Protein Purification of AV1 Gene of Okra Leaf Curl Virus Egyptian Isolate and Genetic Diversity between Whitefly and Different Plant Hosts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia.%20G.%20Aseel">Dalia. G. Aseel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Begomoviruses</em> are economically important plant viruses that infect dicotyledonous plants and exclusively transmitted by the whitefly <em>Bemisia tabaci. Here, replicative form was isolated from Okra, Cotton, Tomato plants and whitefly infected with Begomoviruses. Using coat protein specific primers (AV1), the viral infection was verified with amplicon at 450 bp. </em>The sequence of OLCuV-AV1 gene was recorded and received an accession number (FJ441605) from Genebank. The phylogenetic tree of OLCuV was closely related to <em>Okra leaf curl virus </em>previously isolated from Cameroon and USA with nucleotide sequence identity of 92%. The protein purification was carried out using His-Tag methodology by using Affinity Chromatography. The purified protein was separated on SDS-PAGE analysis and an enriched expected size of band at 30 kDa was observed. Furthermore, RAPD and SDS-PAGE were used to detect genetic variability between different hosts of <em>okra leaf curl virus</em> (OLCuV), <em>cotton leaf curl virus</em> (CLCuV), <em>tomato yellow leaf curl virus</em> (TYLCuV) and the whitefly vector. Finally, the present study would help to understand the relationship between the whitefly and different economical crops in Egypt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=okra%20leaf%20curl%20virus" title="okra leaf curl virus">okra leaf curl virus</a>, <a href="https://publications.waset.org/abstracts/search?q=AV1%20gene" title=" AV1 gene"> AV1 gene</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic" title=" phylogenetic"> phylogenetic</a>, <a href="https://publications.waset.org/abstracts/search?q=cloning" title=" cloning"> cloning</a>, <a href="https://publications.waset.org/abstracts/search?q=purified%20protein" title=" purified protein"> purified protein</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity%20and%20viral%20proteins" title=" genetic diversity and viral proteins"> genetic diversity and viral proteins</a> </p> <a href="https://publications.waset.org/abstracts/91013/cloning-expression-and-protein-purification-of-av1-gene-of-okra-leaf-curl-virus-egyptian-isolate-and-genetic-diversity-between-whitefly-and-different-plant-hosts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Dissection of Genomic Loci for Yellow Vein Mosaic Virus Resistance in Okra (Abelmoschus esculentas)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar%20Meena">Rakesh Kumar Meena</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanushree%20Chatterjee"> Tanushree Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Okra (Abelmoschus esculentas L. Moench) or lady’s finger is an important vegetable crop belonging to the Malvaceae family. Unfortunately, production and productivity of Okra are majorly affected by Yellow Vein mosaic virus (YVMV). The AO: 189 (resistant parent) X AO: 191(susceptible parent) used for the development of mapping population. The mapping population has 143 individuals (F₂:F₃). Population was characterized by physiological and pathological observations. Screening of 360 DNA markers was performed to survey for parental polymorphism between the contrasting parents’, i.e., AO: 189 and AO: 191. Out of 360; 84 polymorphic markers were used for genotyping of the mapping population. Total markers were distributed into four linkage groups (LG1, LG2, LG3, and LG4). LG3 covered the longest span (106.8cM) with maximum number of markers (27) while LG1 represented the smallest linkage group in terms of length (71.2cM). QTL identification using the composite interval mapping approach detected two prominent QTLs, QTL1 and QTL2 for resistance against YVMV disease. These QTLs were placed between the marker intervals of NBS-LRR72-Path02 and NBS-LRR06- NBS-LRR65 on linkage group 02 and linkage group 04 respectively. The LOD values of QTL1 and QTL2 were 5.7 and 6.8 which accounted for 19% and 27% of the total phenotypic variation, respectively. The findings of this study provide two linked markers which can be used as efficient diagnostic tools to distinguish between YVMV resistant and susceptible Okra cultivars/genotypes. Lines identified as highly resistant against YVMV infection can be used as donor lines for this trait. This will be instrumental in accelerating the trait improvement program in Okra and will substantially reduce the yield losses due to this viral disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okra" title="Okra">Okra</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20vein%20mosaic%20virus" title=" yellow vein mosaic virus"> yellow vein mosaic virus</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant" title=" resistant"> resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=linkage%20map" title=" linkage map"> linkage map</a>, <a href="https://publications.waset.org/abstracts/search?q=QTLs" title=" QTLs"> QTLs</a> </p> <a href="https://publications.waset.org/abstracts/93229/dissection-of-genomic-loci-for-yellow-vein-mosaic-virus-resistance-in-okra-abelmoschus-esculentas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Imidacloprid and Acetamiprid Residues in Okra and Brinjal Grown in Peri-Urban Environments and Their Dietary Intake Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Atif%20Randhawa">Muhammad Atif Randhawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Amjad"> Adnan Amjad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of insecticides used for growing vegetables in comparison with their safety status was the main purpose of this study. A total of 180 samples of okra (Abelmoschus esculentus L.) and brinjal (Solanum melongena L.) comprising 30 samples of each vegetable were collected from the peri-urban farming system of Multan, Faisalabad and Gujranwala. The mean value for imidacloprid residues found in brinjal (0.226 mg kg-1) and okra (0.176 mg kg-1) from Multan region were greater than the residues reported from Gujranwala and Faisalabad, showing excessive application of imidacloprid in Multan. Out of total 180 samples analysed for imidacloprid and acetamaprid residues, (90 samples for each of okra and brinjal), 104 (58%) and 117 (65%) samples contained detectable imidacloprid and acetamiprid residues, respectively. Whereas 10% and 15% samples exceeded their respective MRLs for imidacloprid and acetamiprid residues. Dietary intake assessment for imidacloprid and acetamiprid was calculated according to their MPI values 3.84 and 4.48 mg person-1day-1, respectively. The dietary intake assessment data revealed that although a reasonable proportion of samples exceeded the MRLs in studied areas but their consumption was found within safe limit in comparison to values obtained for MPI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acceptable%20Daily%20Intake%20%28ADI%29" title="Acceptable Daily Intake (ADI)">Acceptable Daily Intake (ADI)</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticides" title=" insecticides"> insecticides</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximum%20Residual%20Limits%20%28MRLs%29" title=" Maximum Residual Limits (MRLs)"> Maximum Residual Limits (MRLs)</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a> </p> <a href="https://publications.waset.org/abstracts/41482/imidacloprid-and-acetamiprid-residues-in-okra-and-brinjal-grown-in-peri-urban-environments-and-their-dietary-intake-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Persistence of Ready Mix (Chlorpyriphos 50% + Cypermethrin 5%), Cypermethrin and Chlorpyriphos in Soil under Okra Fruits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samriti%20Wadhwa">Samriti Wadhwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Beena%20Kumari"> Beena Kumari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Significance: Residue levels of ready mix (chlorpyriphos 50% and cypermethrin 5%), cypermethrin and chlorpyriphos individually in sandy loam soil under okra fruits (Variety, Varsha Uphar) were determined; a field experiment was conducted at Research Farm of Department of Entomology of Chaudhary Charan Singh Haryana Agriculture University, Hisar, Haryana, India. Persistence behavior of cypermethrin and chlorpyriphos was studied following application of a pre-mix formulation of insecticides viz. Action-505EC, chlorpyriphos (Radar 20 EC) and cypermethrin (Cyperkill 10 EC) at the recommended dose and double the recommended dose along with control at fruiting stage. Pesticide application also leads to decline in soil acarine fauna which is instrumental in the breakdown of the litter because of which minerals are released into the soil. So, by this study, one can evaluate the safety of pesticides for the soil health. Methodology: Action-505EC (chlorpyriphos 50% and cypermethrin 5%) at 275 g a .i. ha⁻¹ (single dose) and 550 g a. i. ha⁻¹ (double dose), chlorpyriphos (Radar 20 EC) at 200 g a. i. ha⁻¹ (single dose) and 400 g a. i. ha⁻¹ (double dose) and cypermethrin (Cyperkill 10 EC) at 50 g a. i. ha⁻¹ (single dose) and 100 g a. i. ha⁻¹ (double dose) were applied at the fruiting stage on okra crop. Samples of soils from okra field were collected periodically at 0 (1h after spray), 1, 3, 5, 7, 10, 15 days and at harvest after application as well of control soil sample. After air drying, adsorbing through Florisil and activated charcoal and eluting with hexane: acetone (9:1) then residues in soils were estimated by a gas chromatograph equipped with a capillary column and electron capture detector. Results: No persistence of cypermethrin in ready-mix in soil under okra fruits at single and double dose was observed. In case of chlorpyriphos in ready-mix, average initial deposits on 0 (1 h after treatment) day was 0.015 mg kg⁻¹ and 0.036 mg kg⁻¹ which persisted up to 5 days and up to 7 days for single and double dose, respectively. After that residues reached below a detectable level of 0.010 mg kg⁻¹. Experimental studies on cypermethrin individually revealed that average initial deposits on 0 (1 h after treatment) were 0.008 mg kg⁻¹ and 0.012 mg kg⁻¹ which persisted up to 3 days and 5 days for single and double dose, respectively after that residues reached to below detectable level. The initial deposits of chlorpyriphos individually in soil were found to be 0.055 mg kg⁻¹ and 0.113 mg kg⁻¹ which persisted up to 7 days and 10 days at a lower dose and higher dose, respectively after that residues reached to below determination level. Conclusion: In soil under okra crop, only individual cypermethrin in both the doses persisted whereas no persistence of cypermethrin in ready-mix was observed. Persistence of chlorpyriphos individually is more as compared to chlorpyriphos in ready-mix in both the doses. Overall, the persistence of chlorpyriphos in soil under okra crop is more than cypermethrin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorpyriphos" title="chlorpyriphos">chlorpyriphos</a>, <a href="https://publications.waset.org/abstracts/search?q=cypermethrin" title=" cypermethrin"> cypermethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=okra" title=" okra"> okra</a>, <a href="https://publications.waset.org/abstracts/search?q=ready%20mix" title=" ready mix"> ready mix</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/98954/persistence-of-ready-mix-chlorpyriphos-50-cypermethrin-5-cypermethrin-and-chlorpyriphos-in-soil-under-okra-fruits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Novel Recombinant Betasatellite Associated with Vein Thickening Symptoms on Okra Plants in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20M.%20Zakri">Adel M. Zakri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Al-Saleh"> Mohammed A. Al-Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith.%20K.%20Brown"> Judith. K. Brown</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Idris"> Ali M. Idris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Betasatellites are small circular single stranded DNA molecules found associated with begomoviruses on field symptomatic plants. Their genome size is about half that of the helper begomovirus, ranging between 1.3 and 1.4 kb. The helper begomoviruses are usually members of the family Geminiviridae. Okra leaves showing vein thickening were collected from okra plants growing in Jazan, Saudi Arabia. Total DNA was extracted from leaves and used as a template to amplify circular DNA using rolling circle amplification (RCA) technology. Products were digested with PstI to linearize the helper viral genome(s), and associated DNA satellite(s), yielding a 2.8kbp and 1.4kbp fragment, respectively. The linearized fragments were cloned into the pGEM-5Zf (+) vector and subjected to DNA sequencing. The 2.8 kb fragment was identified as Cotton leaf curl Gezira virus genome, at 2780bp, an isolate closely related to strains reported previously from Saudi Arabia. A clone obtained from the 1.4 kb fragments he 1.4kb was blasted to GeneBank database found to be a betasatellite. The genome of betasatellite was 1357-bp in size. It was found to be a recombinant containing one fragment (877-bp) that shared 91% nt identity with Cotton leaf curl Gezira betasatellite [KM279620], and a smaller fragment [133--bp) that shared 86% nt identity with Tomato leaf curl Sudan virus [JX483708]. This satellite is thus a recombinant between a malvaceous-infecting satellite and a solanaceous-infecting begomovirus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=begomovirus" title="begomovirus">begomovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=betasatellites" title=" betasatellites"> betasatellites</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20leaf%20curl%20Gezira%20virus" title=" cotton leaf curl Gezira virus"> cotton leaf curl Gezira virus</a>, <a href="https://publications.waset.org/abstracts/search?q=okra%20plants" title=" okra plants"> okra plants</a> </p> <a href="https://publications.waset.org/abstracts/39401/novel-recombinant-betasatellite-associated-with-vein-thickening-symptoms-on-okra-plants-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Utilizing Mahogany (Swietenia Macrophylla) Fruits, Leaves, and Branches as Biochar for Soil Amendment in Okra (Abelmoschus Esculentus) Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayaka%20A.%20Matsuo">Ayaka A. Matsuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gweyneth%20Victoria%20I.%20Maranan"> Gweyneth Victoria I. Maranan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawn%20Mikel%20Hobayan"> Shawn Mikel Hobayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we delve into the application of mahogany fruits as biochar for soil amendment, aiming to evaluate their effectiveness in improving soil quality and influencing the growth parameters of okra plants through a comprehensive analysis employing various multivariate tests. In a more straightforward approach, our results show that biochar derived from isn't just a minor player but emerges as a key contributor to our study. This finding holds profound implications, as it highlights the material significance of biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches in shaping the outcomes. The importance of this discovery lies in its contribution to an enhanced comprehension of the overall effects of biochar on the variables explored in our investigation. Notably, the positive changes observed in height, number of leaves, and width of leaves in okra plants further support the premise that the incorporation of biochar improves soil quality. These findings provide valuable insights for agricultural practices, suggesting that biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches holds promise as a sustainable soil amendment with positive implications for plant growth. The statistical results from multivariate tests serve to solidify the conclusion that biochar plays a pivotal role in driving the observed outcomes in our study. In essence, this research not only sheds light on the potential of mahogany fruit-derived biochar but also emphasizes its significance in fostering healthier soil conditions and, consequently, enhanced plant growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20amendment" title="soil amendment">soil amendment</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=mahogany" title=" mahogany"> mahogany</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a> </p> <a href="https://publications.waset.org/abstracts/183179/utilizing-mahogany-swietenia-macrophylla-fruits-leaves-and-branches-as-biochar-for-soil-amendment-in-okra-abelmoschus-esculentus-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Management of H. Armigera by Using Various Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajmal%20Khan%20Kassi">Ajmal Khan Kassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Humayun%20Javed"> Humayun Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Abdul%20Qadeem"> Syed Abdul Qadeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted to find out the best management practices against American bollworm on Okra variety Arka Anamika during 2016. The three different management practices viz. Release of Trichogramma chilonis, hoeing and weeding, clipping and lufenuron insect growth regulator (IGR) which were tested individually and with all possible combinations for the controlling of American bollworm at 3 diverse areas viz. University Research Farm Koont, NARC and Farmer Field Taxila. All the treatment combinations regarding damage of fruit showed significant results. The minimum fruit infestation i.e. 3.20% and 3.58% was recorded with combined treatment (i.e. T. chilonis + hoeing + weeding + lufenuron) in two different localities. This combined treatment also resulted in maximum yield at NARC and Taxila i.e. 57.67 and 62.66 q/ha respectively. This treatment gave the best results to manage H. armigera. On the basis of different integrated pest management techniques, Arka Anamika variety proved to be comparatively resistant against H. armigera in different localities. So this variety is recommended for the cultivation in Pothwar region to get maximum yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=management" title="management">management</a>, <a href="https://publications.waset.org/abstracts/search?q=american%20bollworm" title=" american bollworm"> american bollworm</a>, <a href="https://publications.waset.org/abstracts/search?q=arka%20anamika" title=" arka anamika"> arka anamika</a>, <a href="https://publications.waset.org/abstracts/search?q=okra" title=" okra"> okra</a> </p> <a href="https://publications.waset.org/abstracts/181762/management-of-h-armigera-by-using-various-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Screening the Best Integrated Pest Management Treatments against Helicoverpa armigera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajmal%20Khan%20Kassi">Ajmal Khan Kassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Humayun%20Javed"> Humayun Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Mukhtar"> Tariq Mukhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was conducted to screen out resistance and susceptibility of okra varieties against Helicoverpa armigera under field conditions 2016. In this experiment, the different management practices viz. release Trichogramma chilonis, hoeing, and weeding, clipping, and lufenuron were tested individually and with all possible combinations for the controlling of American bollworm at 3 diverse localities viz. University research farm Koont, National Agriculture Research Centre (NARC) and farmer field Taxila by using resistant variety Arka Anamika. All the treatment combinations regarding damage of shoot and fruit showed significant results. The minimum fruit infestation, i.e., 3.20% and 3.58% was recorded with combined treatment (i.e., T. chilonis + hoeing + weeding + lufenuron) in two different localities. The minimum shoot infestation, i.e., 7.18%, 7.08%, and 6.85% was also observed with (T. chilonis + hoeing + weeding + lufenuron) combined treatment at all three different localities. The above-combined treatment (T. chilonis + hoeing + weeding + lufenuron) also resulted in maximum yield at NARC and Taxila, i.e., 57.67 and 62.66 q/ha respectively. On the basis of combined treatment (i.e., T. chilonis + hoeing + weeding + lufenuron) in three different localities, Arka Anamika variety proved to be comparatively resistant against H. armigera. So this variety is recommended for the cultivation in Pothwar region to get maximum yield and minimum losses against H. armigera. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=okra" title="okra">okra</a>, <a href="https://publications.waset.org/abstracts/search?q=screening" title=" screening"> screening</a>, <a href="https://publications.waset.org/abstracts/search?q=combine%20treatment" title=" combine treatment"> combine treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicoverpa%20armigera" title=" Helicoverpa armigera"> Helicoverpa armigera</a> </p> <a href="https://publications.waset.org/abstracts/107520/screening-the-best-integrated-pest-management-treatments-against-helicoverpa-armigera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Persistent Toxicity of Imidacloprid to Aphis gossypii Glover and Amarasca biguttula biguttula Ishida on Okra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Pawar">M. A. Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Patil"> C. S. Patil </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigations were carried out to evaluate the persistent toxicity of imidacloprid, thiamethoxam and dimethoate to Aphis gossypii and Amrasca biguttula biguttula under laboratory condition during 2012. The experiment was conducted in a completely randomized block design with three replications in the glass house of department of Entomology M. P. K. V. Rahuri. Okra plants were raised in glass house following all recommended agronomic practices. The 21 days old plants were used for assessing the effect of insecticides on aphids and jassids. The insecticides were diluted with distilled water to make desired concentrations and used for foliar application. The insecticides included in the study were imidacloprid 17.8 SL, imidacloprid 70 WG, thiamethoxam 25 WG and dimethoate 30 EC. Untreated check was maintained by spraying with distilled water. The mortality of aphids and jassids on treated leaf were recorded at 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, and 25 days after spray till zero per cent mortality observed for each treatment. Treated leaves from the glasshouse were brought to laboratory and were put in tube with moist cotton swab at the bottom of leaf and sucking apparatus was fit to the tube. Ten jassids were sucked in each tube from the plants in the field. Evaluated insecticides differed in their persistence and index of persistence toxicity against both insects of different treatments. Recommended dose of imidacloprid (25 g a.i/ha) persisted for 21 days against both aphids and jassids. However dimethoate, a conventional insecticide persisted for 11 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amrasca%20biguttula%20biguttula" title="Amrasca biguttula biguttula">Amrasca biguttula biguttula</a>, <a href="https://publications.waset.org/abstracts/search?q=Aphis%20gossypii" title=" Aphis gossypii"> Aphis gossypii</a>, <a href="https://publications.waset.org/abstracts/search?q=imidacloprid" title=" imidacloprid"> imidacloprid</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20toxicity" title=" persistent toxicity"> persistent toxicity</a> </p> <a href="https://publications.waset.org/abstracts/78206/persistent-toxicity-of-imidacloprid-to-aphis-gossypii-glover-and-amarasca-biguttula-biguttula-ishida-on-okra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Effect of Botanical and Synthetic Insecticide on Different Insect Pests and Yield of Pea (Pisum sativum)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saeed">Muhammad Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazeer%20Ahmed"> Nazeer Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukhtar%20Alam"> Mukhtar Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazli%20Subhan"> Fazli Subhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Adnan"> Muhammad Adnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazli%20Wahid"> Fazli Wahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidayat%20Ullah"> Hidayat Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiullah"> Rafiullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experiment evaluated different synthetic insecticides against Jassid (Amrasca devastations) on pea crop at Agriculture Research Institute Tarnab, Peshawar Khyber Pakhtunkhwa. The field was prepared to cultivate okra crop in Randomized Complete Block (RCB) Design having six treatments with four replications. Plant to plant and row to row distance was kept at 15 cm and 30 cm, respectively. Pre and post spray data were recorded randomly from the top, middle and bottom leaves of five selected plants. Five synthetic insecticides, namely Confidor (Proponil), a neonicotinoid insecticide, Chlorpyrifos (chlorinated organophosphate (OP) insecticide), Lazer (dinitroaniline) (Pendimethaline), Imidacloprid (neonicotinoids insecticide) and Thiodan (Endosulfan, organochlorine insecticide), were used against infestation of aphids, pea pod borer, stem fly, leaf minor and pea weevil. Each synthetic insecticide showed significantly more effectiveness than control (untreated plots) but was non-significant among each other. The lowest population density was recorded in the plot treated with synthetic insecticide i.e. Confidor (0.6175 liter.ha-1) (4.24 aphids plant⁻¹) which is followed by Imidacloprid (0.6175 liter.ha⁻¹) (4.64 pea pod borer plant⁻¹), Thiodan (1.729 liter.ha⁻¹) (4.78 leaf minor plant⁻¹), Lazer (2.47 liter.ha-1) (4.91 pea weevil plant⁻¹), Chlorpyrifos (1.86 liter.ha⁻¹) (5.11 stem fly plant⁻¹), respectively while the highest population was recorded from the control plot. It is concluded from the data that the residual effect decreases with time after the application of spray, which may be less dangerous to the environment and human beings and can effectively manage this dread. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=okra%20crop" title="okra crop">okra crop</a>, <a href="https://publications.waset.org/abstracts/search?q=jassids" title=" jassids"> jassids</a>, <a href="https://publications.waset.org/abstracts/search?q=Confidor" title=" Confidor"> Confidor</a>, <a href="https://publications.waset.org/abstracts/search?q=imidacloprid" title=" imidacloprid"> imidacloprid</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorpyrifos" title=" chlorpyrifos"> chlorpyrifos</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiodan" title=" Thiodan"> Thiodan</a> </p> <a href="https://publications.waset.org/abstracts/147696/effect-of-botanical-and-synthetic-insecticide-on-different-insect-pests-and-yield-of-pea-pisum-sativum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Four-Way Interactions among Host Plant-Whitefly-Virus-Endosymbionts in Insect and Disease Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20R.%20Prasannakumar">N. R. Prasannakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Maruthi"> M. N. Maruthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The whitefly, Bemisia tabaci (Gennadius) (Hemiptera; Aleyrodidae) is a highly polyphagous pest reported to infest over 600 plant hosts globally. About 42 genetic groups/cryptic species of B. tabaci exist in the world on different hosts. The species have variable behaviour with respect to feeding, development and transmission of viral diseases. Feeding on diverse host plants affect both whitefly development and the population of the endosymbionts harboured by the insects. Due to changes in the level of endosymbionts, the virus transmission efficiency by the vector also gets affected. We investigated these interactions on five host plants – egg plant, tomato, beans, okra and cotton - using a single whitefly species Asia 1 infected with three different bacteria Portiera, Wolbachia and Arsenophonus. The Asia 1 transmits the Tomato leaf curl Bangalore virus (ToLCBV) effectively and thus was used in the interaction studies. We found a significant impact of hosts on whitefly growth and development; eggplant was most favourable host, while okra and tomato were least favourable. Among the endosymbiotic bacteria, the titre of Wolbachia was significantly affected by feeding of B. tabaci on different host plants whereas Arsenophonus and Portiera were unaffected. When whitefly fed on ToLCBV-infected tomato plants, the Arsenophonus population was significantly increased, indicating its previously confirmed role in ToLCBV transmission. Further, screening of total proteins of B. tabaci Asia 1 genetic group interacting with ToLCBV coat protein was carried out using Y2H system. Some of the proteins found to be interacting with ToLCBV CP were HSPs 70kDa, GroEL, nucleoproteins, vitellogenins, apolipophorins, lachesins, enolase. The reported protein thus would be the potential targets for novel whitefly control strategies such as RNAi or novel insecticide target sites for sustainable whitefly management after confirmation of genuine proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cDNA" title="cDNA">cDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=whitefly" title=" whitefly"> whitefly</a>, <a href="https://publications.waset.org/abstracts/search?q=ToLCBV" title=" ToLCBV"> ToLCBV</a>, <a href="https://publications.waset.org/abstracts/search?q=endosymbionts" title=" endosymbionts"> endosymbionts</a>, <a href="https://publications.waset.org/abstracts/search?q=Y2H" title=" Y2H"> Y2H</a> </p> <a href="https://publications.waset.org/abstracts/119847/the-four-way-interactions-among-host-plant-whitefly-virus-endosymbionts-in-insect-and-disease-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Releasing Two Insect Predators to Control of Aphids Under Open-field Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Gesraha">Mohamed Ahmed Gesraha</a>, <a href="https://publications.waset.org/abstracts/search?q=Amany%20Ramadan%20Ebeid"> Amany Ramadan Ebeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aphids are noxious and serious persistent pests in the open fields worldwide. Many authors studied the possibility of aphid control by applying Ladybirds and Lacewings at different releasing rates under open-field conditions. Results clarify that releasing 3rd instar larvae of Coccinella undecimpunctata at the rate of 1 larva:50 aphid was more effective than 1:100 or 1:200 rates for controlling Aphis gossypii population in Okra field; reflecting more than 90% reduction in the aphid population within 15 days. When Chrysoperla carnea 2nd larval instar were releasing at 1:5, 1:10, and 1:20 (predator: aphid), it was noticed that the former rate was the most effective one, inducing 98.93% reduction in aphid population; while the two other rates reflecting less reduction. Additionally, in the case of double releases, the reduction percentage at the 1:5 rate was 99.63%, emphasize that this rate was the most effective one; the other rates induced 97.05 and 95.64% reduction. Generally, a double release was more effective in all tested rates than the single one because of the cumulative existence of the predators in large numbers at the same period of the experiment. It could be concluded that utilizing insect predators (Coccinella undecimpunctata or Chrysoperla carnea) at an early larval stag were faire enough to reduce the aphids’ populations under open fields conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=releasing%20predators" title="releasing predators">releasing predators</a>, <a href="https://publications.waset.org/abstracts/search?q=lacewings" title=" lacewings"> lacewings</a>, <a href="https://publications.waset.org/abstracts/search?q=ladybird" title=" ladybird"> ladybird</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20fields" title=" open fields"> open fields</a> </p> <a href="https://publications.waset.org/abstracts/142852/releasing-two-insect-predators-to-control-of-aphids-under-open-field-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Newly Isolated Enterococcus faecium BS13</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vandana%20Bali">Vandana Bali</a>, <a href="https://publications.waset.org/abstracts/search?q=Manab%20B.%20Bera"> Manab B. Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar"> Parmjit S. Panesar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial production of antimicrobials as biopreservatives is the major area of focus nowadays due to increased interest of consumers towards natural and safe preservation of ready to eat food products. The agro-industrial byproduct based medium and optimized process conditions can contribute in economical production of bacteriocins. Keeping this in view, the present investigation was carried out on agro-industrial byproducts utilization for the production of bacteriocin using Enterococcus faecium BS13 isolated from local fermented food. Different agro-industrial byproduct based carbon sources (whey, potato starch liquor, kinnow peel, deoiledrice bran and molasses), nitrogen sources (soya okra, pea pod and corn steep liquor), metal ions and surfactants were tested for optimal bacteriocin production. The effect of various process parameters such as pH, temperature, inoculum level, agitation and time were also tested on bacteriocin production. The optimized medium containing whey, supplemented with 4%corn steep liquor and polysorbate-80 displayed maximum bacteriocin activity with 2% inoculum, at pH 6.5, temperature 40oC under shaking conditions (100 rpm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacteriocin" title="Bacteriocin">Bacteriocin</a>, <a href="https://publications.waset.org/abstracts/search?q=biopreservation" title=" biopreservation"> biopreservation</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20steep%20liquor" title=" corn steep liquor"> corn steep liquor</a>, <a href="https://publications.waset.org/abstracts/search?q=Enterococcus%20faecium" title=" Enterococcus faecium"> Enterococcus faecium</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20utilization" title=" waste utilization"> waste utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/7189/utilization-of-agro-industrial-byproducts-for-bacteriocin-production-using-newly-isolated-enterococcus-faecium-bs13" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> An Assessment of Vegetable Farmers’ Perceptions about Post-harvest Loss Sources in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kofi%20Kyei">Kofi Kyei</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenchi%20Matsui"> Kenchi Matsui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Loss of vegetable products has been a major constraint in the post-harvest chain. Sources of post-harvest loss in the vegetable industry start from the time of harvesting to its handling and at the various market centers. Identifying vegetable farmers’ perceptions about post-harvest loss sources is one way of addressing this issue. In this paper, we assessed farmers’ perceptions about sources of post-harvest losses in the Ashanti Region of Ghana. We also identified the factors that influence their perceptions. To clearly understand farmers’ perceptions, we selected Sekyere-Kumawu District in the Ashanti Region. Sekyere-Kumawu District is one of the major producers of vegetables in the Region. Based on a questionnaire survey, 100 vegetable farmers growing tomato, pepper, okra, cabbage, and garden egg were purposely selected from five communities in Sekyere-Kumawu District. For farmers’ perceptions, the five points Likert scale was employed. On a scale from 1 (no loss) to 5 (extremely high loss), we processed the scores for each vegetable harvest. To clarify factors influencing farmers’ perceptions, the Pearson Correlation analysis was used. Our findings revealed that farmers perceive post-harvest loss by pest infestation as the most extreme loss. However, vegetable farmers did not perceive loss during transportation as a serious source of post-harvest loss. The Pearson Correlation analysis results further revealed that farmers’ age, gender, level of education, and years of experience had an influence on their perceptions. This paper then discusses some recommendations to minimize the post-harvest loss in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashanti%20Region" title="Ashanti Region">Ashanti Region</a>, <a href="https://publications.waset.org/abstracts/search?q=pest%20infestation" title=" pest infestation"> pest infestation</a>, <a href="https://publications.waset.org/abstracts/search?q=post-harvest%20loss" title=" post-harvest loss"> post-harvest loss</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20farmers" title=" vegetable farmers"> vegetable farmers</a> </p> <a href="https://publications.waset.org/abstracts/132049/an-assessment-of-vegetable-farmers-perceptions-about-post-harvest-loss-sources-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Isolation and Characterization of Cotton Infecting Begomoviruses in Alternate Hosts from Cotton Growing Regions of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Irfan%20Fareed">M. Irfan Fareed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvina%20Gul%20Kazi"> Alvina Gul Kazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Castor bean (Ricinus communis; family Euphorbiaceae) is cultivated for the production of oil and as an ornamental plant throughout tropical regions. Leaf samples from castor bean plants with leaf curl and vein thickening were collected from areas around Okara (Pakistan) in 2011. PCR amplification using diagnostic primers showed the presence of a begomovirus and subsequently the specific pair (BurNF 5’- CCATGGTTGTGGCAGTTGATTGACAGATAC-3’, BurNR 5’- CCATGGATTCACGCACAGGGGAACCC-3’) was used to amplify and clone the whole genome of the virus. The complete nucleotide sequence was determined to be 2,759 nt (accession No. HE985227). Alignments showed the highest levels of nucleotide sequence identity (98.8%) with Cotton leaf curl Burewala virus (CLCuBuV; accession No. JF416947) No. JF416947). The virus in castor beans lacks on intact C2 gene, as is typical of CLCuBuV in cotton. An amplification product of ca. 1.4 kb was obtained in PCR with primers for betasatellites and the complete nucleotide sequence of a clone was determined to be 1373 nt (HE985228). The sequence showed 96.3% nucleotide sequence identity to the recombinant Cotton leaf curl Multan betasatellite (CLCuMB; JF502389). This is the first report of CLCuBuV and its betasatellite infecting castor bean, showing this plant species as an alternate host of the virus. Already many alternate host have been reported from different alternate host like tobacco, tomato, hibiscus, okra, ageratum, Digera arvensis, habiscus, Papaya and now in Ricinus communis. So, it is suggested that these alternate hosts should be avoided to grow near cotton growing regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricinus%20communis" title="Ricinus communis">Ricinus communis</a>, <a href="https://publications.waset.org/abstracts/search?q=begomovirus" title=" begomovirus"> begomovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=betasatellite" title=" betasatellite"> betasatellite</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/21282/isolation-and-characterization-of-cotton-infecting-begomoviruses-in-alternate-hosts-from-cotton-growing-regions-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> DNA Fingerprinting of Some Major Genera of Subterranean Termites (Isoptera) (Anacanthotermes, Psammotermes and Microtermes) from Western Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=AbdelRahman%20A.%20Faragalla">AbdelRahman A. Faragalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Alqhtani"> Mohamed H. Alqhtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20M.Ahmed"> Mohamed M. M.Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saudi Arabia has currently been beset by a barrage of bizarre assemblages of subterranean termite fauna, inflicting heavy catastrophic havocs on human valued properties in various homes, storage facilities, warehouses, agricultural and horticultural crops including okra, sweet pepper, tomatoes, sorghum, date palm trees, citruses and many forest domains and green lush desert oases. The most pressing urgent priority is to use modern technologies to alleviate the painstaking obstacle of taxonomic identification of these injurious noxious pests that might lead to effective pest control in both infested agricultural commodities and field crops. Our study has indicated the use of DNA fingerprinting technologies, in order to generate basic information of the genetic similarity between 3 predominant families containing the most destructive termite species. The methodologies included extraction and DNA isolation from members of the major families and the use of randomly selected primers and PCR amplifications with the nucleotide sequences. GC content and annealing temperatures for all primers, PCR amplifications and agarose gel electrophoresis were also conducted in addition to the scoring and analysis of Random Amplification Polymorphic DNA-PCR (RAPDs). A phylogenetic analysis for different species using statistical computer program on the basis of RAPD-DNA results, represented as a dendrogram based on the average of band sharing ratio between different species. Our study aims to shed more light on this intriguing subject, which may lead to an expedited display of the kinship and relatedness of species in an ambitious undertaking to arrive at correct taxonomic classification of termite species, discover sibling species, so that a logistic rational pest management strategy could be delineated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20fingerprinting" title="DNA fingerprinting">DNA fingerprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=Western%20Saudi%20Arabia" title=" Western Saudi Arabia"> Western Saudi Arabia</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20primers" title=" DNA primers"> DNA primers</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD" title=" RAPD"> RAPD</a> </p> <a href="https://publications.waset.org/abstracts/27387/dna-fingerprinting-of-some-major-genera-of-subterranean-termites-isoptera-anacanthotermes-psammotermes-and-microtermes-from-western-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Evidence Based Dietary Pattern in South Asian Patients: Setting Goals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Pappu">Ananya Pappu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Mishra"> Sneha Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The South Asian population experiences unique health challenges that predisposes this demographic to cardiometabolic diseases at lower BMIs. South Asians may therefore benefit from recommendations specific to their cultural needs. Here, we focus on current BMI guidelines for Asians with a discussion of South Asian dietary practices and culturally tailored interventions. By integrating traditional dietary practices with modern nutritional recommendations, this manuscript aims to highlight effective strategies to improving health outcomes among South Asians. Background: The South Asian community, including individuals from India, Pakistan, Bangladesh, and Sri Lanka, experiences high rates of cardiovascular diseases, cancers, diabetes, and strokes. Notably, the prevalence of diabetes and cardiovascular disease among Asians is elevated at BMIs below the WHO's standard overweight threshold. As it stands, a BMI of 25-30 kg/m² is considered overweight in non-Asians, while this cutoff is reduced to 23-27.4 kg/m² in Asians. This discrepancy can be attributed to studies which have shown different associations between BMI and health risks in Asians compared to other populations. Given these significant challenges, optimizing lifestyle management for cardiometabolic risk factors is crucial. Tailored interventions that consider cultural context seem to be the best approach for ensuring the success of both dietary and physical activity interventions in South Asian patients. Adopting a whole food, plant-based diet (WFPD) is one such strategy. The WFPD suggests that half of one meal should consist of non-starchy vegetables. In the South Asian diet, this includes traditional vegetables such as okra, tindora, eggplant, and leafy greens including amaranth, collards, chard, and mustards. A quarter of the meal should include plant-based protein sources like cooked beans, lentils, and paneer, with the remaining quarter comprising healthy grains or starches such as whole wheat breads, millets, tapioca, and barley. Adherence to the WFPD has been shown to improve cardiometabolic risk factors including weight, BMI, total cholesterol, HbA1c, and reduces the risk of developing non-alcoholic fatty liver disease (NAFLD). Another approach to improving dietary habits is timing meals. Many of the major cultures and religions in the Indian subcontinent incorporate religious fasting. Time-restricted eating (TRE), also known as intermittent fasting, is a practice akin to traditional fasting, which involves consuming all daily calories within a specific window. TRE has been shown to improve insulin resistance in prediabetic and diabetic patients. Common regimens include completing all meals within an 8-hour window, consuming a low-calorie diet every other day, and the 5:2 diet, which involves fasting twice weekly. These fasting practices align with the natural circadian rhythm, potentially enhancing metabolic health and reducing obesity and diabetes risks. Conclusion: South Asians develop cardiometabolic disease at lower BMIs; hence, it is important to counsel patients about lifestyle interventions that decrease their risk. Traditional South Asian diets can be made more nutrient-rich by incorporating vegetables, plant proteins like lentils and beans, and substituting refined grains for whole grains. Ultimately, the best diet is one to which a patient can adhere. It is therefore important to find a regimen that aligns with a patient’s cultural and traditional food practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BMI" title="BMI">BMI</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Asian" title=" South Asian"> South Asian</a>, <a href="https://publications.waset.org/abstracts/search?q=time-restricted%20eating" title=" time-restricted eating"> time-restricted eating</a> </p> <a href="https://publications.waset.org/abstracts/185826/evidence-based-dietary-pattern-in-south-asian-patients-setting-goals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10