CINXE.COM

Search results for: authigenic pyrite

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: authigenic pyrite</title> <meta name="description" content="Search results for: authigenic pyrite"> <meta name="keywords" content="authigenic pyrite"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="authigenic pyrite" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="authigenic pyrite"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 72</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: authigenic pyrite</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Petrologic and Geochemical Characteristics of Marine Sand Strip in the Proterozoic Chuanlinggou Formation of the North China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue%20Feng">Yue Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-jiang%20Wang"> Chun-jiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-long%20Huang"> Zhi-long Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the sedimentary environment of Mesoproterozoic marine deposits in North China has attracted special attention in recent years. It is not clear that the sedimentary environment and the cause of formation of the sandstone strip and its internal carbonate cements and pyrite in the Mesoproterozoic Chuanlinggou Formation in North China. In this study, drilling core samples in North China were identified by microscopy, and their petrological characteristics such as mineral composition and structure were identified. The geochemical data of carbon and oxygen isotopes, total organic carbon (TOC) contents and total sulfur (TS) contents were obtained by processing and analyzing the samples. The samples are mainly quartz particles with low compositional maturity, combined with low value of TOC, it shows that the sedimentary environment of the sandy clastic is a sandy littoral sedimentary environment with relative strong hydrodynamic force, and then the sandstone strip in black shale are formed by the deposition of gravity flow. Analysis of TS values reflect sandstone bands formed in hypoxic environments. The carbonate cements and the pyrite in the sandstone belt are authigenic. The carbon isotope values of authigenic carbonate cements are negatively biased in comparison with the carbonate isotope of carbonate rocks in the same period, but it is more biased than the carbon isotopic values of anaerobic oxidation of methane (AOM) genetic carbonate rocks. Authigenic pyrite may be mainly due to the formation of HS- by the action of bacterial sulfate reduction (BSR) and Fe²⁺, their causes are in contact. This indicates that authigenic carbonate cements are mainly carbonate precipitates formed but are significantly affected by the effects of AOM. Summary, the sedimentary environment of the sandstone zone in the Chuanlinggou Formation in the North China is a shallow sea facies with iron rich and anoxic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandstone%20strip" title="sandstone strip">sandstone strip</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentary%20environment" title=" sedimentary environment"> sedimentary environment</a>, <a href="https://publications.waset.org/abstracts/search?q=authigenic%20carbonate%20cements" title=" authigenic carbonate cements"> authigenic carbonate cements</a>, <a href="https://publications.waset.org/abstracts/search?q=authigenic%20pyrite" title=" authigenic pyrite"> authigenic pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20Chuanlinggou%20group" title=" The Chuanlinggou group"> The Chuanlinggou group</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20China" title=" North China"> North China</a> </p> <a href="https://publications.waset.org/abstracts/95234/petrologic-and-geochemical-characteristics-of-marine-sand-strip-in-the-proterozoic-chuanlinggou-formation-of-the-north-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> The Role of Sodium Alginate in the Selective Flotation of Chalcopyrite Against Pyrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufan%20Mu">Yufan Mu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The selective depression of pyrite in the flotation of copper minerals is difficult due to the activation of pyrite surface by copper ions. Novel depressants for pyrite are needed to responsibly extract copper resources for a greener and cleaner future. In this paper, the non-toxic sodium alginate was employed as a depressant to selectively separate chalcopyrite from pyrite in flotation using potassium amyl xanthate as the collector. The results from flotation tests showed that sodium alginate significantly depressed pyrite flotation while had slight influence on chalcopyrite flotation. The adsorption tests showed that the adsorption amount of sodium alginate on pyrite surface was much higher than that on chalcopyrite surface. The pre-adsorbed sodium alginate could effectively hinder the subsequent adsorption of collector on pyrite surface, thereby inhibiting pyrite flotation. The selective adsorption of sodium alginate on pyrite surface was caused by the interactions between the activating cuprous ions on pyrite surface and the carboxyl groups in sodium alginate. The paper shows that sodium alginate is a promising depressant for pyrite in the flotation of chalcopyrite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chalcopyrite%20flotation" title="chalcopyrite flotation">chalcopyrite flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20depression" title=" pyrite depression"> pyrite depression</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-activated%20pyrite" title=" copper-activated pyrite"> copper-activated pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/165954/the-role-of-sodium-alginate-in-the-selective-flotation-of-chalcopyrite-against-pyrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Depression of Copper-Activated Pyrite by Potassium Ferrate in Copper Ore Flotation Using High Salinity Process Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufan%20Mu">Yufan Mu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High salinity process water (HSPW) is often applied in copper ore flotation to alleviate freshwater shortage; however, it is detrimental to copper flotation as it strongly enhances copper activation of pyrite. In this study, the depression effect of a strong oxidiser, potassium ferrate (𝐾₂𝐹₄), on the flotation of copper-activated pyrite was tested to realise the selective separation of pyrite from copper minerals (e.g., chalcopyrite) in flotation using HSPW. The flotation results show that when (𝐾₂𝐹₄) was added in the flotation cell during conditioning, (𝐾₂𝐹₄) could selectively depress copper-activated pyrite while improving chalcopyrite flotation. The depression mechanism of (𝐾₂𝐹₄) on pyrite was ascribed to the significant increase in the pulp potential (Eₕ), dissolved oxygen (DO) concentration and the amount of ferric oxyhydroxides as a result of ferrate decomposition. In the flotation cell, the high Eh and DO concentration promoted the oxidation of low valency metal species (𝐶⁺𝐹e²⁺) released from mineral surfaces and forged steel grinding media, and the resultant high valency metal oxyhydroxides 𝐶u(𝑂H)₂⁄Fe(OH)₃ together with the ferric oxyhydroxides from ferrate decomposition preferentially precipitated on pyrite surface due to its more cathodic nature compared with chalcopyrite, which increased pyrite surface hydrophilicity and reduced its floatability. This study reveals that (𝐾₂𝐹₄) is a highly efficient depressant for pyrite when separating copper minerals from pyrite in flotation using HSPW if dosed properly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20flotation" title="copper flotation">copper flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20depression" title=" pyrite depression"> pyrite depression</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-activated%20pyrite" title=" copper-activated pyrite"> copper-activated pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20ferrate" title=" potassium ferrate"> potassium ferrate</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20salinity%20process%20water" title=" high salinity process water"> high salinity process water</a> </p> <a href="https://publications.waset.org/abstracts/165931/depression-of-copper-activated-pyrite-by-potassium-ferrate-in-copper-ore-flotation-using-high-salinity-process-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Authigenic Mineralogy in Nubian Sandstone Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20A.%20Rahoma">Mohamed M. A. Rahoma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of my sedimentological and petrographical study of the Nubian Formation in the north Gialo area in the Sirte basin in Libya that was used for identifying and recognizing the facies type and their changes through the studied interval. It also helped me to interpret the depositional processes and the depositional environments and describe the textural characteristics, detrital mineralogy, Authigenic mineralogy and porosity characteristics of the rocks within the cored interval. Thus, we can identify the principal controls on porosity and permeability within the reservoir sections for the studied interval. To achieve this study, I described the cores studied well and marked all features represented in color, grain size, lithology, and sedimentary structures and used them to identify the facies. Then, I chose a number of samples according to a noticeable change in the facies through the interval for microscopic investigation. The results of the microscopic investigation showed that the authigenic clays and the authigenic types of cement have an important influence on the reservoir quality by converting intergranular macropores to microporosity and reducing permeability. It is recommended to give these authigenic minerals more investigation in future studies since they have an essential influence on the potential of sandstones reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagenesis%20processes" title="diagenesis processes">diagenesis processes</a>, <a href="https://publications.waset.org/abstracts/search?q=authigenic%20minerals" title=" authigenic minerals"> authigenic minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=Nubian%20Sandstone" title=" Nubian Sandstone"> Nubian Sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20quality" title=" reservoir quality"> reservoir quality</a> </p> <a href="https://publications.waset.org/abstracts/148772/authigenic-mineralogy-in-nubian-sandstone-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Effect of Slag Application to Soil Chemical Properties and Rice Yield on Acid Sulphate Soils with Different Pyrite Depth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richardo%20Y.%20E.%20Sihotang">Richardo Y. E. Sihotang</a>, <a href="https://publications.waset.org/abstracts/search?q=Atang%20Sutandi"> Atang Sutandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Ginting"> Joshua Ginting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The expansion of marginal soil such as acid sulphate soils for the development of staple crops, including rice was unavoidable. However, acid sulphate soils were less suitable for rice field due to the low fertility and the threats of pyrite oxidation. An experiment using Randomized Complete Block Design was designed to investigate the effect of slag in stabilizing soil reaction (pH), improving soil fertility and rice yield. Experiments were conducted in two locations with different pyrite depth. The results showed that slag application was able to decrease the exchangeable Al and available iron (Fe) as well as increase the soil pH, available-P, soil exchangeable Ca2+, Mg2+, and K+. Furthermore, the slag application increased the plant nutrient uptakes, particularly N, P, K, followed by the increasing of rice yield significantly. Nutrients availability, nutrient uptake, and rice yield were higher in the shallow pyrite soil instead of the deep pyrite soil. In addition, slag application was economically feasible due to the ability to reduce standard fertilizer requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20sulphate%20soils" title="acid sulphate soils">acid sulphate soils</a>, <a href="https://publications.waset.org/abstracts/search?q=available%20nutrients" title=" available nutrients"> available nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a> </p> <a href="https://publications.waset.org/abstracts/78540/effect-of-slag-application-to-soil-chemical-properties-and-rice-yield-on-acid-sulphate-soils-with-different-pyrite-depth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Porosity Characterization and Its Destruction by Authigenic Minerals: Reservoir Sandstones, Mamuniyat Formation, Murzuq Basin, SW Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamrd%20Ali%20Alrabib">Mohamrd Ali Alrabib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandstones samples were selected from cores of seven wells ranging in depth from 5040 to 7181.4 ft. The dominant authigenic cement phase is quartz overgrowth cement (up to 13% by volume) and this is the major mechanism for porosity reduction. Late stage carbonate cements (siderite and dolomite/ferroan dolomite) are present and these minerals infill intergranular porosity and, therefore, further reduce porosity and probably permeability. Authigenic clay minerals are represented by kaolinite, illite, and grain coating clay minerals. Kaolinite occurs as booklet and vermicular forms. Minor amounts of illite were noted in the studied samples, which commonly block pore throats, thereby reducing permeability. Primary porosity of up to 26.5% is present. Secondary porosity (up to 17%) is also present as a result of feldspar dissolution. The high intergranular volume (IGV) of the sandstones indicates that mechanical and chemical compaction played a more important role than cementation of porosity loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authigenic%20minerals" title="authigenic minerals">authigenic minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20types" title=" porosity types"> porosity types</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20reduction" title=" porosity reduction"> porosity reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=mamuniyat%20sandstone%20reservoir" title=" mamuniyat sandstone reservoir "> mamuniyat sandstone reservoir </a> </p> <a href="https://publications.waset.org/abstracts/2382/porosity-characterization-and-its-destruction-by-authigenic-minerals-reservoir-sandstones-mamuniyat-formation-murzuq-basin-sw-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak">Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Kim"> Dong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Haragobinda%20Srichandan"> Haragobinda Srichandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Gon%20Kim"> Byoung-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8 L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=At.ferrooxidans" title="At.ferrooxidans">At.ferrooxidans</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20reactor" title=" batch reactor"> batch reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20desulfurization" title=" coal desulfurization"> coal desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a> </p> <a href="https://publications.waset.org/abstracts/1871/depyritization-of-us-coal-using-iron-oxidizing-bacteria-batch-stirred-reactor-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Acid Mine Drainage Remediation Using Silane and Phosphate Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chiliza">M. Chiliza</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20P.%20Mbukwane"> H. P. Mbukwane</a>, <a href="https://publications.waset.org/abstracts/search?q=P%20Masita"> P Masita</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Rutto"> H. Rutto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid mine drainage (AMD) one of the main pollutants of water in many countries that have mining activities. AMD results from the oxidation of pyrite and other metal sulfides. When these metals gets exposed to moisture and oxygen, leaching takes place releasing sulphate and Iron. Acid drainage is often noted by 'yellow boy,' an orange-yellow substance that occurs when the pH of acidic mine-influenced water raises above pH 3, so that the previously dissolved iron precipitates out. The possibility of using environmentally friendly silane and phosphate based coatings on pyrite to remediate acid mine drainage and prevention at source was investigated. The results showed that both coatings reduced chemical oxidation of pyrite based on Fe and sulphate release. Furthermore, it was found that silane based coating performs better when coating synthesis take place in a basic hydrolysis than in an acidic state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title="acid mine drainage">acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=silane" title=" silane"> silane</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate" title=" phosphate"> phosphate</a> </p> <a href="https://publications.waset.org/abstracts/59866/acid-mine-drainage-remediation-using-silane-and-phosphate-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Growth Patterns of Pyrite Crystals Studied by Electron Back Scatter Diffraction (EBSD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirsten%20Techmer">Kirsten Techmer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan-Erik%20Rybak"> Jan-Erik Rybak</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Rudolph"> Simon Rudolph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural formed pyrites (FeS2) are frequent sulfides in sedimentary and metamorphic rocks. Growth textures of idiomorphic pyrite assemblages reflect the conditions during their formation in the geologic sequence, furtheron the local texture analyses of the growth patterns of pyrite assemblages by EBSD reveal the possibility to resolve the growth conditions during the formation of pyrite at the micron scale. The spatial resolution of local texture measurements in the Scanning Electron Microscope used can be in the nanomete scale. Orientation contrasts resulting from domains of smaller misorientations within larger pyrite crystals can be resolved as well. The electron optical studies have been carried out in a Field-Emission Scanning Electron Microscope (FEI Quanta 200) equipped with a CCD camera to study the orientation contrasts along the surfaces of pyrite. Idiomorphic cubic single crystals of pyrite, polycrystalline assemblages of pyrite, spherically grown spheres of pyrite as well as pyrite-bearing ammonites have been studied by EBSD in the Scanning Electron Microscope. Samples were chosen to show no or minor secondary deformation and an idiomorphic 3D crystal habit, so the local textures of pyrite result mainly from growth and minor from deformation. The samples studied derived from Navajun (Spain), Chalchidiki (Greece), Thüringen (Germany) and Unterkliem (Austria). Chemical analyses by EDAX show pyrite with minor inhomogeneities e.g., single crystals of galena and chalcopyrite along the grain boundaries of larger pyrite crystals. Intergrowth between marcasite and pyrite can be detected in one sample. Pyrite may form intense growth twinning lamellae on {011}. Twinning, e.g., contact twinning is abundant within the crystals studied and the individual twinning lamellaes can be resolved by EBSD. The ammonites studied show a replacement of the shale by newly formed pyrite resulting in an intense intergrowth of calcite and pyrite. EBSD measurements indicate a polycrystalline microfabric of both minerals, still reflecting primary surface structures of the ammonites e.g, the Septen. Discs of pyrite (“pyrite dollar”) as well as pyrite framboids show growth patterns comprising a typical microfabric. EBSD studies reveal an equigranular matrix in the inner part of the discs of pyrite and a fiber growth with larger misorientations in the outer regions between the individual segments. This typical microfabric derived from a formation of pyrite crystals starting at a higher nucleation rate and followed by directional crystal growth. EBSD studies show, that the growth texture of pyrite in the samples studied reveals a correlation between nucleation rate and following growth rate of the pyrites, thus leading to the characteristic crystal habits. Preferential directional growth at lower nucleation rates may lead to the formation of 3D framboids of pyrite. Crystallographic misorientations between the individual fibers are similar. In ammonites studied, primary anisotropies of the substrates like e.g., ammonitic sutures, influence the nucleation, crystal growth and habit of the newly formed pyrites along the surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electron%20Back%20Scatter%20Diffraction%20%28EBSD%29" title="Electron Back Scatter Diffraction (EBSD)">Electron Back Scatter Diffraction (EBSD)</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20pattern" title=" growth pattern"> growth pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-sulfides%20%28pyrite%29" title=" Fe-sulfides (pyrite)"> Fe-sulfides (pyrite)</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20analyses" title=" texture analyses"> texture analyses</a> </p> <a href="https://publications.waset.org/abstracts/56526/growth-patterns-of-pyrite-crystals-studied-by-electron-back-scatter-diffraction-ebsd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Catalytic Degradation of Tetracycline in Aqueous Solution by Magnetic Ore Pyrite Nanoparticles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allah%20Bakhsh%20Javid">Allah Bakhsh Javid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mashayekh-Salehi"> Ali Mashayekh-Salehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Davardoost"> Fatemeh Davardoost</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the preparation, characterization and catalytic activity of a novel natural mineral-based catalyst for destructive adsorption of tetracycline (TTC) as water emerging compounds. Degradation potential of raw and calcined magnetite catalyst was evaluated at different experiments situations such as pH, catalyst dose, reaction time and pollutant concentration. Calcined magnetite attained greater catalytic potential than the raw ore in the degradation of tetracycline, around 69% versus 3% at reaction time of 30 min and TTC aqueous solution of 50 mg/L, respectively. Complete removal of TTC could be obtained using 2 g/L calcined nanoparticles at reaction time of 60 min. The removal of TTC increased with the increase in solution temperature. Accordingly, considering its abundance in nature together with its very high catalytic potential, calcined pyrite is a promising and reliable catalytic material for destructive decomposition for catalytic decomposition and mineralization of such pharmaceutical compounds as TTC in water and wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20degradation" title="catalytic degradation">catalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline" title=" tetracycline"> tetracycline</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20pollutants" title=" emerging pollutants"> emerging pollutants</a> </p> <a href="https://publications.waset.org/abstracts/97258/catalytic-degradation-of-tetracycline-in-aqueous-solution-by-magnetic-ore-pyrite-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Heavy Sulphide Material Characterization of Grasberg Block Cave Mine, Mimika, Papua: Implication for Tunnel Development and Mill Issue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cahya%20Wimar%20Wicaksono">Cahya Wimar Wicaksono</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynara%20Davin%20Chen"> Reynara Davin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvian%20Kristianto%20Santoso"> Alvian Kristianto Santoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grasberg Cu-Au ore deposit as one of the biggest porphyry deposits located in Papua Province, Indonesia produced by several intrusion that restricted by Heavy Sulphide Zone (HSZ) in peripheral. HSZ is the rock that becomes the contact between Grassberg Igneous Complex (GIC) with sedimentary and igneous rock outside, which is rich in sulphide minerals such as pyrite ± pyrrhotite. This research is to obtain the characteristic of HSZ based on geotechnical, geochemical and mineralogy aspect and those implication for daily mining operational activities. Method used in this research are geological and alteration mapping, core logging, FAA (Fire Assay Analysis), AAS (Atomic absorption spectroscopy), RQD (Rock Quality Designation) and rock water content. Data generated from methods among RQD data, mineral composition and grade, lithological and structural geology distribution in research area. The mapping data show that HSZ material characteristics divided into three type based on rocks association, there are near igneous rocks, sedimentary rocks and on HSZ area. And also divided based on its location, north and south part of research area. HSZ material characteristic consist of rock which rich of pyrite ± pyrrhotite, and RQD range valued about 25%-100%. Pyrite ± pyrrhotite which outcropped will react with H₂O and O₂ resulting acid that generates corrosive effect on steel wire and rockbolt. Whereas, pyrite precipitation proses in HSZ forming combustible H₂S gas which is harmful during blasting activities. Furthermore, the impact of H₂S gas in blasting activities is forming poison gas SO₂. Although HSZ high grade Cu-Au, however those high grade Cu-Au rich in sulphide components which is affected in flotation milling process. Pyrite ± pyrrhotite in HSZ will chemically react with Cu-Au that will settle in milling process instead of floating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustible" title="combustible">combustible</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosive" title=" corrosive"> corrosive</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20sulphide%20zone" title=" heavy sulphide zone"> heavy sulphide zone</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20%C2%B1%20pyrrhotite" title=" pyrite ± pyrrhotite"> pyrite ± pyrrhotite</a> </p> <a href="https://publications.waset.org/abstracts/82797/heavy-sulphide-material-characterization-of-grasberg-block-cave-mine-mimika-papua-implication-for-tunnel-development-and-mill-issue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Petrographic Properties of Sedimentary-Exhalative Type Ores of Filizchay Polymetallic Deposit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Verdiyev">Samir Verdiyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Huseynov"> Fuad Huseynov</a>, <a href="https://publications.waset.org/abstracts/search?q=Islam%20Guliyev"> Islam Guliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%C5%9Fqun%20%C4%B0smay%C4%B1l"> Coşqun İsmayıl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Filizchay polymetallic deposit is located on the southern slope of the Greater Caucasus Mountain Range, northwest of Azerbaijan in the Balaken district. Filizchay is the largest polymetallic deposit in the region and the second-largest polymetallic deposit in Europe. The mineral deposits in the region are associated with two different geodynamic evolutions that began with the Mesozoic collision along the Eurasian continent and the formation of a magmatic arc after the collision and continued with subduction in the Cenozoic. The bedrocks associated with Filizchay mineralization are Early Jurassic aged. The stratigraphic sequence of the deposit is consisting of black metamorphic clay shales, sandstones, and ore layers. Shales, sandstones, and siltstones are encountered in the upper and middle sections of the ore body, while only shales are observed at the lowest ranges. The ore body is mainly layered by the geometric structure of the bedrock; folding can be observed in the ore layers along with the bedrock foliation, and just in few points indirect laying due to the metamorphism. This suggests that the Filizchay ore mineralization is syngenetic, which is proved by the mineralization by the bedrock. To determine the ore petrography properties of the Filizchay deposit, samples were collected from the region where the ore is concentrated, and a polished section was prepared. These collected samples were examined under the mineralogical microscope to reveal the paragenesis of the mineralization and to explain the relation of ore minerals to each other. In this study, macroscopically observed minerals and textures of these minerals were used in the cores revealed during drilling exploration made by AzerGold CJS company. As a result of all these studies, it has been determined that there are three main mineralization types in the Filizchay deposit: banded, massive, and veinlet ores. The mineralization is in the massive pyrite; furthermore, the basis of the ore-mass contains pyrite, chalcopyrite, sphalerite, and galena. The pyrite in some parts of the ore body transformed to pyrrhotite as a result of metamorphism. Pyrite-chalcopyrite, pyrite-sphalerite-galena, pyrite-pyrrhotite mineral assemblages were determined during microscopic studies of mineralization. The replacement texture is more developed in Filizchay ores. The banded polymetallic type mineralization and near bedrocks are cut by quartz-carbonate veins. The geotectonic position and lithological conditions of the Filizchay deposit, the texture, and interrelationship of the sulfide mineralization indicate that it is a sedimentary-exhalative type of Au-Cu-Ag-Zn-Pb polymetallic deposit that is genetically related to the massive sulfide deposits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balaken" title="Balaken">Balaken</a>, <a href="https://publications.waset.org/abstracts/search?q=Filizchay" title=" Filizchay"> Filizchay</a>, <a href="https://publications.waset.org/abstracts/search?q=metamorphism" title=" metamorphism"> metamorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=polymetallic%20mineralization" title=" polymetallic mineralization"> polymetallic mineralization</a> </p> <a href="https://publications.waset.org/abstracts/134980/petrographic-properties-of-sedimentary-exhalative-type-ores-of-filizchay-polymetallic-deposit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Micro-Analytical Data of Au Mineralization at Atud Gold Deposit, Eastern Desert, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdelnasser">A. Abdelnasser</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kumral"> M. Kumral</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zoheir"> B. Zoheir</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Weihed"> P. Weihed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu"> M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Gumus"> L. Gumus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atud gold deposits located at the central part of the Egyptian Eastern Desert of Egypt. It represents the vein-type gold mineralization at the Arabian-Nubian Shield in North Africa. Furthermore, this Au mineralization was closely associated with intense hydrothermal alteration haloes along the NW-SE brittle-ductile shear zone at the mined area. This study reports new data about the mineral chemistry of the hydrothermal and metamorphic minerals as well as the geothermobarometry of the metamorphism and determines the paragenetic interrelationship between Au-bearing sulfides and gangue minerals in Atud gold mine by using the electron microprobe analyses (EMPA). These analyses revealed that the ore minerals associated with gold mineralization are arsenopyrite, pyrite, chalcopyrite, sphalerite, pyrrhotite, tetrahedrite and gersdorffite-cobaltite. Also, the gold is highly associated with arsenopyrite and As-bearing pyrite as well as sphalerite with an average ~70 wt.% Au (+26 wt.% Ag) whereas it occurred either as disseminated grains or along microfractures of arsenopyrite and pyrite in altered wallrocks and mineralized quartz veins. Arsenopyrite occurs as individual rhombic or prismatic zoned grains disseminated in the quartz veins and wallrock and is intergrown with euhedral arsenian pyrite (with ~2 atom % As). Pyrite is As-bearing pyrite that occurs as disseminated subhedral or anhedral zoned grains replacing by chalcopyrite in some samples. Inclusions of sphalerite and pyrrhotite are common in the large pyrite grains. Secondary minerals such as sericite, calcite, chlorite and albite are disseminated either in altered wallrocks or in quartz veins. Sericite is the main secondary and alteration mineral associated with Au-bearing sulfides and calcite. Electron microprobe data of the sericite show that its muscovite component is high in all analyzed flakes (XMs= an average 0.89) and the phengite content (Mg+Fe a.p.f.u.) varies from 0.10 to 0.55 and from 0.13 to 0.29 in wallrocks and mineralized veins respectively. Carbonate occurs either as thin veinlets or disseminated grains in the mineralized quartz vein and/or the wallrocks. It has higher amount of calcite (CaCO3) and low amount of MgCO3 as well as FeCO3 in the wallrocks relative to the quartz veins. Chlorite flakes are associated with arsenopyrite and their electron probe data revealed that they are generally Fe-rich composition (FeOt 20.64–20.10 wt.%) and their composition is clinochlore either pycnochlorite or ripidolite with Al (iv) = 2.30-2.36 pfu and 2.41-2.51 pfu and with narrow range of estimated formation temperatures are (289–295°C) and (301-312°C) for pycnochlorite and ripidolite respectively. Albite is accompanied with chlorite with an Ab content is high in all analyzed samples (Ab= 95.08-99.20). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-analytical%20data" title="micro-analytical data">micro-analytical data</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20chemistry" title=" mineral chemistry"> mineral chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=EMPA" title=" EMPA"> EMPA</a>, <a href="https://publications.waset.org/abstracts/search?q=Atud%20gold%20deposit" title=" Atud gold deposit"> Atud gold deposit</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a> </p> <a href="https://publications.waset.org/abstracts/10697/micro-analytical-data-of-au-mineralization-at-atud-gold-deposit-eastern-desert-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Semi-pilot Biooxidation of Refractory Sulfide-Gold Ore Using Ferroplasma Acidophilum: D-(+)-Sucsore as a Booster and Columns Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Karimi%20Darvanjooghi">Mohammad Hossein Karimi Darvanjooghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Magdouli"> Sara Magdouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Satinder%20Kaur%20Brar"> Satinder Kaur Brar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been reported that the microorganism’s attachment to the surfaces of ore samples is a key factor that influences the biooxidation in pretreatment for recovery of gold in sulfide-bearing ores. In this research, the implementation of D-(+)-Sucrose on the biooxidation of ore samples were studied in a semi-pilot experiment. The experiments were carried out in five separate jacketed columns (1 m height and 6 cm diameter) at a constant temperature of 37.5 ̊C and saturated humidity. The airflow rate and recycling solution flow rate were studied in the research and the optimum operating condition were reported. The ore sample (0.49 ppm gold grade) was obtained from the Hammond Reef mine site containing 15 wt.% of pyrite which included 98% of gold according to the results of micrograph images. The experiments were continued up to 100 days while air flow rates were chosen to be 0.5, 1, 1.5, 2, and 3 lit/min and the recycling solution (Containing 9K media and 0.4 wt.% D-(+)-Sucrose) flow rates were kept 5, 8, 15 ml/hr. The results indicated that the addition of D-(+)-Sucrose increased the bacterial activity due to the overproduction of extracellular polymeric substance (EPS) up to 95% and for the condition that the recycling solution and air flow rate were chosen to be 8 ml/hr and 2 lit/min, respectively, the maximum pyrite dissolution of 76% was obtained after 60 days. The results indicated that for the air flow rates of 0.5, 1, 1.5, 2, and 3 lit/min the ratio of daily pyrite dissolution per daily solution lost were found to be 0.025, 0.033, 0.031, 0.043, and 0.009 %-pyrite dissolution/ml-lost. The implementation of this microorganisms and the addition of D-(+)-Sucrose will enhance the efficiency of gold recovery through faster biooxidation process and leads to decrease in the time and energy of operation toward desired target; however, still other parameters including particle size distribution, agglomeration, aeration design, chemistry of recycling solution need to be controlled and monitored for reaching the optimum condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column%20tests" title="column tests">column tests</a>, <a href="https://publications.waset.org/abstracts/search?q=biooxidation" title=" biooxidation"> biooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20recovery" title=" gold recovery"> gold recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferroplasma%20acidophilum" title=" Ferroplasma acidophilum"> Ferroplasma acidophilum</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/162439/semi-pilot-biooxidation-of-refractory-sulfide-gold-ore-using-ferroplasma-acidophilum-d-sucsore-as-a-booster-and-columns-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Safe Disposal of Pyrite Rich Waste Rock Using Alkali Phosphate Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Gon%20Kim">Jae Gon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongchan%20Cho"> Yongchan Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungwha%20Lee"> Jungwha Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid rock drainage (ARD) is generated by the oxidation of pyrite (FeS₂) contained in the excavated rocks upon its exposure to atmosphere and is an environmental concern at construction site due to its high acidity and high concentration of toxic elements. We developed the safe disposal method with the reduction of ARD generation by an alkali phosphate treatment. A pyrite rich andesite was collected from a railway construction site. The collected rock sample was crushed to be less than 3/8 inches in diameter using a jaw crusher. The crushed rock was filled in an acryl tube with 20 cm in diameter and 40 cm in height. Two treatments for the ARD reduction were conducted with duplicates: 1) the addition of 10mM KH₂PO₄_3% NaHCO₃ and 2) the addition of 10mM KH₂PO₄_3% NaHCO₃ and ordinary portland cement (OPC) on the top of the column. After the treatments, 500 ml of distilled water added to each column for every week for 3 weeks and then the column was flushed with 1,500 ml of distilled water in the 4th week. The pH, electrical conductivity (EC), concentrations of anions and cations of the leachates were monitored for 10 months. The pH of the leachates from the untreated column showed 2.1-3.7, but the leachates from the columns treated with the alkali phosphate solution with or without the OPC addition showed pH 6.7–8.9. The leachates from the treated columns had much lower concentrations of SO₄²⁻ and toxic elements such as Al, Mn, Fe and heavy metals than those from the untreated columns. However, the leachates from the treated columns had a higher As concentration than those from the untreated columns. There was no significant difference in chemical property between the leachates from the treated columns with and without the OPC addition. The chemistry of leachates indicates that the alkali phosphate treatment decreased the oxidation of sulfide and neutralized the acidic pore water. No significant effect of the OPC addition on the leachate chemistry has shown during 10-month experiment. However, we expect a positive effect of the OPC addition on the reduction of ARD generation in terms of long period. According to the results of this experiment, the alkali phosphate treatment of sulfide rich rock can be a promising technology for the safe disposal method with the ARD reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20rock%20drainage" title="acid rock drainage">acid rock drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20phosphate%20treatment" title=" alkali phosphate treatment"> alkali phosphate treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite%20rich%20rock" title=" pyrite rich rock"> pyrite rich rock</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20disposal" title=" safe disposal"> safe disposal</a> </p> <a href="https://publications.waset.org/abstracts/96111/safe-disposal-of-pyrite-rich-waste-rock-using-alkali-phosphate-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Depositional Environment and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20M.%20Elkhatri">Faraj M. Elkhatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Ali%20Allafi"> Hana Ali Allafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Ba-sin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets, but also small, disaggregated kaolinite platelets derived from the dis-aggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the sur-rounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and re-duce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on select-ed minerals observed during the SEM study were obtained using an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=por%20throat" title="por throat">por throat</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20lose" title=" porosity lose"> porosity lose</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20plugging" title=" solids plugging"> solids plugging</a> </p> <a href="https://publications.waset.org/abstracts/174514/depositional-environment-and-diagenetic-alterations-influences-of-facies-and-fine-kaolinite-formation-migration-on-sandstones-reservoir-quality-sarir-formation-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> The Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20M.%20Elkhatri">Faraj M. Elkhatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Ali%20Alafi"> Hana Ali Alafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present-day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly found by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fine%20migration" title="fine migration">fine migration</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=soled%20bulging." title=" soled bulging."> soled bulging.</a> </p> <a href="https://publications.waset.org/abstracts/156395/the-influences-of-facies-and-fine-kaolinite-formation-migration-on-sandstones-reservoir-quality-sarir-formation-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Investigating the Pathfinding Elements and Indicator Minerals of Au as the Main Geological Signatures for Au Ore Discovery at Kubi Gold Deposit, Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20K.%20Nzulu">Gabriel K. Nzulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans%20H%C3%B6gberg"> Hans Högberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Eklund"> Per Eklund</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Hultman"> Lars Hultman</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Magnuson"> Martin Magnuson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) are applied to investigate the properties of rock samples from a drill hole from the Kubi Gold Project of the Asante Gold Corporation near Dunwka-on-Offin in the Central Region of Ghana. The distribution of these minerals in the rocks were observed in the drill hole sections. X-ray diffraction indicates that the samples contain garnet, pyrite, periclase, and quartz as the main indicator minerals. SEM revealed morphologies of these minerals. From EDX and XPS, Fe, Mg, Al, S, O, Hg, Ti, Mn, Na, Ag, Au, Cu, Si, and K are identified as the pathfinder elements in the area that either form alloys with gold or inherent elements in the sediments. This finding can be ascribed to primary geochemical distribution, which developed from crystallization of magma and hydrothermal liquids as well as the movement of metasomatic elements and the precipitous rate of chemical weathering of lateralization in secondary processes. The results indicate that Au mineralization in the Kubi Mine area is controlled by garnet, pyrite, goethite, and kaolinite that grades up to the surface (oxides) with hematite and limonite alterations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals" title=" minerals"> minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=pathfinder%20element" title=" pathfinder element"> pathfinder element</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a> </p> <a href="https://publications.waset.org/abstracts/157979/investigating-the-pathfinding-elements-and-indicator-minerals-of-au-as-the-main-geological-signatures-for-au-ore-discovery-at-kubi-gold-deposit-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone&#039;s Reservoir Quality, Sarir Formation, Sirt Basin Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20M.%20Elkhatri">Faraj M. Elkhatri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20throat" title="pore throat">pore throat</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20migration" title=" fine migration"> fine migration</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20damage" title=" formation damage"> formation damage</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20plugging" title=" solids plugging"> solids plugging</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20loss" title=" porosity loss"> porosity loss</a> </p> <a href="https://publications.waset.org/abstracts/143766/the-influences-of-facies-and-fine-kaolinite-formation-migration-on-sandstones-reservoir-quality-sarir-formation-sirt-basin-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Enhancing the Flotation of Fine and Ultrafine Pyrite Particles Using Electrolytically Generated Bubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bogale%20Tadesse">Bogale Tadesse</a>, <a href="https://publications.waset.org/abstracts/search?q=Krutik%20Parikh"> Krutik Parikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndagha%20Mkandawire"> Ndagha Mkandawire</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Albijanic"> Boris Albijanic</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimal%20Subasinghe"> Nimal Subasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well established that the floatability and selectivity of mineral particles are highly dependent on the particle size. Generally, a particle size of 10 micron is considered as the critical size below which both flotation selectivity and recovery decline sharply. It is widely accepted that the majority of ultrafine particles, including highly liberated valuable minerals, will be lost in tailings during a conventional flotation process. This is highly undesirable particularly in the processing of finely disseminated complex and refractory ores where there is a requirement for fine grinding in order to liberate the valuable minerals. In addition, the continuing decline in ore grade worldwide necessitates intensive processing of low grade mineral deposits. Recent advances in comminution allow the economic grinding of particles down to 10 micron sizes to enhance the probability of liberating locked minerals from low grade ores. Thus, it is timely that the flotation of fine and ultrafine particles is improved in order to reduce the amount of valuable minerals lost as slimes. It is believed that the use of fine bubbles in flotation increases the bubble-particle collision efficiency and hence the flotation performance. Electroflotation, where bubbles are generated by the electrolytic breakdown of water to produce oxygen and hydrogen gases, leads to the formation of extremely finely dispersed gas bubbles with dimensions varying from 5 to 95 micron. The sizes of bubbles generated by this method are significantly smaller than those found in conventional flotation (> 600 micron). In this study, microbubbles generated by electrolysis of water were injected into a bench top flotation cell to assess the performance electroflotation in enhancing the flotation of fine and ultrafine pyrite particles of sizes ranging from 5 to 53 micron. The design of the cell and the results from optimization of the process variables such as current density, pH, percent solid and particle size will be presented at this conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroflotation" title="electroflotation">electroflotation</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20bubbles" title=" fine bubbles"> fine bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20particles" title=" ultrafine particles"> ultrafine particles</a> </p> <a href="https://publications.waset.org/abstracts/51923/enhancing-the-flotation-of-fine-and-ultrafine-pyrite-particles-using-electrolytically-generated-bubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Low Resistivity Pay Identification in Carbonate Reservoirs of Yadavaran Oilfield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mardi">Mohammad Mardi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, the resistivity is high in oil layer and low in water layer. Yet there are intervals of oil-bearing zones showing low resistivity, high porosity, and low resistance. In the typical example, well A (depth: 4341.5-4372.0m), both Spectral Gamma Ray (SGR) and Corrected Gamma Ray (CGR) are relatively low; porosity varies from 12-22%. Above 4360 meters, the reservoir shows the conventional positive difference between deep and shallow resistivity with high resistance; below 4360m, the reservoir shows a negative difference with low resistance, especially at depths of 4362.4 meters and 4371 meters, deep resistivity is only 2Ω.m, and the CAST-V imaging map shows that there are low resistance substances contained in the pores or matrix in the reservoirs of this interval. The rock slice analysis data shows that the pyrite volume is 2-3% in the interval 4369.08m-4371.55m. A comprehensive analysis on the volume of shale (Vsh), porosity, invasion features of resistivity, mud logging, and mineral volume indicates that the possible causes for the negative difference between deep and shallow resistivities with relatively low resistance are erosional pores, caves, micritic texture and the presence of pyrite. Full-bore Drill Stem Test (DST) verified 4991.09 bbl/d in this interval. To identify and thoroughly characterize low resistivity intervals coring, Nuclear Magnetic Resonance (NMR) logging and further geological evaluation are needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20resistivity%20pay" title="low resistivity pay">low resistivity pay</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonates%20petrophysics" title=" carbonates petrophysics"> carbonates petrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=microporosity" title=" microporosity"> microporosity</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a> </p> <a href="https://publications.waset.org/abstracts/150564/low-resistivity-pay-identification-in-carbonate-reservoirs-of-yadavaran-oilfield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Application of Acid Base Accounting to Predict Post-Mining Drainage Quality in Coalfields of the Main Karoo Basin and Selected Sub-Basins, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lindani%20Ncube">Lindani Ncube</a>, <a href="https://publications.waset.org/abstracts/search?q=Baojin%20Zhao"> Baojin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Liu"> Ken Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20Johanna%20Van%20Niekerk"> Helen Johanna Van Niekerk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid Base Accounting (ABA) is a tool used to assess the total amount of acidity or alkalinity contained in a specific rock sample, and is based on the total S concentration and the carbonate content of a sample. A preliminary ABA test was conducted on 14 sandstone and 5 coal samples taken from coalfields representing the Main Karoo Basin (Highveld, Vryheid and Molteno/Indwe Coalfields) and the Sub-basins (Witbank and Waterberg Coalfields). The results indicate that sandstone and coal from the Main Karoo Basin have the potential of generating Acid Mine Drainage (AMD) as they contain sufficient pyrite to generate acid, with the final pH of samples relatively low upon complete oxidation of pyrite. Sandstone from collieries representing the Main Karoo Basin are characterised by elevated contents of reactive S%. All the studied samples were characterised by an Acid Potential (AP) that is less than the Neutralizing Potential (NP) except for two samples. The results further indicate that the sandstone from the Main Karoo Basin is prone to acid generation as compared to the sandstone from the Sub-basins. However, the coal has a relatively low potential of generating any acid. The application of ABA in this study contributes to an understanding of the complexities governing water-rock interactions. In general, the coalfields from the Main Karoo Basin have much higher potential to produce AMD during mining processes than the coalfields in the Sub-basins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Main%20Karoo%20Basin" title="Main Karoo Basin">Main Karoo Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-basin" title=" sub-basin"> sub-basin</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=sandstone" title=" sandstone"> sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20base%20accounting%20%28ABA%29" title=" acid base accounting (ABA)"> acid base accounting (ABA)</a> </p> <a href="https://publications.waset.org/abstracts/60382/application-of-acid-base-accounting-to-predict-post-mining-drainage-quality-in-coalfields-of-the-main-karoo-basin-and-selected-sub-basins-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Hidrothermal Alteration Study of Tangkuban Perahu Craters, and Its Implication to Geothermal Conceptual Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afy%20Syahidan%20Achmad">Afy Syahidan Achmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tangkuban Perahu is located in West Java, Indonesia. It is active stratovolcano type and still showing hidrothermal activity. The main purpose of this study is to find correlation between subsurface structure and hidrothermal activity on the surface. Using topographic map, SRTM images, and field observation, geological condition and alteration area was mapped. Alteration sample analyzed trough petrographic analysis and X-Ray Diffraction (XRD) analysis. Altered rock in study area showing white-yellowish white colour, and texture changing variation from softening to hardening because of alteration by sillica and sulphur. Alteration mineral which can be observed in petrographic analysis and XRD analysis consist of crystobalite, anatase, alunite, and pyrite. This mineral assemblage showing advanced argillic alteration type with West-East alteration area orientation. Alteration area have correlation with manifestation occurance such as steam vents, solfatara, and warm to hot pools. Most of manifestation occured in main crater like Ratu Crater and Upas crater, and parasitic crater like Domas Crater and Jarian Crater. This manifestation indicates permeability in subsurface which can be created trough structural process with same orientation. For further study geophysics method such as Magneto Telluric (MT) and resistivity can be required to find permeability zone pattern in Tangkuban Perahu subsurface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alteration" title="alteration">alteration</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20argillic" title=" advanced argillic"> advanced argillic</a>, <a href="https://publications.waset.org/abstracts/search?q=Tangkuban%20Perahu" title=" Tangkuban Perahu"> Tangkuban Perahu</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=crystobalite" title=" crystobalite"> crystobalite</a>, <a href="https://publications.waset.org/abstracts/search?q=anatase" title=" anatase"> anatase</a>, <a href="https://publications.waset.org/abstracts/search?q=alunite" title=" alunite"> alunite</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a> </p> <a href="https://publications.waset.org/abstracts/17133/hidrothermal-alteration-study-of-tangkuban-perahu-craters-and-its-implication-to-geothermal-conceptual-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Porphyry Cu-Mo-(Au) Mineralization at Paraga Area, Nakhchivan District, Azerbaijan: Evidence from Mineral Paragenesis, Hyrothermal Alteration and Geochemical Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kumral">M. Kumral</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdelnasser"> A. Abdelnasser</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu"> M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karaman"> M. Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Yildirim"> D. K. Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Doner"> Z. Doner</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bostanci"> A. Bostanci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Paraga area is located at the extreme eastern part of Nakhchivan district at the boundary with Armenia. The field study is situated at Ordubad region placed in 9 km from Paraga village and stays at 2300-2800 m height over sea level. It lies within a region of low-grade metamorphic porphyritic volcanic and plutonic rocks. The detailed field studies revealed that this area composed mainly of metagabbro-diorite intrusive rocks with porphyritic character emplaced into meta-andesitic rocks. This complex is later intruded by unmapped olivine gabbroic rocks. The Cu-Mo-(Au) mineralization at Paraga deposit is vein-type mineralization that is essentially related to quartz veins stockwork which cut the dioritic rocks and concentrated at the eastern and northeastern parts of the area with different directions N80W, N25W, N70E and N45E. Also, this mineralization is associated with two shearing zones directed N75W and N15E. The host porphyritic rocks were affected by intense sulfidation, carbonatization, sericitization and silicification with pervasive hematitic alterations accompanied with mineralized quartz veins and quartz-carbonate veins. Sulfide minerals which are chalcopyrite, pyrite, arsenopyrite and sphalerite occurred in two cases either inside these mineralized quartz veins or disseminated in the highly altered rocks as well as molybdenite and also at the peripheries between the altered host rock and veins. Gold found as inclusion disseminated in arsenopyrite and pyrite as well as in their cracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porphyry%20Cu-Mo-%28Au%29" title="porphyry Cu-Mo-(Au)">porphyry Cu-Mo-(Au)</a>, <a href="https://publications.waset.org/abstracts/search?q=Paraga%20area" title=" Paraga area"> Paraga area</a>, <a href="https://publications.waset.org/abstracts/search?q=Nakhchivan" title=" Nakhchivan"> Nakhchivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Azerbaijan" title=" Azerbaijan"> Azerbaijan</a>, <a href="https://publications.waset.org/abstracts/search?q=paragenesis" title=" paragenesis"> paragenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=hyrothermal%20alteration" title=" hyrothermal alteration"> hyrothermal alteration</a> </p> <a href="https://publications.waset.org/abstracts/10698/porphyry-cu-mo-au-mineralization-at-paraga-area-nakhchivan-district-azerbaijan-evidence-from-mineral-paragenesis-hyrothermal-alteration-and-geochemical-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Diagenesis of the Permian Ecca Sandstones and Mudstones, in the Eastern Cape Province, South Africa: Implications for the Shale Gas Potential of the Karoo Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temitope%20L.%20Baiyegunhi">Temitope L. Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Baiyegunhi"> Christopher Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuiwu%20Liu"> Kuiwu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Gwavava"> Oswald Gwavava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagenesis is the most important factor that affects or impact the reservoir property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known of the diagenesis of the potentially feasible shales and sandstones of the Ecca Group. The study aims to provide a general account of the diagenesis of sandstones and mudstone of the Ecca Group. Twenty-five diagenetic textures and structures are identified and grouped into three regimes or stages that include eogenesis, mesogenesis and telogenesis. Clay minerals are the most common cementing materials in the Ecca sandstones and mudstones. Smectite, kaolinite and illite are the major clay minerals that act as pore lining rims and pore-filling cement. Most of the clay minerals and detrital grains were seriously attacked and replaced by calcite. Calcite precipitates locally in pore spaces and partly or completely replaced feldspar and quartz grains, mostly at their margins. Precipitation of cements and formation of pyrite and authigenic minerals as well as little lithification occurred during the eogenesis. This regime was followed by mesogenesis which brought about an increase in tightness of grain packing, loss of pore spaces and thinning of beds due to weight of overlying sediments and selective dissolution of framework grains. Compaction, mineral overgrowths, mineral replacement, clay-mineral authigenesis, deformation and pressure solution structures occurred during mesogenesis. During rocks were uplifted, weathered and unroofed by erosion, this resulted in additional grain fracturing, decementation and oxidation of iron-rich volcanic fragments and ferromagnesian minerals. The rocks of Ecca Group were subjected to moderate-intense mechanical and chemical compaction during its progressive burial. Intergranular pores, matrix micro pores, secondary intragranular, dissolution and fractured pores are the observed pores. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pores makes them unfavourable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their quality, which may contribute to the reduction of risks involved in their exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagenesis" title="diagenesis">diagenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20quality" title=" reservoir quality"> reservoir quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecca%20Group" title=" Ecca Group"> Ecca Group</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoo%20Supergroup" title=" Karoo Supergroup"> Karoo Supergroup</a> </p> <a href="https://publications.waset.org/abstracts/100475/diagenesis-of-the-permian-ecca-sandstones-and-mudstones-in-the-eastern-cape-province-south-africa-implications-for-the-shale-gas-potential-of-the-karoo-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Sedimentological and Petrographical Studies on the Cored samples from Bentiu Formation Muglad Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousif%20M.%20Makeen">Yousif M. Makeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the results of the sedimentological and petrographical analyses on the cored samples from the Bentiu Formation. The cored intervals consist of thick beds of sandstone, which are sometimes intercalated with beds of fine-grained sandstone and, in a minor case, with a siltstone bed. Detailed sedimentological facies analysis revealed the presence of six facies types, which can be clarified in order of their great percentage occurrences as follows: (i) Massive sandstone, (ii) Planar cross-bedded sandstone, (iii) Trough cross-bedded sandstone, (iv) Fine laminated sandstone (v) Fine laminated siltstone and (vi) Horizontally parted sandstone. The petrographical analyses under the plane polarized microscope and the scanning electron microscope (SEM) for the sandstone lithofacies types that exist within the cored intervals allowed classifying these lithofacies into Kaolinitic Subfeldspathic Arenites. Among the detrital components, quartz grains are the most abundant (mainly monocrystalline quartz), followed by feldspars, micas, detrital and authigenic clays, and carbonaceous debris. However, traces of lithic fragments, iron oxides and heavy minerals were observed in some of the analyzed samples, where they occur in minor amounts. Kaolinite is present mainly as an authigenic component in most of the analyzed samples, while quartz overgrowths occur in variable amounts in most of the investigated samples. Carbonates (calcite & siderite) are present in considerable amounts. The grain roundness in most of the investigated sandstone samples ranges from well-rounded to round, and, in fewer samples, is sub-angular to angular. Most of the sandstone samples are moderately compacted and display point, concavo-convex and long grain contacts, whereas the sutured grain contacts, which reflect a higher degree of compaction, are relatively observed in lesser amounts, while the float grain contact has also been observed in minor quantity. Pore types in the analyzed samples are dominantly primary and secondary interparticle forms. Point-counted porosity values range from 19.6% to 30%. Average pore sizes are highly variable and range from 20 to 350 microns. Pore interconnectivity ranges from good to very good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandstone" title="sandstone">sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentological%20facies" title=" sedimentological facies"> sedimentological facies</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=quartz%20overgrowths" title=" quartz overgrowths"> quartz overgrowths</a> </p> <a href="https://publications.waset.org/abstracts/186516/sedimentological-and-petrographical-studies-on-the-cored-samples-from-bentiu-formation-muglad-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Pisolite Type Azurite/Malachite Ore in Sandstones at the Base of the Miocene in Northern Sardinia: The Authigenic Hypothesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Fadda">S. Fadda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fiori"> M. Fiori</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Matzuzzi"> C. Matzuzzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mineralized formations in the bottom sediments of a Miocene transgression have been discovered in Sardinia. The mineral assemblage consists of copper sulphides and oxidates suggesting fluctuations of redox conditions in neutral to high-pH restricted shallow-water coastal basins. Azurite/malachite has been observed as authigenic and occurs as loose spheroidal crystalline particles associated with the transitional-littoral horizon forming the bottom of the marine transgression. Many field observations are consistent with a supergenic circulation of metals involving terrestrial groundwater-seawater mixing. Both clastic materials and metals come from Tertiary volcanic edifices while the main precipitating anions, carbonates, and sulphides species are of both continental and marine origin. Formation of Cu carbonates as a supergene secondary 'oxide' assemblage, does not agree with field evidences, petrographic observations along with textural evidences in the host-rock types. Samples were collected along the sedimentary sequence for different analyses: the majority of elements were determined by X-ray fluorescence and plasma-atomic emission spectroscopy. Mineral identification was obtained by X-ray diffractometry and scanning electron microprobe. Thin sections of the samples were examined in microscopy while porosity measurements were made using a mercury intrusion porosimeter. Cu-carbonates deposited at a temperature below 100 C° which is consistent with the clay minerals in the matrix of the host rock dominated by illite and montmorillonite. Azurite nodules grew during the early diagenetic stage through reaction of cupriferous solutions with CO₂ imported from the overlying groundwater and circulating through the sandstones during shallow burial. Decomposition of organic matter in the bottom anoxic waters released additional carbon dioxide to pore fluids for azurite stability. In this manner localized reducing environments were also generated in which Cu was fixed as Cu-sulphide and sulphosalts. Microscopic examinations of textural features of azurite nodules give evidence of primary malachite/azurite deposition rather than supergene oxidation in place of primary sulfides. Photomicrographs show nuclei of azurite and malachite surrounded by newly formed microcrystalline carbonates which constitute the matrix. The typical pleochroism of crystals can be observed also when this mineral fills microscopic fissures or cracks. Sedimentological evidence of transgression and regression indicates that the pore water would have been a variable mixture of marine water and groundwaters with a possible meteoric component in an alternatively exposed and subaqueous environment owing to water-level fluctuation. Salinity data of the pore fluids, assessed at random intervals along the mineralised strata confirmed the values between about 7000 and 30,000 ppm measured in coeval sediments at the base of Miocene falling in the range of a more or less diluted sea water. This suggests a variation in mean pore-fluids pH between 5.5 and 8.5, compatible with the oxidized and reduced mineral paragenesis described in this work. The results of stable isotopes studies reflect the marine transgressive-regressive cyclicity of events and are compatibile with carbon derivation from sea water. During the last oxidative stage of diagenesis, under surface conditions of higher activity of H₂O and O₂, CO₂ partial pressure decreased, and malachite becomes the stable Cu mineral. The potential for these small but high grade deposits does exist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentary" title="sedimentary">sedimentary</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu-carbonates" title=" Cu-carbonates"> Cu-carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=authigenic" title=" authigenic"> authigenic</a>, <a href="https://publications.waset.org/abstracts/search?q=tertiary" title=" tertiary"> tertiary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sardinia" title=" Sardinia"> Sardinia</a> </p> <a href="https://publications.waset.org/abstracts/86900/pisolite-type-azuritemalachite-ore-in-sandstones-at-the-base-of-the-miocene-in-northern-sardinia-the-authigenic-hypothesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Salhi">Imen Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Bouhlel"> Salah Bouhlel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernrd%20Lehmann"> Bernrd Lehmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20inclusion" title="fluid inclusion">fluid inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebbouch%20South" title=" Kebbouch South"> Kebbouch South</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=MVT%20deposits" title=" MVT deposits"> MVT deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=Pb-Zn" title=" Pb-Zn"> Pb-Zn</a> </p> <a href="https://publications.waset.org/abstracts/68088/mineralogy-and-fluid-inclusion-study-of-the-kebbouch-south-pb-zn-deposit-northwest-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Geochemical and Petrological Survey in Northern Ethiopia Basement Rocks for Investigation of Gold and Base Metal Mineral Potential in Finarwa, Southeast Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siraj%20Beyan%20Mohamed">Siraj Beyan Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Woldia%20University"> Woldia University</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is accompanied in northern Ethiopian basement rocks, Finarwa area, and its surrounding areas, south eastern Tigray. From the field observations, the geology of the area haven been described and mapped based on mineral composition, texture, structure, and colour of both fresh and weather rocks. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) have conducted to analysis gold and base metal mineralization. The ore mineral under microscope are commonly base metal sulphides pyrrhotite, Chalcopyrite, pentilanditeoccurring in variable proportions. Galena, chalcopyrite, pyrite, and gold mineral are hosted in quartz vein. Pyrite occurs both in quartz vein and enclosing rocks as a primary mineral. The base metal sulfides occur as disseminated, vein filling, and replacement. Geochemical analyses result determination of the threshold of geochemical anomalies is directly related to the identification of mineralization information. From samples, stream sediment samples and the soil samples indicated that the most promising mineralization occur in the prospect area are gold(Au), copper (Cu), and zinc (Zn). This is also supported by the abundance of chalcopyrite and sphalerite in some highly altered samples. The stream sediment geochemical survey data shows relatively higher values for zinc compared to Pb and Cu. The moderate concentration of the base metals in some of the samples indicates availability base metal mineralization in the study area requiring further investigation. The rock and soil geochemistry shows the significant concentration of gold with maximum value of 0.33ppm and 0.97 ppm in the south western part of the study area. In Finarwa, artisanal gold mining has become an increasingly widespread economic activity of the local people undertaken by socially differentiated groups with a wide range of education levels and economic backgrounds incorporating a wide variety of ‘labour intensive activities without mechanisation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20metal" title=" base metal"> base metal</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly" title=" anomaly"> anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold" title=" threshold"> threshold</a> </p> <a href="https://publications.waset.org/abstracts/150608/geochemical-and-petrological-survey-in-northern-ethiopia-basement-rocks-for-investigation-of-gold-and-base-metal-mineral-potential-in-finarwa-southeast-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Effect of Pulp Density on Biodesulfurization of Mongolian Lignite Coal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak">Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Kim"> Dong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Gon%20Kim"> Byoung-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological processes based on oxidation of sulfur compounds by chemolithotrophic microorganisms are emerging as an efficient and eco-friendly technique for removal of sulfur from the coal. In the present article, study was carried out to investigate the potential of biodesulfurization process in removing the sulfur from lignite coal sample collected from a Mongolian coal mine. The batch biodesulfurization experiments were conducted in 2.5 L borosilicate baffle type reactors at 35 &ordm;C using Acidithiobacillus ferrooxidans. The effect of pulp density on efficiency of biodesulfurization was investigated at different solids concentration (1-10%) of coal. The results of the present study suggested that the rate of desulfurization was retarded at higher coal pulp density. The optimum pulp density found 5% at which about 48% of the total sulfur was removed from the coal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodesulfurization" title="biodesulfurization">biodesulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite "> pyrite </a> </p> <a href="https://publications.waset.org/abstracts/13312/effect-of-pulp-density-on-biodesulfurization-of-mongolian-lignite-coal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authigenic%20pyrite&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authigenic%20pyrite&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=authigenic%20pyrite&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10