CINXE.COM
Search results for: carbon offset
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: carbon offset</title> <meta name="description" content="Search results for: carbon offset"> <meta name="keywords" content="carbon offset"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="carbon offset" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="carbon offset"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3273</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: carbon offset</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3273</span> A New IFO Estimation Scheme for Orthogonal Frequency Division Multiplexing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keunhong%20Chae">Keunhong Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokho%20Yoon"> Seokho Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We address a new integer frequency offset (IFO) estimation scheme with an aid of a pilot for orthogonal frequency division multiplexing systems. After correlating each continual pilot with a predetermined scattered pilot, the correlation value is again correlated to alleviate the influence of the timing offset. From numerical results, it is demonstrated that the influence of the timing offset on the IFO estimation is significantly decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation" title="estimation">estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20frequency%20offset" title=" integer frequency offset"> integer frequency offset</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=timing%20offset" title=" timing offset"> timing offset</a> </p> <a href="https://publications.waset.org/abstracts/22778/a-new-ifo-estimation-scheme-for-orthogonal-frequency-division-multiplexing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3272</span> Dissimilar Cu/Al Friction Stir Welding: Sensitivity of the Tool Offset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tran%20Hung%20Tra">Tran Hung Tra</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Dinh%20Duong"> Hao Dinh Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakazu%20Okazaki"> Masakazu Okazaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper 1100 and aluminum 1050 plates with a thickness of 5.0 mm are butt-joint using friction stir welding. The tool offset is linearly varied along the welding path. Two welding regimes, using the same linear tool offset but in opposite directions, are applied for fabricating two Cu/Al plates. The material flow is dominated by both tool offset and offset history. The intermetallic compounds layer and interface morphology in each welded plate are formed in a different manner. As a result, the bonding strength and fracture behavior between two welded plates are significantly distinct. The role of interface morphology on fracture behavior is analyzed by the finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu%2FAl%20dissimilar%20welding" title="Cu/Al dissimilar welding">Cu/Al dissimilar welding</a>, <a href="https://publications.waset.org/abstracts/search?q=offset%20history" title=" offset history"> offset history</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20morphology" title=" interface morphology"> interface morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=intermetallic%20compounds" title=" intermetallic compounds"> intermetallic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20and%20fracture" title=" strength and fracture"> strength and fracture</a> </p> <a href="https://publications.waset.org/abstracts/170912/dissimilar-cual-friction-stir-welding-sensitivity-of-the-tool-offset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3271</span> A Review on Aviation Emissions and Their Role in Climate Change Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Niemisto">J. Niemisto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nissinen"> A. Nissinen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Soimakallio"> S. Soimakallio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aviation causes carbon dioxide (CO2) emissions and other climate forcers which increase the contribution of aviation on climate change. Aviation industry and number of air travellers are constantly increasing. Aviation industry has an ambitious goal to strongly cut net CO2 emissions. Modern fleet, alternative jet fuels technologies and route optimisation are important technological tools in the emission reduction. Faster approaches are needed as well. Emission trade systems, voluntary carbon offset compensation schemes and taxation are already in operation. Global scenarios of aviation industry and its greenhouse gas emissions and other climate forcers are discussed in this review study based on literature and other published data. The focus is on the aviation in Nordic countries, but also European and global situation are considered. Different emission reduction technologies and compensation modes are examined. In addition, the role of aviation in a single passenger’s (a Finnish consumer) annual carbon footprint is analysed and a comparison of available emission calculators and carbon offset systems is performed. Long-haul fights have a significant role in a single consumer´s and company´s carbon footprint, but remarkable change in global emission level would need a huge change in attitudes towards flying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation" title="aviation">aviation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/95370/a-review-on-aviation-emissions-and-their-role-in-climate-change-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3270</span> Payment of Carbon Offsetting: A Case Study in Dharan, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mana%20Shrestha">Mana Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhruba%20Khatri"> Dhruba Khatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Pralhad%20Kunwor"> Pralhad Kunwor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study was to explore the vehicle owners’ willingness to pay (WTP) for offsetting carbon that could eventually facilitate local governmental institutions to take further step in environmental conservation. Contingent valuation method was used to find out how much amount people were willing to pay for the carbon service they are getting from providers. Open ended questionnaire was carried out with 181 respondents randomly. The result shows different mean willingness to pay amount depending upon demographic variations like education, occupation, sex and residence but the occupation and the educational status significantly affected the WTP of respondent. Total WTP amount was calculated as 650 NRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20forest" title="community forest">community forest</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20offset" title=" carbon offset"> carbon offset</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoto" title=" Kyoto"> Kyoto</a>, <a href="https://publications.waset.org/abstracts/search?q=REDD%20WTP" title=" REDD WTP"> REDD WTP</a> </p> <a href="https://publications.waset.org/abstracts/33506/payment-of-carbon-offsetting-a-case-study-in-dharan-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3269</span> A Robust Frequency Offset Estimator for Orthogonal Frequency Division Multiplexing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keunhong%20Chae">Keunhong Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokho%20Yoon"> Seokho Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We address the integer frequency offset (IFO) estimation under the influence of the timing offset (TO) in orthogonal frequency division multiplexing (OFDM) systems. Incorporating the IFO and TO into the symbol set used to represent the received OFDM symbol, we investigate the influence of the TO on the IFO, and then, propose a combining method between two consecutive OFDM correlations, reducing the influence. The proposed scheme has almost the same complexity as that of the conventional schemes, whereas it does not need the TO knowledge contrary to the conventional schemes. From numerical results it is confirmed that the proposed scheme is insensitive to the TO, consequently, yielding an improvement of the IFO estimation performance over the conventional schemes when the TO exists. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation" title="estimation">estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20frequency%20offset" title=" integer frequency offset"> integer frequency offset</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=timing%20offset" title=" timing offset"> timing offset</a> </p> <a href="https://publications.waset.org/abstracts/23340/a-robust-frequency-offset-estimator-for-orthogonal-frequency-division-multiplexing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3268</span> Dynamic and Thermal Characteristics of Three-Dimensional Turbulent Offset Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Assoudi">Ali Assoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabra%20Habli"> Sabra Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Mahjoub%20Sa%C3%AFd"> Nejla Mahjoub Saïd</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Bournot"> Philippe Bournot</a>, <a href="https://publications.waset.org/abstracts/search?q=Georges%20Le%20Palec"> Georges Le Palec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studying the flow characteristics of a turbulent offset jet is an important topic among researchers across the world because of its various engineering applications. Some of the common examples include: injection and carburetor systems, entrainment and mixing process in gas turbine and boiler combustion chambers, Thrust-augmenting ejectors for V/STOL aircrafts and HVAC systems, environmental dischargers, film cooling and many others. An offset jet is formed when a jet discharges into a medium above a horizontal solid wall parallel to the axis of the jet exit but which is offset by a certain distance. The structure of a turbulent offset-jet can be described by three main regions. Close to the nozzle exit, an offset jet possesses characteristic features similar to those of free jets. Then, the entrainment of fluid between the jet, the offset wall and the bottom wall creates a low pressure zone, forcing the jet to deflect towards the wall and eventually attaches to it at the impingement point. This is referred to as the Coanda effect. Further downstream after the reattachment point, the offset jet has the characteristics of a wall jet flow. Therefore, the offset jet has characteristics of free, impingement and wall jets, and it is relatively more complex compared to these types of flows. The present study examines the dynamic and thermal evolution of a 3D turbulent offset jet with different offset height ratio (the ratio of the distance from the jet exit to the impingement bottom wall and the jet nozzle diameter). To achieve this purpose a numerical study was conducted to investigate a three-dimensional offset jet flow through the resolution of the different governing Navier–Stokes’ equations by means of the finite volume method and the RSM second-order turbulent closure model. A detailed discussion has been provided on the flow and thermal characteristics in the form of streamlines, mean velocity vector, pressure field and Reynolds stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offset%20jet" title="offset jet">offset jet</a>, <a href="https://publications.waset.org/abstracts/search?q=offset%20ratio" title=" offset ratio"> offset ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a> </p> <a href="https://publications.waset.org/abstracts/46805/dynamic-and-thermal-characteristics-of-three-dimensional-turbulent-offset-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3267</span> A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaemoon%20Lim">Jaemoon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chest%20g%E2%80%99s" title="chest g’s">chest g’s</a>, <a href="https://publications.waset.org/abstracts/search?q=HIC36" title=" HIC36"> HIC36</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20spring-mass%20model" title=" lumped spring-mass model"> lumped spring-mass model</a>, <a href="https://publications.waset.org/abstracts/search?q=offset%20frontal%20impact" title=" offset frontal impact"> offset frontal impact</a>, <a href="https://publications.waset.org/abstracts/search?q=SISAME" title=" SISAME"> SISAME</a> </p> <a href="https://publications.waset.org/abstracts/32557/a-consideration-on-the-offset-frontal-impact-modeling-using-spring-mass-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3266</span> Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-Time Quaternion Offset Linear Canonical Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Younus%20Bhat">Mohammad Younus Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quaternion offset linear canonical transform (QOLCT), which isa time-shifted and frequency-modulated version of the quaternion linear canonical transform (QLCT), provides a more general framework of most existing signal processing tools. For the generalized QOLCT, the classical Heisenberg’s and Lieb’s uncertainty principles have been studied recently. In this paper, we first define the short-time quaternion offset linear canonical transform (ST-QOLCT) and drive its relationship with the quaternion Fourier transform (QFT). The crux of the paper lies in the generalization of several well-known uncertainty principles for the ST-QOLCT, including Donoho-Stark’s uncertainty principle, Hardy’s uncertainty principle, Beurling’s uncertainty principle, and the logarithmic uncertainty principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform" title="Quaternion Fourier transform">Quaternion Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Quaternion%20offset%20linear%20canonical%20transform" title=" Quaternion offset linear canonical transform"> Quaternion offset linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=short-time%20quaternion%20offset%20linear%20canonical%20transform" title=" short-time quaternion offset linear canonical transform"> short-time quaternion offset linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20principle" title=" uncertainty principle"> uncertainty principle</a> </p> <a href="https://publications.waset.org/abstracts/142375/donoho-starks-and-hardys-uncertainty-principles-for-the-short-time-quaternion-offset-linear-canonical-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3265</span> Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Bagheri">Mohsen Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Afifi"> Ahmad Afifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on instrumentation amplifier and it is useful for reducing offset in Wheatstone bridge. The obtained gain is 645 with 1 μv/°c equivalent drift and 1.58 mw power consumption. A Schmitt trigger and multiplexer circuit control output node. A high speed counter is designed in this work. The proposed circuit is designed and simulated in 0.18 μm CMOS technology with 1.8 v power supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoresistive%20accelerometer" title="piezoresistive accelerometer">piezoresistive accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20offset" title=" zero offset"> zero offset</a>, <a href="https://publications.waset.org/abstracts/search?q=Schmitt%20trigger" title=" Schmitt trigger"> Schmitt trigger</a>, <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20reversible%20counter" title=" bidirectional reversible counter"> bidirectional reversible counter</a> </p> <a href="https://publications.waset.org/abstracts/6238/design-and-simulation-interface-circuit-for-piezoresistive-accelerometers-with-offset-cancellation-ability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3264</span> Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahseen%20Saad">Tahseen Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Halim%20Ceylan"> Halim Ceylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Weaver"> Jonathan Weaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Nuri%20%C3%87elik"> Osman Nuri Çelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Gungor%20Sahin"> Onur Gungor Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20traffic%20control" title="area traffic control">area traffic control</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow" title=" traffic flow"> traffic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20evolution" title=" differential evolution"> differential evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=sinusoidal%20periodic%20function" title=" sinusoidal periodic function"> sinusoidal periodic function</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20delay" title=" uniform delay"> uniform delay</a>, <a href="https://publications.waset.org/abstracts/search?q=offset%20variable" title=" offset variable"> offset variable</a> </p> <a href="https://publications.waset.org/abstracts/154334/offset-dependent-uniform-delay-mathematical-optimization-model-for-signalized-traffic-network-using-differential-evolution-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3263</span> Robustness of MIMO-OFDM Schemes for Future Digital TV to Carrier Frequency Offset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Sankara%20Reddy">D. Sankara Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kranthi%20Kumar"> T. Kranthi Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sreevani"> K. Sreevani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the impact of carrier frequency offset (CFO) on the performance of different MIMO-OFDM schemes with high spectral efficiency for next generation of terrestrial digital TV. We show that all studied MIMO-OFDM schemes are sensitive to CFO when it is greater than 1% of intercarrier spacing. We show also that the Alamouti scheme is the most sensitive MIMO scheme to CFO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulation%20and%20multiplexing%20%28MIMO-OFDM%29" title="modulation and multiplexing (MIMO-OFDM)">modulation and multiplexing (MIMO-OFDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing%20for%20transmission%0D%0Acarrier%20frequency%20offset" title=" signal processing for transmission carrier frequency offset"> signal processing for transmission carrier frequency offset</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20digital%20TV" title=" future digital TV"> future digital TV</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging%20and%20signal%20processing" title=" imaging and signal processing"> imaging and signal processing</a> </p> <a href="https://publications.waset.org/abstracts/22713/robustness-of-mimo-ofdm-schemes-for-future-digital-tv-to-carrier-frequency-offset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3262</span> Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alhussein">Fahad Alhussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaping%20Liu"> Huaping Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20reference%20waveform%20receivers" title="correlation reference waveform receivers">correlation reference waveform receivers</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20offset%20carrier" title=" binary offset carrier"> binary offset carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplexed%20binary%20offset%20carrier" title=" multiplexed binary offset carrier"> multiplexed binary offset carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20navigation%20satellite%20systems" title=" global navigation satellite systems"> global navigation satellite systems</a> </p> <a href="https://publications.waset.org/abstracts/116944/variable-vs-fixed-window-width-code-correlation-reference-waveform-receivers-for-multipath-mitigation-in-global-navigation-satellite-systems-with-binary-offset-carrier-and-multiplexed-binary-offset-carrier-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3261</span> Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Buz">Jennifer Buz</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvin%20Spivey"> Alvin Spivey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperspectral" title="hyperspectral">hyperspectral</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=imagery" title=" imagery"> imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=python" title=" python"> python</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=speciation" title=" speciation"> speciation</a> </p> <a href="https://publications.waset.org/abstracts/163538/hyperspectral-imagery-for-tree-speciation-and-carbon-mass-estimates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3260</span> ML-Based Blind Frequency Offset Estimation Schemes for OFDM Systems in Non-Gaussian Noise Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keunhong%20Chae">Keunhong Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokho%20Yoon"> Seokho Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes frequency offset (FO) estimation schemes robust to the non-Gaussian noise for orthogonal frequency division multiplexing (OFDM) systems. A maximum-likelihood (ML) scheme and a low-complexity estimation scheme are proposed by applying the probability density function of the cyclic prefix of OFDM symbols to the ML criterion. From simulation results, it is confirmed that the proposed schemes offer a significant FO estimation performance improvement over the conventional estimation scheme in non-Gaussian noise environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20offset" title="frequency offset">frequency offset</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20prefix" title=" cyclic prefix"> cyclic prefix</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum-likelihood" title=" maximum-likelihood"> maximum-likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%0D%0Anoise" title=" non-Gaussian noise"> non-Gaussian noise</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a> </p> <a href="https://publications.waset.org/abstracts/10266/ml-based-blind-frequency-offset-estimation-schemes-for-ofdm-systems-in-non-gaussian-noise-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3259</span> Carbon Credits in Voluntary Carbon Markets: A Proposal for Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Mohammadirad">Saeed Mohammadirad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the first commitment period of the Kyoto Protocol, many developed countries were forced to restrict carbon emissions. Although Iran was one of the countries of Kyoto protocol, due to some special conditions, it was not required to restrict its carbon emissions. Flexible mechanisms were developed to assist countries responsible for reducing their carbon emissions, and regulated carbon markets were introduced. Carbon credits which are provided by organizations in countries with no responsibility to restrict their carbon emissions are traded in voluntary markets. This study focuses on how to measure and report the carbon allowances and carbon credits from accounting view point under both regulated and voluntary markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20credits" title="carbon credits">carbon credits</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20markets" title=" carbon markets"> carbon markets</a>, <a href="https://publications.waset.org/abstracts/search?q=accounting" title=" accounting"> accounting</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20mechanisms" title=" flexible mechanisms"> flexible mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/29797/carbon-credits-in-voluntary-carbon-markets-a-proposal-for-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3258</span> Carbon Nanotubes and Novel Applications for Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Ismar">Ezgi Ismar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotextiles" title=" nanotextiles"> nanotextiles</a> </p> <a href="https://publications.waset.org/abstracts/33980/carbon-nanotubes-and-novel-applications-for-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3257</span> The ‘Quartered Head Technique’: A Simple, Reliable Way of Maintaining Leg Length and Offset during Total Hip Arthroplasty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Haruna">M. Haruna</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Onafowokan"> O. O. Onafowokan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Holt"> G. Holt</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anderson"> K. Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Middleton"> R. G. Middleton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Requirements for satisfactory outcomes following total hip arthroplasty (THA) include restoration of femoral offset, version, and leg length. Various techniques have been described for restoring these biomechanical parameters, with leg length restoration being the most predominantly described. We describe a “quartered head technique” (QHT) which uses a stepwise series of femoral head osteotomies to identify and preserve the centre of rotation of the femoral head during THA in order to ensure reconstruction of leg length, offset and stem version, such that hip biomechanics are restored as near to normal as possible. This study aims to identify whether using the QHT during hip arthroplasty effectively restores leg length and femoral offset to within acceptable parameters. Methods: A retrospective review of 206 hips was carried out, leaving 124 hips in the final analysis. Power analysis indicated a minimum of 37 patients required. All operations were performed using an anterolateral approach by a single surgeon. All femoral implants were cemented, collarless, polished double taper CPT® stems (Zimmer, Swindon, UK). Both cemented, and uncemented acetabular components were used (Zimmer, Swindon, UK). Leg length, version, and offset were assessed intra-operatively and reproduced using the QHT. Post-operative leg length and femoral offset were determined and compared with the contralateral native hip, and the difference was then calculated. For the determination of leg length discrepancy (LLD), we used the method described by Williamson & Reckling, which has been shown to be reproducible with a measurement error of ±1mm. As a reference, the inferior margin of the acetabular teardrop and the most prominent point of the lesser trochanter were used. A discrepancy of less than 6mm LLD was chosen as acceptable. All peri-operative radiographs were assessed by two independent observers. Results: The mean absolute post-operative difference in leg length from the contralateral leg was +3.58mm. 84% of patients (104/124) had LLD within ±6mm of the contralateral limb. The mean absolute post-operative difference in offset from contralateral leg was +3.88mm (range -15 to +9mm, median 3mm). 90% of patients (112/124) were within ±6mm offset of the contralateral limb. There was no statistical difference noted between observer measurements. Conclusion: The QHT provides a simple, inexpensive yet effective method of maintaining femoral leg length and offset during total hip arthroplasty. Combining this technique with pre-operative templating or other techniques described may enable surgeons to reduce even further the discrepancies between pre-operative state and post-operative outcome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leg%20length%20discrepancy" title="leg length discrepancy">leg length discrepancy</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20tip" title=" technical tip"> technical tip</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20hip%20arthroplasty" title=" total hip arthroplasty"> total hip arthroplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=operative%20technique" title=" operative technique"> operative technique</a> </p> <a href="https://publications.waset.org/abstracts/155846/the-quartered-head-technique-a-simple-reliable-way-of-maintaining-leg-length-and-offset-during-total-hip-arthroplasty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3256</span> Frequency Offset Estimation Schemes Based on ML for OFDM Systems in Non-Gaussian Noise Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keunhong%20Chae">Keunhong Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Seokho%20Yoon"> Seokho Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20offset%20estimation" title="frequency offset estimation">frequency offset estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum-likelihood" title=" maximum-likelihood"> maximum-likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20noise%0D%0Aenvironment" title=" non-Gaussian noise environment"> non-Gaussian noise environment</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=training%20symbol" title=" training symbol"> training symbol</a> </p> <a href="https://publications.waset.org/abstracts/9430/frequency-offset-estimation-schemes-based-on-ml-for-ofdm-systems-in-non-gaussian-noise-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3255</span> Carbon Sequestration in Spatio-Temporal Vegetation Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nothando%20Gwazani">Nothando Gwazani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Marembo"> K. R. Marembo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increase in the atmospheric concentration of carbon dioxide (CO₂) from fossil fuel and land use change necessitates identification of strategies for mitigating threats associated with global warming. Oceans are insufficient to offset the accelerating rate of carbon emission. However, the challenges of oceans as a source of reducing carbon footprint can be effectively overcome by the storage of carbon in terrestrial carbon sinks. The gases with special optical properties that are responsible for climate warming include carbon dioxide (CO₂), water vapors, methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NOₓ), stratospheric ozone (O₃), carbon monoxide (CO) and chlorofluorocarbons (CFC’s). Amongst these, CO₂ plays a crucial role as it contributes to 50% of the total greenhouse effect and has been linked to climate change. Because plants act as carbon sinks, interest in terrestrial carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Removal of carbon from the atmosphere is a topical issue that addresses one important aspect of an overall strategy for carbon management namely to help mitigate the increasing emissions of CO₂. Thus, terrestrial ecosystems have gained importance for their potential to sequester carbon and reduce carbon sink in oceans, which have a substantial impact on the ocean species. Field data and electromagnetic spectrum bands were analyzed using ArcGIS 10.2, QGIS 2.8 and ERDAS IMAGINE 2015 to examine the vegetation distribution. Satellite remote sensing data coupled with Normalized Difference Vegetation Index (NDVI) was employed to assess future potential changes in vegetation distributions in Eastern Cape Province of South Africa. The observed 5-year interval analysis examines the amount of carbon absorbed using vegetation distribution. In 2015, the numerical results showed low vegetation distribution, therefore increased the acidity of the oceans and gravely affected fish species and corals. The outcomes suggest that the study area could be effectively utilized for carbon sequestration so as to mitigate ocean acidification. The vegetation changes measured through this investigation suggest an environmental shift and reduced vegetation carbon sink, and that threatens biodiversity and ecosystem. In order to sustain the amount of carbon in the terrestrial ecosystems, the identified ecological factors should be enhanced through the application of good land and forest management practices. This will increase the carbon stock of terrestrial ecosystems thereby reducing direct loss to the atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20dynamics" title=" vegetation dynamics"> vegetation dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20carbon%20sink" title=" terrestrial carbon sink"> terrestrial carbon sink</a> </p> <a href="https://publications.waset.org/abstracts/84332/carbon-sequestration-in-spatio-temporal-vegetation-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3254</span> Research on Carbon Fiber Tow Spreading Technique with Multi-Rolls </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soon%20Ok%20Jo">Soon Ok Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Kyu%20Jeung"> Han Kyu Jeung</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%20Woo%20Park"> Si Woo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the process of consistent expansion of carbon fiber in width (Carbon Fiber Tow Spreading Technique), it can be expected that such process can enhance the production of carbon fiber reinforced composite material and quality of the product. In this research, the method of mechanically expanding carbon fiber and increasing its width was investigated by using various geometric rolls. In addition, experimental type of carbon fiber expansion device was developed and tested using 12K carbon fiber. As a result, the effects of expansion of such fiber under optimized operating conditions and geometric structure of an elliptical roll, were analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=tow%20spreading%20fiber" title=" tow spreading fiber"> tow spreading fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-preg" title=" pre-preg"> pre-preg</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20structure" title=" roll structure"> roll structure</a> </p> <a href="https://publications.waset.org/abstracts/51684/research-on-carbon-fiber-tow-spreading-technique-with-multi-rolls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3253</span> The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Hablous"> Ahmed A. Hablous</a>, <a href="https://publications.waset.org/abstracts/search?q=Mofied%20M.%20Elnemry"> Mofied M. Elnemry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proportion%20of%20carbon%20in%20the%20steel" title="proportion of carbon in the steel">proportion of carbon in the steel</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20rate" title=" corrosion rate"> corrosion rate</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance%20in%20carbon-steel" title=" corrosion resistance in carbon-steel"> corrosion resistance in carbon-steel</a> </p> <a href="https://publications.waset.org/abstracts/26940/the-effect-of-the-proportion-of-carbon-on-the-corrosion-rate-of-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3252</span> Framework Development of Carbon Management Software Tool in Sustainable Supply Chain Management of Indian Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarbjit%20Singh">Sarbjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This framework development explored the status of GSCM in manufacturing SMEs and concluded that there was a significant gap w.r.t carbon emissions measurement in the supply chain activities. The measurement of carbon emissions within supply chains is important green initiative toward its reduction. The majority of the SMEs were facing the problem to quantify the green house gas emissions in its supply chain & to make it a low carbon supply chain or GSCM. Thus, the carbon management initiatives were amalgamated with the supply chain activities in order to measure and reduce the carbon emissions, confirming the GHG protocol scopes. Henceforth, it covers the development of carbon management software (CMS) tool to quantify carbon emissions for effective carbon management. This tool is cheap and easy to use for the industries for the management of their carbon emissions within the supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=w.r.t%20carbon%20emissions" title="w.r.t carbon emissions">w.r.t carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20management%20software" title=" carbon management software"> carbon management software</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20Industry" title=" Indian Industry"> Indian Industry</a> </p> <a href="https://publications.waset.org/abstracts/3784/framework-development-of-carbon-management-software-tool-in-sustainable-supply-chain-management-of-indian-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3251</span> Influence of Footing Offset over Stability of Geosynthetic Reinforced Soil Abutments with Variable Facing under Lateral Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Verma">Ashutosh Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyendra%20MIttal"> Satyendra MIttal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The loss of strength at the facing-reinforcement interface brought on by the seasonal thermal expansion/contraction of the bridge deck has been responsible for several geosynthetic reinforced soil abutment failures over the years. This results in excessive settlement below the bridge seat, which results in bridge bumps along the approach road and shortens abutment's design life. There are surely a wide variety of facing configurations available to designers when choosing the sort of facade. These layouts can generally be categorised into three groups: continuous, full height rigid (FHR) and modular (panels/block). The current work aims to experimentally explore the behavior of these three facing categories using 1g physical model testing under serviceable cyclic lateral displacements. With configurable facing arrangements to represent these three facing categories, a field instrumented GRS abutment prototype was modelled into a N scaled down 1g physical model (N = 5) to reproduce field behavior. Peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) for footing offset (x/H) as 0.1, 0.2, 0.3, 0.4 and 0.5 at 100 cycles have been measured for cyclic lateral displacement of top of facing at loading rate of 1mm/min. Three types of cyclic displacements have been carried out to replicate active condition (CA), passive condition (CP), and active-passive condition (CAP) for each footing offset. The results demonstrated that a significant decrease in the earth pressure over the facing occurs when footing offset increases. It is worth noticing that the highest rate of increment in earth pressure and footing settlement were observed for each facing configuration at the nearest footing offset. Interestingly, for the farthest footing offset, similar responses of each facing type were observed, which indicates that the upon reaching a critical offset point presumably beyond the active region in the backfill, the lateral responses become independent of the stresses from the external footing load. Evidently, the footing load complements the stresses developed due to lateral excitation resulting in significant footing settlements for nearer footing offsets. The modular facing proved inefficient in resisting footing settlement due to significant buckling along the depth of facing. Instead of relative displacement along the depth of facing, continuous facing rotates around the base when it fails, especially for nearer footing offset causing significant depressions in the backfill area surrounding the footing. FHR facing, on the other hand, have been successful in confining the stresses in the soil domain itself reducing the footing settlement. It may be suitably concluded that increasing the footing offset may render stability to the GRS abutment with any facing configuration even for higher cycles of excitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GRS%20abutments" title="GRS abutments">GRS abutments</a>, <a href="https://publications.waset.org/abstracts/search?q=1g%20physical%20model" title=" 1g physical model"> 1g physical model</a>, <a href="https://publications.waset.org/abstracts/search?q=footing%20offset" title=" footing offset"> footing offset</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20lateral%20displacement" title=" cyclic lateral displacement"> cyclic lateral displacement</a> </p> <a href="https://publications.waset.org/abstracts/167819/influence-of-footing-offset-over-stability-of-geosynthetic-reinforced-soil-abutments-with-variable-facing-under-lateral-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3250</span> Application of the Urban Forest Credit Standard as a Tool for Compensating CO2 Emissions in the Metalworking Industry: A Case Study in Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marie%20Madeleine%20Sarzi%20Inacio">Marie Madeleine Sarzi Inacio</a>, <a href="https://publications.waset.org/abstracts/search?q=Ligiane%20Carolina%20Leite%20Dauzacker"> Ligiane Carolina Leite Dauzacker</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Henriques%20Lopes%20Da%20Silva"> Rodrigo Henriques Lopes Da Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The climate changes resulting from human activity have increased interest in more sustainable production practices to reduce and offset pollutant emissions. Brazil, with its vast areas capable of carbon absorption, holds a significant advantage in this context. However, to optimize the country's sustainable potential, it is important to establish a robust carbon market with clear rules for the eligibility and validation of projects aimed at reducing and offsetting Greenhouse Gas (GHG) emissions. In this study, our objective is to conduct a feasibility analysis through a case study to evaluate the implementation of an urban forest credits standard in Brazil, using the Urban Forest Credits (UFC) model implemented in the United States as a reference. Thus, the city of Ribeirão Preto, located in Brazil, was selected to assess the availability of green areas. With the CO2 emissions value from the metalworking industry, it was possible to analyze information in the case study, considering the activity. The QGIS software was used to map potential urban forest areas, which can connect to various types of geospatial databases. Although the chosen municipality has little vegetative coverage, the mapping identified at least eight areas that fit the standard definitions within the delimited urban perimeter. The outlook was positive, and the implementation of projects like Urban Forest Credits (UFC) adapted to the Brazilian reality has great potential to benefit the country in the carbon market and contribute to achieving its Greenhouse Gas (GHG) emission reduction goals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutrality" title="carbon neutrality">carbon neutrality</a>, <a href="https://publications.waset.org/abstracts/search?q=metalworking%20industry" title=" metalworking industry"> metalworking industry</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20credits" title=" carbon credits"> carbon credits</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20forestry%20credits" title=" urban forestry credits"> urban forestry credits</a> </p> <a href="https://publications.waset.org/abstracts/168953/application-of-the-urban-forest-credit-standard-as-a-tool-for-compensating-co2-emissions-in-the-metalworking-industry-a-case-study-in-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3249</span> The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Zhiyuan">Liu Zhiyuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Zongdi"> Sun Zongdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carbon%20trading%20price" title="Carbon trading price">Carbon trading price</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20trading%20volume" title=" carbon trading volume"> carbon trading volume</a>, <a href="https://publications.waset.org/abstracts/search?q=BP%20neural%20network%20model" title=" BP neural network model"> BP neural network model</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanghai%20City" title=" Shanghai City"> Shanghai City</a> </p> <a href="https://publications.waset.org/abstracts/69753/the-carbon-trading-price-and-trading-volume-forecast-in-shanghai-city-by-bp-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3248</span> Produced Gas Conversion of Microwave Carbon Receptor Reforming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Nam%20Chun">Young Nam Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Sup%20Lim"> Mun Sup Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20reforming" title=" gas reforming"> gas reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas" title=" greenhouse gas"> greenhouse gas</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20receptor" title=" microwave receptor"> microwave receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a> </p> <a href="https://publications.waset.org/abstracts/77831/produced-gas-conversion-of-microwave-carbon-receptor-reforming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3247</span> The Carbon Emission Seesaw Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Elomri">Adel Elomri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The notion of carbon footprinting is ever more widespread as companies are becoming increasingly aware that tackling carbon emissions and being seen to do so is a key issue to face governments, customers and other stakeholders’ pressures towards delivering environmentally friendly services and activities. In this contest, many firms are taking self-initiatives to reduce their own carbon emissions while some other are constrained to obey to different regulations/policies (e.g. carbon tax or carbon Cap) designed by higher authorities targeting a low-carbon environment. Using buyer-vendor framework, this paper provides some insights on how effective are these self-initiatives and regulatory policies when only concerning firms at the individual level and not the whole supply chain they are part of. We show that when firms individually engage in reducing their direct carbon emissions either under self-initiatives or regulatory policy, an opposite expected outcome resulting in a higher global supply chain emission can occur. This effect is referred to as the carbon seesaw effect. Moreover, we show that coordinating or centralizing the supply chain -contrary to what one may think at first- is not often the appropriate solution to get rid of this effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title="carbon emissions">carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20coordination" title=" supply chain coordination"> supply chain coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=EOQ" title=" EOQ"> EOQ</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20operations" title=" sustainable operations"> sustainable operations</a> </p> <a href="https://publications.waset.org/abstracts/50285/the-carbon-emission-seesaw-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3246</span> Comparison of Petrophysical Relationship for Soil Water Content Estimation at Peat Soil Area Using GPR Common-Offset Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Izzati%20Abd%20Karim">Nurul Izzati Abd Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Albati%20Kamaruddin"> Samira Albati Kamaruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozaimi%20Che%20Hasan"> Rozaimi Che Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The appropriate petrophysical relationship is needed for Soil Water Content (SWC) estimation especially when using Ground Penetrating Radar (GPR). Ground penetrating radar is a geophysical tool that provides indirectly the parameter of SWC. This paper examines the performance of few published petrophysical relationships to obtain SWC estimates from in-situ GPR common- offset survey measurements with gravimetric measurements at peat soil area. Gravimetric measurements were conducted to support of GPR measurements for the accuracy assessment. Further, GPR with dual frequencies (250MHhz and 700MHz) were used in the survey measurements to obtain the dielectric permittivity. Three empirical equations (i.e., Roth’s equation, Schaap’s equation and Idi’s equation) were selected for the study, used to compute the soil water content from dielectric permittivity of the GPR profile. The results indicate that Schaap’s equation provides strong correlation with SWC as measured by GPR data sets and gravimetric measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common-offset%20measurements" title="common-offset measurements">common-offset measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=petrophysical%20relationship" title=" petrophysical relationship"> petrophysical relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20water%20content" title=" soil water content"> soil water content</a> </p> <a href="https://publications.waset.org/abstracts/85923/comparison-of-petrophysical-relationship-for-soil-water-content-estimation-at-peat-soil-area-using-gpr-common-offset-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3245</span> Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard">Richard</a>, <a href="https://publications.waset.org/abstracts/search?q=Iyan%20Subiyanto"> Iyan Subiyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Chairul%20Hudaya"> Chairul Hudaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20material" title=" energy storage material"> energy storage material</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20coke" title=" green coke"> green coke</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20surface%20area" title=" specific surface area"> specific surface area</a> </p> <a href="https://publications.waset.org/abstracts/126533/synthesis-and-characterization-of-green-coke-derived-activated-carbon-by-koh-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3244</span> Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousaab%20Alrhmoun">Mousaab Alrhmoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Magali%20Casellas"> Magali Casellas</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Baudu"> Michel Baudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Dagot"> Christophe Dagot </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: The pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20micropolluants" title=" organic micropolluants"> organic micropolluants</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/3910/efficiency-of-modified-granular-activated-carbon-coupled-with-membrane-bioreactor-for-trace-organic-contaminants-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=109">109</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=110">110</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20offset&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>