CINXE.COM

Search results for: safety assessment

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: safety assessment</title> <meta name="description" content="Search results for: safety assessment"> <meta name="keywords" content="safety assessment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="safety assessment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="safety assessment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8682</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: safety assessment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8682</span> Research Progress on Patient Perception Assessment Tools for Patient Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yirui%20Wang">Yirui Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past few decades, patient safety has been the focus of much attention in the global medical and health field. As medical standards continue to improve and develop, the demand for patient safety is also growing. As one of the important dimensions in assessing patient safety, the Patient Perception Patient Safety Assessment Tool provides unique and valuable information from the patient's own perspective and plays an important role in promoting patient safety. This article aims to summarize and analyze the assessment content, assessment methods and applications of currently commonly used patient-perceived patient safety assessment tools at home and abroad, with a view to providing a reference for medical staff to select appropriate patient-perceived patient safety assessment tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patients" title="patients">patients</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title=" patient safety"> patient safety</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment%20tools" title=" assessment tools"> assessment tools</a>, <a href="https://publications.waset.org/abstracts/search?q=review" title=" review"> review</a> </p> <a href="https://publications.waset.org/abstracts/178079/research-progress-on-patient-perception-assessment-tools-for-patient-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8681</span> Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeda%20Sansakorn">Preeda Sansakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20An"> Min An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety%20risk%20assessment" title="safety risk assessment">safety risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20safety" title=" building construction safety"> building construction safety</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20reasoning" title=" fuzzy reasoning"> fuzzy reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20risk%20assessment%20model" title=" construction risk assessment model"> construction risk assessment model</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20projects" title=" building construction projects"> building construction projects</a> </p> <a href="https://publications.waset.org/abstracts/28627/development-of-risk-assessment-and-occupational-safety-management-model-for-building-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8680</span> Design for Safety: Safety Consideration in Planning and Design of Airport Airsides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maithem%20Al-Saadi">Maithem Al-Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20An"> Min An </a> </p> <p class="card-text"><strong>Abstract:</strong></p> During airport planning and design stages, the major issues of capacity and safety in construction and operation of an airport need to be taken into consideration. The airside of an airport is a major and critical infrastructure that usually consists of runway(s), taxiway system, and apron(s) etc., which have to be designed according to the international standards and recommendations, and local limitations to accommodate the forecasted demands. However, in many cases, airport airsides are suffering from unexpected risks that occurred during airport operations. Therefore, safety risk assessment should be applied in the planning and design of airsides to cope with the probability of risks and their consequences, and to make decisions to reduce the risks to as low as reasonably practicable (ALARP) based on safety risk assessment. This paper presents a combination approach of Failure Modes, Effect, and Criticality Analysis (FMECA), Fuzzy Reasoning Approach (FRA), and Fuzzy Analytic Hierarchy Process (FAHP) to develop a risk analysis model for safety risk assessment. An illustrated example is used to the demonstrate risk assessment process on how the design of an airside in an airport can be analysed by using the proposed safety design risk assessment model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airport%20airside%20planning%20and%20design" title="airport airside planning and design">airport airside planning and design</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20safety" title=" design for safety"> design for safety</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20reasoning%20approach" title=" fuzzy reasoning approach"> fuzzy reasoning approach</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20AHP" title=" fuzzy AHP"> fuzzy AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/40321/design-for-safety-safety-consideration-in-planning-and-design-of-airport-airsides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8679</span> A Fuzzy Structural Equation Model for Development of a Safety Performance Index Assessment Tool in Construction Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Gunduz">Murat Gunduz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Ozdemir"> Mustafa Ozdemir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a framework is to be proposed to model the safety performance in construction sites. Determinants of safety performance are to be defined through extensive literature review and a multidimensional safety performance model is to be developed. In this context, a questionnaire is to be administered to construction companies with sites. The collected data through questionnaires including linguistic terms are then to be defuzzified to get concrete numbers by using fuzzy set theory which provides strong and significant instruments for the measurement of ambiguities and provides the opportunity to meaningfully represent concepts expressed in the natural language. The validity of the proposed safety performance model, relationships between determinants of safety performance are to be analyzed using the structural equation modeling (SEM) which is a highly strong multi variable analysis technique that makes possible the evaluation of latent structures. After validation of the model, a safety performance index assessment tool is to be proposed by the help of software. The proposed safety performance assessment tool will be based on the empirically validated theoretical model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuzzy%20set%20theory" title="Fuzzy set theory">Fuzzy set theory</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20performance%20assessment" title=" safety performance assessment"> safety performance assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20index" title=" safety index"> safety index</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modeling%20%28SEM%29" title=" structural equation modeling (SEM)"> structural equation modeling (SEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20sites" title=" construction sites"> construction sites</a> </p> <a href="https://publications.waset.org/abstracts/18523/a-fuzzy-structural-equation-model-for-development-of-a-safety-performance-index-assessment-tool-in-construction-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8678</span> Incorporation of Safety into Design by Safety Cube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rajabalinejad">Mohammad Rajabalinejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safety is often seen as a requirement or a performance indicator through the design process, and this does not always result in optimally safe products or systems. This paper suggests integrating the best safety practices with the design process to enrich the exploration experience for designers and add extra values for customers. For this purpose, the commonly practiced safety standards and design methods have been reviewed and their common blocks have been merged forming Safety Cube. Safety Cube combines common blocks for design, hazard identification, risk assessment and risk reduction through an integral approach. An example application presents the use of Safety Cube for design of machinery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety" title="safety">safety</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20cube" title=" safety cube"> safety cube</a>, <a href="https://publications.waset.org/abstracts/search?q=product" title=" product"> product</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a>, <a href="https://publications.waset.org/abstracts/search?q=machinery" title=" machinery"> machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a> </p> <a href="https://publications.waset.org/abstracts/88489/incorporation-of-safety-into-design-by-safety-cube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8677</span> Comparison and Description of Enhanced Department-Based Arc Flash Safety Assessment with Substation-Based Arc Flash Safety Assessment for the Improvement of Work Place Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Abid%20Khan">Md. Abid Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arc Flash safety assessment is a critical component for continuous improvement of any company’s safe electrical arc flash standard (SEAFS). The standard requires periodic internal or external audits to verify compliance and assess implementation. Assessments will identify strengths and opportunities for improvement, and serve as the basis for corrective actions. An arc flash safety assessment is comprised of a review of any existing safe electrical arc flash standard documentation (e.g., such as work procedures or other supporting documents), onsite interviews, and observations (e.g., facility inspections and work task observations). Substation-based arc flash assessment is very popular as it is more specific for each substation. The enhanced department-based arc flash safety assessment will shift focus to more effective hazard control measures and emphasis will be placed on highlighting inherently unsafe equipment to support resolution actions by facility management, rather than relying on lessor effective control methods in the hierarchy of controls currently deployed at a number of facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20racking%20device%20%28RRD%29" title=" remote racking device (RRD)"> remote racking device (RRD)</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20performance%20indicator%20%28KPI%29" title=" key performance indicator (KPI)"> key performance indicator (KPI)</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20protective%20equipment%20%28PPE%29" title=" personal protective equipment (PPE)"> personal protective equipment (PPE)</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20%26%20maintenance%20%28O%26M%29" title=" operation &amp; maintenance (O&amp;M)"> operation &amp; maintenance (O&amp;M)</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20management%20system%20%28SMS%29" title=" safety management system (SMS)"> safety management system (SMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20electrical%20arc%20flash%20standard%20%28SEAFS%29" title=" safe electrical arc flash standard (SEAFS)"> safe electrical arc flash standard (SEAFS)</a> </p> <a href="https://publications.waset.org/abstracts/170103/comparison-and-description-of-enhanced-department-based-arc-flash-safety-assessment-with-substation-based-arc-flash-safety-assessment-for-the-improvement-of-work-place-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8676</span> Combined Safety and Cybersecurity Risk Assessment for Intelligent Distributed Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anders%20Thors%C3%A9n">Anders Thorsén</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Sangchoolie"> Behrooz Sangchoolie</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Folkesson"> Peter Folkesson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ted%20Strandberg"> Ted Strandberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As more parts of the power grid become connected to the internet, the risk of cyberattacks increases. To identify the cybersecurity threats and subsequently reduce vulnerabilities, the common practice is to carry out a cybersecurity risk assessment. For safety classified systems and products, there is also a need for safety risk assessments in addition to the cybersecurity risk assessment in order to identify and reduce safety risks. These two risk assessments are usually done separately, but since cybersecurity and functional safety are often related, a more comprehensive method covering both aspects is needed. Some work addressing this has been done for specific domains like the automotive domain, but more general methods suitable for, e.g., intelligent distributed grids, are still missing. One such method from the automotive domain is the Security-Aware Hazard Analysis and Risk Assessment (SAHARA) method that combines safety and cybersecurity risk assessments. This paper presents an approach where the SAHARA method has been modified in order to be more suitable for larger distributed systems. The adapted SAHARA method has a more general risk assessment approach than the original SAHARA. The proposed method has been successfully applied on two use cases of an intelligent distributed grid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20distribution%20grids" title="intelligent distribution grids">intelligent distribution grids</a>, <a href="https://publications.waset.org/abstracts/search?q=threat%20analysis" title=" threat analysis"> threat analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a> </p> <a href="https://publications.waset.org/abstracts/143611/combined-safety-and-cybersecurity-risk-assessment-for-intelligent-distributed-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8675</span> Railway Accidents: Using the Global Railway Accident Database and Evaluation for Risk Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Linden">Mathias Linden</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Schneider"> André Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20F.%20O.%20von%20Korflesch"> Harald F. O. von Korflesch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The risk of train accidents is an ongoing concern for railway organizations, governments, insurance companies and other depended sectors. Safety technologies are installed to reduce and to prevent potential damages of train accidents. Since the budgetary for the safety of railway organizations is limited, it is necessary not only to achieve a high availability and high safety standard but also to be cost effective. Therefore, an economic assessment of safety technologies is fundamental to create an accurate risk analysis. In order to conduct an economical assessment of a railway safety technology and a quantification of the costs of the accident causes, the Global Railway Accident Database & Evaluation (GRADE) has been developed. The aim of this paper is to describe the structure of this accident database and to show how it can be used for risk analyses. A number of risk analysis methods, such as the probabilistic safety assessment method (PSA), was used to demonstrate this accident database’s different possibilities of risk analysis. In conclusion, it can be noted that these analyses would not be as accurate without GRADE. The information gathered in the accident database was not available in this way before. Our findings are relevant for railway operators, safety technology suppliers, assurances, governments and other concerned railway organizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20causes" title="accident causes">accident causes</a>, <a href="https://publications.waset.org/abstracts/search?q=accident%20costs" title=" accident costs"> accident costs</a>, <a href="https://publications.waset.org/abstracts/search?q=accident%20database" title=" accident database"> accident database</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20railway%20accident%20database%20%26%20evaluation" title=" global railway accident database &amp; evaluation"> global railway accident database &amp; evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=GRADE" title=" GRADE"> GRADE</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20safety%20assessment" title=" probabilistic safety assessment"> probabilistic safety assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=PSA" title=" PSA"> PSA</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20accidents" title=" railway accidents"> railway accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a> </p> <a href="https://publications.waset.org/abstracts/68572/railway-accidents-using-the-global-railway-accident-database-and-evaluation-for-risk-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8674</span> Probabilistic Safety Assessment of Koeberg Spent Fuel Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibongiseni%20Thabethe">Sibongiseni Thabethe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Korir"> Ian Korir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective management of spent fuel pool (SFP) safety has been raised as one of the emerging issues to further enhance nuclear installation safety after the Fukushima accident on March 11, 2011. Before then, SFP safety-related issues have been mainly focused on (a) controlling the configuration of the fuel assemblies in the pool with no loss of pool coolants and (b) ensuring adequate pool storage space to prevent fuel criticality owing to chain reactions of the fission products and the ability for neutron absorption to keep the fuel cool. A probabilistic safety (PSA) assessment was performed using the systems analysis program for hands-on integrated reliability evaluations (SAPHIRE) computer code. Event and fault tree analysis was done to develop a PSA model for the Koeberg SFP. We present preliminary PSA results of events that lead to boiling and cause fuel uncovering, resulting in possible fuel damage in the Koeberg SFP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20code" title="computer code">computer code</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20assemblies" title=" fuel assemblies"> fuel assemblies</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20risk%20assessment" title=" probabilistic risk assessment"> probabilistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20pool" title=" spent fuel pool"> spent fuel pool</a> </p> <a href="https://publications.waset.org/abstracts/131191/probabilistic-safety-assessment-of-koeberg-spent-fuel-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8673</span> Investigation of Occupational Health and Safety of Bakeries in Izmir, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinar%20Ercan">Pinar Ercan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulut%20Mert"> Bulut Mert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The baking industry is prone to occupational health challenges like other industries. Workers in bakeries face many hazards in their work environment; hazards have the potential for causing injury, illness or work accidents. Most of these hazards are preventable and arise from the neglect of occupational safety measures. Some bakeries in Izmır Turkey was evaluated according to occupational health and safety. First of all, the production process was evaluated. The survey was administered to a total of 50 employees. The survey consisted of two sections. The first one comprised only demographic questions and items related to job characteristics. The remaining section was assessing the satisfaction and confidence about occupational health and safety in terms of employees consist of a 10-item questionnaire by using HSE (2010) survey with some modifications. Also, hazards, risks and control measures in the bakeries were determined. Risk assessment has been done by the use of '5x5 Risk Assessment Table' for this purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bakeries" title="bakeries">bakeries</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20health%20and%20safety" title=" occupational health and safety"> occupational health and safety</a>, <a href="https://publications.waset.org/abstracts/search?q=hazards" title=" hazards"> hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=risks" title=" risks"> risks</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/37431/investigation-of-occupational-health-and-safety-of-bakeries-in-izmir-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8672</span> A Development of a Conceptual Framework for Safety Culture and Safety Risk Assessment: The Case of Chinese International Construction Projects under the “New Belt and Road” Initiative in Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouba%20Oumarou%20Aboubakar">Bouba Oumarou Aboubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=HongXia%20Li"> HongXia Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sardar%20Annes%20Farooq"> Sardar Annes Farooq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Belt and Road Initiative’s success strongly depends on the safety of all the million workers on construction projects sites. As the new BRI is directed toward Africa and meets a completely different culture from the Chinese project managers, maintaining low risk for workers risks shall be closely related to cultural sharing and mutual understanding. This is why this work introduces a cultural-wise safety management framework for Chinese Construction projects in Africa. The theoretical contribution of this paper is an improved risk assessment framework that integrates language, culture and difficulty of controlling risk factors into one approach. Practically, this study provides not only a useful tool for project safety management practitioners but the full understanding of all risks that may arise in the BRI projects in Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultural-wise" title="cultural-wise">cultural-wise</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20culture" title=" safety culture"> safety culture</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20construction" title=" Chinese construction"> Chinese construction</a>, <a href="https://publications.waset.org/abstracts/search?q=BRI%20projects" title=" BRI projects"> BRI projects</a>, <a href="https://publications.waset.org/abstracts/search?q=Africa" title=" Africa"> Africa</a> </p> <a href="https://publications.waset.org/abstracts/174525/a-development-of-a-conceptual-framework-for-safety-culture-and-safety-risk-assessment-the-case-of-chinese-international-construction-projects-under-the-new-belt-and-road-initiative-in-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8671</span> Holistic Risk Assessment Based on Continuous Data from the User’s Behavior and Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cinzia%20Carrodano">Cinzia Carrodano</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitri%20Konstantas"> Dimitri Konstantas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Risk is part of our lives. In today’s society risk is connected to our safety and safety has become a major priority in our life. Each person lives his/her life based on the evaluation of the risk he/she is ready to accept and sustain, and the level of safety he/she wishes to reach, based on highly personal criteria. The assessment of risk a person takes in a complex environment and the impact of actions of other people’actions and events on our perception of risk are alements to be considered. The concept of Holistic Risk Assessment (HRA) aims in developing a methodology and a model that will allow us to take into account elements outside the direct influence of the individual, and provide a personalized risk assessment. The concept is based on the fact that in the near future, we will be able to gather and process extremely large amounts of data about an individual and his/her environment in real time. The interaction and correlation of these data is the key element of the holistic risk assessment. In this paper, we present the HRA concept and describe the most important elements and considerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20data" title="continuous data">continuous data</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20risk" title=" dynamic risk"> dynamic risk</a>, <a href="https://publications.waset.org/abstracts/search?q=holistic%20risk%20assessment" title=" holistic risk assessment"> holistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20concept" title=" risk concept"> risk concept</a> </p> <a href="https://publications.waset.org/abstracts/145051/holistic-risk-assessment-based-on-continuous-data-from-the-users-behavior-and-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8670</span> Environmental Safety and Occupational Health Risk Assessment for Rocket Static Test </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phontip%20Kanlahasuth">Phontip Kanlahasuth </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the environmental safety and occupational health risk assessment of rocket static test by assessing risk level from probability and severity and then appropriately applying the risk control measures. Before the environmental safety and occupational health measures are applied, the serious hazards level is 31%, medium level is 24% and low level is 45%. Once risk control measures are practically implemented, the serious hazard level can be diminished, medium level is 38%, low level is 45% and eliminated level is 17%. It is clearly shown that the environmental safety and occupational health measures can significantly reduce the risk level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocket%20static%20test" title="rocket static test">rocket static test</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard" title=" hazard"> hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20health" title=" occupational health"> occupational health</a>, <a href="https://publications.waset.org/abstracts/search?q=acceptable%20risk" title=" acceptable risk"> acceptable risk</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=severity" title=" severity"> severity</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20level" title=" risk level"> risk level</a> </p> <a href="https://publications.waset.org/abstracts/4165/environmental-safety-and-occupational-health-risk-assessment-for-rocket-static-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8669</span> Storage Tank Overfill Protection in Compliance with Functional Safety Standard: IEC 61511</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Alsada">Hassan Alsada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tank overfill accidents are major concerns for industries handling large volumes of hydrocarbons. Buncefield, Jaipur, Puerto Rico, and West Virginia are just a few accidents with catastrophic consequences. Thus, it is very important for any industry to take the right safety measures for overfill prevention. Moreover, one of the main causative factors in the overfill accidents was inadequate risk analysis and, subsequently, inadequate design. This study aims to provide a full assessment in accordance with the Functional safety standard: “IEC 615 11 – Safety instrumented systems for the process industry” to the tank overfill scenario according to the standard’s Safety Life Cycle (SLC), which includes: the analysis phase, the implementation phase, and the operation phase. The paper discusses in depth the tank overfills Independent Protection Layers (IPLs) with systematic analysis to avoid the safety risks of under-design and the financial risk of facility overdesign. The result shows a clear and systematic assessment in compliance with the standards that can help to assist existing tank overfilling setup or a guide to support designing new storage facilities overfill protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IEC%2061511" title="IEC 61511">IEC 61511</a>, <a href="https://publications.waset.org/abstracts/search?q=PHA" title=" PHA"> PHA</a>, <a href="https://publications.waset.org/abstracts/search?q=LOPA" title=" LOPA"> LOPA</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20safety" title=" process safety"> process safety</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20instrumented%20systems" title=" safety instrumented systems"> safety instrumented systems</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20instrumented%20function" title=" safety instrumented function"> safety instrumented function</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20safety" title=" functional safety"> functional safety</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20life%20cycle" title=" safety life cycle"> safety life cycle</a> </p> <a href="https://publications.waset.org/abstracts/160747/storage-tank-overfill-protection-in-compliance-with-functional-safety-standard-iec-61511" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8668</span> A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Borjalilu">N. Borjalilu</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rabiei"> P. Rabiei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Enjoo"> A. Enjoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator&rsquo;s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=F-topsis" title="F-topsis">F-topsis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20set" title=" fuzzy set"> fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20data%20monitoring%20%28FDM%29" title=" flight data monitoring (FDM)"> flight data monitoring (FDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20safety" title=" flight safety"> flight safety</a> </p> <a href="https://publications.waset.org/abstracts/88089/a-fuzzy-topsis-based-model-for-safety-risk-assessment-of-operational-flight-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8667</span> Safety Culture Implementation Based on Occupational Health and Safety Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nyambayar%20Davaadorj">Nyambayar Davaadorj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ichiro%20Koshijima"> Ichiro Koshijima </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safety or the state of being safe can be described as a condition of being not dangerous or not harmful. It is necessary for an individual to avoid dangerous situations every day. Also, an organization is subject to legal requirements for the health and safety of persons inside and around the immediate workplace, or who are exposed to the workplace activities. Although it might be difficult to keep a situation where complete safety is ensured, efforts must nonetheless be made to consider ways of removing any potential danger within an organization. In order to ensure a safe working environment, the capability of responding (i.e., resilience) to signals (i.e., information concerning events that could pose future problems that must be taken into account) that occur in and around corporations is necessary. The ability to evaluate this essential point is thus one way in which safety and security can be managed. This study focuses on OHSAS18001, an internationally applied standard for the construction and operation of occupational health and safety management systems, by using IDEF0 for Function Modeling (IDEF0) and the Resilience Matrix originally made by Bracco. Further, this study discusses a method for evaluating a manner in which Occupational Health and Safety Assessment Series (OHSAS) systematically functions within corporations. Based on the findings, this study clarifies the potential structural objection for corporations when implementing and operating the OHSAS standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OHSAS18001" title="OHSAS18001">OHSAS18001</a>, <a href="https://publications.waset.org/abstracts/search?q=IDEF0" title=" IDEF0"> IDEF0</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20engineering" title=" resilience engineering"> resilience engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20culture" title=" safety culture"> safety culture</a> </p> <a href="https://publications.waset.org/abstracts/54432/safety-culture-implementation-based-on-occupational-health-and-safety-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8666</span> Assessment of the Road Safety Performance in National Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20K.%20Jameel">Abeer K. Jameel</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Evdorides"> Harry Evdorides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Assessment of the road safety performance is a challengeable issue. This is not only because of the ineffective and unreliability of road and traffic crash data system but also because of its systematic character. Recent strategic plans and interventions implemented in some of the developed countries where a significant decline in the rate of traffic and road crashes considers that the road safety is a system. This system consists of four main elements which are: road user, road infrastructure, vehicles and speed in addition to other supporting elements such as the institutional framework and post-crash care system. To assess the performance of a system, it is required to assess all its elements. To present an understandable results of the assessment, it is required to present a unique term representing the performance of the overall system. This paper aims to develop an overall performance indicator which may be used to assess the road safety system. The variables of this indicators are the main elements of the road safety system. The data regarding these variables will be collected from the World Health Organization report. Multi-criteria analysis method is used to aggregate the four sub-indicators for the four variables. Two weighting methods will be assumed, equal weights and different weights. For the different weights method, the factor analysis method is used. The weights then will be converting to scores. The total score will be the overall indicator for the road safety performance in a national scale. This indicator will be used to compare and rank countries according to their road safety performance indicator. The country with the higher score is the country which provides most sustainable and effective interventions for successful road safety system. These indicator will be tested by comparing them with the aggregate real crash rate for each country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title="factor analysis">factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Multi-criteria%20analysis" title=" Multi-criteria analysis"> Multi-criteria analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20safety%20assessment" title=" road safety assessment"> road safety assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20system%20indicator" title=" safe system indicator"> safe system indicator</a> </p> <a href="https://publications.waset.org/abstracts/86763/assessment-of-the-road-safety-performance-in-national-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8665</span> Managing Uncertainty in Unmanned Aircraft System Safety Performance Requirements Compliance Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Washington">Achim Washington</a>, <a href="https://publications.waset.org/abstracts/search?q=Reece%20Clothier"> Reece Clothier</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Silva"> Jose Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> System Safety Regulations (SSR) are a central component to the airworthiness certification of Unmanned Aircraft Systems (UAS). There is significant debate on the setting of appropriate SSR for UAS. Putting this debate aside, the challenge lies in how to apply the system safety process to UAS, which lacks the data and operational heritage of conventionally piloted aircraft. The limited knowledge and lack of operational data result in uncertainty in the system safety assessment of UAS. This uncertainty can lead to incorrect compliance findings and the potential certification and operation of UAS that do not meet minimum safety performance requirements. The existing system safety assessment and compliance processes, as used for conventional piloted aviation, do not adequately account for the uncertainty, limiting the suitability of its application to UAS. This paper discusses the challenges of undertaking system safety assessments for UAS and presents current and envisaged research towards addressing these challenges. It aims to highlight the main advantages associated with adopting a risk based framework to the System Safety Performance Requirement (SSPR) compliance process that is capable of taking the uncertainty associated with each of the outputs of the system safety assessment process into consideration. Based on this study, it is made clear that developing a framework tailored to UAS, would allow for a more rational, transparent and systematic approach to decision making. This would reduce the need for conservative assumptions and take the risk posed by each UAS into consideration while determining its state of compliance to the SSR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Part%201309%20regulations" title="Part 1309 regulations">Part 1309 regulations</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20models" title=" risk models"> risk models</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aircraft%20systems" title=" unmanned aircraft systems"> unmanned aircraft systems</a> </p> <a href="https://publications.waset.org/abstracts/76947/managing-uncertainty-in-unmanned-aircraft-system-safety-performance-requirements-compliance-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8664</span> Using Data Mining in Automotive Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carine%20Cridelich">Carine Cridelich</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Juesas%20Cano"> Pablo Juesas Cano</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Ramasso"> Emmanuel Ramasso</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Zerhouni"> Noureddine Zerhouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Weiler"> Bernd Weiler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KDD%20process" title="KDD process">KDD process</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20safety%20systems" title=" passive safety systems"> passive safety systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sled%20test" title=" sled test"> sled test</a>, <a href="https://publications.waset.org/abstracts/search?q=dummy%20injury%20assessment%20reference%20values" title=" dummy injury assessment reference values"> dummy injury assessment reference values</a>, <a href="https://publications.waset.org/abstracts/search?q=frontal%20impact" title=" frontal impact"> frontal impact</a> </p> <a href="https://publications.waset.org/abstracts/19690/using-data-mining-in-automotive-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8663</span> Comparison Analysis on the Safety Culture between the Executives and the Operators: Case Study in the Aircraft Manufacturer in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Chen%20Hwang">Wen-Chen Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsi%20Yuan"> Yu-Hsi Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the estimation made by researchers of safety and hygiene, 80% to 90% of workplace accidents in enterprises could be attributed to human factors. Nevertheless, human factors are not the only cause for accidents; instead, happening of accidents is also closely associated with the safety culture of the organization. Therefore, the most effective way of reducing accident rate would be to improve the social and the organizational factors that influence organization’s safety performance. Overview the present study is to understand the current level of safety culture in manufacturing enterprises. A tool for evaluating safety culture matching the needs and characteristics of manufacturing enterprises was developed by reviewing literature of safety culture, and taking the special backgrounds of the case enterprises into consideration. Expert validity was also implied for developing the questionnaire. Moreover, safety culture assessment was conducted through the practical investigation of the case enterprises. Total 505 samples were involved, 53 were executives and 452 were operators. The result of this study in comparison of the safety culture level between the executives and the operators was reached the significant level in 8 dimensions: Safety Commitment, Safety System, Safety Training, Safety Involvement, Reward and Motivation, Communication and Reporting, Leadership and Supervision, Learning and Changing. In general, the overall safety culture were executive level higher than operators level (M: 74.98 > 69.08; t=2.87; p < 0.01). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=questionnaire%20survey" title="questionnaire survey">questionnaire survey</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20culture" title=" safety culture"> safety culture</a>, <a href="https://publications.waset.org/abstracts/search?q=t-test" title=" t-test"> t-test</a>, <a href="https://publications.waset.org/abstracts/search?q=media%20studies" title=" media studies"> media studies</a> </p> <a href="https://publications.waset.org/abstracts/3978/comparison-analysis-on-the-safety-culture-between-the-executives-and-the-operators-case-study-in-the-aircraft-manufacturer-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8662</span> Workplace Risk Assessment in a Paint Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rula%20D.%20Alshareef">Rula D. Alshareef</a>, <a href="https://publications.waset.org/abstracts/search?q=Safa%20S.%20Alqathmi"> Safa S. Alqathmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghadah%20K.%20Alkhouldi"> Ghadah K. Alkhouldi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20O.%20Bagabas"> Reem O. Bagabas</a>, <a href="https://publications.waset.org/abstracts/search?q=Farheen%20B.%20Hasan"> Farheen B. Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safety engineering is among the most crucial considerations in any work environment. Providing mentally, physically, and environmentally safe work conditions must be the top priority of any successful organization. Company X is a local paint production company in Saudi Arabia; in a month, the factory experienced two significant accidents, which indicates that workers’ safety is overlooked. The aim of the research is to examine the risks, assess the root causes and recommend control measures that will eventually contribute to providing a safe workplace. The methodology used is sectioned into three phases, risk identification, assessment, and finally, mitigation. In the identification phase, the team used Rapid Entire Body Assessment (REBA) and National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) tools to holistically establish knowledge about the current risk posed to the factory. The physical hazards in the factory were assessed in two different operations, which are mixing and filling/packaging. For the risk assessment phase, the hazards were deeply analyzed through their severity and impact. Additionally, through risk mitigation, the Rapid Entire Body Assessment (REBA) score decreased from 11 to 7, and the National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) has been reduced from 5.27 to 1.85. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ergonomics" title="ergonomics">ergonomics</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=workplace%20risks" title=" workplace risks"> workplace risks</a>, <a href="https://publications.waset.org/abstracts/search?q=hazards" title=" hazards"> hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=awkward%20posture" title=" awkward posture"> awkward posture</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20environment" title=" work environment"> work environment</a> </p> <a href="https://publications.waset.org/abstracts/167140/workplace-risk-assessment-in-a-paint-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8661</span> A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heungsu%20Lee">Heungsu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngseok%20Kim"> Youngseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonghwa%20Yi"> Jonghwa Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Park"> Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FBG%20sensor" title="FBG sensor">FBG sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=harbor%20structure" title=" harbor structure"> harbor structure</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20evaluation%20system" title=" safety evaluation system"> safety evaluation system</a> </p> <a href="https://publications.waset.org/abstracts/84883/a-fundamental-study-for-real-time-safety-evaluation-system-of-landing-pier-using-fbg-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8660</span> Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Pardo-Ferreira">M. C. Pardo-Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Rubio-Romero"> J. C. Rubio-Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mart%C3%ADnez-Rojas"> M. Martínez-Rojas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilience%20engineering" title="resilience engineering">resilience engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20sector" title=" construction sector"> construction sector</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20assessment%20grid" title=" resilience assessment grid"> resilience assessment grid</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20phase%20health%20and%20safety%20plan" title=" construction phase health and safety plan"> construction phase health and safety plan</a> </p> <a href="https://publications.waset.org/abstracts/98586/applying-resilience-engineering-to-improve-safety-management-in-a-construction-site-design-and-validation-of-a-questionnaire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8659</span> Review of the Road Crash Data Availability in Iraq </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20K.%20Jameel">Abeer K. Jameel</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Evdorides"> Harry Evdorides </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users&rsquo; details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title="road safety">road safety</a>, <a href="https://publications.waset.org/abstracts/search?q=Iraq" title=" Iraq"> Iraq</a>, <a href="https://publications.waset.org/abstracts/search?q=crash%20data" title=" crash data"> crash data</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20risk%20assessment" title=" road risk assessment"> road risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20International%20Road%20Assessment%20Program%20%28iRAP%29" title=" The International Road Assessment Program (iRAP)"> The International Road Assessment Program (iRAP)</a> </p> <a href="https://publications.waset.org/abstracts/70430/review-of-the-road-crash-data-availability-in-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8658</span> Activity-Based Safety Assessment of Real Estate Projects in Western India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patel%20Parul">Patel Parul</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsh%20Ganvit"> Harsh Ganvit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry is the second highest industry after agriculture provides employment in India. In developing countries like India, many construction projects are coming up to meet the demand. On the one hand, construction projects are increasing; on the other hand still, construction companies are struggling with many problems. One of the major problems is to ensure safe working conditions at the construction site. Due to a lack of safety awareness and ignorance of safety aspects, many fatal accidents are very common at the construction site in India. One of the key success factors for construction projects is “Accident-Free Construction Projects”. The construction projects can be divided into various categories like Infrastructure projects, industrial construction and real estate construction. Real estate projects are mainly comprised of commercial and residential projects. In the construction industry, private sectors play a huge role in urban and rural development and also contribute significantly to the growth of the nation. Infrastructure and Industrial projects are mainly executed by well-qualified construction contractors. For such projects, ensuring safety at construction projects is inevitable and probably one of the major clauses of contract documents as well. These projects are monitored from time to time by national agencies and researchers, too. However, Real estate projects are rarely monitored for safety aspects. No systematic contract system is followed for these projects. Safety is the most neglected aspect of these projects. In the current research projects, an attempt is made to carry out safety auditing for about 75 real estate projects. The objective of this work is to collect the activity-based safety survey of real estate projects in western India. The analysis of activity-based safety implementation for real estate projects is discussed in the present work. The activities are divided into three categories based on the data collected. The findings of this work will help local monitoring authorities to implement a safety management plan for real estate projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20safety" title="construction safety">construction safety</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20assessment" title=" safety assessment"> safety assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=activity-based%20safety" title=" activity-based safety"> activity-based safety</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20estate%20projects" title=" real estate projects"> real estate projects</a> </p> <a href="https://publications.waset.org/abstracts/182728/activity-based-safety-assessment-of-real-estate-projects-in-western-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8657</span> Integrating Deterministic and Probabilistic Safety Assessment to Decrease Risk &amp; Energy Consumption in a Typical PWR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Ghanbari">Ebrahim Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Nematollahi"> Mohammad Reza Nematollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrating deterministic and probabilistic safety assessment (IDPSA) is one of the most commonly used issues in the field of safety analysis of power plant accident. It has also been recognized today that the role of human error in creating these accidents is not less than systemic errors, so the human interference and system errors in fault and event sequences are necessary. The integration of these analytical topics will be reflected in the frequency of core damage and also the study of the use of water resources in an accident such as the loss of all electrical power of the plant. In this regard, the SBO accident was simulated for the pressurized water reactor in the deterministic analysis issue, and by analyzing the operator's behavior in controlling the accident, the results of the combination of deterministic and probabilistic assessment were identified. The results showed that the best performance of the plant operator would reduce the risk of an accident by 10%, as well as a decrease of 6.82 liters/second of the water sources of the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IDPSA" title="IDPSA">IDPSA</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20error" title=" human error"> human error</a>, <a href="https://publications.waset.org/abstracts/search?q=SBO" title=" SBO"> SBO</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/126612/integrating-deterministic-and-probabilistic-safety-assessment-to-decrease-risk-energy-consumption-in-a-typical-pwr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8656</span> Calibrating Risk Factors for Road Safety in Low Income Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atheer%20Al-Nuaimi">Atheer Al-Nuaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Evdorides"> Harry Evdorides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daily, many individuals die or get harmed on streets around the globe, which requires more particular solutions for transport safety issues. International road assessment program (iRAP) is one of the models that are considering many variables which influence road user’s safety. In iRAP, roads have been partitioned into five-star ratings from 1 star (the most reduced level) to 5 star (the most noteworthy level). These levels are calculated from risk factors which represent the effect of the geometric and traffic conditions on rod safety. The result of iRAP philosophy are the countermeasures that can be utilized to enhance safety levels and lessen fatalities numbers. These countermeasures can be utilized independently as a single treatment or in combination with other countermeasures for a section or an entire road. There is a general understanding that the efficiency of a countermeasure is liable to reduction when it is used in combination with various countermeasures. That is, crash diminishment estimations of single countermeasures cannot be summed easily. In the iRAP model, the fatalities estimations are calculated using a specific methodology. However, this methodology suffers overestimations. Therefore, this study has developed a calibration method to estimate fatalities numbers more accurately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crash%20risk%20factors" title="crash risk factors">crash risk factors</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20road%20assessment%20program" title=" international road assessment program"> international road assessment program</a>, <a href="https://publications.waset.org/abstracts/search?q=low-income%20countries" title=" low-income countries"> low-income countries</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20safety" title=" road safety"> road safety</a> </p> <a href="https://publications.waset.org/abstracts/106648/calibrating-risk-factors-for-road-safety-in-low-income-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8655</span> An Investigation on the Relationship between Taxi Company Safety Climate and Safety Performance of Taxi Drivers in Iloilo City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasper%20C.%20Dioco">Jasper C. Dioco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was done to investigate the relationship of taxi company safety climate and drivers’ safety motivation and knowledge on taxi drivers’ safety performance. Data were collected from three Taxi Companies with taxi drivers as participants (N = 84). The Hiligaynon translated version of Transportation Companies’ Climate Scale (TCCS), Safety Motivation and Knowledge Scale, Occupational Safety Motivation Questionnaire and Global Safety Climate Scale were used to study the relationships among four parameters: (a) Taxi company safety climate; (b) Safety motivation; (c) Safety knowledge; and (d) Safety performance. Correlational analyses found that there is no relation between safety climate and safety performance. A Hierarchical regression demonstrated that safety motivation predicts the most variance in safety performance. The results will greatly impact how taxi company can increase safe performance through the confirmation of the proximity of variables to organizational outcome. A strong positive safety climate, in which employees perceive safety to be a priority and that managers are committed to their safety, is likely to increase motivation to be safety. Hence, to improve outcomes, providing knowledge based training and health promotion programs within the organization must be implemented. Policy change might include overtime rules and fatigue driving awareness programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety%20climate" title="safety climate">safety climate</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20knowledge" title=" safety knowledge"> safety knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20motivation" title=" safety motivation"> safety motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20performance" title=" safety performance"> safety performance</a>, <a href="https://publications.waset.org/abstracts/search?q=taxi%20drivers" title=" taxi drivers"> taxi drivers</a> </p> <a href="https://publications.waset.org/abstracts/86848/an-investigation-on-the-relationship-between-taxi-company-safety-climate-and-safety-performance-of-taxi-drivers-in-iloilo-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8654</span> Weighted Risk Scores Method Proposal for Occupational Safety Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ulas%20Cinar">Ulas Cinar</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Faruk%20Ugurlu"> Omer Faruk Ugurlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Selcuk%20Cebi"> Selcuk Cebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Occupational safety risk management is the most important element of a safe working environment. Effective risk management can only be possible with accurate analysis and evaluations. Scoring-based risk assessment methods offer considerable ease of application as they convert linguistic expressions into numerical results. It can also be easily adapted to any field. Contrary to all these advantages, important problems in scoring-based methods are frequently discussed. Effective measurability is one of the most critical problems. Existing methods allow experts to choose a score equivalent to each parameter. Therefore, experts prefer the score of the most likely outcome for risk. However, all other possible consequences are neglected. Assessments of the existing methods express the most probable level of risk, not the real risk of the enterprises. In this study, it is aimed to develop a method that will present a more comprehensive evaluation compared to the existing methods by evaluating the probability and severity scores, all sub-parameters, and potential results, and a new scoring-based method is proposed in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=occupational%20health%20and%20safety" title="occupational health and safety">occupational health and safety</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=scoring%20based%20risk%20assessment%20method" title=" scoring based risk assessment method"> scoring based risk assessment method</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20mining" title=" underground mining"> underground mining</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20risk%20scores" title=" weighted risk scores"> weighted risk scores</a> </p> <a href="https://publications.waset.org/abstracts/126062/weighted-risk-scores-method-proposal-for-occupational-safety-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8653</span> Safety of Ports, Harbours, Marine Terminals: Application of Quantitative Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipak%20Sonawane">Dipak Sonawane</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudarshan%20Daga"> Sudarshan Daga</a>, <a href="https://publications.waset.org/abstracts/search?q=Somesh%20Gupta"> Somesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantitative risk assessment (QRA) is a very precise and consistent approach to defining the likelihood, consequence and severity of a major incident/accident. A variety of hazardous cargoes in bulk, such as hydrocarbons and flammable/toxic chemicals, are handled at various ports. It is well known that most of the operations are hazardous, having the potential of damaging property, causing injury/loss of life and, in some cases, the threat of environmental damage. In order to ensure adequate safety towards life, environment and property, the application of scientific methods such as QRA is inevitable. By means of these methods, comprehensive hazard identification, risk assessment and appropriate implementation of Risk Control measures can be carried out. In this paper, the authors, based on their extensive experience in Risk Analysis for ports and harbors, have exhibited how QRA can be used in practice to minimize and contain risk to tolerable levels. A specific case involving the operation for unloading of hydrocarbon at a port is presented. The exercise provides confidence that the method of QRA, as proposed by the authors, can be used appropriately for the identification of hazards and risk assessment of Ports and Terminals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantitative%20risk%20assessment" title="quantitative risk assessment">quantitative risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20assessment" title=" hazard assessment"> hazard assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=consequence%20analysis" title=" consequence analysis"> consequence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=individual%20risk" title=" individual risk"> individual risk</a>, <a href="https://publications.waset.org/abstracts/search?q=societal%20risk" title=" societal risk"> societal risk</a> </p> <a href="https://publications.waset.org/abstracts/151443/safety-of-ports-harbours-marine-terminals-application-of-quantitative-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=289">289</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=290">290</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20assessment&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10