CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;39 of 39 results for author: <span class="mathjax">Gati, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Gati%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gati, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gati%2C+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gati, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01638">arXiv:2405.01638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01638">pdf</a>, <a href="https://arxiv.org/format/2405.01638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/femat.2024.1392760">10.3389/femat.2024.1392760 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uniaxial stress effect on the electronic structure of quantum materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+N+H">Na Hyun Jo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+H">Heike Pfau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01638v1-abstract-short" style="display: inline;"> Uniaxial stress has proven to be a powerful experimental tuning parameter for effectively controlling lattice, charge, orbital, and spin degrees of freedom in quantum materials. In addition, its ability to manipulate the symmetry of materials has garnered significant attention. Recent technical progress to combine uniaxial stress cells with quantum oscillation and angle-resolved photoemission tech&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01638v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01638v1-abstract-full" style="display: none;"> Uniaxial stress has proven to be a powerful experimental tuning parameter for effectively controlling lattice, charge, orbital, and spin degrees of freedom in quantum materials. In addition, its ability to manipulate the symmetry of materials has garnered significant attention. Recent technical progress to combine uniaxial stress cells with quantum oscillation and angle-resolved photoemission techniques allowed to study the electronic structure as function of uniaxial stress. This review provides an overview on experimental advancements in methods and examines studies on diverse quantum materials, encompassing the semimetal WTe2, the unconventional superconductor Sr2RuO4, Fe-based superconductors, and topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01638v1-abstract-full').style.display = 'none'; document.getElementById('2405.01638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17519">arXiv:2403.17519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17519">pdf</a>, <a href="https://arxiv.org/format/2403.17519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Determination of the dynamic Young&#39;s modulus of quantum materials in piezoactuator-driven uniaxial pressure cells using a low-frequency a.c. method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=O%27Neil%2C+C+I">Caitlin I. O&#39;Neil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Zhenhai Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikugawa%2C+N">Naoki Kikugawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolov%2C+D+A">Dmitry A. Sokolov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Noad%2C+H+M+L">Hilary M. L. Noad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17519v1-abstract-short" style="display: inline;"> We report on a new technique for measuring the dynamic Young&#39;s modulus, $E$, of quantum materials at low temperatures as a function of static tuning strain, $蔚$, in piezoactuator-driven pressure cells. In addition to a static tuning of stress and strain, we apply a small-amplitude, finite-frequency a.c. (1 Hz$ \lesssim 蠅\lesssim $1000 Hz) uniaxial stress, $蟽_{ac}$, to the sample and measure the re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17519v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17519v1-abstract-full" style="display: none;"> We report on a new technique for measuring the dynamic Young&#39;s modulus, $E$, of quantum materials at low temperatures as a function of static tuning strain, $蔚$, in piezoactuator-driven pressure cells. In addition to a static tuning of stress and strain, we apply a small-amplitude, finite-frequency a.c. (1 Hz$ \lesssim 蠅\lesssim $1000 Hz) uniaxial stress, $蟽_{ac}$, to the sample and measure the resulting a.c. strain, $蔚_{ac}$, using a capacitive sensor to obtain the associated modulus $E$. We demonstrate the performance of the new technique through proof-of-principle experiments on the unconventional superconductor Sr$_2$RuO$_4$, which is known for its rich temperature-strain phase diagram. In particular, we show that the magnitude of $E$, measured using this a.c. technique at low frequencies, exhibits a pronounced nonlinear elasticity, which is in very good agreement with previous Young&#39;s modulus measurements on Sr$_2$RuO$_4$ under [100] strain using a d.c. method (Noad et al., Science 382, 447-450 (2023)). By combining the new a.c. Young&#39;s modulus measurements with a.c. elastocaloric measurements in a single measurement, we demonstrate that these a.c. techniques are powerful in detecting small anomalies in the elastic properties of quantum materials. Finally, using the case of Sr$_2$RuO$_4$ as an example, we demonstrate how the imaginary component of the modulus can provide additional information about the nature of ordered phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17519v1-abstract-full').style.display = 'none'; document.getElementById('2403.17519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10604">arXiv:2307.10604</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10604">pdf</a>, <a href="https://arxiv.org/format/2307.10604">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Tuning superconductivity and spin-vortex fluctuations in CaKFe$_4$As$_4$ through in-plane antisymmetric strains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Valadkhani%2C+A">Adrian Valadkhani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=C%C3%A9spedes%2C+B+Z">Bel茅n Z煤帽iga C茅spedes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mandloi%2C+S">Salony Mandloi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">Mingyu Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+J">Juan Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10604v1-abstract-short" style="display: inline;"> Lattice strains of appropriate symmetry have served as an excellent tool to explore the interaction of superconductivity in the iron-based superconductors with nematic and stripe spin-density wave (SSDW) order, which are both closely tied to an orthorhombic distortion. In this work, we contribute to a broader understanding of the coupling of strain to superconductivity and competing normal-state o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10604v1-abstract-full').style.display = 'inline'; document.getElementById('2307.10604v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10604v1-abstract-full" style="display: none;"> Lattice strains of appropriate symmetry have served as an excellent tool to explore the interaction of superconductivity in the iron-based superconductors with nematic and stripe spin-density wave (SSDW) order, which are both closely tied to an orthorhombic distortion. In this work, we contribute to a broader understanding of the coupling of strain to superconductivity and competing normal-state orders by studying CaKFe$_4$As$_4$ under large, in-plane strains of $B_{1g}$ and $B_{2g}$ symmetry. In contrast to the majority of iron-based superconductors, pure CaKFe$_4$As$_4$ exhibits superconductivity with relatively high transition temperature of $T_c\,\sim\,$35 K in proximity of a non-collinear, tetragonal, hedgehog spin-vortex crystal (SVC) order. Through experiments, we demonstrate an anisotropic in-plane strain response of $T_c$, which is reminiscent of the behavior of other pnictides with nematicity. However, our calculations suggest that in CaKFe$_4$As$_4$, this anisotropic response correlates with the one of the SVC fluctuations, highlighting the close interrelation of magnetism and high-$T_c$ superconductivity. By suggesting moderate $B_{2g}$ strains as an effective parameter to change the stability of SVC and SSDW, we outline a pathway to a unified phase diagram of iron-based superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10604v1-abstract-full').style.display = 'none'; document.getElementById('2307.10604v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures + references and supplemental information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17835">arXiv:2306.17835</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.17835">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adf3348">10.1126/science.adf3348 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant lattice softening at a Lifshitz transition in Sr$_{2}$RuO$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Noad%2C+H+M+L">Hilary M. L. Noad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishida%2C+K">Kousuke Ishida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">You-Sheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stangier%2C+V+C">Veronika C. Stangier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikugawa%2C+N">Naoki Kikugawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sokolov%2C+D+A">Dmitry A. Sokolov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nicklas%2C+M">Michael Nicklas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Bongjae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazin%2C+I+I">Igor I. Mazin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garst%2C+M">Markus Garst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmalian%2C+J">J枚rg Schmalian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hicks%2C+C+W">Clifford W. Hicks</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17835v1-abstract-short" style="display: inline;"> The interplay of electronic and structural degrees of freedom in solids is a topic of intense research. Experience and intuition suggest that structural changes drive conduction electron behavior, because the large number of valence electrons dominate the structural properties. As part of a seminal paper written over sixty years ago, Lifshitz discussed an alternative possibility: lattice softening&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17835v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17835v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17835v1-abstract-full" style="display: none;"> The interplay of electronic and structural degrees of freedom in solids is a topic of intense research. Experience and intuition suggest that structural changes drive conduction electron behavior, because the large number of valence electrons dominate the structural properties. As part of a seminal paper written over sixty years ago, Lifshitz discussed an alternative possibility: lattice softening driven by conduction electrons at topological Fermi surface transitions. The effect he predicted, however, was small, and has not been convincingly observed. Using measurements of the stress-strain relationship in the ultra-clean metal Sr$_{2}$RuO$_{4}$, we reveal a huge softening of the Young&#39;s modulus at a Lifshitz transition of a two-dimensional Fermi surface, and show that it is indeed entirely driven by the conduction electrons of the relevant energy band. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17835v1-abstract-full').style.display = 'none'; document.getElementById('2306.17835v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 16 figures (including supplementary information)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 382, 447-450 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08770">arXiv:2303.08770</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08770">pdf</a>, <a href="https://arxiv.org/format/2303.08770">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Elastocaloric effect of the heavy-fermion system YbPtBi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+B">Burkhard Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mackenzie%2C+A+P">Andrew P. Mackenzie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08770v1-abstract-short" style="display: inline;"> YbPtBi is one of the heavy-fermion systems with largest Sommerfeld coefficient $纬$ and is thus classified as a `super&#39;-heavy fermion material. In this work, we resolve the long-debated question about the hierarchy of relevant energy scales, such as crystal-electric field (CEF) levels, Kondo and magnetic ordering temperature, in YbPtBi. Through measurements of the a.c. elastocaloric effect and gene&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08770v1-abstract-full').style.display = 'inline'; document.getElementById('2303.08770v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08770v1-abstract-full" style="display: none;"> YbPtBi is one of the heavy-fermion systems with largest Sommerfeld coefficient $纬$ and is thus classified as a `super&#39;-heavy fermion material. In this work, we resolve the long-debated question about the hierarchy of relevant energy scales, such as crystal-electric field (CEF) levels, Kondo and magnetic ordering temperature, in YbPtBi. Through measurements of the a.c. elastocaloric effect and generic symmetry arguments, we identify an \textit{elastic level splitting} that is uniquely associated with the symmetry-allowed splitting of a quartet CEF level. This quartet, which we identify to be the first excited state at $螖/k_\text B\approx1.6\,\rm K$ above the doublet ground state at ambient pressure, is well below the Kondo temperature $T_\text K\approx10\,\rm K$. Thus, our analysis provides strong support for models that predict that the heavy electron mass is a result of an enhanced degeneracy of the CEF ground state, i.e., a quasi-sextet in YbPtBi. At the same time, our study shows the potential of the a.c. elastocaloric effect to control and quantify strain-induced changes of the CEF schemes, opening a different route to disentangle the CEF energy scales from other relevant energy scales in correlated quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08770v1-abstract-full').style.display = 'none'; document.getElementById('2303.08770v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, three figures + Supplemental information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09179">arXiv:2211.09179</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09179">pdf</a>, <a href="https://arxiv.org/format/2211.09179">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetism and $T-x$ phase diagrams of Na and Ag substituted EuCd$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joshi%2C+K+R">Kamal R. Joshi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghimire%2C+S">Sunil Ghimire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Timmons%2C+E">Erik Timmons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prozorov%2C+R">Ruslan Prozorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09179v1-abstract-short" style="display: inline;"> EuCd$_2$As$_2$ is an antiferromagnetic semimetal, that can host non-trivial topological properties, depending upon its magnetic state and excitations. Here, we report the synthesis and characterization of Eu(Cd$_{1-x}$Ag$_x$)$_2$As$_2$ and Eu$_{1-y}$Na$_y$Cd$_2$As$_2$, and study the evolution and nature of magnetic order with doping. Temperature-substitution phase diagrams are constructed from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09179v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09179v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09179v1-abstract-full" style="display: none;"> EuCd$_2$As$_2$ is an antiferromagnetic semimetal, that can host non-trivial topological properties, depending upon its magnetic state and excitations. Here, we report the synthesis and characterization of Eu(Cd$_{1-x}$Ag$_x$)$_2$As$_2$ and Eu$_{1-y}$Na$_y$Cd$_2$As$_2$, and study the evolution and nature of magnetic order with doping. Temperature-substitution phase diagrams are constructed from the electrical resistance and magnetic susceptibility data. We observe a splitting of the magnetic transition into two different transitions, and the gradual increase in one of the transition temperatures with Ag- and Na-substitution. The other transition remains more or less independent of doping. We further show that a magnetic state with a net ferromagnetic moment is stabilized by both Ag and Na doping and this can be explained by considering the changes in band filling due to substitution as suggested by density functional theory (DFT) calculations. We thus show that chemical substitution and the subsequent changes in band filling could be a pathway to tune the magnetic ground state and to stabilize a ferromagnetic phase in EuCd$_2$As$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09179v1-abstract-full').style.display = 'none'; document.getElementById('2211.09179v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14251">arXiv:2210.14251</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.14251">pdf</a>, <a href="https://arxiv.org/format/2210.14251">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/cryst12121689">10.3390/cryst12121689 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ingredients for Generalized Models of $魏$-Phase Organic Charge-Transfer Salts: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Riedl%2C+K">Kira Riedl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+R">Roser Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14251v2-abstract-short" style="display: inline;"> The families of organic charge-transfer salts $魏$-(BEDT-TTF)$_2X$ and $魏$-(BETS)$_2X$ have proven to serve as a powerful playground for the investigation of the physics of frustrated Mott insulators. These materials have been ascribed model character, since dimerization of the organic molecules allows to map these materials onto a single band Hubbard model, in which the dimers reside on an anisotr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14251v2-abstract-full').style.display = 'inline'; document.getElementById('2210.14251v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14251v2-abstract-full" style="display: none;"> The families of organic charge-transfer salts $魏$-(BEDT-TTF)$_2X$ and $魏$-(BETS)$_2X$ have proven to serve as a powerful playground for the investigation of the physics of frustrated Mott insulators. These materials have been ascribed model character, since dimerization of the organic molecules allows to map these materials onto a single band Hubbard model, in which the dimers reside on an anisotropic triangular lattice. By changing the inorganic unit $X$ or applying physical pressure, the correlation strength and anisotropy of the triangular lattice can be varied. This has lead to the discovery of a variety of exotic phenomena, including quantum spin liquid states, a plethora of long-range magnetic orders in proximity to a Mott metal-insulator transition, and unconventional superconductivity. While many of these phenomena can be described within this effective one-band Hubbard model on a triangular lattice, it became evident in recent years that this simplified description is insufficient to capture all observed magnetic and electronic properties. The ingredients for generalized models that are relevant include, but are not limited to, spin-orbit coupling, intra-dimer charge and spin degrees of freedom, electron-lattice coupling, as well as disorder effects. Here, we review selected theoretical and experimental discoveries that clearly demonstrate the relevance thereof. At the same time, we outline that these aspects are not only relevant to this class of organic charge-transfer salts, but are also receiving increasing attention in other classes of inorganic strongly correlated electron systems. This reinforces the model character that the $魏$-phase organic charge-transfer salts have for understanding and discovering novel phenomena in strongly correlated electron systems from a theoretical and experimental point of view. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14251v2-abstract-full').style.display = 'none'; document.getElementById('2210.14251v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version contains a completion of references and selected aspects are described in more detail</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Crystals 12, 1689 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10925">arXiv:2204.10925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10925">pdf</a>, <a href="https://arxiv.org/format/2204.10925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.214526">10.1103/PhysRevB.105.214526 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconductivity and phase diagrams of CaK(Fe$_{1-x}$Mn$_{x}$)$_{4}$As$_{4}$ single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+M">M. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+J">J. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">E. Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">L. Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meier%2C+W+R">W. R. Meier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kogan%2C+V+G">V. G. Kogan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10925v2-abstract-short" style="display: inline;"> Members of the CaK(Fe$_{1-x}$Mn$_{x}$)$_{4}$As$_{4}$ series have been synthesized in single crystalline form and characterized by elemental analysis, thermodynamic and transport measurements. These measurements show that the superconducting transition temperature decreases monotonically and is finally suppressed below 1.8 K. For $x$-values greater than 0.016, signatures of a magnetic transition ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10925v2-abstract-full').style.display = 'inline'; document.getElementById('2204.10925v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10925v2-abstract-full" style="display: none;"> Members of the CaK(Fe$_{1-x}$Mn$_{x}$)$_{4}$As$_{4}$ series have been synthesized in single crystalline form and characterized by elemental analysis, thermodynamic and transport measurements. These measurements show that the superconducting transition temperature decreases monotonically and is finally suppressed below 1.8 K. For $x$-values greater than 0.016, signatures of a magnetic transition can be detected in both thermodynamic and transport measurements in which kink-like features allow for the determination of the transition temperature, $T^*$, that increases as Mn substitution increases. A temperature-composition ($T$-$x$) phase diagram is constructed, revealing a half-dome of superconductivity with the magnetic transition temperature, $T^*$, appearing near 26 K for $x$ $\sim$ 0.017 and rising slowly up to 33 K for $x$ $\sim$ 0.036. Specific heat data are used to track the jump in specific heat at $T_c$; The CaK(Fe$_{1-x}$Mn$_x$)$_4$As$_4$ data does not follow the scaling of $螖$$C_{p}$ with $T_{c}^3$ as many of the other Fe-based superconducting systems do. Elastoresistivity coefficients, $2m_{66}$ and $m_{11}-m_{12}$, as a function of temperature are also measured. $2m_{66}$ and $m_{11}-m_{12}$ are qualitatively similar to CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$. This may indicate that the magnetic order in Mn substituted system may be still the same as CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$. A clear change in $H^\prime_{c2}$($T$)/$T_c$, where $H^\prime_{c2}$($T$) is d$H_{c2}$($T$)/d$T$, at $x$ $\sim$ 0.015 is observed and probably is related to change of the Fermi surface due to magnetic order. Coherence lengths and the London penetration depths are also calculated based on $H_{c1}$ and $H_{c2}$ data. Coherence lengths as the function of $x$ also shows the changes near $x$ = 0.015. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10925v2-abstract-full').style.display = 'none'; document.getElementById('2204.10925v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Fig. 16 a and b were corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 214526 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12233">arXiv:2201.12233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.12233">pdf</a>, <a href="https://arxiv.org/format/2201.12233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.184431">10.1103/PhysRevB.105.184431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrostatic pressure effect on Co-based honeycomb magnet BaCo2(AsO4)2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huyan%2C+S">Shuyuan Huyan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+J">Juan Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12233v1-abstract-short" style="display: inline;"> The honeycomb antiferromagnet BaCo2(AsO4)2, in which small in-plane magnetic fields (H1 = 0.26 T and H2 = 0.52 T at T = 1.8 K &lt; TN = 5.4 K) induce two magnetic phase transitions, has attracted attention as a possible candidate material for the realization of Kitaev physics based on the 3d element Co2+. Here, we report on the change of the transition temperature TN and the critical fields H1 and H2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12233v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12233v1-abstract-full" style="display: none;"> The honeycomb antiferromagnet BaCo2(AsO4)2, in which small in-plane magnetic fields (H1 = 0.26 T and H2 = 0.52 T at T = 1.8 K &lt; TN = 5.4 K) induce two magnetic phase transitions, has attracted attention as a possible candidate material for the realization of Kitaev physics based on the 3d element Co2+. Here, we report on the change of the transition temperature TN and the critical fields H1 and H2 of BaCo2(AsO4)2 with hydrostatic pressure up to ~ 20 kbar, as determined from magnetization and specific heat measurements. Within this pressure range, a marginal increase of the magnetic ordering temperature is observed. At the same time, the critical fields are changed significantly (up to ~ 25-35 %). Specifically, we find that H1 is increased with hydrostatic pressure, i.e., the antiferromagnetic state is stabilized with hydrostatic pressure, whereas H2, which was previously associated with a transition into a proposed Kitaev spin liquid state, decreases with increasing pressure. These results put constraints on the magnetic models that are used to describe the low-temperature magnetic properties of BaCo2(AsO4)2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12233v1-abstract-full').style.display = 'none'; document.getElementById('2201.12233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07508">arXiv:2110.07508</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.07508">pdf</a>, <a href="https://arxiv.org/format/2110.07508">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> A Low Temperature Structural Transition in Canfieldite, Ag$_8$SnS$_6$, Single Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Slade%2C+T+J">Tyler J. Slade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gvozdetskyi%2C+V">Volodymyr Gvozdetskyi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">John M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreyssig%2C+A">Andreas Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mudryk%2C+Y">Yaroslav Mudryk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ribeiro%2C+R+A">Raquel A. Ribeiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pecharsky%2C+V+K">Vitalij K. Pecharsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaikina%2C+J+V">Julia V. Zaikina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Budko%2C+S+L">Sergey L. Budko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07508v1-abstract-short" style="display: inline;"> Canfieldite, Ag$_8$SnS$_6$, is a semiconducting mineral notable for its high ionic conductivity, photosensitivity, and low thermal conductivity. We report the solution growth of large single crystals of Ag$_8$SnS$_6$ of mass up to 1 g from a ternary Ag-Sn-S melt. On cooling from high temperature, Ag$_8$SnS$_6$ undergoes a known cubic (F-43m) to orthorhombic (Pna2$_1$) phase transition at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07508v1-abstract-full').style.display = 'inline'; document.getElementById('2110.07508v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07508v1-abstract-full" style="display: none;"> Canfieldite, Ag$_8$SnS$_6$, is a semiconducting mineral notable for its high ionic conductivity, photosensitivity, and low thermal conductivity. We report the solution growth of large single crystals of Ag$_8$SnS$_6$ of mass up to 1 g from a ternary Ag-Sn-S melt. On cooling from high temperature, Ag$_8$SnS$_6$ undergoes a known cubic (F-43m) to orthorhombic (Pna2$_1$) phase transition at $\approx$ 460 K. By studying the magnetization and thermal expansion between 5-300 K, we discover a second structural transition at $\approx$ 120 K. Single crystal X-ray diffraction reveals the low temperature phase adopts a different orthorhombic structure with space group Pmn2$_1$ (a = 7.6629(5) 脜, b = 7.5396(5) 脜, c = 10.6300(5) 脜, Z = 2 at 90 K) that is isostructural to the room temperature forms of the related Se-based compounds Ag$_8$SnSe$_6$ and Ag$_8$GeSe$_6$. The 120 K transition is first-order and has a large thermal hysteresis. Based on magnetization and thermal expansion data, the room temperature polymorph can be kinetically arrested into a metastable state by rapidly cooling to temperatures below 40 K. We lastly compare the room and low temperature forms of Ag$_8$SnS$_6$ with its argyrodite analogues, Ag$_8$TQ$_6$ (T = Si, Ge, Sn; Q = S, Se), and identify a trend relating the preferred structures to the unit cell volume, suggesting smaller phase volume favors the Pna2$_1$ arrangement. We support this picture by showing that the transition to the Pmn2$_1$ phase is avoided in Ge alloyed Ag$_8$Sn$_{1-x}$Ge$_x$S$_6$ samples as well as pure Ag$_8$GeS$_6$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07508v1-abstract-full').style.display = 'none'; document.getElementById('2110.07508v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01871">arXiv:2108.01871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01871">pdf</a>, <a href="https://arxiv.org/format/2108.01871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.155124">10.1103/PhysRevB.104.155124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-induced ferromagnetism in the topological semimetal EuCd$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valadkhani%2C+A">Adrian Valadkhani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+R">Ritu Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuthanazhi%2C+B">Brinda Kuthanazhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">John M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sapkota%2C+A">Aashish Sapkota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">Rustem Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+R">Roser Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01871v1-abstract-short" style="display: inline;"> The antiferromagnet and semimetal EuCd$_2$As$_2$ has recently attracted a lot of attention due to a wealth of topological phases arising from the interplay of topology and magnetism. In particular, the presence of a single pair of Weyl points is predicted for a ferromagnetic configuration of Eu spins along the $c$-axis in EuCd$_2$As$_2$. In the search for such phases, we investigate here the effec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01871v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01871v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01871v1-abstract-full" style="display: none;"> The antiferromagnet and semimetal EuCd$_2$As$_2$ has recently attracted a lot of attention due to a wealth of topological phases arising from the interplay of topology and magnetism. In particular, the presence of a single pair of Weyl points is predicted for a ferromagnetic configuration of Eu spins along the $c$-axis in EuCd$_2$As$_2$. In the search for such phases, we investigate here the effects of hydrostatic pressure in EuCd$_2$As$_2$. For that, we present specific heat, transport and $渭$SR measurements under hydrostatic pressure up to $\sim\,2.5\,$GPa, combined with {\it ab initio} density functional theory (DFT) calculations. Experimentally, we establish that the ground state of EuCd$_2$As$_2$ changes from in-plane antiferromagnetic (AFM$_{ab}$) to ferromagnetic at a critical pressure of $\,\approx\,$2\,GPa, which is likely characterized by the moments dominantly lying within the $ab$ plane (FM$_{ab}$). The AFM$_{ab}$-FM$_{ab}$ transition at such a relatively low pressure is supported by our DFT calculations. Furthermore, our experimental and theoretical results indicate that EuCd$_2$As$_2$ moves closer to the sought-for FM$_c$ state (moments $\parallel$ $c$) with increasing pressure further. We predict that a pressure of $\approx$\,23\,GPa will stabilize the FM$_c$ state, if Eu remains in a 2+ valence state. Thus, our work establishes hydrostatic pressure as a key tuning parameter that (i) allows for a continuous tuning between magnetic ground states in a single sample of EuCd$_2$As$_2$ and (ii) enables the exploration of the interplay between magnetism and topology and thereby motivates a series of future experiments on this magnetic Weyl semimetal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01871v1-abstract-full').style.display = 'none'; document.getElementById('2108.01871v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures in main text, 6 figures in Appendix; 14 pages total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.02130">arXiv:2106.02130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.02130">pdf</a>, <a href="https://arxiv.org/format/2106.02130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.147204">10.1103/PhysRevLett.127.147204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin Vortex Crystal Order in Organic Triangular Lattice Compound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Riedl%2C+K">Kira Riedl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zielke%2C+D">David Zielke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartmann%2C+S">Steffi Hartmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vyaselev%2C+O+M">Oleg M. Vyaselev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kushch%2C+N+D">Nataliya D. Kushch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeschke%2C+H+O">Harald O. Jeschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Michael Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+R">Roser Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kartsovnik%2C+M+V">Mark V. Kartsovnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winter%2C+S+M">Stephen M. Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.02130v1-abstract-short" style="display: inline;"> Organic salts represent an ideal experimental playground for studying the interplay between magnetic and charge degrees of freedom, which has culminated in the discovery of several spin-liquid candidates, such as $魏$-(ET)$_2$Cu$_2$(CN)$_3$ ($魏$-Cu). Recent theoretical studies indicate the possibility of chiral spin liquids stabilized by ring-exchange, but the parent states with chiral magnetic ord&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02130v1-abstract-full').style.display = 'inline'; document.getElementById('2106.02130v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.02130v1-abstract-full" style="display: none;"> Organic salts represent an ideal experimental playground for studying the interplay between magnetic and charge degrees of freedom, which has culminated in the discovery of several spin-liquid candidates, such as $魏$-(ET)$_2$Cu$_2$(CN)$_3$ ($魏$-Cu). Recent theoretical studies indicate the possibility of chiral spin liquids stabilized by ring-exchange, but the parent states with chiral magnetic order have not been observed in this material family. In this work, we discuss the properties of the recently synthesized $魏$-(BETS)$_2$Mn[N(CN)$_2$]$_3$ ($魏$-Mn). Based on analysis of specific heat, magnetic torque, and NMR measurements combined with ab initio calculations, we identify a spin-vortex crystal order. These observations definitively confirm the importance of ring-exchange in these materials, and support the proposed chiral spin-liquid scenario for triangular lattice organics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.02130v1-abstract-full').style.display = 'none'; document.getElementById('2106.02130v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 147204 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03479">arXiv:2105.03479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.03479">pdf</a>, <a href="https://arxiv.org/ps/2105.03479">ps</a>, <a href="https://arxiv.org/format/2105.03479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.174426">10.1103/PhysRevB.103.174426 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic properties of the itinerant ferromagnet LaCrGe3 under pressure studied by 139La NMR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rana%2C+K">K. Rana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kotegawa%2C+H">H. Kotegawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ullah%2C+R+R">R. R. Ullah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">E. Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tou%2C+H">H. Tou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taufour%2C+V">V. Taufour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Furukawa%2C+Y">Y. Furukawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03479v1-abstract-short" style="display: inline;"> $^{139}$La nuclear magnetic resonance (NMR) measurements under pressure ($p = 0-2.64$ GPa) have been carried out to investigate the static and dynamic magnetic properties of the itinerant ferromagnet LaCrGe$_3$. $^{139}$La-NMR spectra for all measured pressures in the ferromagnetically ordered state show a large shift due to the internal field induction $|$$B_{\rm int}$$|$ $\sim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03479v1-abstract-full').style.display = 'inline'; document.getElementById('2105.03479v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03479v1-abstract-full" style="display: none;"> $^{139}$La nuclear magnetic resonance (NMR) measurements under pressure ($p = 0-2.64$ GPa) have been carried out to investigate the static and dynamic magnetic properties of the itinerant ferromagnet LaCrGe$_3$. $^{139}$La-NMR spectra for all measured pressures in the ferromagnetically ordered state show a large shift due to the internal field induction $|$$B_{\rm int}$$|$ $\sim$ 4 T at the La site produced by Cr ordered moments. The change in $B_{\rm int}$ by less than 5\% with $p$ up to 2.64~GPa indicates that the Cr 3$d$ moments are robust under pressure. The temperature dependence of NMR shift and $B_{\rm int}$ suggest that the ferromagnetic order develops below $\sim$ 50~K under higher pressures in a magnetic field of $\sim$ 7.2 T. Based on the analysis of NMR data using the self-consistent-renormalization (SCR) theory, the spin fluctuations in the paramagnetic state well above $T_{\rm C}$ are revealed to be three dimensional ferromagnetic throughout the measured $p$ region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03479v1-abstract-full').style.display = 'none'; document.getElementById('2105.03479v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, accepted for publication in Phys. Rev. B. arXiv admin note: text overlap with arXiv:1906.00249</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 174426 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.11869">arXiv:2102.11869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.11869">pdf</a>, <a href="https://arxiv.org/format/2102.11869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.224407">10.1103/PhysRevB.103.224407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic order in van der Waals antiferromagnet CrPS4: anisotropic H-T phase diagrams and effects of pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Slade%2C+T+J">Tyler J. Slade</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.11869v2-abstract-short" style="display: inline;"> Single crystalline samples of the van der Waals antiferromagnet CrPS4 were studied by measurements of specific heat and comprehensive anisotropic temperature- and magnetic field-dependent magnetization. In addition, measurements of the heat capacity and magnetization were performed under pressures of up to ~21 kbar and ~14 kbar respectively. At ambient pressure, two magnetic transitions are observ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11869v2-abstract-full').style.display = 'inline'; document.getElementById('2102.11869v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.11869v2-abstract-full" style="display: none;"> Single crystalline samples of the van der Waals antiferromagnet CrPS4 were studied by measurements of specific heat and comprehensive anisotropic temperature- and magnetic field-dependent magnetization. In addition, measurements of the heat capacity and magnetization were performed under pressures of up to ~21 kbar and ~14 kbar respectively. At ambient pressure, two magnetic transitions are observed, second order from a paramagnetic to an antiferromagnetic state at TN ~ 37 K, and a first-order spin reorientation transition at T* ~ 34 K. Anisotropic H - T phase diagrams were constructed using the M(T,H) data. As pressure is increased, TN is weakly suppressed with dTN/dP ~ -0.1 K/kbar. T*, on the other hand, is suppressed quite rapidly, with dT*/dP ~ -2 K/kbar, extrapolating to a possible quantum phase transition at Pc ~ 15 kbar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11869v2-abstract-full').style.display = 'none'; document.getElementById('2102.11869v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 224407 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.04416">arXiv:2011.04416</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.04416">pdf</a>, <a href="https://arxiv.org/format/2011.04416">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.075111">10.1103/PhysRevB.103.075111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of short-range magnetic order and avoided ferromagnetic quantum criticality in pressurized LaCrGe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilde%2C+J+M">John M. Wilde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">Rustem Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dissanayake%2C+S">Sachith Dissanayake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+R">Ritu Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">Masaaki Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ye%2C+F">Feng Ye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haberl%2C+B">Bianca Haberl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaluarachchi%2C+U">Udhara Kaluarachchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McQueeney%2C+R+J">Robert J. McQueeney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreyssig%2C+A">Andreas Kreyssig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.04416v1-abstract-short" style="display: inline;"> LaCrGe$_3$ has attracted attention as a paradigm example of the avoidance of ferromagnetic (FM) quantum criticality in an itinerant magnet. By combining thermodynamic, transport, x-ray and neutron scattering as well as $渭$SR measurements, we refined the temperature-pressure phase diagram of LaCrGe$_3$. We provide thermodynamic evidence (i) for the first-order character of the FM transition when it&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04416v1-abstract-full').style.display = 'inline'; document.getElementById('2011.04416v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.04416v1-abstract-full" style="display: none;"> LaCrGe$_3$ has attracted attention as a paradigm example of the avoidance of ferromagnetic (FM) quantum criticality in an itinerant magnet. By combining thermodynamic, transport, x-ray and neutron scattering as well as $渭$SR measurements, we refined the temperature-pressure phase diagram of LaCrGe$_3$. We provide thermodynamic evidence (i) for the first-order character of the FM transition when it is suppressed to low temperatures and (ii) for the formation of new phases at high pressures. From our microscopic data, we infer that short-range FM ordered clusters exist in these high-pressure phases. These results suggest that LaCrGe$_3$ is a rare example, which fills the gap between the two extreme limits of avoided FM quantum criticality in clean and strongly disordered metals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.04416v1-abstract-full').style.display = 'none'; document.getElementById('2011.04416v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures plus Supplemental Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 075111 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.03086">arXiv:2011.03086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.03086">pdf</a>, <a href="https://arxiv.org/format/2011.03086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.054419">10.1103/PhysRevB.103.054419 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Avoided ferromagnetic quantum critical point in pressurized La$_5$Co$_2$Ge$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saunders%2C+S+M">Scott M. Saunders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.03086v1-abstract-short" style="display: inline;"> We present the pressure-temperature phase diagram La$_5$Co$_2$Ge$_3$ up to $\sim$ 5\,GPa, which was constructed from magnetization, resistivity and specific heat measurements. At ambient pressure, La$_5$Co$_2$Ge$_3$ is an itinerant ferromagnet with a Curie temperature $T_\textrm C\sim$ 4\,K. Upon increasing pressure up to $\sim$ 1.7\,GPa, $T_\textrm C$ is suppressed down to $\sim$ 3\,K. Upon furth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03086v1-abstract-full').style.display = 'inline'; document.getElementById('2011.03086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.03086v1-abstract-full" style="display: none;"> We present the pressure-temperature phase diagram La$_5$Co$_2$Ge$_3$ up to $\sim$ 5\,GPa, which was constructed from magnetization, resistivity and specific heat measurements. At ambient pressure, La$_5$Co$_2$Ge$_3$ is an itinerant ferromagnet with a Curie temperature $T_\textrm C\sim$ 4\,K. Upon increasing pressure up to $\sim$ 1.7\,GPa, $T_\textrm C$ is suppressed down to $\sim$ 3\,K. Upon further increasing pressure, our results suggest that La$_5$Co$_2$Ge$_3$ enters a different low-temperature ground state. The corresponding transition temperature, $T^*$, has a nonmonotonic pressure dependence up to $\sim$ 5\,GPa. Our results demonstrate that the ferromagnetic quantum critical point in La$_5$Co$_2$Ge$_3$ is avoided by the appearance of a different, likely magnetically ordered state that has an antiferromagnetic component. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03086v1-abstract-full').style.display = 'none'; document.getElementById('2011.03086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 054419 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.11703">arXiv:2007.11703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.11703">pdf</a>, <a href="https://arxiv.org/format/2007.11703">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Characterization of the pressure coefficient of manganin and temperature evolution of pressure in piston-cylinder cells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ribeiro%2C+R+A">Raquel A. Ribeiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ata%2C+A">Arif Ata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tutsch%2C+U">Ulrich Tutsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Michael Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.11703v1-abstract-short" style="display: inline;"> We report measurements of the temperature- and pressure-dependent resistance, $R(T,p)$, of a manganin manometer in a $^4$He-gas pressure setup from room temperature down to the solidification temperature of $^4$He ($T_\textrm {solid}\sim$ 50 K at 0.8 GPa) for pressures, $p$, between 0 GPa and $\sim$0.8 GPa. The same manganin wire manometer was also measured in a piston-cylinder cell from 300 K dow&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11703v1-abstract-full').style.display = 'inline'; document.getElementById('2007.11703v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.11703v1-abstract-full" style="display: none;"> We report measurements of the temperature- and pressure-dependent resistance, $R(T,p)$, of a manganin manometer in a $^4$He-gas pressure setup from room temperature down to the solidification temperature of $^4$He ($T_\textrm {solid}\sim$ 50 K at 0.8 GPa) for pressures, $p$, between 0 GPa and $\sim$0.8 GPa. The same manganin wire manometer was also measured in a piston-cylinder cell from 300 K down to 1.8 K and for pressures between 0 GPa to $\sim$2 GPa. From these data, we infer the temperature and pressure dependence of the pressure coefficient of manganin, $伪(T,p)$, defined by the equation $R_p = (1+伪p) R_0$ where $R_0$ and $R_p$ are the resistance of manganin at ambient pressure and finite pressure, respectively. Our results indicate that upon cooling $伪$ first decreases, then goes through a broad minimum at $\sim$120 K and increases again towards lower temperatures. In addition, we find that $伪$ is almost pressure-independent for $T\gtrsim$60 K up to $p\sim$2 GPa, but shows a pronounced $p$ dependence for $T\lesssim$60K. Using this manganin manometer, we demonstrate that $p$ overall decreases with decreasing temperature in the piston-cylinder cell for the full pressure range and that the size of the pressure difference between room temperature and low temperatures ($T=1.8$ K), $螖p$, decreases with increasing pressure. We also compare the pressure values inferred from the magnanin manometer with the low-temperature pressure, determined from the superconducting transition temperature of elemental lead (Pb). As a result of these data and analysis we propose a practical algorithm to infer the evolution of pressure with temperature in a piston-cylinder cell. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11703v1-abstract-full').style.display = 'none'; document.getElementById('2007.11703v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.09791">arXiv:2005.09791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.09791">pdf</a>, <a href="https://arxiv.org/format/2005.09791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/andp.202000248">10.1002/andp.202000248 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrostatic and uniaxial pressure tuning of iron-based superconductors: Insights into superconductivity, magnetism, nematicity and collapsed tetragonal transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.09791v1-abstract-short" style="display: inline;"> Iron-based superconductors are well-known for their intriguing phase diagrams, which manifest a complex interplay of electronic, magnetic and structural degrees of freedom. Among the phase transitions observed are superconducting, magnetic, and several types of structural transitions, including a tetragonal-to-orthorhombic and a collapsed-tetragonal transition. In particular, the widely-observed t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09791v1-abstract-full').style.display = 'inline'; document.getElementById('2005.09791v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.09791v1-abstract-full" style="display: none;"> Iron-based superconductors are well-known for their intriguing phase diagrams, which manifest a complex interplay of electronic, magnetic and structural degrees of freedom. Among the phase transitions observed are superconducting, magnetic, and several types of structural transitions, including a tetragonal-to-orthorhombic and a collapsed-tetragonal transition. In particular, the widely-observed tetragonal-to-orthorhombic transition is believed to be a result of an electronic order that is coupled to the crystalline lattice and is, thus, referred to as nematic transition. Nematicity is therefore a prominent feature of these materials, which signals the importance of the coupling of electronic and lattice properties. Correspondingly, these systems are particularly susceptible to tuning via pressure (hydrostatic, uniaxial, or some combination). We review efforts to probe the phase diagrams of pressure-tuned iron-based superconductors, with a strong focus on our own recent insights into the phase diagrams of several members of this material class under hydrostatic pressure. These studies on FeSe, Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ were, to a significant extent, made possible by advances of what measurements can be adapted to the use under differing pressure environments. We point out the potential impact of these tools for the study of the wider class of strongly correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.09791v1-abstract-full').style.display = 'none'; document.getElementById('2005.09791v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 17 figures, submitted to Annalen der Physik</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.08599">arXiv:1911.08599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.08599">pdf</a>, <a href="https://arxiv.org/format/1911.08599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5139437">10.1063/1.5139437 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of elastoresistance under pressure by combining in-situ tunable quasi-uniaxial stress with hydrostatic pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.08599v1-abstract-short" style="display: inline;"> Uniaxial stress, as well as hydrostatic pressure are often used to tune material properties in condensed matter physics. Here, we present a setup which allows for the study of the combined effects of quasi-uniaxial stress and hydrostatic pressure. Following earlier designs for measurements under finite stress at ambient pressure (e.g., Chu et al., Science 337, 710 (2012)), the present setup utiliz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08599v1-abstract-full').style.display = 'inline'; document.getElementById('1911.08599v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.08599v1-abstract-full" style="display: none;"> Uniaxial stress, as well as hydrostatic pressure are often used to tune material properties in condensed matter physics. Here, we present a setup which allows for the study of the combined effects of quasi-uniaxial stress and hydrostatic pressure. Following earlier designs for measurements under finite stress at ambient pressure (e.g., Chu et al., Science 337, 710 (2012)), the present setup utilizes a piezoelectric actuator to change stress in situ inside the piston-cylinder pressure cell. We show that the actuator can be operated over the full temperature (from 30K up to 260 K) and pressure range (up to ~2GPa), resulting in a clear and measurable quasi-uniaxial strain. To demonstrate functionality, measurements of the elastoresistance (i.e., the change of resistance of a sample as a response to quasi-uniaxial strain) under finite hydrostatic pressure on the iron-based compound BaFe$_2$As$_2$ are presented as a proof-of-principle example, and discussed in the framework of electronic nematicity. Overall, this work introduces the combination of in situ tunable quasi-uniaxial stress and large (up to ~2GPa) hydrostatic pressure as a powerful combination in the study of novel electronic phases. In addition, it also points towards further technical advancements which can be made in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.08599v1-abstract-full').style.display = 'none'; document.getElementById('1911.08599v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures, 27 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.02057">arXiv:1911.02057</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.02057">pdf</a>, <a href="https://arxiv.org/ps/1911.02057">ps</a>, <a href="https://arxiv.org/format/1911.02057">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.140401">10.1103/PhysRevB.101.140401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impurity Moments Conceal Low-Energy Relaxation of Quantum Spin Liquids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pustogow%2C+A">A. Pustogow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Le%2C+T">T. Le</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H+-">H. -H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+Y">Yongkang Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">E. Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schubert%2C+H">H. Schubert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">M. Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brown%2C+S+E">S. E. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.02057v1-abstract-short" style="display: inline;"> We scrutinize the magnetic properties of $魏$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl through its first-order metal-insulator transition at $T_{\rm CO}=30$ K by means of $^1$H nuclear magnetic resonance (NMR). While in the metal we find Fermi-liquid behavior with temperature-independent $(T_1T)^{-1}$, the relaxation rate exhibits a pronounced enhancement when charge order sets in. The NMR spectra remain unchan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02057v1-abstract-full').style.display = 'inline'; document.getElementById('1911.02057v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.02057v1-abstract-full" style="display: none;"> We scrutinize the magnetic properties of $魏$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl through its first-order metal-insulator transition at $T_{\rm CO}=30$ K by means of $^1$H nuclear magnetic resonance (NMR). While in the metal we find Fermi-liquid behavior with temperature-independent $(T_1T)^{-1}$, the relaxation rate exhibits a pronounced enhancement when charge order sets in. The NMR spectra remain unchanged through the transition and no magnetic order stabilizes down to 25 mK. Similar to the isostructural spin-liquid candidates $魏$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ and $魏$-(BEDT-TTF)$_2$Ag$_2$(CN)$_3$, $T_1^{-1}$ acquires a dominant maximum (here around 5 K). Field-dependent experiments identify the low-temperature feature as a dynamic inhomogeneity contribution that is typically dominant over the intrinsic relaxation but gets suppressed with magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02057v1-abstract-full').style.display = 'none'; document.getElementById('1911.02057v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures; Supplemental Material: 3 pages, 2 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 140401 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11211">arXiv:1907.11211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11211">pdf</a>, <a href="https://arxiv.org/format/1907.11211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.064512">10.1103/PhysRevB.100.064512 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of Fermi surface for the pressure-tuned nematic transition in the BaFe$_2$As$_2$ family </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11211v2-abstract-short" style="display: inline;"> The tetragonal-to-orthorhombic phase transition at $T_s$, which precedes the antiferromagnetic phase transition at $T_N$ in many iron-based superconductors, is considered as one of the manifestations of electronic \textit{nematic} order. By constructing temperature-pressure phase diagrams of pure and Co-doped BaFe$_2$As$_2$, we study the relation of $T_s$ and $T_N$ under pressure $p$. Our data dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11211v2-abstract-full').style.display = 'inline'; document.getElementById('1907.11211v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11211v2-abstract-full" style="display: none;"> The tetragonal-to-orthorhombic phase transition at $T_s$, which precedes the antiferromagnetic phase transition at $T_N$ in many iron-based superconductors, is considered as one of the manifestations of electronic \textit{nematic} order. By constructing temperature-pressure phase diagrams of pure and Co-doped BaFe$_2$As$_2$, we study the relation of $T_s$ and $T_N$ under pressure $p$. Our data disclose two qualitatively different regimes in which $螖T\,=\,T_s-T_N$ either increases or decreases with $p$. We provide experimental evidence that the transition between the two regimes may be associated with sudden changes of the Fermi surface topology. Therefore, our results not only support the electronic origin of the structural order, but also emphasize the importance of details of the Fermi surface for the evolution of nematic order under pressure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11211v2-abstract-full').style.display = 'none'; document.getElementById('1907.11211v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures (+ Appendix)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 064512 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08645">arXiv:1907.08645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08645">pdf</a>, <a href="https://arxiv.org/format/1907.08645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.3.095006">10.1103/PhysRevMaterials.3.095006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physical properties of $R$Bi$_2$ ($R=$La, Ce) under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neilson%2C+K">Kathryn Neilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08645v1-abstract-short" style="display: inline;"> We present a study of electrical transport properties of $R$Bi$_2$ ($R$ = La, Ce) under hydrostatic pressure up to $\sim$ 2.5 GPa. These measurements are complemented by thermodynamic measurements of the specific heat on CeBi$_2$ at different pressures up to 2.55 GPa. For CeBi$_2$, we find a moderate increase of the antiferromagnetic transition, $T_\text N$, from 3.3 K to 4.4 K by pressures up to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08645v1-abstract-full').style.display = 'inline'; document.getElementById('1907.08645v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08645v1-abstract-full" style="display: none;"> We present a study of electrical transport properties of $R$Bi$_2$ ($R$ = La, Ce) under hydrostatic pressure up to $\sim$ 2.5 GPa. These measurements are complemented by thermodynamic measurements of the specific heat on CeBi$_2$ at different pressures up to 2.55 GPa. For CeBi$_2$, we find a moderate increase of the antiferromagnetic transition, $T_\text N$, from 3.3 K to 4.4 K by pressures up to 2.55 GPa. Notably, resistance measurements for both CeBi$_2$ and LaBi$_2$ show signatures of superconductivity for pressures above $\sim$ 1.7 GPa. However, the absence of superconducting feature in specific heat measurements for CeBi$_2$ indicates that superconductivity in CeBi$_2$ (and most likely LaBi$_2$ as well) is not bulk and likely originates from traces of Bi flux, either on the surface of the plate-like samples, or trapped inside the sample as laminar inclusions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08645v1-abstract-full').style.display = 'none'; document.getElementById('1907.08645v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 3, 095006 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.08550">arXiv:1907.08550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.08550">pdf</a>, <a href="https://arxiv.org/format/1907.08550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.094408">10.1103/PhysRevB.100.094408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiple ferromagnetic transitions and structural distortion in the van-der-Waals ferromagnet VI$_3$ at ambient and finite pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inagaki%2C+Y">Yuji Inagaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kong%2C+T">Tai Kong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Furukawa%2C+Y">Yuji Furukawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.08550v2-abstract-short" style="display: inline;"> We present a combined study of zero-field $^{51}$V and $^{127}$I NMR at ambient pressure and specific heat and magnetization measurements under pressure up to 2.08 GPa on bulk single crystals of the van-der-Waals ferromagnet VI$_3$. At ambient pressure, our results consistently demonstrate that VI$_3$ undergoes a structural transition at $T_s \approx $78 K, followed by two subsequent ferromagnetic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08550v2-abstract-full').style.display = 'inline'; document.getElementById('1907.08550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.08550v2-abstract-full" style="display: none;"> We present a combined study of zero-field $^{51}$V and $^{127}$I NMR at ambient pressure and specific heat and magnetization measurements under pressure up to 2.08 GPa on bulk single crystals of the van-der-Waals ferromagnet VI$_3$. At ambient pressure, our results consistently demonstrate that VI$_3$ undergoes a structural transition at $T_s \approx $78 K, followed by two subsequent ferromagnetic transitions at $T_{FM1} \approx $50 K and $T_{FM2} \approx $36 K upon cooling. At lowest temperature ($T &lt; T_{FM2}$), two magnetically-ordered V sites exist, whereas only one magnetically-ordered V site is observed for $T_{FM1} &lt; T\,&lt; T_{FM2}$. Whereas $T_{FM1}$ is almost unaffected by external pressure, $T_{FM2}$ is highly responsive to pressure and merges with the $T_{FM1}$ line at $p \approx 0.6 $GPa. At even higher pressures ($p \approx $1.25\,GPa), the $T_{FM2}$ line merges with the structural transition at $T_s$ which becomes moderately suppressed with $p$ for $p &lt; 1.25$ GPa. Taken together, our data point towards a complex magnetic structure and an interesting interplay of magnetic and structural degrees of freedom in VI$_3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.08550v2-abstract-full').style.display = 'none'; document.getElementById('1907.08550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures (+1 figure in Appendix)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 094408 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.01015">arXiv:1907.01015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.01015">pdf</a>, <a href="https://arxiv.org/format/1907.01015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.167002">10.1103/PhysRevLett.123.167002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bulk superconductivity and role of fluctuations in the iron-based superconductor FeSe at high pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%B6hmer%2C+A+E">Anna E. B枚hmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.01015v2-abstract-short" style="display: inline;"> The iron-based superconductor FeSe offers a unique possibility to study the interplay of superconductivity with purely nematic as well magnetic-nematic order by pressure (p) tuning. By measuring specific heat under p up to 2.36GPa, we study the multiple phases in FeSe using a thermodynamic probe. We conclude that superconductivity is bulk across the entire p range and competes with magnetism. Our&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01015v2-abstract-full').style.display = 'inline'; document.getElementById('1907.01015v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.01015v2-abstract-full" style="display: none;"> The iron-based superconductor FeSe offers a unique possibility to study the interplay of superconductivity with purely nematic as well magnetic-nematic order by pressure (p) tuning. By measuring specific heat under p up to 2.36GPa, we study the multiple phases in FeSe using a thermodynamic probe. We conclude that superconductivity is bulk across the entire p range and competes with magnetism. Our analysis suggests that superconducting and magnetic fluctuations exist over a wide temperature range above the respective bulk transition temperatures, whenever magnetism is present. These observations highlight similarities between FeSe and underdoped cuprate superconductors where fluctuations play a crucial role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01015v2-abstract-full').style.display = 'none'; document.getElementById('1907.01015v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures + Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 167002 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.08590">arXiv:1906.08590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.08590">pdf</a>, <a href="https://arxiv.org/ps/1906.08590">ps</a>, <a href="https://arxiv.org/format/1906.08590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.027601">10.1103/PhysRevLett.123.027601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice dynamics coupled to charge and spin degrees of freedom in the molecular dimer-Mott insulator $魏$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Matsuura%2C+M">Masato Matsuura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasaki%2C+T">Takahiko Sasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iguchi%2C+S">Satoshi Iguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+J">Jens M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stockert%2C+O">Oliver Stockert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piovano%2C+A">Andrea Piovano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%B6hm%2C+M">Martin B枚hm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+J+T">Jitae T. Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+S">Sananda Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winter%2C+S+M">Stephen M. Winter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakao%2C+A">Akiko Nakao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Michael Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.08590v3-abstract-short" style="display: inline;"> Inelastic neutron scattering measurements on the molecular dimer-Mott insulator $魏$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl reveal a phonon anomaly in a wide temperature range. Starting from $T_{\rm ins}\sim50$-$60$ K where the charge gap opens, the low-lying optical phonon modes become overdamped upon cooling towards the antiferromagnetic ordering temperature $T_\mathrm{N} = 27$ K, where also a ferroel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.08590v3-abstract-full').style.display = 'inline'; document.getElementById('1906.08590v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.08590v3-abstract-full" style="display: none;"> Inelastic neutron scattering measurements on the molecular dimer-Mott insulator $魏$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Cl reveal a phonon anomaly in a wide temperature range. Starting from $T_{\rm ins}\sim50$-$60$ K where the charge gap opens, the low-lying optical phonon modes become overdamped upon cooling towards the antiferromagnetic ordering temperature $T_\mathrm{N} = 27$ K, where also a ferroelectric ordering at $T_{\rm FE} \approx T_{\rm N}$ occurs. Conversely, the phonon damping becomes small again when spins and charges are ordered below $T_\mathrm{N}$, while no change of the lattice symmetry is observed across $T_\mathrm{N}$ in neutron diffraction measurements. We assign the phonon anomalies to structural fluctuations coupled to charge and spin degrees of freedom in the BEDT-TTF molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.08590v3-abstract-full').style.display = 'none'; document.getElementById('1906.08590v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures with Erratum ( 4 pages, 2 figures) and supplemental material (4 pages, 4 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.01099">arXiv:1902.01099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.01099">pdf</a>, <a href="https://arxiv.org/format/1902.01099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssb.201900044">10.1002/pssb.201900044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magneto-structural properties of the layered quasi-2D triangular-lattice antiferromagnets Cs$_2$CuCl$_{4-x}$Br$_x$ for ${x}$ = 0,1,2 and 4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thallapaka%2C+S+K">S. K. Thallapaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+B">B. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">E. Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Postulka%2C+L">L. Postulka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tutsch%2C+U">U. Tutsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+B">B. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thalmeier%2C+P">P. Thalmeier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritter%2C+F">F. Ritter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krellner%2C+C">C. Krellner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Y. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisov%2C+V">V. Borisov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">R. Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">M. Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.01099v1-abstract-short" style="display: inline;"> We present a study of the magnetic susceptibility $蠂_{mol}$ under variable hydrostatic pressure on single crystals of Cs$_2$CuCl$_{4-x}$Br$_x$. This includes the border compounds \textit{x} = 0 and 4, known as good realizations of the distorted triangular-lattice spin-1/2 Heisenberg antiferromagnet, as well as the isostructural stoichiometric systems Cs$_2$CuCl$_{3}$Br$_1$ and Cs$_2$CuCl$_{2}$Br&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01099v1-abstract-full').style.display = 'inline'; document.getElementById('1902.01099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.01099v1-abstract-full" style="display: none;"> We present a study of the magnetic susceptibility $蠂_{mol}$ under variable hydrostatic pressure on single crystals of Cs$_2$CuCl$_{4-x}$Br$_x$. This includes the border compounds \textit{x} = 0 and 4, known as good realizations of the distorted triangular-lattice spin-1/2 Heisenberg antiferromagnet, as well as the isostructural stoichiometric systems Cs$_2$CuCl$_{3}$Br$_1$ and Cs$_2$CuCl$_{2}$Br$_2$. For the determination of the exchange coupling constants $J$ and $J^{\prime}$, $蠂_{mol}$ data were fitted by a $J-J^{\prime}$ model \cite{Schmidt2015}. Its application, validated for the border compounds, yields a degree of frustration $J^{\prime}$/$J$ = 0.47 for Cs$_2$CuCl$_3$Br$_1$ and $J^{\prime}$/$J$ $\simeq$ 0.63 - 0.78 for Cs$_2$CuCl$_2$Br$_2$, making these systems particular interesting representatives of this family. From the evolution of the magnetic susceptibility under pressure up to about 0.4\,GPa, the maximum pressure applied, two observations were made for all the compounds investigated here. First, we find that the overall energy scale, given by $J_c = (J^2$ + $J^{\prime 2}$)$^{1/2}$, increases under pressure, whereas the ratio $J^{\prime}$/$J$ remains unchanged in this pressure range. These experimental observations are in accordance with the results of DFT calculations performed for these materials. Secondly, for the magnetoelastic coupling constants, extraordinarily small values are obtained. We assign these observations to a structural peculiarity of this class of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01099v1-abstract-full').style.display = 'none'; document.getElementById('1902.01099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.05089">arXiv:1901.05089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.05089">pdf</a>, <a href="https://arxiv.org/format/1901.05089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5084730">10.1063/1.5084730 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Use of Cernox thermometers in AC specific heat measurements under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drachuck%2C+G">Gil Drachuck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.05089v2-abstract-short" style="display: inline;"> We report on the resistance behavior of bare-chip Cernox thermometers under pressures up to 2 GPa, generated in a piston-cylinder pressure cell. Our results clearly show that Cernox thermometers, frequently used in low-temperature experiments due to their high sensitivity, remain highly sensitive even under applied pressure. We show that these thermometers are therefore ideally suited for measurem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05089v2-abstract-full').style.display = 'inline'; document.getElementById('1901.05089v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.05089v2-abstract-full" style="display: none;"> We report on the resistance behavior of bare-chip Cernox thermometers under pressures up to 2 GPa, generated in a piston-cylinder pressure cell. Our results clearly show that Cernox thermometers, frequently used in low-temperature experiments due to their high sensitivity, remain highly sensitive even under applied pressure. We show that these thermometers are therefore ideally suited for measurements of heat capacity under pressure utilizing an ac oscillation technique up to at least 150 K. Our Cernox-based system is very accurate in determining changes of the specific heat as a function of pressure as demonstrated by measurements of the heat capacity on three different test cases: (i) the superconducting transition in elemental Pb (T_{c} = 7.2 K), (ii) the antiferromagnetic transition in the rare-earth compound GdNiGe3 (T_{N} = 26 K) and (iii) the structural/magnetic transition in the iron-pnictide BaFe2As2 (T_{s,N} = 130 K). The chosen examples demonstrate the versatility of our technique for measuring the specific heat under pressure of various condensed matter systems with very different transition temperatures as well as amounts of removed entropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05089v2-abstract-full').style.display = 'none'; document.getElementById('1901.05089v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 90, 023911 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07789">arXiv:1809.07789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.07789">pdf</a>, <a href="https://arxiv.org/format/1809.07789">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/aaf03a">10.1088/1361-648X/aaf03a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of pressure on the physical properties of the superconductor NiBi3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">Lin-Lin Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manni%2C+S">Soham Manni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07789v2-abstract-short" style="display: inline;"> We present an experimental study of the superconducting properties of NiBi3 as a function of pressure by means of resistivity and magnetization measurements and combine our results with DFT calculations of the band structure under pressure. We find a moderate suppression of the critical temperature Tc from ~ 4.1K to ~ 3K by pressures up to 2GPa. By taking into account the change of the band struct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07789v2-abstract-full').style.display = 'inline'; document.getElementById('1809.07789v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07789v2-abstract-full" style="display: none;"> We present an experimental study of the superconducting properties of NiBi3 as a function of pressure by means of resistivity and magnetization measurements and combine our results with DFT calculations of the band structure under pressure. We find a moderate suppression of the critical temperature Tc from ~ 4.1K to ~ 3K by pressures up to 2GPa. By taking into account the change of the band structure as a function of pressure, we argue that the decrease in Tc is consistent with conventional, electron-phonon-mediated BCS-type superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07789v2-abstract-full').style.display = 'none'; document.getElementById('1809.07789v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 31 035701 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10043">arXiv:1808.10043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10043">pdf</a>, <a href="https://arxiv.org/format/1808.10043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.98.214509">10.1103/PhysRevB.98.214509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pressure-induced multiple phase transformations of the BaBi$_3$ superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xiang%2C+L">Li Xiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ribeiro%2C+R+A">Raquel A. Ribeiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaluarachchi%2C+U+S">Udhara S. Kaluarachchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nguyen%2C+M+C">Manh Cuong Nguyen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Cai-Zhuang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ho%2C+K">Kai-Ming Ho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">Sergey L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">Paul C. Canfield</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10043v1-abstract-short" style="display: inline;"> Measurements of temperature-dependent resistance and magnetization under hydrostatic pressures up to 2.13 GPa are reported for single-crystalline, superconducting BaBi$_3$. A temperature - pressure phase diagram is determined and the results suggest three different superconducting phases $伪$, $尾$, and $纬$ in the studied pressure range. We further show that occurrence of the three superconducting p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10043v1-abstract-full').style.display = 'inline'; document.getElementById('1808.10043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10043v1-abstract-full" style="display: none;"> Measurements of temperature-dependent resistance and magnetization under hydrostatic pressures up to 2.13 GPa are reported for single-crystalline, superconducting BaBi$_3$. A temperature - pressure phase diagram is determined and the results suggest three different superconducting phases $伪$, $尾$, and $纬$ in the studied pressure range. We further show that occurrence of the three superconducting phases is intuitively linked to phase transitions at higher temperature which are likely first order in nature. $T_p$, which separates phase $伪$ from $尾$ and $纬$, is associated with an abrupt resistance change as pressure is increased from 0.27 GPa to 0.33 GPa. Above 0.33 GPa, an &#34;S-shape&#34; anomaly in the temperature-dependent resistance curve, $T_\text S$, is observed and associated with the transition between the $尾$ and $纬$ phases. Further increasing of pressure above 1.05 GPa suppresses this transition and BaBi$_3$ stays in $纬$ phase over the whole investigated temperature range. These high-temperature anomalies are likely related to structural degrees of freedom. With the $伪$ phase being the ambient-pressure tetragonal structure ($P4/mmm$), our first-principle calculations suggest the $尾$ phase to be cubic structure ($Pm-3m$) and the $纬$ phase to be a distorted tetragonal structure where the Bi atoms are moved out of the face-centered position. Finally, an analysis of the evolution of the superconducting upper critical field with pressure further confirms these transitions in the superconducting state and suggests a possible change of band structure or a Lifshitz transition near 1.54 GPa in $纬$ phase. Given the large atomic numbers of both Ba and Bi, our results establish BaBi$_3$ as a good candidate for the study of the interplay of structure with superconductivity in the presence of strong spin-orbit coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10043v1-abstract-full').style.display = 'none'; document.getElementById('1808.10043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 98, 214509 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.05567">arXiv:1712.05567</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.05567">pdf</a>, <a href="https://arxiv.org/format/1712.05567">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/cryst8010038">10.3390/cryst8010038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of Disorder on the Pressure-Induced Mott Transition in $魏$-BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tutsch%2C+U">Ulrich Tutsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naji%2C+A">Ammar Naji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garst%2C+M">Markus Garst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6hler%2C+S">Sebastian K枚hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schubert%2C+H">Harald Schubert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasaki%2C+T">Takahiko Sasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Michael Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.05567v2-abstract-short" style="display: inline;"> We present a study of the influence of disorder on the Mott metal-insulator transition for the organic charge-transfer salt $魏$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl. To this end, disorder was introduced into the system in a controlled way by exposing the single crystals to x-ray irradiation. The crystals were then fine-tuned across the Mott transition by the application of continuously controllable He-ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05567v2-abstract-full').style.display = 'inline'; document.getElementById('1712.05567v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.05567v2-abstract-full" style="display: none;"> We present a study of the influence of disorder on the Mott metal-insulator transition for the organic charge-transfer salt $魏$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl. To this end, disorder was introduced into the system in a controlled way by exposing the single crystals to x-ray irradiation. The crystals were then fine-tuned across the Mott transition by the application of continuously controllable He-gas pressure at low temperatures. Measurements of the thermal expansion and resistance show that the first-order character of the Mott transition prevails for low irradiation doses achieved by irradiation times up to 100 h. For these crystals with a moderate degree of disorder, we find a first-order transition line which ends in a second-order critical endpoint, akin to the pristine crystals. Compared to the latter, however, we observe a significant reduction of both, the critical pressure $p_c$ and the critical temperature $T_c$. This result is consistent with the theoretically-predicted formation of a soft Coulomb gap in the presence of strong correlations and small disorder. Furthermore, we demonstrate, similar to the observation for the pristine sample, that the Mott transition after 50 h of irradiation is accompanied by sizable lattice effects, the critical behavior of which can be well described by mean-field theory. Our results demonstrate that the character of the Mott transition remains essentially unchanged at a low disorder level. However, after an irradiation time of 150 h, no clear signatures of a discontinuous metal-insulator transition could be revealed anymore. These results suggest that, above a certain disorder level, the metal-insulator transition becomes a smeared first-order transition with some residual hysteresis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05567v2-abstract-full').style.display = 'none'; document.getElementById('1712.05567v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, appeared in the Special Issue &#34;Advances in Organic Conductors and Superconductors&#34; of Crystals</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Crystals 2018, 8, 38 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.04734">arXiv:1712.04734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.04734">pdf</a>, <a href="https://arxiv.org/format/1712.04734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/cryst8020087">10.3390/cryst8020087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-temperature lattice effects in the spin-liquid candidate $魏$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Manna%2C+R+S">Rudra Sekhar Manna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartmann%2C+S">Steffi Hartmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlueter%2C+J+A">John A. Schlueter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Souza%2C+M">Mariano de Souza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Michael Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.04734v2-abstract-short" style="display: inline;"> The quasi-two-dimensional organic charge-transfer salt $魏$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ is one of the prime candidates for a quantum spin-liquid due the strong spin frustration of its anisotropic triangular lattice in combination with its proximity to the Mott transition. Despite intensive investigations of the material&#39;s low-temperature properties, several important questions remain to be answere&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04734v2-abstract-full').style.display = 'inline'; document.getElementById('1712.04734v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.04734v2-abstract-full" style="display: none;"> The quasi-two-dimensional organic charge-transfer salt $魏$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ is one of the prime candidates for a quantum spin-liquid due the strong spin frustration of its anisotropic triangular lattice in combination with its proximity to the Mott transition. Despite intensive investigations of the material&#39;s low-temperature properties, several important questions remain to be answered. Particularly puzzling are the 6\,K anomaly and the enigmatic effects observed in magnetic fields. Here we report on low-temperature measurements of lattice effects which were shown to be particularly strongly pronounced in this material (R. S. Manna \emph{et al.}, Phys. Rev. Lett. \textbf{104}, 016403 (2010)). A special focus of our study lies on sample-to-sample variations of these effects and their implications on the interpretation of experimental data. By investigating overall nine single crystals from two different batches, we can state that there are considerable differences in the size of the second-order phase transition anomaly around 6\,K, varying within a factor of 3. In addition, we find field-induced anomalies giving rise to pronounced features in the sample length for two out of these nine crystals for temperatures $T &lt;$ 9 K. We tentatively assign the latter effects to $B$-induced magnetic clusters suspected to nucleate around crystal imperfections. These $B$-induced effects are absent for the crystals where the 6\,K anomaly is most strongly pronounced. The large lattice effects observed at 6\,K are consistent with proposed pairing instabilities of fermionic excitations breaking the lattice symmetry. The strong sample-to-sample variation in the size of the phase transition anomaly suggests that the conversion of the fermions to bosons at the instability is only partial and to some extent influenced by not yet identified sample-specific parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04734v2-abstract-full').style.display = 'none'; document.getElementById('1712.04734v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Crystals 2018, 8(2), 87 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.08627">arXiv:1711.08627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.08627">pdf</a>, <a href="https://arxiv.org/format/1711.08627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-019-08685-1">10.1038/s41467-019-08685-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kondo-like phonon scattering in thermoelectric clathrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Euchner%2C+H">H. Euchner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">X. Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomes%2C+P">P. Tomes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokofiev%2C+A">A. Prokofiev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prochaska%2C+L">L. Prochaska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lientschnig%2C+G">G. Lientschnig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Svagera%2C+R">R. Svagera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartmann%2C+S">S. Hartmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">E. Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">M. Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paschen%2C+S">S. Paschen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.08627v1-abstract-short" style="display: inline;"> Crystalline solids are generally known as excellent heat conductors, amorphous materials or glasses as thermal insulators. It has thus come as a surprise that certain crystal structures defy this paradigm. A prominent example are type-I clathrates and other materials with guest-host structures. They sustain low-energy Einstein-like modes in their phonon spectra, but are also prone to various types&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08627v1-abstract-full').style.display = 'inline'; document.getElementById('1711.08627v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.08627v1-abstract-full" style="display: none;"> Crystalline solids are generally known as excellent heat conductors, amorphous materials or glasses as thermal insulators. It has thus come as a surprise that certain crystal structures defy this paradigm. A prominent example are type-I clathrates and other materials with guest-host structures. They sustain low-energy Einstein-like modes in their phonon spectra, but are also prone to various types of disorder and phonon-electron scattering and thus the mechanism responsible for their ultralow thermal conductivities has remained elusive. While recent ab initio lattice dynamics simulations show that the Einstein-like modes enhance phonon-phonon Umklapp scattering, they reproduce experimental data only at low temperatures. Here we show that a new effect, an &#34;all phononic Kondo effect&#34;, can resolve this discrepancy. This is evidenced by our thermodynamic and transport measurements on various clathrate single crystal series and their comparison with ab initio simulations. Our new understanding devises design strategies to further suppress the thermal conductivity of clathrates and other related materials classes, with relevance for the field of thermoelectric waste heat recovery but also more generally for phononic applications. More fundamentally, it may trigger theoretical work on strong correlation effects in phonon systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.08627v1-abstract-full').style.display = 'none'; document.getElementById('1711.08627v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript with 4 figures, Supplementary Material with 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 10, 887 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.07384">arXiv:1711.07384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.07384">pdf</a>, <a href="https://arxiv.org/format/1711.07384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.247601">10.1103/PhysRevLett.120.247601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for electronically-driven ferroelectricity in the family of strongly correlated dimerized BEDT-TTF molecular conductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+J+K+H">Jonas K. H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lunkenheimer%2C+P">Peter Lunkenheimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zielke%2C+D">David Zielke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6hler%2C+S">Sebastian K枚hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolb%2C+F">Felizitas Kolb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Nidda%2C+H+K">Hans-Albrecht Krug von Nidda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winter%2C+S+M">Stephen M. Winter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schubert%2C+H">Harald Schubert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlueter%2C+J+A">John A. Schlueter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeschke%2C+H+O">Harald O. Jeschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+R">Roser Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Michael Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.07384v2-abstract-short" style="display: inline;"> By applying measurements of the dielectric constants and relative length changes to the dimerized molecular conductor $魏$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl, we provide evidence for order-disorder type electronic ferroelectricity which is driven by charge order within the (BEDT-TTF)$_2$ dimers and stabilized by a coupling to the anions. According to our density functional theory calculations, this materi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07384v2-abstract-full').style.display = 'inline'; document.getElementById('1711.07384v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.07384v2-abstract-full" style="display: none;"> By applying measurements of the dielectric constants and relative length changes to the dimerized molecular conductor $魏$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl, we provide evidence for order-disorder type electronic ferroelectricity which is driven by charge order within the (BEDT-TTF)$_2$ dimers and stabilized by a coupling to the anions. According to our density functional theory calculations, this material is characterized by a moderate strength of dimerization. This system thus bridges the gap between strongly dimerized materials, often approximated as dimer-Mott systems at 1/2 filling, and non- or weakly dimerized systems at 1/4 filling exhibiting charge order. Our results indicate that intra-dimer charge degrees of freedom are of particular importance in correlated $魏$-(BEDT-TTF)$_2$X salts and can create novel states, such as electronically-driven multiferroicity or charge-order-induced quasi-1D spin liquids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07384v2-abstract-full').style.display = 'none'; document.getElementById('1711.07384v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures + Supplementary Information (8 pages, 8 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 247601 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08629">arXiv:1710.08629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.08629">pdf</a>, <a href="https://arxiv.org/format/1710.08629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.97.075115">10.1103/PhysRevB.97.075115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Insights from experiment and $ab\,initio$ calculations into the glass-like transition in the molecular conductor $魏$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winter%2C+S+M">Stephen M. Winter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlueter%2C+J+A">John A. Schlueter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schubert%2C+H">Harald Schubert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+J">Jens M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Michael Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08629v2-abstract-short" style="display: inline;"> We present high-resolution measurements of the relative length change as a function of temperature of the organic charge-transfer salt $魏$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl. We identify anomalous features at $T_g \approx\,63$ K which can be assigned to a kinetic glass-like ordering transition. By determining the activation energy $E_A$, this glass-like transition can be related to conformational degrees&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08629v2-abstract-full').style.display = 'inline'; document.getElementById('1710.08629v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08629v2-abstract-full" style="display: none;"> We present high-resolution measurements of the relative length change as a function of temperature of the organic charge-transfer salt $魏$-(BEDT-TTF)$_2$Hg(SCN)$_2$Cl. We identify anomalous features at $T_g \approx\,63$ K which can be assigned to a kinetic glass-like ordering transition. By determining the activation energy $E_A$, this glass-like transition can be related to conformational degrees of freedom of the ethylene endgroups of the organic building block BEDT-TTF. As opposed to other $魏$-(BEDT-TTF)$_2X$ salts, we identify a peculiar ethylene endgroup ordering in the present material in which only one of the two crystallographically inequivalent ethylene endgroups is subject to glass-like ordering. This experimental finding is fully consistent with our predictions from $ab\,initio$ calculations from which we estimate the energy differences $螖E$ and the activation energies $E_A$ between different conformations. The present results indicate that the specific interaction between the ethylene endgroups and the nearby anion layers leads to different energetics of the inequivalent ethylene endgroups, as evidenced by different ratios $E_A/螖E$. We infer that the ratio $E_A/螖E$ is a suitable parameter to identify the tendency of ethylene endgroups towards glass-like freezing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08629v2-abstract-full').style.display = 'none'; document.getElementById('1710.08629v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, Supplementary Information (2 pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 97, 075115 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.00141">arXiv:1606.00141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.00141">pdf</a>, <a href="https://arxiv.org/ps/1606.00141">ps</a>, <a href="https://arxiv.org/format/1606.00141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.144513">10.1103/PhysRevB.94.144513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined effects of Sr substitution and pressure on the ground states in CaFe$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kn%C3%B6ner%2C+S">S. Kn枚ner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">E. Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6hler%2C+S">S. K枚hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+B">B. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tutsch%2C+U">U. Tutsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+S">S. Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Torikachvili%2C+M+S">M. S. Torikachvili</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">M. Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.00141v1-abstract-short" style="display: inline;"> We present a detailed study of the combined effects of Sr substitution and hydrostatic pressure on the ground-state properties of CaFe$_2$As$_2$. Measurements of the electrical resistance and magnetic susceptibility, both at ambient and finite pressure $P$ $\leq$ 2$\,$GPa, were performed on Ca$_{1-x}$Sr$_x$Fe$_2$As$_2$ single crystals grown out of Sn flux. We find that upon Sr substitution the ran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00141v1-abstract-full').style.display = 'inline'; document.getElementById('1606.00141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.00141v1-abstract-full" style="display: none;"> We present a detailed study of the combined effects of Sr substitution and hydrostatic pressure on the ground-state properties of CaFe$_2$As$_2$. Measurements of the electrical resistance and magnetic susceptibility, both at ambient and finite pressure $P$ $\leq$ 2$\,$GPa, were performed on Ca$_{1-x}$Sr$_x$Fe$_2$As$_2$ single crystals grown out of Sn flux. We find that upon Sr substitution the ranges of stability of both the structural-magnetic transition and the transition into the non-magnetic collapsed tetragonal phase are shifted to higher pressure levels with the latter moving at a higher rate. This suggests the possibility of separating the two phase lines, which intersect already at elevated temperatures for $x$ = 0 and low Sr concentration levels. For $x$ = 0.177 we find strong evidence that both phases remain separated down to lowest temperature and that a zero-resistance state emerges in this intermediate pressure window. This observation indicates that Sr-substitution combined with hydrostatic pressure provides another route for stabilizing superconductivity in CaFe$_2$As$_2$. Our results are consistent with the notion that (i) preserving the fluctuations associated with the structural-magnetic transition to low temperatures is vital for superconductivity to form in this material and that (ii) the non-magnetic collapsed tetragonal phase is detrimental for superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.00141v1-abstract-full').style.display = 'none'; document.getElementById('1606.00141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.4668">arXiv:1412.4668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.4668">pdf</a>, <a href="https://arxiv.org/format/1412.4668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.094417">10.1103/PhysRevB.92.094417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Barlowite as a canted antiferromagnet: theory and experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeschke%2C+H+O">Harald O. Jeschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salvat-Pujol%2C+F">Francesc Salvat-Pujol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">Elena Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoang%2C+N+H">Nguyen Hieu Hoang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+B">Bernd Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">Michael Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlueter%2C+J+A">John A. Schlueter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+R">Roser Valenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.4668v1-abstract-short" style="display: inline;"> We investigate the structural, electronic and magnetic properties of the newly synthesized mineral barlowite Cu4(OH)6FBr which contains Cu2+ ions in a perfect kagome arrangement. In contrast to the spin-liquid candidate herbertsmithite ZnCu3(OH)6Cl2, kagome layers in barlowite are perfectly aligned due to the different bonding environments adopted by F- and Br- compared to Cl-. We perform density&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4668v1-abstract-full').style.display = 'inline'; document.getElementById('1412.4668v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.4668v1-abstract-full" style="display: none;"> We investigate the structural, electronic and magnetic properties of the newly synthesized mineral barlowite Cu4(OH)6FBr which contains Cu2+ ions in a perfect kagome arrangement. In contrast to the spin-liquid candidate herbertsmithite ZnCu3(OH)6Cl2, kagome layers in barlowite are perfectly aligned due to the different bonding environments adopted by F- and Br- compared to Cl-. We perform density functional theory calculations to obtain the Heisenberg Hamiltonian parameters of Cu4(OH)6FBr which has a Cu2+ site coupling the kagome layers. The 3D network of exchange couplings together with a substantial Dzyaloshinskii-Moriya coupling lead to canted antiferromagnetic ordering of this compound at TN=15 K as observed by magnetic susceptibility measurements on single crystals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.4668v1-abstract-full').style.display = 'none'; document.getElementById('1412.4668v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 094417 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.7800">arXiv:1409.7800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.7800">pdf</a>, <a href="https://arxiv.org/ps/1409.7800">ps</a>, <a href="https://arxiv.org/format/1409.7800">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.094511">10.1103/PhysRevB.90.094511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting properties of K$_{1-x}$Na$_x$Fe$_2$As$_2$ under pressure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grinenko%2C+V">V. Grinenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schottenhamel%2C+W">W. Schottenhamel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">A. U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efremov%2C+D+V">D. V. Efremov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drechsler%2C+S+-">S. -L. Drechsler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+M">M. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">S. Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roslova%2C+M">M. Roslova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+I+V">I. V. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holzapfel%2C+B">B. Holzapfel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahrens%2C+E">E. Ahrens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Troyanov%2C+S+I">S. I. Troyanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6hler%2C+S">S. K枚hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">E. Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kn%C3%B6ner%2C+S">S. Kn枚ner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoang%2C+N+H">N. H. Hoang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">M. Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ricci%2C+F">F. Ricci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Profeta%2C+G">G. Profeta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.7800v1-abstract-short" style="display: inline;"> The effect of hydrostatic pressure and partial Na substitution on the normal-state properties and the superconducting transition temperature ($T_c$) of K$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals were investigated. It was found that a partial Na substitution leads to a deviation from the standard $T^2$ Fermi-liquid behavior in the temperature dependence of the normal-state resistivity. It was demo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.7800v1-abstract-full').style.display = 'inline'; document.getElementById('1409.7800v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.7800v1-abstract-full" style="display: none;"> The effect of hydrostatic pressure and partial Na substitution on the normal-state properties and the superconducting transition temperature ($T_c$) of K$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals were investigated. It was found that a partial Na substitution leads to a deviation from the standard $T^2$ Fermi-liquid behavior in the temperature dependence of the normal-state resistivity. It was demonstrated that non-Fermi liquid like behavior of the resistivity for K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ and some KFe$_2$As$_2$ samples can be explained by disorder effect in the multiband system with rather different quasiparticle effective masses. Concerning the superconducting state our data support the presence of a shallow minimum around 2 GPa in the pressure dependence of $T_c$ for stoichiometric KFe$_2$As$_2$. The analysis of $T_c$ in the K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ at pressures below 1.5 GPa showed, that the reduction of $T_c$ with Na substitution follows the Abrikosov-Gor&#39;kov law with the critical temperature $T_{c0}$ of the clean system (without pair-breaking) which linearly depends on the pressure. Our observations, also, suggest that $T_c$ of K$_{1-x}$Na$_x$Fe$_2$As$_2$ is nearly independent of the lattice compression produced by the Na substitution. Further, we theoretically analyzed the behavior of the band structure under pressure within the generalized gradient approximation (GGA). A qualitative agreement between the calculated and the recently in de Haas-van Alphen experiments [T. Terashima et al., Phys.Rev.B89, 134520(2014)] measured pressure dependencies of the Fermi-surface cross-sections has been found. These calculations, also, indicate that the observed minimum around 2~GPa in the pressure dependence of $T_c$ may occur without a change of the pairing symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.7800v1-abstract-full').style.display = 'none'; document.getElementById('1409.7800v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 094511 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.2715">arXiv:1311.2715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.2715">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TMAG.2013.2296333">10.1109/TMAG.2013.2296333 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multiferroicity in the Mott Insulating Charge-Transfer Salt 魏-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">M. Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lunkenheimer%2C+P">P. Lunkenheimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+J">J. M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loidl%2C+A">A. Loidl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartmann%2C+B">B. Hartmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoang%2C+N+H">N. H. Hoang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">E. Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schubert%2C+H">H. Schubert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlueter%2C+J+A">J. A. Schlueter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.2715v1-abstract-short" style="display: inline;"> The recently proposed multiferroic state of the charge-transfer salt 魏-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl [P. Lunkenheimer et al., Nature Mater., vol. 11, pp. 755-758, Sept. 2012] has been studied by dc-conductivity, magnetic susceptibility and measurements of the dielectric constant on various, differently prepared single crystals. In the majority of crystals we confirm the existence of an order-disor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2715v1-abstract-full').style.display = 'inline'; document.getElementById('1311.2715v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.2715v1-abstract-full" style="display: none;"> The recently proposed multiferroic state of the charge-transfer salt 魏-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl [P. Lunkenheimer et al., Nature Mater., vol. 11, pp. 755-758, Sept. 2012] has been studied by dc-conductivity, magnetic susceptibility and measurements of the dielectric constant on various, differently prepared single crystals. In the majority of crystals we confirm the existence of an order-disorder-type ferroelectric state which coincides with antiferromagnetic order. This phenomenology rules out scenarios which consider an inhomogeneous, short-range-ordered ferroelectric state. Measurements of the dielectric constant and the magnetic susceptibility on the same crystals reveal that both transitions lie very close to each other or even collapse, indicating that both types of order are intimately coupled to each other. We address issues of the frequency dependence of the dielectric constant 蔚&#39; and the dielectric loss 蔚&#39;&#39; and discuss sample-to-sample variations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2715v1-abstract-full').style.display = 'none'; document.getElementById('1311.2715v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.5398">arXiv:1210.5398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1210.5398">pdf</a>, <a href="https://arxiv.org/ps/1210.5398">ps</a>, <a href="https://arxiv.org/format/1210.5398">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.220511">10.1103/PhysRevB.86.220511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrostatic-pressure tuning of magnetic, nonmagnetic and superconducting states in annealed Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gati%2C+E">E. Gati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6hler%2C+S">S. K枚hler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guterding%2C+D">D. Guterding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+B">B. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kn%C3%B6ner%2C+S">S. Kn枚ner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ran%2C+S">S. Ran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bud%27ko%2C+S+L">S. L. Bud&#39;ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canfield%2C+P+C">P. C. Canfield</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">M. Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.5398v2-abstract-short" style="display: inline;"> We report on measurements of the magnetic susceptibility and electrical resistance under He-gas pressure on single crystals of Ca(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$. We find that for properly heat-treated crystals with modest Co-concentration, $x$ = 0.028, the salient ground states associated with iron-arsenide superconductors, i.e., orthorhombic/antiferromagnetic (o/afm), superconducting, and nonm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.5398v2-abstract-full').style.display = 'inline'; document.getElementById('1210.5398v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.5398v2-abstract-full" style="display: none;"> We report on measurements of the magnetic susceptibility and electrical resistance under He-gas pressure on single crystals of Ca(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$. We find that for properly heat-treated crystals with modest Co-concentration, $x$ = 0.028, the salient ground states associated with iron-arsenide superconductors, i.e., orthorhombic/antiferromagnetic (o/afm), superconducting, and nonmagnetic collapsed-tetragonal (cT) states can be accessed all in one sample with reasonably small and truly hydrostatic pressure. This is possible owing to the extreme sensitivity of the o/afm (for $T \leq$ $T_{s,N}$) and superconducting ($T \leq T_c$) states against variation of pressure, disclosing pressure coefficients of d$T_{s,N}$/d$P$ = -(1100 $\pm$ 50) K/GPa and d$T_{c}$/d$P$ = -(60 $\pm$ 3) K/GPa, respectively. Systematic investigations of the various phase transitions and ground states via pressure tuning revealed no coexistence of bulk superconductivity (sc) with the o/afm state which we link to the strongly first-order character of the corresponding structural/magnetic transition in this compound. Our results, together with literature results, indicate that preserving fluctuations associated with the o/afm transition to low enough temperatures is vital for sc to form. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.5398v2-abstract-full').style.display = 'none'; document.getElementById('1210.5398v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures; shortened version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 220511(R) (2012) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10