CINXE.COM
Search results for: furrow irrigation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: furrow irrigation</title> <meta name="description" content="Search results for: furrow irrigation"> <meta name="keywords" content="furrow irrigation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="furrow irrigation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="furrow irrigation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 610</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: furrow irrigation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Alternate Furrow Irrigation and Potassium Fertilizer on Seed Yield, Water Use Efficiency and Fatty Acids of Rapeseed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahrani">A. Bahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of restricted irrigation systems and different potassium fertilizer on water use efficiency and yield of rapeseed (Brassica napus L.), an experiment was conducted in an arid area in Khuzestan, Iran in 2013. The main plots consisted of three irrigation methods: FI (full irrigation), alternate furrow irrigation (AFI) and fixed furrow irrigation (FFI). Each subplot received three rates of K fertiliser application: 0, 150 or 300 kg ha-1. The results showed that the plots receiving the full irrigation resulted in significantly higher grain yields, 1000-kernel weight and grain number per pod than both alternate treatments. However, the highest WUE were obtained in alternate furrow irrigation and 300 kg K ha-1 and the lowest one was found in the FI treatment and 0 kg K ha-1. Potassium application increased RWC in alternate furrow irrigation and fixed furrow irrigation than FI treatment. Maximum oil content was observed in those treatments where full irrigation was applied while minimum oil content was produced in FFI irrigated treatments. Potassium fertilizer also increased grain oil by 15 % than control. Deficit irrigation reduced oleic acid and erucic acid. However, oleic acid and linoleic acid increased with increasing of potassium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erucic%20acid" title="erucic acid">erucic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20methods" title=" irrigation methods"> irrigation methods</a>, <a href="https://publications.waset.org/abstracts/search?q=linoleic%20acid" title=" linoleic acid"> linoleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20percent" title=" oil percent"> oil percent</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid"> oleic acid</a> </p> <a href="https://publications.waset.org/abstracts/36265/alternate-furrow-irrigation-and-potassium-fertilizer-on-seed-yield-water-use-efficiency-and-fatty-acids-of-rapeseed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Effect of Manure Treatment on Furrow Erosion: A Case Study of Sagawika Irrigation Scheme in Kasungu, Malawi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abel%20Mahowe">Abel Mahowe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Furrow erosion is the major problem menacing sustainability of irrigation in Malawi and polluting water bodies resulting in death of many aquatic animals. Many rivers in Malawi are drying due to some poor practices that are being practiced around these water bodies, furrow erosion is one of the cause of sedimentation in these rivers although it has gradual effect on deteriorating of these rivers hence neglected, but has got long term disastrous effect on water bodies. Many aquatic animals also suffer when these sediments are taken into these water bodies. An assessment of effect of manure treatment on furrow erosion was carried out in Sagawika irrigation scheme located in Kasungu District north part of Malawi. The soil on the field was clay loam and had just been tilled. The average furrow slope of 0.2% and was divided into two blocks, A and B. Each block had 20V-shaped furrow having a length of 10 m. Three different manure were used to construct these furrows by mixing it with soil which was moderately moist and 5 furrows from each block were constructed without manure. In each block 5furrow were made using a specific type of manure, and one set of five furrows in each block was made without manure treatment. The types of manure that were used were goat manure, pig manure, and manure from crop residuals. The manure application late was 5 kg/m. The furrow was constructed at a spacing of 0.6 m. Tomato was planted in the two blocks at spacing of 0.15 m between rows and 0.15 m between planting stations. Irrigation water was led from feeder canal into the irrigation furrows using siphons. The siphons discharge into each furrow was set at 1.86 L/S. The ¾ rule was used to determine the cut-off time for the irrigation cycles in order to reduce the run-off at the tail end. During each irrigation cycle, samples of the runoff water were collected at one-minute intervals and analyzed for total sediment concentration for use in estimating the total soil sediment loss. The results of the study have shown that a significant amount of soil is lost in soils without many organic matters, there was a low level of erosion in furrows that were constructed using manure treatment within the blocks. In addition, the results have shown that manure also differs in their ability to control erosion since pig manure proved to have greater abilities in binding the soil together than other manure since they were reduction in the amount of sediments at the tail end of furrows constructed by this type of manure. The results prove that manure contains organic matters which helps soil particles to bind together hence resisting the erosive force of water. The use of manure when constructing furrows in soil with less organic matter can highly reduce erosion hence reducing also pollution of water bodies and improve the conditions of aquatic animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic" title="aquatic">aquatic</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=furrow" title=" furrow"> furrow</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/47359/effect-of-manure-treatment-on-furrow-erosion-a-case-study-of-sagawika-irrigation-scheme-in-kasungu-malawi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Smart Automated Furrow Irrigation: A Preliminary Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasim%20Uddin">Jasim Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rod%20Smith"> Rod Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Malcolm%20Gillies"> Malcolm Gillies</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface irrigation is the most popular irrigation method all over the world. However, two issues: low efficiency and huge labour involvement concern irrigators due to scarcity in recent years. To address these issues, a smart automated furrow is conceptualised that can be operated using digital devices like smartphone, iPad or computer and a preliminary evaluation was conducted in this study. The smart automated system is the integration of commercially available software and hardware. It includes real-time surface irrigation optimisation software (SISCO) and Rubicon Water’s surface irrigation automation hardware and software. The automated system consists of automatic water delivery system with 300 mm flexible pipes attached to both sides of a remotely controlled valve to operate the irrigation. A water level sensor to obtain the real-time inflow rate from the measured head in the channel, advance sensors to measure the advance time to particular points of an irrigated field, a solar-powered telemetry system including a base station to communicate all the field sensors with the main server. On the basis of field data, the software (SISCO) is optimised the ongoing irrigation and determine the optimum cut-off for particular irrigation and send this information to the control valve to stop the irrigation in a particular (cut-off) time. The preliminary evaluation shows that the automated surface irrigation worked reasonably well without manual intervention. The evaluation of farmers managed irrigation events show the potentials to save a significant amount of water and labour. A substantial amount of economic and social benefits are expected in rural industries by adopting this system. The future outcome of this work would be a fully tested commercial adaptive real-time furrow irrigation system able to compete with the pressurised alternative of centre pivot or lateral move machines on capital cost, water and labour savings but without the massive energy costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation" title="furrow irrigation">furrow irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20automation" title=" smart automation"> smart automation</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration" title=" infiltration"> infiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=SISCO" title=" SISCO"> SISCO</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20irrigation" title=" real-time irrigation"> real-time irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=adoptive%20control" title=" adoptive control"> adoptive control</a> </p> <a href="https://publications.waset.org/abstracts/24317/smart-automated-furrow-irrigation-a-preliminary-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> Viability of Sub-Surface Drip Irrigation in Agronomic and Vegetable Crops Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Montazar">Ali Montazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to assess the viability of sub-surface drip irrigation (SDI) using several ongoing and conducted researches in the low desert region of California. The experiments were carried out in the University of California Desert Research and Extension Center (UC DREC) and ten commercial fields at alfalfa, sugar beets, dehydrated onions, and spinach crops. The results demonstrated greater yields, actual crop water consumption, and water productivity of SDI as compared with conventional irrigation practices (border, furrow, and sprinkler irrigation) with an average increase of 21%, 7%, and 15%, respectively. The severity of plant disease, particularly root rot in sugar beet, and downy mildew in onions and spinach, were significantly lower in SDI than furrow and sprinkler irrigation (an average of 3-5 times). While utilizing this irrigation technology may have ability to achieve higher yields, conserve water, improve the efficiency of water and nutrient use, and manage food safety risks and plant disease, further work is required to better understand the impact of management practices and strategies on the viability of SDI application, and maintain its profitability in various agricultural production systems as water, labor costs, and environmental concerns increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alfalfa" title="alfalfa">alfalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=onions" title=" onions"> onions</a>, <a href="https://publications.waset.org/abstracts/search?q=spinach" title=" spinach"> spinach</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beets" title=" sugar beets"> sugar beets</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20drip%20irrigation" title=" subsurface drip irrigation"> subsurface drip irrigation</a> </p> <a href="https://publications.waset.org/abstracts/110229/viability-of-sub-surface-drip-irrigation-in-agronomic-and-vegetable-crops-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanya%20L.%20Khatri">Kanya L. Khatri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashfaque%20A.%20Memon"> Ashfaque A. Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Rod%20J.%20Smith"> Rod J. Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamas%20Bilal"> Shamas Bilal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressurised%20irrigation" title="pressurised irrigation">pressurised irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time" title=" real-time"> real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=environmentally-friendly" title=" environmentally-friendly"> environmentally-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=REIP" title=" REIP "> REIP </a> </p> <a href="https://publications.waset.org/abstracts/16448/real-time-optimisation-and-minimal-energy-use-for-water-and-environment-efficient-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> The Effect of Air Injection in Irrigation Water on Sugar Beet Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ersoy%20Yildirim">Yusuf Ersoy Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Tas"> Ismail Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceren%20Gorgusen"> Ceren Gorgusen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Yeter"> Tugba Yeter</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysegul%20Boyacioglu"> Aysegul Boyacioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mehmet%20Tugrul"> K. Mehmet Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tugrul"> Murat Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayten%20Namli"> Ayten Namli</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sabri%20Ozturk"> H. Sabri Ozturk</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Onur%20Akca"> M. Onur Akca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, a lot of research has been done for the sustainable use of scarce resources in the world. Especially, effective and sustainable use of water resources has been researched for many years. Sub-surface drip irrigation (SDI) is one of the most effective irrigation methods in which efficient and sustainable use of irrigation water can be achieved. When the literature is taken into consideration, it is often emphasized that, besides its numerous advantages, it also allows the application of irrigation water to the plant root zone along with air. It is stated in different studies that the air applied to the plant root zone with irrigation water has a positive effect on the root zone. Plants need sufficient oxygen for root respiration as well as for the metabolic functions of the roots. Decreased root respiration due to low oxygen content reduces transpiration, disrupts the flow of ions, and increases the ingress of salt reaching toxic levels, seriously affecting plant growth. Lack of oxygen (Hypoxia) can affect the survival of plants. The lack of oxygen in the soil is related to the exchange of gases in the soil with the gases in the atmosphere. Soil aeration is an important physical parameter of a soil. It is highly dynamic and is closely related to the amount of water in the soil and its bulk weight. Subsurface drip irrigation; It has higher water use efficiency compared to irrigation methods such as furrow irrigation and sprinkler irrigation. However, in heavy clay soils, subsurface drip irrigation creates continuous wetting fronts that predispose the rhizosphere region to hypoxia or anoxia. With subsurface drip irrigation, the oxygen is limited for root microbial respiration and root development, with the continuous spreading of water to a certain region of the root zone. In this study, the change in sugar beet yield caused by air application in the SDI system will be explained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet" title="sugar beet">sugar beet</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20drip%20irrigation" title=" subsurface drip irrigation"> subsurface drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20application" title=" air application"> air application</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20efficiency" title=" irrigation efficiency"> irrigation efficiency</a> </p> <a href="https://publications.waset.org/abstracts/163222/the-effect-of-air-injection-in-irrigation-water-on-sugar-beet-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> Sunflower Irrigation with Two Different Types of Soil Moisture Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20D.%20Papanikolaou">C. D. Papanikolaou</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Giouvanis"> V. A. Giouvanis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Karatasiou"> E. A. Karatasiou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Dimakas"> D. S. Dimakas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Sakellariou-Makrantonaki"> M. A. Sakellariou-Makrantonaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irrigation is one of the most important cultivation practices for each crop, especially in areas where rainfall is enough to cover the crop water needs. In such areas, the farmers must irrigate in order to achieve high economical results. The precise irrigation scheduling contributes to irrigation water saving and thus a valuable natural resource is protected. Under this point of view, in the experimental field of the Laboratory of Agricultural Hydraulics of the University of Thessaly, a research was conducted during the growing season of 2012 in order to evaluate the growth, seed and oil production of sunflower as well as the water saving, by applying different methods of irrigation scheduling. Three treatments in four replications were organized. These were: a) surface drip irrigation where the irrigation scheduling based on the Penman-Monteith (PM) method (control); b) surface drip irrigation where the irrigation scheduling based on a soil moisture sensor (SMS); and c) surface drip irrigation, where the irrigation scheduling based on a soil potential sensor (WM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20production" title=" energy production"> energy production</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20sensor" title=" soil moisture sensor"> soil moisture sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20saving" title=" water saving"> water saving</a> </p> <a href="https://publications.waset.org/abstracts/87561/sunflower-irrigation-with-two-different-types-of-soil-moisture-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> Smart Irrigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Levent%20Seyfi">Levent Seyfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ertan%20Akman"> Ertan Akman</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9Frul%20C.%20Topak"> Tuğrul C. Topak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smartphone" title="smartphone">smartphone</a>, <a href="https://publications.waset.org/abstracts/search?q=Android%20Operating%20System" title=" Android Operating System"> Android Operating System</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20System" title=" irrigation System"> irrigation System</a>, <a href="https://publications.waset.org/abstracts/search?q=arduino" title=" arduino"> arduino</a> </p> <a href="https://publications.waset.org/abstracts/18397/smart-irrigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Hydraulic Analysis of Irrigation Approach Channel Using HEC-RAS Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muluegziabher%20Semagne%20Mekonnen">Muluegziabher Semagne Mekonnen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was intended to show the irrigation water requirements and evaluation of canal hydraulics steady state conditions to improve on scheme performance of the Meki-Ziway irrigation project. The methodology used was the CROPWAT 8.0 model to estimate the irrigation water requirements of five major crops irrigated in the study area. The results showed that for the whole existing and potential irrigation development area of 2000 ha and 2599 ha, crop water requirements were 3,339,200 and 4,339,090.4 m³, respectively. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. In this study Hydraulic Analysis of Irrigation Canals Using HEC-RAS Model was conducted in Meki-Ziway Irrigation Scheme. The HEC-RAS model was tested in terms of error estimation and used to determine canal capacity potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title="HEC-RAS">HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic.%20canal%20reach" title=" hydraulic. canal reach"> hydraulic. canal reach</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a> </p> <a href="https://publications.waset.org/abstracts/183197/hydraulic-analysis-of-irrigation-approach-channel-using-hec-ras-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiying%20Zhang">Qiying Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Panpan%20Xu"> Panpan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Qian"> Hui Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na<sup>+</sup> > Mg<sup>2</sup><sup>+</sup> > Ca<sup>2</sup><sup>+</sup> > K<sup>+</sup>and SO<sub>4</sub><sup>2</sup><sup>-</sup> > HCO<sub>3</sub><sup>-</sup> > Cl<sup>-</sup> > NO<sub>3</sub><sup>-</sup> > CO<sub>3</sub><sup>2</sup><sup>-</sup> > F<sup>-</sup>, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cl<sup>-</sup>and SO<sub>4</sub><sup>2</sup><sup>-</sup>have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20chemistry" title="groundwater chemistry">groundwater chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanzhong%20Basin" title=" Guanzhong Basin"> Guanzhong Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20water%20quality%20evaluation" title=" irrigation water quality evaluation"> irrigation water quality evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaokou%20Irrigation%20District" title=" Jiaokou Irrigation District"> Jiaokou Irrigation District</a> </p> <a href="https://publications.waset.org/abstracts/130501/irrigation-water-quality-evaluation-in-jiaokou-irrigation-district-guanzhong-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">600</span> Temporal Effects on Chemical Composition of Treated Wastewater and Borehole Water Used for Irrigation in Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pholosho%20M.%20Kgopa">Pholosho M. Kgopa</a>, <a href="https://publications.waset.org/abstracts/search?q=Phatu%20W.%20Mashela"> Phatu W. Mashela</a>, <a href="https://publications.waset.org/abstracts/search?q=Alen%20Manyevere"> Alen Manyevere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing incidents of drought spells in most Sub-Saharan Africa call for using alternative sources of water for irrigation in arid and semi-arid regions. A study was conducted to investigate chemical composition of borehole and treated wastewater from different sampling disposal sites at University of Limpopo Experimental Farm (ULEF). A 4 × 5 factorial experiment, with the borehole as a reference sampling site and three other sampling sites along the wastewater disposal system was conducted over five months. Water samples were collected at four sites namely, (a) exit from Pond 16 into the furrow, (b) entry into night-dam, (c) exit from night dam to irrigated fields and (d) exit from borehole to irrigated fields. Water samples were collected in the middle of each month, starting from July to November 2016. Samples were analysed for pH, EC, Ca, Mg, Na, K, Al, B, Zn, Cu, Cr, Pb, Cd and As. The site × time interactions were highly significant for Ca, Mg, Zn, Cu, Cr, Pb, Cd, and As variables, but not for Na and K. Sampling site was highly significant on all variables, with sampling period not significant for K and Na. Relative to water from the borehole, Na concentration in wastewater samples from the night-dam exit, night-dam entry and Pond16 exit were lower by 69, 34 and 55%, respectively. Relative to borehole water, Al was higher in wastewater sampling sites. In conclusion, both sampling site and period affected the chemical composition of treated wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20water%20quality" title="irrigation water quality">irrigation water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20effects" title=" spatial effects"> spatial effects</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20effects" title=" temporal effects"> temporal effects</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a> </p> <a href="https://publications.waset.org/abstracts/72569/temporal-effects-on-chemical-composition-of-treated-wastewater-and-borehole-water-used-for-irrigation-in-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">599</span> Effect of Mobile Drip and Linear Irrigation System on Sugar Beet Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Tas">Ismail Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ersoy%20Yildirim"> Yusuf Ersoy Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Fatih%20Fidantemiz"> Yavuz Fatih Fidantemiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysegul%20Boyacioglu"> Aysegul Boyacioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Uygan"> Demet Uygan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozgur%20Ates"> Ozgur Ates</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdinc%20Savasli"> Erdinc Savasli</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguz%20Onder"> Oguz Onder</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tugrul"> Murat Tugrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biggest input of agricultural production is irrigation, water and energy. Although it varies according to the conditions in drip and sprinkler irrigation systems compared to surface irrigation systems, there is a significant amount of energy expenditure. However, this expense not only increases the user's control over the irrigation water but also provides an increase in water savings and water application efficiency. Thus, while irrigation water is used more effectively, it also contributes to reducing production costs. The Mobile Drip Irrigation System (MDIS) is a system in which new technologies are used, and it is one of the systems that are thought to play an important role in increasing the irrigation water utilization rate of plants and reducing water losses, as well as using irrigation water effectively. MDIS is currently considered the most effective method for irrigation, with the development of both linear and central motion systems. MDIS is potentially more advantageous than sprinkler irrigation systems in terms of reducing wind-induced water losses and reducing evaporation losses on the soil and plant surface. Another feature of MDIS is that the sprinkler heads on the systems (such as the liner and center pivot) can remain operational even when the drip irrigation system is installed. This allows the user to use both irrigation methods. In this study, the effect of MDIS and linear sprinkler irrigation method on sugar beet yield at different irrigation water levels will be revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MDIS" title="MDIS">MDIS</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20sprinkler" title=" linear sprinkler"> linear sprinkler</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet" title=" sugar beet"> sugar beet</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20efficiency" title=" irrigation efficiency"> irrigation efficiency</a> </p> <a href="https://publications.waset.org/abstracts/163220/effect-of-mobile-drip-and-linear-irrigation-system-on-sugar-beet-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">598</span> Drip Irrigation Timing and Its Effect on Tomato Yield for a Two-Day Schedule </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Kizza">T. Kizza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Muyinda"> M. Muyinda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irrigation schedules are normally given in terms of frequency (irrigation days). Specific timings within a given day are not usually included. This study examined the effect of irrigation timing for a two-day irrigation schedule of a surface drip-irrigated tomato field on yield. It was carried out for three dry seasons; July-Sept 2016, Jan-April 2017 and Jan-March 2018, at MuZARDI research station. Four irrigation treatments; T1 morning (8.00hrs), T2 noon (12:00hrs), T3 evening (17:00hr) and T4, a combination of morning and evening, were evaluated. The irrigation duration was one hour for T1-T3 and split into 30 minutes for T4. First season results indicated noon watering as having the best yield over other treatments at 51.59t/ha followed closely by morning watering at 50.6t/ha. Plants watered at noon had the highest number of fruits at 19/plant with an average weight of 94g/fruit. Plants watered in the morning had fruits with the highest average weight at 111.2g/fruit but they were the lowest number at 16 fruits/plant. The three-season data indicated the highest yield at 45.9t/ha for morning watering, followed by noon watering at 44.3t/ha and the least yield was for evening watering at 40.9t/ha. Watering tomatoes in the morning will give optimum yields for a two-day irrigation schedule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation" title="drip irrigation">drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20schedule" title=" irrigation schedule"> irrigation schedule</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20timing" title=" irrigation timing"> irrigation timing</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20yield" title=" tomato yield"> tomato yield</a> </p> <a href="https://publications.waset.org/abstracts/113326/drip-irrigation-timing-and-its-effect-on-tomato-yield-for-a-two-day-schedule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">597</span> Effects of Irrigation Intervals on Antioxidant Enzyme Activity in Black Carrot Leaves (Daucus carota L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Arslan">Hakan Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Ekinci"> Deniz Ekinci</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Gungor"> Alper Gungor</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Bilir"> Gurkan Bilir</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Tas"> Omer Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Altun"> Mehmet Altun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought is one of the major abiotic stresses affecting the agricultural production worldwide. In this study, Leaf samples were taken from the carrot plants grown under drought stress conditions during the harvesting period. The plants were irrigated in three irrigation interval (4, 6 and 8 days) and Irrigation water regime was set up in pots. The changes in activities of antioxidant enzymes such as glutathione reductase (GR), glutathione s-transferase (GST), superoxide dismutase (SOD)) in leaves of black carrot were investigated. The activities of antioxidant enzymes (GR, GST, SOD) were varied significantly with irrigation intervals. The highest value of GR, GST and SOD were determined in the irrigation interval of 6 days. All antioxidant activity values were decreased in 8 days of irrigation interval. As a result of the study, it has been suggested that optimum irrigation intervals for plants can be used in antioxidant enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzyme" title="antioxidant enzyme">antioxidant enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=carrot" title=" carrot"> carrot</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20interval" title=" irrigation interval"> irrigation interval</a> </p> <a href="https://publications.waset.org/abstracts/96989/effects-of-irrigation-intervals-on-antioxidant-enzyme-activity-in-black-carrot-leaves-daucus-carota-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">596</span> Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20Janghorban%20Esfahani">Iman Janghorban Esfahani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=pinch%20analysis" title=" pinch analysis"> pinch analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pumping" title=" pumping"> pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/130658/freshwater-pinch-analysis-for-optimal-design-of-the-photovoltaic-powered-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">595</span> Viability of Irrigation Water Conservation Practices in the Low Desert of California</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Montazar">Ali Montazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> California and the Colorado River Basin are facing increasing uncertainty concerning water supplies. The Colorado River is the main source of irrigation water in the low desert of California. Currently, due to an increasing water-use competition and long-term drought at the Colorado River Basin, efficient use of irrigation water is one of the highest conservation priorities in the region. This study aims to present some of current irrigation technologies and management approaches in the low desert and assess the viability and potential of these water management practices. The results of several field experiments are used to assess five water conservation practices of sub-surface drip irrigation, automated surface irrigation, sprinkler irrigation, tail-water recovery system, and deficit irrigation strategy. The preliminary results of several ongoing studies at commercial fields are presented, particularly researches in alfalfa, sugar beets, kliengrass, sunflower, and spinach fields. The findings indicate that all these practices have significant potential to conserve water (an average of 1 ac-ft/ac) and enhance the efficiency of water use (15-25%). Further work is needed to better understand the feasibility of each of these applications and to help maintain profitable and sustainable agricultural production system in the low desert as water and labor costs, and environmental issues increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20surface%20irrigation" title="automated surface irrigation">automated surface irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title=" deficit irrigation"> deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20desert%20of%20California" title=" low desert of California"> low desert of California</a>, <a href="https://publications.waset.org/abstracts/search?q=sprinkler%20irrigation" title=" sprinkler irrigation"> sprinkler irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-surface%20drip%20irrigation" title=" sub-surface drip irrigation"> sub-surface drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=tail-water%20recovery%20system" title=" tail-water recovery system"> tail-water recovery system</a> </p> <a href="https://publications.waset.org/abstracts/98630/viability-of-irrigation-water-conservation-practices-in-the-low-desert-of-california" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">594</span> The Use of a Geographical Information System in the Field of Irrigation (Moyen-Chéliff)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benhenni%20Abdellaziz">Benhenni Abdellaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irrigation is a limiting factor for agricultural production and socioeconomic development of many countries in the arid and semi-arid world. However, the sustainability of irrigation systems requires rational management of the water resource, which is becoming increasingly rare in these regions. The objective of this work is to apply a geographic information system (GIS) coupled with a model for calculating crop water requirements (CROPWATER) for the management of irrigation water in irrigated areas and offer managers an effective tool to better manage water resources in these areas. The application area of GIS is the irrigated perimeter of Western Middle Cheliff, which is located in a semi-arid region (Middle Cheliff). The scope in question is considerable agrarian dynamics and an increased need for irrigation of most crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=CROPWAT" title=" CROPWAT"> CROPWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20cheliff" title=" middle cheliff"> middle cheliff</a> </p> <a href="https://publications.waset.org/abstracts/168116/the-use-of-a-geographical-information-system-in-the-field-of-irrigation-moyen-cheliff" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">593</span> The Use of a Geographical Information System in the Field of Irrigation (Moyen-Chéliff)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benhenni%20Abdellaziz">Benhenni Abdellaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Irrigation is a limiting factor for agricultural production and socio-economic development of many countries in arid and semiarid in the world. However, the sustainability of irrigation systems requires a rational management of the water resource that is becoming increasingly rare in these regions. The objective of this work is to apply a geographic information system (GIS) coupled to a model for calculating crop water requirements (CROPWATER) for the management of irrigation water in irrigated area and offer managers with an effective tool to better manage water resources in these areas. The application area of GIS is the irrigated perimeter of Western Middle Cheliff which is located in a semi-arid region (Middle Cheliff). The scope in question is a considerable agrarian dynamics and an increased need for irrigation of most crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographical%20information" title="geographical information">geographical information</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=economical" title=" economical"> economical</a>, <a href="https://publications.waset.org/abstracts/search?q=use%20rational" title=" use rational"> use rational</a> </p> <a href="https://publications.waset.org/abstracts/64948/the-use-of-a-geographical-information-system-in-the-field-of-irrigation-moyen-cheliff" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">592</span> Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Wanyama">T. Wanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Far"> B. Far</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20water%20usage" title="community water usage">community water usage</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a> </p> <a href="https://publications.waset.org/abstracts/60277/multi-agent-system-for-irrigation-using-fuzzy-logic-algorithm-and-open-platform-communication-data-access" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">591</span> Irrigation and Thermal Buffering Mathematical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yara%20Elborolosy">Yara Elborolosy</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsho%20Sanyal"> Harsho Sanyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Cataldo"> Joseph Cataldo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two methods of irrigation, drip and sprinkler, were studied to determine the response of the Javits green roof to irrigation. The control study were dry unirrigated plots. Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout, and sprinkler irrigation used a sprinkler system to irrigate the green roof from above. In all cases, the irrigated roofs had increased the soil moisture, reduced temperatures of both the upper and lower surfaces, reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof. The buffered temperature fluctuations were also studied via air conditioner energy consumption. There was a 28% reductionin air conditioner energy consumption and 33% reduction in overall energy consumption between dry and irrigated plots. Values of thermal resistance or S were determined for accuracy, and for this study, there was little change which is ideal. A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum. It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title="green infrastructure">green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20roof" title=" black roof"> black roof</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20buffering" title=" thermal buffering"> thermal buffering</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a> </p> <a href="https://publications.waset.org/abstracts/169589/irrigation-and-thermal-buffering-mathematical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">590</span> An Alternative Institutional Design for Efficient Management of Nepalese Irrigation Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tirtha%20Raj%20Dhakal">Tirtha Raj Dhakal</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Davidson"> Brian Davidson</a>, <a href="https://publications.waset.org/abstracts/search?q=Bob%20Farquharson"> Bob Farquharson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Institutional design is important if water resources are to be managed efficiently. In Nepal, the supply of water in both farmer- and agency-managed irrigation systems is inefficient because of the weak institutional frameworks. This type of inefficiency is linked with collective problems such as non-excludability of irrigation water, inadequate recognition of property rights and externalities. Irrigation scheme surveys from Nepal as well as existing literature revealed that the Nepalese irrigation sector is facing many issues such as low cost recovery, inadequate maintenance of the schemes and inefficient allocation and utilization of irrigation water. The institutional practices currently in place also fail to create/force any incentives for farmers to use water efficiently and to pay for its use. This, thus, compels the need of refined institutional framework that can address the collective problems and improve irrigation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agency-managed" title="agency-managed">agency-managed</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20recovery" title=" cost recovery"> cost recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer-managed" title=" farmer-managed"> farmer-managed</a>, <a href="https://publications.waset.org/abstracts/search?q=institutional%20design" title=" institutional design"> institutional design</a> </p> <a href="https://publications.waset.org/abstracts/62687/an-alternative-institutional-design-for-efficient-management-of-nepalese-irrigation-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">589</span> Pros and Cons of Different Types of Irrigation Systems for Date Palm Production in Sebha, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Aridah">Ahmad Aridah</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Fay%20Rola-Rubzen"> Maria Fay Rola-Rubzen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zora%20Singh"> Zora Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effectiveness of various types of irrigation systems in regards to the impact that these have on the productivity of date palms in the semi-arid and arid region of Sebha, Southwest Libya. The date palm is an economically important crop in Libya and contributes to the agriculture industry, foreign exchange earnings, farmers’ income, and employment in the country. The date palm industry relies on large amounts of water for growing the crop. Farmers in Southwest Libya use a variety of irrigation systems, but the quality and quantity of water varies between systems and this affects the productivity and income of farmers. Using survey data from 210 farmers, this study estimated and assessed the pros and cons of different types of irrigation systems for date palm production under various irrigation systems currently used in Sebha, Libya. The number of years farmers have used irrigation, the area, irrigation water consumption, time of irrigation, number of farm workers (including family labour) and inputs used were measured for surface, sprinkler and drip irrigation methods. Findings from this research provide new insights into the advantages and disadvantages of the various irrigation systems, problems encountered by farmers and the factors that affect the quality and quantity of the irrigation system. The paper discussed proposed solutions to deal with the problems including timing of irrigation, canal maintenance, repair of wells and water control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Libya" title="Libya">Libya</a>, <a href="https://publications.waset.org/abstracts/search?q=factors" title=" factors"> factors</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation%20method" title=" irrigation method"> irrigation method</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm" title=" date palm"> date palm</a> </p> <a href="https://publications.waset.org/abstracts/33653/pros-and-cons-of-different-types-of-irrigation-systems-for-date-palm-production-in-sebha-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">588</span> Response of Summer Sesame to Irrigation Regimes and Nitrogen Levels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalpana%20Jamdhade">Kalpana Jamdhade</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Chorey"> Anita Chorey</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Tijare"> Bharti Tijare</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Bhale"> V. M. Bhale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted during summer season of 2011 at Agronomy research farm, Dr. PDKV, Akola, to study the effect of irrigation regime and nitrogen levels on growth and productivity of summer sesame. The experiment was laid out in split plot Design in which three irrigation scheduling on the basis of IW/CPE ratio viz., irrigation at 0.6, 0.8 and 1.0 IW/CPE ratios (I1, I2 and I3, respectively) and one irrigation scheduling based on critical growth stages of sesame (I4), in main plot and three nitrogen levels 0, 30 and 60 kg N ha-1 (N0, N1 and N2, respectively) in subplot. The result showed that plant height, number of leaves plant-1, leaf area and dry matter accumulation were maximum in irrigation scheduling at 1.0 IW/CPE ratio, which significantly superior over 0.6 IW/CPE ratio and irrigation at critical growth stages but were statistically at par with irrigation at 0.8 IW/CPE ratio. Nitrogen levels, application of 60 kg N ha-1 was recorded significantly superior all growth parameters over treatment 30 kg N ha-1 and 0 kg N ha-1. In case of yield attributes viz., No. of capsules plant-1, Test wt., grain yield and Stalk yield (qha-1) were maximum in irrigation scheduling at 1.0 IW/CPE ratio and were significantly superior over 0.8 IW/CPE ratio, 0.6 IW/CPE ratio and irrigation at critical growth stages. Application of 60 kg N ha-1 increased all yield attributing characters over application of 30 and 0 kg N ha-1. In case of economics of crop same trend was found and the highest B:C ration was obtained in irrigation scheduling at 1.0 IW/CPE ratio. Whereas, application of 30 kg N ha-1 was recorded highest B:C ration over application of 60 and 0 kg N ha-1. Interaction effect of irrigation and nitrogen levels were found to be non significant in summer season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20regimes" title="irrigation regimes">irrigation regimes</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20levels" title=" nitrogen levels"> nitrogen levels</a>, <a href="https://publications.waset.org/abstracts/search?q=summer%20sesame" title=" summer sesame"> summer sesame</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20technology" title=" agricultural technology"> agricultural technology</a> </p> <a href="https://publications.waset.org/abstracts/18678/response-of-summer-sesame-to-irrigation-regimes-and-nitrogen-levels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">587</span> Overcoming the Problems Affecting Drip Irrigation System through the Design of an Efficient Filtration and Flushing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20A.%20Akinlabi">Stephen A. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi"> Esther T. Akinlabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drip irrigation system is one of the important areas that affect the livelihood of farmers directly. The use of drip irrigation system has been the most efficient system compared to the other types of irrigations systems because the drip irrigation helps to save water and increase the productivity of crops. But like any other system, it can be considered inefficient when the filters and the emitters get clogged while in operation. The efficiency of the entire system is reduced when the emitters are clogged and blocked. This consequently impact and affect the farm operations which may result in scarcity of farm products and increase the demand. This design work focuses on how to overcome some of the challenges affecting drip irrigation system through the design of an efficient filtration and flushing system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation%20system" title="drip irrigation system">drip irrigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=filters" title=" filters"> filters</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20texture" title=" soil texture"> soil texture</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering%20design" title=" mechanical engineering design"> mechanical engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a> </p> <a href="https://publications.waset.org/abstracts/5838/overcoming-the-problems-affecting-drip-irrigation-system-through-the-design-of-an-efficient-filtration-and-flushing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">586</span> Normalized Difference Vegetation Index and Normalize Difference Chlorophyll Changes with Different Irrigation Levels on Sillage Corn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cenk%20Aksit">Cenk Aksit</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleyman%20Kodal"> Suleyman Kodal</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ersoy%20Yildirim"> Yusuf Ersoy Yildirim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Normalized Difference Vegetation Index (NDVI) is a widely used index in the world that provides reference information, such as the health status of the plant, and the density of the vegetation in a certain area, by making use of the electromagnetic radiation reflected from the plant surface. On the other hand, the chlorophyll index provides reference information about the chlorophyll density in the plant by making use of electromagnetic reflections at certain wavelengths. Chlorophyll concentration is higher in healthy plants and decreases as plant health decreases. This study, it was aimed to determine the changes in Normalize Difference Vegetation Index (NDVI) and Normalize Difference Chlorophyll (NDCI) of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels. In 5 days irrigation interval, the daily potential plant water consumption values were collected, and the calculated amount was applied to the full irrigation and 3 irrigation water levels as irrigation water. The changes in NDVI and NDCI of silage corn irrigated with subsurface drip irrigation systems under different irrigation levels were determined. NDVI values have changed according to the amount of irrigation water applied, and the highest NDVI value has been reached in the subject where the most water is applied. Likewise, it was observed that the chlorophyll value decreased in direct proportion to the amount of irrigation water as the plant approached the harvest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NDVI" title="NDVI">NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=NDCI" title=" NDCI"> NDCI</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-surface%20drip%20irrigation" title=" sub-surface drip irrigation"> sub-surface drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=silage%20corn" title=" silage corn"> silage corn</a>, <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title=" deficit irrigation"> deficit irrigation</a> </p> <a href="https://publications.waset.org/abstracts/163400/normalized-difference-vegetation-index-and-normalize-difference-chlorophyll-changes-with-different-irrigation-levels-on-sillage-corn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">585</span> Improved Water Productivity by Deficit Irrigation: Implications for Water Saving in Orange, Olive and Vineyard Orchards in Arid Conditions of Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Nagaz">K. Nagaz</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20El%20Mokh"> F. El Mokh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Masmoudi"> M. Masmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ben%20Mechlia"> N. Ben Mechlia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Baba%20Sy"> M. O. Baba Sy</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ghiglieri"> G. Ghiglieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiments on deficit irrigation (DI) were performed in Médenine, Tunisia on drip-irrigated olive, orange and grapevine orchards during 2013 and 2014. Four irrigation treatments were compared: full irrigation (FI), which was irrigated at 100% of ETc for the whole season; two deficit irrigation (DI) strategies -DI75 and DI50- which received, respectively, 25 and 50% less water than FI; and traditional farming management (FM) - with water input much less than actually needed. The traditional farming (FM) applied 11, 18, 30 and 33% less water than the FI treatment, respectively, in orange, grapevine and table and oil olive orchards, indicating that the farmers practices represent a form of unintended deficit irrigation. Yield was reduced when deficit irrigation was applied and there were significant differences between DI75, DI50 and FM treatments. Significant differences were not observed between DI50 and FM treatments even though numerically smaller yield was observed in the former (DI50) as compared to the latter (FM). The irrigation water productivity (IWP) was significantly affected by irrigation treatments. The smallest IWP was recorded under the FI treatment, while the largest IWP was obtained under the deficit irrigation treatment (DI50). The DI50 and FM treatments reduced the economic return compared to the full treatment (FI), while the DI75 treatment resulted in a better economic return in respect to DI50 and FM. Full irrigation (FI) could be recommended for olive, orange and grapevine irrigation under the arid climate of Tunisia. Nevertheless, the treatment DI75 can be applied as a strategy under water scarcity conditions in commercial olive, orange and grapevine orchards allowing water savings up to 25% but with some reduction in yield and net return. The results would be helpful in adopting deficit irrigation in ways that enhance net financial returns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20productivity" title="water productivity">water productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title=" deficit irrigation"> deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation" title=" drip irrigation"> drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=orchards" title=" orchards"> orchards</a> </p> <a href="https://publications.waset.org/abstracts/68095/improved-water-productivity-by-deficit-irrigation-implications-for-water-saving-in-orange-olive-and-vineyard-orchards-in-arid-conditions-of-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">584</span> Studies on Irrigation and Nutrient Interactions in Sweet Orange (Citrus sinensis Osbeck)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Jogdand">S. M. Jogdand</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20D.%20Jagtap"> D. D. Jagtap</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20R.%20Dalal"> N. R. Dalal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sweet orange (Citrus sinensis Osbeck) is one of the most important commercially cultivated fruit crop in India. It stands on second position amongst citrus group after mandarin. Irrigation and fertigation are vital importance of sweet orange orchard and considered to be the most critical cultural operations. The soil acts as the reservoir of water and applied nutrients, the interaction between irrigation and fertigation leads to the ultimate quality and production of fruits. The increasing cost of fertilizers and scarcity of irrigation water forced the farmers for optimum use of irrigation and nutrients. The experiment was conducted with object to find out irrigation and nutrient interaction in sweet orange to optimize the use of both the factors. The experiment was conducted in medium to deep soil. The irrigation level I3,drip irrigation at 90% ER (effective rainfall) and fertigation level F3 80% RDF (recommended dose of fertilizer) recorded significantly maximum plant height, plant spread, canopy volume, number of fruits, weight of fruit, fruit yield kg/plant and t/ha followed by F2 , fertigation with 70% RDF. The interaction effect of irrigation and fertigation on growth was also significant and the maximum plant height, E-W spread, N-S spread, canopy volume, highest number of fruits, weight of fruit and yield kg/plant and t/ha was recorded in T9 i.e. I3F3 drip irrigation at 90% ER and fertigation with 80% of RDF followed by I3F2 drip irrigation at 90% ER and fertigation with 70% of RDF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sweet%20orange" title="sweet orange">sweet orange</a>, <a href="https://publications.waset.org/abstracts/search?q=fertigation" title=" fertigation"> fertigation</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=interactions" title=" interactions"> interactions</a> </p> <a href="https://publications.waset.org/abstracts/84198/studies-on-irrigation-and-nutrient-interactions-in-sweet-orange-citrus-sinensis-osbeck" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">583</span> Effect of Irrigation Interval on Jojoba Plants under Circumstance of Sinai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Khattab">E. Khattab</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Halla"> S. Halla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jojoba plants are characterized by a tolerance of water stress, but due to the conditions of the Sinai in which the water is less, an irrigation interval study was carried out the jojoba plant from water stress without affecting the yield of oil. The field experiment was carried out at Maghara Research Station at North Sinai, Desert Research Center, Ministry of Agriculture, Egypt, to study the effect of irrigation interval on five clones of jojoba plants S-L, S-610, S- 700, S-B and S-G on growth and yield characters. Results showed that the clone S-700 has increase of all growth and yield characters under all interval irrigation compare with other clones. All variable of studied confirmed that clones of jojoba had significant effect with irrigation interval at one week but decrease value with three weeks. Jojoba plants tolerance to water stress but irrigation interval every week increased seed yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interval%20irrigation" title="interval irrigation">interval irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield%20characters" title=" growth and yield characters"> growth and yield characters</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=jojoba" title=" jojoba"> jojoba</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinai" title=" Sinai"> Sinai</a> </p> <a href="https://publications.waset.org/abstracts/80001/effect-of-irrigation-interval-on-jojoba-plants-under-circumstance-of-sinai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">582</span> Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Abedinpour">Meysam Abedinpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title="deficit irrigation">deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/16412/assessment-of-yield-and-water-use-efficiency-of-soybean-under-deficit-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">581</span> Automatic Furrow Detection for Precision Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manpreet%20Kaur">Manpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheol-Hong%20Min"> Cheol-Hong Min</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=furrow%20detection" title="furrow detection">furrow detection</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological" title=" morphological"> morphological</a>, <a href="https://publications.waset.org/abstracts/search?q=HSV" title=" HSV"> HSV</a>, <a href="https://publications.waset.org/abstracts/search?q=Hough%20transform" title=" Hough transform "> Hough transform </a> </p> <a href="https://publications.waset.org/abstracts/85343/automatic-furrow-detection-for-precision-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=furrow%20irrigation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>