CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 464 results for author: <span class="mathjax">Tanvir, N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Tanvir, N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Tanvir%2C+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Tanvir, N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09372">arXiv:2410.09372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09372">pdf</a>, <a href="https://arxiv.org/format/2410.09372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Redshift of GRB 190829A/ SN 2019oyw: A Case Study of GRB-SN Evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bhirombhakdi%2C+K">Kornpob Bhirombhakdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">Andrew S. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pian%2C+E">Elena Pian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mazzali%2C+P">Paolo Mazzali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kangas%2C+T">Tuomas Kangas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benetti%2C+S">Stefano Benetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Medler%2C+K">Kyle Medler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N">Nial Tanvir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09372v1-abstract-short" style="display: inline;"> The nearby long gamma-ray burst (GRB) 190829A was observed using the HST/WFC3/IR grisms about four weeks to 500 days after the burst. We find the spectral features of its associated supernova, SN 2019oyw, are redshifted by several thousands km/s compared to the redshift of the large spiral galaxy on which it is superposed. This velocity offset is seen in several features but most clearly in Ca II&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09372v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09372v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09372v1-abstract-full" style="display: none;"> The nearby long gamma-ray burst (GRB) 190829A was observed using the HST/WFC3/IR grisms about four weeks to 500 days after the burst. We find the spectral features of its associated supernova, SN 2019oyw, are redshifted by several thousands km/s compared to the redshift of the large spiral galaxy on which it is superposed. This velocity offset is seen in several features but most clearly in Ca II NIR triplet $位位$ 8498, 8542, 8662 (CaIR3). We also analyze VLT/FORS and X-shooter spectra of the SN and find strong evolution with time of its P-Cygni features of CaIR3 from the blue to the red. However, comparison with a large sample of Type Ic-BL and Ic SNe shows no other object with the CaIR3 line as red as that of SN 2019oyw were it at the z = 0.0785 redshift of the disk galaxy. This implies that SN 2019oyw is either a highly unusual SN or is moving rapidly with respect to its apparent host. Indeed, using CaIR3 we find the redshift of SN 2019oyw is 0.0944 &lt;= z &lt;= 0.1156. The GRB-SN is superposed on a particularly dusty region of the massive spiral galaxy; therefore, while we see no sign of a small host galaxy behind the spiral, it could be obscured. Our work provides a surprising result on the origins of GRB 190829A, as well as insights into the time evolution of GRB-SNe spectra and a method for directly determining the redshift of a GRB-SN using the evolution of strong spectral features such as CaIR3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09372v1-abstract-full').style.display = 'none'; document.getElementById('2410.09372v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19056">arXiv:2409.19056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19056">pdf</a>, <a href="https://arxiv.org/format/2409.19056">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Einstein Probe transient EP240414a: Linking Fast X-ray Transients, Gamma-ray Bursts and Luminous Fast Blue Optical Transients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Dalen%2C+J+N+D">Joyce N. D. van Dalen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarin%2C+N">Nikhil Sarin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quirola-V%C3%A1squez%2C+J">Jonathan Quirola-V谩squez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%A1nchez%2C+D+M">Daniel Mata S谩nchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Hoof%2C+A+P+C">Agnes P. C. van Hoof</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Torres%2C+M+A+P">Manuel A. P. Torres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Littlefair%2C+S+P">Stuart P. Littlefair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A">Ashley Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">Maria E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bauer%2C+F+E">Franz E. Bauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">Antonio Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraser%2C+M">Morgan Fraser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">Alexander J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">Pall Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P">Paul O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">Giovanna Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R. Tanvir</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19056v1-abstract-short" style="display: inline;"> Detections of fast X-ray transients (FXTs) have been accrued over the last few decades. However, their origin has remained mysterious. There is now rapid progress thanks to timely discoveries and localisations with the Einstein Probe mission. Early results indicate that FXTs may frequently, but not always, be associated with gamma-ray bursts (GRBs). Here, we report on the multi-wavelength counterp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19056v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19056v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19056v1-abstract-full" style="display: none;"> Detections of fast X-ray transients (FXTs) have been accrued over the last few decades. However, their origin has remained mysterious. There is now rapid progress thanks to timely discoveries and localisations with the Einstein Probe mission. Early results indicate that FXTs may frequently, but not always, be associated with gamma-ray bursts (GRBs). Here, we report on the multi-wavelength counterpart of FXT EP240414a, which has no reported gamma-ray counterpart. The transient is located 25.7~kpc in projection from a massive galaxy at $z=0.40$. We perform comprehensive photometric and spectroscopic follow-up. The optical light curve shows at least three distinct emission episodes with timescales of $\sim 1, 4$ and 15 days and peak absolute magnitudes of $M_R \sim -20$, $-21$, and $-19.5$, respectively. The optical spectrum at early times is extremely blue, inconsistent with afterglow emission. It may arise from the interaction of both jet and supernova shock waves with the stellar envelope and a dense circumstellar medium, as has been suggested for some Fast Blue Optical Transients (LFBOTs). At late times, the spectrum evolves to a broad-lined~Type~Ic supernova, similar to those seen in collapsar long-GRBs. This implies that the progenitor of EP240414a is a massive star creating a jet-forming supernova inside a dense envelope, resulting in an X-ray outburst with a luminosity of $\sim 10^{48}$ erg s$^{-1}$, and the complex observed optical/IR light curves. If correct, this argues for a causal link between the progenitors of long-GRBs, FXTs and LFBOTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19056v1-abstract-full').style.display = 'none'; document.getElementById('2409.19056v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 13 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.14601">arXiv:2407.14601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.14601">pdf</a>, <a href="https://arxiv.org/format/2407.14601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> ANDES, the high resolution spectrograph for the ELT: science goals, project overview and future developments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Marconi%2C+A">A. Marconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abreu%2C+M">M. Abreu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adibekyan%2C+V">V. Adibekyan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alberti%2C+V">V. Alberti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrecht%2C+S">S. Albrecht</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alcaniz%2C+J">J. Alcaniz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aliverti%2C+M">M. Aliverti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prieto%2C+C+A">C. Allende Prieto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%B3mez%2C+J+D+A">J. D. Alvarado G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+C+S">C. S. Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amado%2C+P+J">P. J. Amado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amate%2C+M">M. Amate</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andersen%2C+M+I">M. I. Andersen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antoniucci%2C+S">S. Antoniucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Artigau%2C+E">E. Artigau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bailet%2C+C">C. Bailet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baker%2C+C">C. Baker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baldini%2C+V">V. Baldini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balestra%2C+A">A. Balestra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+S+A">S. A. Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baron%2C+F">F. Baron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barros%2C+S+C+C">S. C. C. Barros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bauer%2C+S+M">S. M. Bauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaulieu%2C+M">M. Beaulieu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellido-Tirado%2C+O">O. Bellido-Tirado</a> , et al. (264 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.14601v1-abstract-short" style="display: inline;"> The first generation of ELT instruments includes an optical-infrared high-resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of $\sim$100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 $渭$m with the goal of ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14601v1-abstract-full').style.display = 'inline'; document.getElementById('2407.14601v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.14601v1-abstract-full" style="display: none;"> The first generation of ELT instruments includes an optical-infrared high-resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs ([U]BV, RIZ, YJH) providing a spectral resolution of $\sim$100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 $渭$m with the goal of extending it to 0.35-2.4 $渭$m with the addition of a U arm to the BV spectrograph and a separate K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Modularity and fibre-feeding allow ANDES to be placed partly on the ELT Nasmyth platform and partly in the Coud茅 room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases, there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature&#39;s fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of almost 300 scientists and engineers which include the majority of the scientific and technical expertise in the field that can be found in ESO member states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.14601v1-abstract-full').style.display = 'none'; document.getElementById('2407.14601v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE astronomical telescope and instrumentation 2024, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06287">arXiv:2407.06287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06287">pdf</a>, <a href="https://arxiv.org/format/2407.06287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> A massive, neutral gas reservoir permeating a galaxy proto-cluster after the reionization era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">Kasper E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+J+S">Jake S. Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oesch%2C+P+A">Pascal A. Oesch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sneppen%2C+A">Albert Sneppen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rennehan%2C+D">Douglas Rennehan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Witstok%2C+J">Joris Witstok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smit%2C+R">Renske Smit</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">Simone Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Terp%2C+C">Chamilla Terp</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koca%2C+U+S">Umran S. Koca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brammer%2C+G+B">Gabriel B. Brammer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Finlator%2C+K">Kristian Finlator</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayes%2C+M+J">Matthew J. Hayes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sijacki%2C+D">Debora Sijacki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naidu%2C+R+P">Rohan P. Naidu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matthee%2C+J">Jorryt Matthee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valentino%2C+F">Francesco Valentino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P谩ll Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laursen%2C+P">Peter Laursen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+J">Darach J. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dav%C3%A9%2C+R">Romeel Dav茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+L+C">Laura C. Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covelo-Paz%2C+A">Alba Covelo-Paz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06287v1-abstract-short" style="display: inline;"> Galaxy clusters are the most massive, gravitationally-bound structures in the Universe, emerging through hierarchical structure formation of large-scale dark matter and baryon overdensities. Early galaxy ``proto-clusters&#39;&#39; are believed to be important physical drivers of the overall cosmic star-formation rate density and serve as ``hotspots&#39;&#39; for the reionization of the intergalactic medium. Our u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06287v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06287v1-abstract-full" style="display: none;"> Galaxy clusters are the most massive, gravitationally-bound structures in the Universe, emerging through hierarchical structure formation of large-scale dark matter and baryon overdensities. Early galaxy ``proto-clusters&#39;&#39; are believed to be important physical drivers of the overall cosmic star-formation rate density and serve as ``hotspots&#39;&#39; for the reionization of the intergalactic medium. Our understanding of the formation of these structures at the earliest cosmic epochs is, however, limited to sparse observations of their galaxy members, or based on phenomenological models and cosmological simulations. Here we report the detection of a massive neutral, atomic hydrogen (HI) gas reservoir permeating a galaxy proto-cluster at redshift $z=5.4$, observed one billion years after the Big Bang. The presence of this cold gas is revealed by strong damped Lyman-$伪$ absorption features observed in several background galaxy spectra taken with JWST/NIRSpec in close on-sky projection. While overall the sightlines probe a large range in HI column densities, $N_{\rm HI} = 10^{21.7}-10^{23.5}$ cm$^{-2}$, they are similar across nearby sightlines, demonstrating that they probe the same dense, neutral gas. This observation of a massive, large-scale overdensity of cold neutral gas challenges current large-scale cosmological simulations and has strong implications for the reionization topology of the Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06287v1-abstract-full').style.display = 'none'; document.getElementById('2407.06287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18754">arXiv:2406.18754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.18754">pdf</a>, <a href="https://arxiv.org/format/2406.18754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244098">10.1051/0004-6361/202244098 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rapid Response Mode observations of GRB 160203A: Looking for fine-structure line variability at z=3.52 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">G. Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saccardi%2C+A">A. Saccardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elia%2C+V+D">V. D Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Savaglio%2C+S">S. Savaglio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaper%2C+L">L. Kaper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Cia%2C+A">A. De Cia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">S. Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Rest%2C+D">D. van Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Selsing%2C+J">J. Selsing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgarella%2C+D">D. Burgarella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Japelj%2C+J">J. Japelj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18754v1-abstract-short" style="display: inline;"> Gamma-ray bursts are the most energetic known explosions. Despite fading rapidly, they allow to measure redshift and important properties of their host-galaxies. We report the photometric and spectroscopic study of GRB 160203A and its host-galaxy. Fine-structure absorption lines, detected in the afterglow at different epochs, allow us to investigate variability due to the strong fading background&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18754v1-abstract-full').style.display = 'inline'; document.getElementById('2406.18754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18754v1-abstract-full" style="display: none;"> Gamma-ray bursts are the most energetic known explosions. Despite fading rapidly, they allow to measure redshift and important properties of their host-galaxies. We report the photometric and spectroscopic study of GRB 160203A and its host-galaxy. Fine-structure absorption lines, detected in the afterglow at different epochs, allow us to investigate variability due to the strong fading background source. We obtained two optical to near-infrared spectra of the afterglow with X-shooter on ESO/VLT, 18 min and 5.7 hrs after the burst, allowing us to investigate temporal changes of fine-structure absorption lines. We measured HI column density log N(HI/cm-2)=21.75+/-0.10, and several heavy-element ions along the GRB sight-line in the host-galaxy: SiII,AlII,AlIII,CII,NiII,SiIV,CIV,ZnII,FeII, and FeII and SiII fine structure transitions from energetic levels excited by the afterglow, at a redshift z=3.518. We measured [M/H]TOT=-0.78+/-0.13 and [Zn/Fe]FIT=0.69+/-0.15, representing the total(dust-corrected) metallicity and dust depletion, respectively. We detected additional intervening systems along the line of sight at z=1.03,z=1.26,z=1.98,z=1.99,z=2.20 and z=2.83. We could not measure significant variability in the fine-structure lines throughout all the observations and determined an upper limit for the GRB distance from the absorber of d&lt;300 pc, adopting the canonical UV pumping scenario. However, we note that the quality of our data is not sufficient to conclusively rule out collisions as an alternative mechanism. GRB 160203A belongs to a growing sample of GRBs with medium resolution spectroscopy, provided by the Swift/X-shooter legacy program, which enables detailed investigation of the interstellar medium in high-redshift GRB host-galaxies. In particular, this host galaxy shows relatively high metal enrichment and dust depletion already in place when the universe was only 1.8 Gyr old. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18754v1-abstract-full').style.display = 'none'; document.getElementById('2406.18754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, 2 appendices, A&amp;A accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 690, A35 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16425">arXiv:2404.16425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16425">pdf</a>, <a href="https://arxiv.org/format/2404.16425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Soft X-ray prompt emission from a high-redshift gamma-ray burst EP240315a </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+Y">Y. Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+H">H. Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+D">D. Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Svinkin%2C+D+S">D. S. Svinkin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delaunay%2C+J">J. Delaunay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gao%2C+H">H. Gao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Y. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+X+-">X. -F. Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+B">B. Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">W. Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+J">J. An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruni%2C+G">G. Bruni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frederiks%2C+D+D">D. D. Frederiks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hu%2C+J+-">J. -W. Hu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+A">A. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+C+-">C. -K. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+J+-">J. -D. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piro%2C+L">L. Piro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raman%2C+G">G. Raman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ricci%2C+R">R. Ricci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troja%2C+E">E. Troja</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16425v1-abstract-short" style="display: inline;"> Long gamma-ray bursts (GRBs) are believed to originate from core collapse of massive stars. High-redshift GRBs can probe the star formation and reionization history of the early universe, but their detection remains rare. Here we report the detection of a GRB triggered in the 0.5--4 keV band by the Wide-field X-ray Telescope (WXT) on board the Einstein Probe (EP) mission, designated as EP240315a,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16425v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16425v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16425v1-abstract-full" style="display: none;"> Long gamma-ray bursts (GRBs) are believed to originate from core collapse of massive stars. High-redshift GRBs can probe the star formation and reionization history of the early universe, but their detection remains rare. Here we report the detection of a GRB triggered in the 0.5--4 keV band by the Wide-field X-ray Telescope (WXT) on board the Einstein Probe (EP) mission, designated as EP240315a, whose bright peak was also detected by the Swift Burst Alert Telescope and Konus-Wind through off-line analyses. At a redshift of $z=4.859$, EP240315a showed a much longer and more complicated light curve in the soft X-ray band than in gamma-rays. Benefiting from a large field-of-view ($\sim$3600 deg$^2$) and a high sensitivity, EP-WXT captured the earlier engine activation and extended late engine activity through a continuous detection. With a peak X-ray flux at the faint end of previously known high-$z$ GRBs, the detection of EP240315a demonstrates the great potential for EP to study the early universe via GRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16425v1-abstract-full').style.display = 'none'; document.getElementById('2404.16425v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 8 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16350">arXiv:2404.16350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16350">pdf</a>, <a href="https://arxiv.org/format/2404.16350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The fast X-ray transient EP240315a: a z ~ 5 gamma-ray burst in a Lyman continuum leaking galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saccardi%2C+A">Andrea Saccardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele Bj酶rn Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">Kasper E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S%C3%A1nchez%2C+D+M">Daniel Mata S谩nchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quirola-V%C3%A1squez%2C+J">Jonathan Quirola-V谩squez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Torres%2C+M+A+P">Manuel A. P. Torres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">Susanna D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">Andrea Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">Paolo D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B">Benjamin Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">Antonio Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+B">Benjamin Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Weimin Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ling%2C+Z">Zhixing Ling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+X">Xuan Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+Y">Yuan Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+H">Hui Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+D">Dong Xu</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16350v1-abstract-short" style="display: inline;"> The nature of the minute-to-hour long Fast X-ray Transients (FXTs) localised by telescopes such as Chandra, Swift, and XMM-Newton remains mysterious, with numerous models suggested for the events. Here, we report multi-wavelength observations of EP240315a, a 1600 s long transient detected by the Einstein Probe, showing it to have a redshift of z=4.859. We measure a low column density of neutral hy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16350v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16350v1-abstract-full" style="display: none;"> The nature of the minute-to-hour long Fast X-ray Transients (FXTs) localised by telescopes such as Chandra, Swift, and XMM-Newton remains mysterious, with numerous models suggested for the events. Here, we report multi-wavelength observations of EP240315a, a 1600 s long transient detected by the Einstein Probe, showing it to have a redshift of z=4.859. We measure a low column density of neutral hydrogen, indicating that the event is embedded in a low-density environment, further supported by direct detection of leaking ionising Lyman-continuum. The observed properties are consistent with EP240315a being a long-duration gamma-ray burst, and these observations support an interpretation in which a significant fraction of the FXT population are lower-luminosity examples of similar events. Such transients are detectable at high redshifts by the Einstein Probe and, in the (near) future, out to even larger distances by SVOM, THESEUS, and Athena, providing samples of events into the epoch of reionisation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16350v1-abstract-full').style.display = 'none'; document.getElementById('2404.16350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 7 figures, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02211">arXiv:2404.02211</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02211">pdf</a>, <a href="https://arxiv.org/format/2404.02211">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The JWST-PRIMAL Legacy Survey. A JWST/NIRSpec reference sample for the physical properties and Lyman-$伪$ absorption and emission of $\sim 500$ galaxies at $z=5.5-13.4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brammer%2C+G+B">G. B. Brammer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D">D. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oesch%2C+P+A">P. A. Oesch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+L+C">L. C. Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayes%2C+M+J">M. J. Hayes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abdurro%27uf"> Abdurro&#39;uf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arellano-C%C3%B3rdova%2C+K+Z">K. Z. Arellano-C贸rdova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carnall%2C+A+C">A. C. Carnall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christiansen%2C+C+R">C. R. Christiansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cullen%2C+F">F. Cullen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dav%C3%A9%2C+R">R. Dav茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dayal%2C+P">P. Dayal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferrara%2C+A">A. Ferrara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Finlator%2C+K">K. Finlator</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flury%2C+S+R">S. R. Flury</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gelli%2C+V">V. Gelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gillman%2C+S">S. Gillman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gottumukkala%2C+R">R. Gottumukkala</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gould%2C+K">K. Gould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greve%2C+T+R">T. R. Greve</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hardin%2C+S+E">S. E. Hardin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hsiao%2C+T+Y+-">T. Y. -Y Hsiao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hutter%2C+A">A. Hutter</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02211v1-abstract-short" style="display: inline;"> One of the surprising early findings with JWST has been the discovery of a strong &#34;roll-over&#34; or a softening of the absorption edge of Ly$伪$ in a large number of galaxies at ($z\gtrsim 6$), in addition to systematic offsets from photometric redshift estimates and fundamental galaxy scaling relations. This has been interpreted as damped Ly$伪$ absorption (DLA) wings from high column densities of neu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02211v1-abstract-full').style.display = 'inline'; document.getElementById('2404.02211v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02211v1-abstract-full" style="display: none;"> One of the surprising early findings with JWST has been the discovery of a strong &#34;roll-over&#34; or a softening of the absorption edge of Ly$伪$ in a large number of galaxies at ($z\gtrsim 6$), in addition to systematic offsets from photometric redshift estimates and fundamental galaxy scaling relations. This has been interpreted as damped Ly$伪$ absorption (DLA) wings from high column densities of neutral atomic hydrogen (HI), signifying major gas accretion events in the formation of these galaxies. To explore this new phenomenon systematically, we assemble the JWST/NIRSpec PRImordial gas Mass AssembLy (PRIMAL) legacy survey of 494 galaxies at $z=5.5-13.4$. We characterize this benchmark sample in full and spectroscopically derive the galaxy redshifts, metallicities, star-formation rates, and ultraviolet slopes. We define a new diagnostic, the Ly$伪$ damping parameter $D_{\rm Ly伪}$ to measure and quantify the Ly$伪$ emission strength, HI fraction in the IGM, or local HI column density for each source. The JWST-PRIMAL survey is based on the spectroscopic DAWN JWST Archive (DJA-Spec). All the software, reduced spectra, and spectroscopically derived quantities and catalogs are made publicly available in dedicated repositories. The fraction of strong galaxy DLAs are found to be in the range $65-95\%$ at $z&gt;5.5$. The fraction of strong Ly$伪$ emitters (LAEs) is found to increase with decreasing redshift, in qualitative agreement with previous observational results, and are predominantly associated with low-metallicity and UV faint galaxies. By contrast, strong DLAs are observed in galaxies with a variety of intrinsic physical properties. Our results indicate that strong DLAs likely reflect a particular early assembly phase of reionization-era galaxies, at which point they are largely dominated by pristine HI gas accretion. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02211v1-abstract-full').style.display = 'none'; document.getElementById('2404.02211v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 18 figures, 3 tables. Submitted to A&amp;A. Comments welcome! All data and catalogs are available through the DAWN JWST Archive (DJA): https://dawn-cph.github.io/dja/ and https://github.com/keheintz/jwst-primal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.13126">arXiv:2403.13126</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.13126">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Neutral Fraction of Hydrogen in the Intergalactic Medium Surrounding High-Redshift Gamma-Ray Burst 210905A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fausey%2C+H+M">H. M. Fausey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">S. Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saccardi%2C+A">A. Saccardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">A. Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmerio%2C+J">J. Palmerio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">G. Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.13126v1-abstract-short" style="display: inline;"> The Epoch of Reionization (EoR) is a key period of cosmological history in which the intergalactic medium (IGM) underwent a major phase change from being neutral to almost completely ionized. Gamma-ray bursts (GRBs) are luminous and unique probes of their environments that can be used to study the timeline for the progression of the EoR. Here we present a detailed analysis of the ESO Very Large Te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13126v1-abstract-full').style.display = 'inline'; document.getElementById('2403.13126v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.13126v1-abstract-full" style="display: none;"> The Epoch of Reionization (EoR) is a key period of cosmological history in which the intergalactic medium (IGM) underwent a major phase change from being neutral to almost completely ionized. Gamma-ray bursts (GRBs) are luminous and unique probes of their environments that can be used to study the timeline for the progression of the EoR. Here we present a detailed analysis of the ESO Very Large Telescope X-shooter spectrum of GRB 210905A, which resides at a redshift of z ~ 6.3. We focus on estimating the fraction of neutral hydrogen, xHI, on the line of sight to the host galaxy of GRB 210905A by fitting the shape of the Lyman-alpha damping wing of the afterglow spectrum. The X-shooter spectrum has a high signal to noise ratio, but the complex velocity structure of the host galaxy limits the precision of our conclusions. The statistically preferred model suggests a low neutral fraction with an 3-sigma upper limit of xHI &lt; 0.15, indicating that the IGM around the GRB host galaxy is mostly ionized. We discuss complications in current analyses and potential avenues for future studies of the progression of the EoR and its evolution with redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.13126v1-abstract-full').style.display = 'none'; document.getElementById('2403.13126v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures, submitted to Monthly Notices of the Royal Astronomical Society</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00101">arXiv:2403.00101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00101">pdf</a>, <a href="https://arxiv.org/format/2403.00101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348159">10.1051/0004-6361/202348159 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fires in the deep: The luminosity distribution of early-time gamma-ray-burst afterglows in light of the Gamow Explorer sensitivity requirements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+N+E">N. E. White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jelinek%2C+M">M. Jelinek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">A. Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paek%2C+G+S+-">G. S. -H. Paek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+M">M. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thone%2C+C">C. Thone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fernandez%2C+J+F+A">J. F. Agui Fernandez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+T+-">T. -C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P">P. O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">D. A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Im%2C+M">M. Im</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+A">A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+C">C. Choi</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00101v1-abstract-short" style="display: inline;"> Gamma-ray bursts (GRBs) are ideal probes of the Universe at high redshift (z &gt; 5), pinpointing the locations of the earliest star-forming galaxies and providing bright backlights that can be used to spectrally fingerprint the intergalactic medium and host galaxy during the period of reionization. Future missions such as Gamow Explorer are being proposed to unlock this potential by increasing the r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00101v1-abstract-full').style.display = 'inline'; document.getElementById('2403.00101v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00101v1-abstract-full" style="display: none;"> Gamma-ray bursts (GRBs) are ideal probes of the Universe at high redshift (z &gt; 5), pinpointing the locations of the earliest star-forming galaxies and providing bright backlights that can be used to spectrally fingerprint the intergalactic medium and host galaxy during the period of reionization. Future missions such as Gamow Explorer are being proposed to unlock this potential by increasing the rate of identification of high-z GRBs to rapidly trigger observations from 6-10 m ground telescopes, JWST, and the Extremely Large Telescopes. Gamow was proposed to the NASA 2021 Medium-Class Explorer (MIDEX) program as a fast-slewing satellite featuring a wide-field lobster-eye X-ray telescope (LEXT) to detect and localize GRBs, and a 30 cm narrow-field multi-channel photo-z infrared telescope (PIRT) to measure their photometric redshifts using the Lyman-alpha dropout technique. To derive the PIRT sensitivity requirement we compiled a complete sample of GRB optical-near-infrared afterglows from 2008 to 2021, adding a total of 66 new afterglows to our earlier sample, including all known high-z GRB afterglows. We performed full light-curve and spectral-energy-distribution analyses of these afterglows to derive their true luminosity at very early times. For all the light curves, where possible, we determined the brightness at the time of the initial finding chart of Gamow, at different high redshifts and in different NIR bands. We then followed the evolution of the luminosity to predict requirements for ground and space-based follow-up. We find that a PIRT sensitivity of 15 micro-Jy (21 mag AB) in a 500 s exposure simultaneously in five NIR bands within 1000s of the GRB trigger will meet the Gamow mission requirement to recover &gt; 80% of all redshifts at z &gt; 5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00101v1-abstract-full').style.display = 'none'; document.getElementById('2403.00101v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 10 figures, 1 table. Accepted for publication in Astronomy and Astrophysics 15 Feb 2024. Abstract abridged for arXiv</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 686, A56 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.07571">arXiv:2402.07571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.07571">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> LISA Definition Study Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Colpi%2C+M">Monica Colpi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Danzmann%2C+K">Karsten Danzmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hewitson%2C+M">Martin Hewitson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holley-Bockelmann%2C+K">Kelly Holley-Bockelmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jetzer%2C+P">Philippe Jetzer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nelemans%2C+G">Gijs Nelemans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petiteau%2C+A">Antoine Petiteau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shoemaker%2C+D">David Shoemaker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sopuerta%2C+C">Carlos Sopuerta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stebbins%2C+R">Robin Stebbins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N">Nial Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ward%2C+H">Henry Ward</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weber%2C+W+J">William Joseph Weber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thorpe%2C+I">Ira Thorpe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Daurskikh%2C+A">Anna Daurskikh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deep%2C+A">Atul Deep</a>, <a href="/search/astro-ph?searchtype=author&amp;query=N%C3%BA%C3%B1ez%2C+I+F">Ignacio Fern谩ndez N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marirrodriga%2C+C+G">C茅sar Garc铆a Marirrodriga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gehler%2C+M">Martin Gehler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halain%2C+J">Jean-Philippe Halain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jennrich%2C+O">Oliver Jennrich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lammers%2C+U">Uwe Lammers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larra%C3%B1aga%2C+J">Jonan Larra帽aga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lieser%2C+M">Maike Lieser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=L%C3%BCtzgendorf%2C+N">Nora L眉tzgendorf</a> , et al. (86 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.07571v1-abstract-short" style="display: inline;"> The Laser Interferometer Space Antenna (LISA) is the first scientific endeavour to detect and study gravitational waves from space. LISA will survey the sky for Gravitational Waves in the 0.1 mHz to 1 Hz frequency band which will enable the study of a vast number of objects ranging from Galactic binaries and stellar mass black holes in the Milky Way, to distant massive black-hole mergers and the e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07571v1-abstract-full').style.display = 'inline'; document.getElementById('2402.07571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.07571v1-abstract-full" style="display: none;"> The Laser Interferometer Space Antenna (LISA) is the first scientific endeavour to detect and study gravitational waves from space. LISA will survey the sky for Gravitational Waves in the 0.1 mHz to 1 Hz frequency band which will enable the study of a vast number of objects ranging from Galactic binaries and stellar mass black holes in the Milky Way, to distant massive black-hole mergers and the expansion of the Universe. This definition study report, or Red Book, presents a summary of the very large body of work that has been undertaken on the LISA mission over the LISA definition phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.07571v1-abstract-full').style.display = 'none'; document.getElementById('2402.07571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">155 pages, with executive summary and table of contents</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04630">arXiv:2312.04630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04630">pdf</a>, <a href="https://arxiv.org/format/2312.04630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Hubble Space Telescope Search for r-Process Nucleosynthesis in Gamma-ray Burst Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J+C">J. C. Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilpatrick%2C+C+D">C. D. Kilpatrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhirombhakdi%2C+K">K. Bhirombhakdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halevi%2C+G">G. Halevi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">B. D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milvang-Jensen%2C+B">B. Milvang-Jensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pian%2C+E">E. Pian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">G. Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siegel%2C+D+M">D. M. Siegel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singh%2C+P">P. Singh</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04630v2-abstract-short" style="display: inline;"> The existence of a secondary (in addition to compact object mergers) source of heavy element ($r$-process) nucleosynthesis, the core-collapse of rapidly-rotating and highly-magnetized massive stars, has been suggested by both simulations and indirect observational evidence. Here, we probe a predicted signature of $r$-process enrichment, a late-time ($\gtrsim 40$ days post-burst) distinct red color&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04630v2-abstract-full').style.display = 'inline'; document.getElementById('2312.04630v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04630v2-abstract-full" style="display: none;"> The existence of a secondary (in addition to compact object mergers) source of heavy element ($r$-process) nucleosynthesis, the core-collapse of rapidly-rotating and highly-magnetized massive stars, has been suggested by both simulations and indirect observational evidence. Here, we probe a predicted signature of $r$-process enrichment, a late-time ($\gtrsim 40$ days post-burst) distinct red color, in observations of GRB-supernovae (GRB-SNe) which are linked to these massive star progenitors. We present optical to near-IR color measurements of four GRB-SNe at $z \lesssim 0.4$, extending out to $&gt; 500$ days post-burst, obtained with the Hubble Space Telescope and large-aperture ground-based telescopes. Comparison of our observations to models indicates that GRBs 030329, 100316D and 130427A are consistent with both no enrichment and producing $0.01 - 0.15 M_{\odot}$ of $r$-process material if there is a low amount of mixing between the inner $r$-process ejecta and outer SN layers. GRB 190829A is not consistent with any models with $r$-process enrichment $\geq 0.01 M_{\odot}$. Taken together the sample of GRB-SNe indicates color diversity at late times. Our derived yields from GRB-SNe may be underestimated due to $r$-process material hidden in the SN ejecta (potentially due to low mixing fractions) or the limits of current models in measuring $r$-process mass. We conclude with recommendations for future search strategies to observe and probe the full distribution of $r$-process produced by GRB-SNe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04630v2-abstract-full').style.display = 'none'; document.getElementById('2312.04630v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resubmission after comments. Accepted to ApJ. 36 pages, 7 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.15967">arXiv:2310.15967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.15967">pdf</a>, <a href="https://arxiv.org/format/2310.15967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Comparing emission- and absorption-based gas-phase metallicities in GRB host galaxies at $z=2-4$ using JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schady%2C+P">P. Schady</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yates%2C+R+M">R. M. Yates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Cia%2C+A">A. De Cia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laskar%2C+T">T. Laskar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Starling%2C+R+L+C">R. L. C. Starling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Th%C3%B6ne%2C+C+C">C. C. Th枚ne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S">S. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arabsalmani%2C+M+.">M . Arabsalmani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+H+-">H. -W. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A">A. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garc%C3%ADa-Benito%2C+R">R. Garc铆a-Benito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B">B. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.15967v3-abstract-short" style="display: inline;"> Much of what is known of the chemical composition of the universe is based on emission line spectra from star forming galaxies. Emission-based inferences are, nevertheless, model-dependent and they are dominated by light from luminous star forming regions. An alternative and sensitive probe of the metallicity of galaxies is through absorption lines imprinted on the luminous afterglow spectra of lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15967v3-abstract-full').style.display = 'inline'; document.getElementById('2310.15967v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.15967v3-abstract-full" style="display: none;"> Much of what is known of the chemical composition of the universe is based on emission line spectra from star forming galaxies. Emission-based inferences are, nevertheless, model-dependent and they are dominated by light from luminous star forming regions. An alternative and sensitive probe of the metallicity of galaxies is through absorption lines imprinted on the luminous afterglow spectra of long gamma ray bursts (GRBs) from neutral material within their host galaxy. We present results from a JWST/NIRSpec programme to investigate for the first time the relation between the metallicity of neutral gas probed in absorption by GRB afterglows and the metallicity of the star forming regions for the same host galaxy sample. Using an initial sample of eight GRB host galaxies at z=2.1-4.7, we find a tight relation between absorption and emission line metallicities when using the recently proposed $\hat{R}$ metallicity diagnostic (+/-0.2dex). This agreement implies a relatively chemically-homogeneous multi-phase interstellar medium, and indicates that absorption and emission line probes can be directly compared. However, the relation is less clear when using other diagnostics, such as R23 and R3. We also find possible evidence of an elevated N/O ratio in the host galaxy of GRB090323 at z=3.58, consistent with what has been seen in other $z&gt;4$ galaxies. Ultimate confirmation of an enhanced N/O ratio and of the relation between absorption and emission line metallicities will require a more direct determination of the emission line metallicity via the detection of temperature-sensitive auroral lines in our GRB host galaxy sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.15967v3-abstract-full').style.display = 'none'; document.getElementById('2310.15967v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS; 24 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14310">arXiv:2310.14310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14310">pdf</a>, <a href="https://arxiv.org/format/2310.14310">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Multi-band analyses of the bright GRB 230812B and the associated SN2023pel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hussenot-Desenonges%2C+T">T. Hussenot-Desenonges</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wouters%2C+T">T. Wouters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guessoum%2C+N">N. Guessoum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abdi%2C+I">I. Abdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abulwfa%2C+A">A. Abulwfa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adami%2C+C">C. Adami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">T. Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aivazyan%2C+V">V. Aivazyan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akl%2C+D">D. Akl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade%2C+C+M">C. M. Andrade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antier%2C+S">S. Antier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ata%2C+S+A">S. A. Ata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Azzam%2C+Y+A">Y. A. Azzam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baransky%2C+A">A. Baransky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+M">M. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bendjoya%2C+P">P. Bendjoya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beradze%2C+S">S. Beradze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boumis%2C+P">P. Boumis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bremer%2C+M">M. Bremer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brivio%2C+R">R. Brivio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buat%2C+V">V. Buat</a> , et al. (87 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14310v2-abstract-short" style="display: inline;"> GRB~230812B is a bright and relatively nearby ($z =0.36$) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of obs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14310v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14310v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14310v2-abstract-full" style="display: none;"> GRB~230812B is a bright and relatively nearby ($z =0.36$) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) of the GRB and compare with other analyses of this event. We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v $\sim$ 17$\times10^3$ km s$^{-1}$. We analyze the photometric data first using empirical fits of the flux and then with full Bayesian Inference. We again strongly establish the presence of a supernova in the data, with a maximum (pseudo-)bolometric luminosity of $5.75 \times 10^{42}$ erg/s, at $15.76^{+0.81}_{-1.21}$ days (in the observer frame) after the trigger, with a half-max time width of 22.0 days. We compare these values with those of SN1998bw, SN2006aj, and SN2013dx. Our best-fit model favours a very low density environment ($\log_{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.38^{+1.45}_{-1.60}$) and small values for the jet&#39;s core angle $胃_{\rm core} = 1.54^{+1.02}_{-0.81} \ \rm{deg}$ and viewing angle $胃_{\rm obs} = 0.76^{+1.29}_{-0.76} \ \rm{deg}$. GRB 230812B is thus one of the best observed afterglows with a distinctive supernova bump. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14310v2-abstract-full').style.display = 'none'; document.getElementById('2310.14310v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03093">arXiv:2310.03093</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03093">pdf</a>, <a href="https://arxiv.org/format/2310.03093">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Photometric Redshift Estimation for Gamma-Ray Bursts from the Early Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fausey%2C+H+M">H. M. Fausey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+N+E">N. E. White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seiffert%2C+M">M. Seiffert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Willems%2C+P">P. Willems</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Young%2C+E+T">E. T. Young</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+M">M. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+T">T-C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A">A. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guiriec%2C+S">S. Guiriec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Granot%2C+J">J. Granot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lidz%2C+A">A. Lidz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03093v1-abstract-short" style="display: inline;"> Future detection of high-redshift gamma-ray bursts (GRBs) will be an important tool for studying the early Universe. Fast and accurate redshift estimation for detected GRBs is key for encouraging rapid follow-up observations by ground- and space-based telescopes. Low-redshift dusty interlopers pose the biggest challenge for GRB redshift estimation using broad photometric bands, as their high extin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03093v1-abstract-full').style.display = 'inline'; document.getElementById('2310.03093v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03093v1-abstract-full" style="display: none;"> Future detection of high-redshift gamma-ray bursts (GRBs) will be an important tool for studying the early Universe. Fast and accurate redshift estimation for detected GRBs is key for encouraging rapid follow-up observations by ground- and space-based telescopes. Low-redshift dusty interlopers pose the biggest challenge for GRB redshift estimation using broad photometric bands, as their high extinction can mimic a high-redshift GRB. To assess false alarms of high-redshift GRB photometric measurements, we simulate and fit a variety of GRBs using phozzy, a simulation code developed to estimate GRB photometric redshifts, and test the ability to distinguish between high- and low-redshift GRBs when using simultaneously observed photometric bands. We run the code with the wavelength bands and instrument parameters for the Photo-z Infrared Telescope (PIRT), an instrument designed for the Gamow mission concept. We explore various distributions of host galaxy extinction as a function of redshift, and their effect on the completeness and purity of a high-redshift GRB search with the PIRT. We find that for assumptions based on current observations, the completeness and purity range from $\sim 82$ to $88\%$ and from $\sim 84$ to $&gt;99\%$, respectively. For the priors optimized to reduce false positives, only $\sim 0.6\%$ of low-redshift GRBs will be mistaken as a high-redshift one, corresponding to $\sim 1$ false alarm per 500 detected GRBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03093v1-abstract-full').style.display = 'none'; document.getElementById('2310.03093v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 15 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.03000">arXiv:2309.03000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.03000">pdf</a>, <a href="https://arxiv.org/format/2309.03000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347113">10.1051/0004-6361/202347113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A search for the afterglows, kilonovae, and host galaxies of two short GRBs: GRB 211106A and GRB 211227A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ferro%2C+M">M. Ferro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brivio%2C+R">R. Brivio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dinatolo%2C+M">M. Dinatolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hussein%2C+S">S. Hussein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">A. Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nava%2C+L">L. Nava</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guelbenzu%2C+A+N">A. Nicuesa Guelbenzu</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.03000v1-abstract-short" style="display: inline;"> Context: GRB 211106A and GRB 211227A are recent gamma-ray bursts (GRBs) with initial X-ray positions suggesting associations with nearby galaxies (z &lt; 0.7). Their prompt emission characteristics indicate GRB 211106A is a short-duration GRB and GRB 211227A is a short GRB with extended emission, likely originating from compact binary mergers. However, classifying solely based on prompt emission can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03000v1-abstract-full').style.display = 'inline'; document.getElementById('2309.03000v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.03000v1-abstract-full" style="display: none;"> Context: GRB 211106A and GRB 211227A are recent gamma-ray bursts (GRBs) with initial X-ray positions suggesting associations with nearby galaxies (z &lt; 0.7). Their prompt emission characteristics indicate GRB 211106A is a short-duration GRB and GRB 211227A is a short GRB with extended emission, likely originating from compact binary mergers. However, classifying solely based on prompt emission can be misleading. Aims: These short GRBs in the local Universe offer opportunities to search for associated kilonova (KN) emission and study host galaxy properties in detail. Methods: We conducted deep optical and NIR follow-up using ESO-VLT FORS2, HAWK-I, and MUSE for GRB 211106A, and ESO-VLT FORS2 and X-Shooter for GRB 211227A, starting shortly after the X-ray afterglow detection. We performed photometric analysis to look for afterglow and KN emissions associated with the bursts, along with host galaxy imaging and spectroscopy. Optical/NIR results were compared with Swift X-Ray Telescope (XRT) and other high-energy data. Results: For both GRBs we placed deep limits to the optical/NIR afterglow and KN emission. Host galaxies were identified: GRB 211106A at photometric z = 0.64 and GRB 211227A at spectroscopic z = 0.228. Host galaxy properties aligned with typical short GRB hosts. We also compared the properties of the bursts with the S-BAT4 sample to further examined the nature of these events. Conclusions: Study of prompt and afterglow phases, along with host galaxy analysis, confirms GRB 211106A as a short GRB and GRB 211227A as a short GRB with extended emission. The absence of optical/NIR counterparts is likely due to local extinction for GRB 211106A and a faint kilonova for GRB 211227A. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.03000v1-abstract-full').style.display = 'none'; document.getElementById('2309.03000v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to A&amp;A on 08 August 2023, 21 pages, 24 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 678, A142 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14812">arXiv:2308.14812</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14812">pdf</a>, <a href="https://arxiv.org/format/2308.14812">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347418">10.1051/0004-6361/202347418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The cosmic build-up of dust and metals. Accurate abundances from GRB-selected star-forming galaxies at $1.7 &lt; z &lt; 6.3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Cia%2C+A">A. De Cia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Th%C3%B6ne%2C+C+C">C. C. Th枚ne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Krogager%2C+J+-">J. -K. Krogager</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yates%2C+R+M">R. M. Yates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">S. Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Konstantopoulou%2C+C">C. Konstantopoulou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D">D. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narayanan%2C+D">D. Narayanan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilson%2C+S+N">S. N. Wilson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arabsalmani%2C+M">M. Arabsalmani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milvang-Jensen%2C+B">B. Milvang-Jensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B8ller%2C+P">P. M酶ller</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14812v1-abstract-short" style="display: inline;"> The chemical enrichment of dust and metals in the interstellar medium (ISM) of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG), and dust-to-metal (DTM) ratios of 36 star-forming galaxies at $1.7 &lt; z &lt; 6.3$ probed by gamma-ray bursts (GRBs). We compile all GRB-selected galaxies wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14812v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14812v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14812v1-abstract-full" style="display: none;"> The chemical enrichment of dust and metals in the interstellar medium (ISM) of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG), and dust-to-metal (DTM) ratios of 36 star-forming galaxies at $1.7 &lt; z &lt; 6.3$ probed by gamma-ray bursts (GRBs). We compile all GRB-selected galaxies with intermediate (R=7000) to high (R&gt;40,000) resolution spectroscopic data for which at least one refractory (e.g. Fe) and one volatile (e.g. S or Zn) element have been detected at S/N&gt;3. This is to ensure that accurate abundances and dust depletion patterns can be obtained. We first derive the redshift evolution of the dust-corrected, absorption-line based gas-phase metallicity [M/H]$_{\rm tot}$ in these galaxies, for which we determine a linear relation with redshift ${\rm [M/H]_{tot}}(z) = (-0.21\pm 0.04)z -(0.47\pm 0.14)$. We then examine the DTG and DTM ratios as a function of redshift and through three orders of magnitude in metallicity, quantifying the relative dust abundance both through the direct line-of-sight visual extinction $A_V$ and the derived depletion level. We use a novel method to derive the DTG and DTM mass ratios for each GRB sightline, summing up the mass of all the depleted elements in the dust-phase. We find that the DTG and DTM mass ratios are both strongly correlated with the gas-phase metallicity and show a mild evolution with redshift as well. While these results are subject to a variety of caveats related to the physical environments and the narrow pencil-beam sightlines through the ISM probed by the GRBs, they provide strong implications for studies of dust masses to infer the gas and metal content of high-redshift galaxies, and particularly demonstrate the large offset from the average Galactic value in the low-metallicity, high-redshift regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14812v1-abstract-full').style.display = 'none'; document.getElementById('2308.14812v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 679, A91 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14248">arXiv:2308.14248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14248">pdf</a>, <a href="https://arxiv.org/format/2308.14248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Constraints on the $z\sim5$ Star-Forming Galaxy Luminosity Function From $\textit{Hubble Space Telescope}$ Imaging of an Unbiased and Complete Sample of Long Gamma-ray Burst Host Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sears%2C+H">Huei Sears</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">Ryan Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strader%2C+J">Jay Strader</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanchard%2C+P+K">Peter K. Blanchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margutti%2C+R">Raffaella Margutti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R. Tanvir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14248v1-abstract-short" style="display: inline;"> We present rest-frame UV \textit{Hubble Space Telescope} imaging of the largest and most complete sample of 23 long duration gamma-ray burst (GRB) host galaxies between redshifts 4 and 6. Of these 23, we present new WFC3/F110W imaging for 19 of the hosts, which we combine with archival WFC3/F110W and WFC3/F140W imaging for the remaining four. We use the photometry of the host galaxies from this sa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14248v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14248v1-abstract-full" style="display: none;"> We present rest-frame UV \textit{Hubble Space Telescope} imaging of the largest and most complete sample of 23 long duration gamma-ray burst (GRB) host galaxies between redshifts 4 and 6. Of these 23, we present new WFC3/F110W imaging for 19 of the hosts, which we combine with archival WFC3/F110W and WFC3/F140W imaging for the remaining four. We use the photometry of the host galaxies from this sample to characterize both the rest-frame UV luminosity function (LF) and the size-luminosity relation of the sample. We find that when assuming the standard Schechter-function parameterization for the UV LF, the GRB host sample is best fit with $伪= -1.30^{+0.30}_{-0.25}$ and $M_* = -20.33^{+0.44}_{-0.54}$ mag, which is consistent with results based on $z\sim5$ Lyman-break galaxies. We find that $\sim68\%$ of our size-luminosity measurements fall within or below the same relation for Lyman-break galaxies at $z\sim4$. This study observationally confirms expectations that at $z\sim5$ Lyman-break and GRB host galaxies should trace the same population and demonstrates the utility of GRBs as probes of hidden star-formation in the high-redshift universe. Under the assumption that GRBs unbiasedly trace star formation at this redshift, our non-detection fraction of 7/23 is consistent at the $95\%$-confidence level with $13 - 53\%$ of star formation at redshift $z\sim5$ occurring in galaxies fainter than our detection limit of $M_{1600 A} \sim -18.3$ mag. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14248v1-abstract-full').style.display = 'none'; document.getElementById('2308.14248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.10936">arXiv:2308.10936</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.10936">pdf</a>, <a href="https://arxiv.org/format/2308.10936">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Radio Flare in the Long-Lived Afterglow of the Distant Short GRB 210726A: Energy Injection or a Reverse Shock from Shell Collisions? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schroeder%2C+G">Genevieve Schroeder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+L">Lauren Rhodes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laskar%2C+T">Tanmoy Laskar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+A">Anya Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Escorial%2C+A+R">Alicia Rouco Escorial</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J+C">Jillian C. Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">Wen-fai Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">Alexander J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Veres%2C+P">P茅ter Veres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexander%2C+K+D">Kate D. Alexander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andersson%2C+A">Alex Andersson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanchard%2C+P+K">Peter K. Blanchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chastain%2C+S">Sarah Chastain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">Lise Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fender%2C+R">Rob Fender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+D+A">David A. Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groot%2C+P">Paul Groot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heywood%2C+I">Ian Heywood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horesh%2C+A">Assaf Horesh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilpatrick%2C+C+D">Charles D. Kilpatrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=K%C3%B6rding%2C+E">Elmar K枚rding</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lien%2C+A">Amy Lien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.10936v2-abstract-short" style="display: inline;"> We present the discovery of the radio afterglow of the short $纬$-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift of $z\sim 2.4$. While radio observations commenced $\lesssim 1~$day after the burst, no radio emission was detected until $\sim11~$days. The radio afterglow subsequently brightened by a factor of $\sim 3$ in the span of a week, followed by a rapid decay (a &#34;radi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10936v2-abstract-full').style.display = 'inline'; document.getElementById('2308.10936v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.10936v2-abstract-full" style="display: none;"> We present the discovery of the radio afterglow of the short $纬$-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift of $z\sim 2.4$. While radio observations commenced $\lesssim 1~$day after the burst, no radio emission was detected until $\sim11~$days. The radio afterglow subsequently brightened by a factor of $\sim 3$ in the span of a week, followed by a rapid decay (a &#34;radio flare&#34;). We find that a forward shock afterglow model cannot self-consistently describe the multi-wavelength X-ray and radio data, and underpredicts the flux of the radio flare by a factor of $\approx 5$. We find that the addition of substantial energy injection, which increases the isotropic kinetic energy of the burst by a factor of $\approx 4$, or a reverse shock from a shell collision are viable solutions to match the broad-band behavior. At $z\sim 2.4$, GRB 210726A is among the highest redshift short GRBs discovered to date as well as the most luminous in radio and X-rays. Combining and comparing all previous radio afterglow observations of short GRBs, we find that the majority of published radio searches conclude by $\lesssim 10~$days after the burst, potentially missing these late rising, luminous radio afterglows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.10936v2-abstract-full').style.display = 'none'; document.getElementById('2308.10936v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 10 figures, accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07381">arXiv:2308.07381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07381">pdf</a>, <a href="https://arxiv.org/format/2308.07381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Late time HST UV and optical observations of AT~2018cow: extracting a cow from its background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Inkenhaag%2C+A">Anne Inkenhaag</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A+A">Ashley A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mummery%2C+A">Andrew Mummery</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R. Tanvir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07381v1-abstract-short" style="display: inline;"> The bright, blue, rapidly evolving AT2018cow is a well-studied peculiar extragalactic transient. Despite an abundance of multi-wavelength data, there still is no consensus on the nature of the event. We present our analysis of three epochs of Hubble Space Telescope (HST) observations spanning the period from 713-1474 days post burst, paying particular attention to uncertainties of the transient ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07381v1-abstract-full').style.display = 'inline'; document.getElementById('2308.07381v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07381v1-abstract-full" style="display: none;"> The bright, blue, rapidly evolving AT2018cow is a well-studied peculiar extragalactic transient. Despite an abundance of multi-wavelength data, there still is no consensus on the nature of the event. We present our analysis of three epochs of Hubble Space Telescope (HST) observations spanning the period from 713-1474 days post burst, paying particular attention to uncertainties of the transient photometry introduced by the complex background in which AT2018cow resides. Photometric measurements show evident fading in the UV and more subtle but significant fading in the optical. During the last HST observation, the transient&#39;s optical/UV colours were still bluer than those of the substantial population of compact, young, star-forming regions in the host of AT2018cow, suggesting some continued transient contribution to the light. However, a compact source underlying the transient would substantially modify the resulting spectral energy distribution, depending on its contribution in the various bands. In particular, in the optical filters, the complex, diffuse background poses a problem for precise photometry. An underlying cluster is expected for a supernova occurring within a young stellar environment or a tidal-disruption event (TDE) within a dense older one. While many recent works have focused on the supernova interpretation, we note the substantial similarity in UV light-curve morphology between AT2018cow and several tidal disruption events around supermassive black holes. Assuming AT2018cow arises from a TDE-like event, we fit the late-time emission with a disc model and find $M_{BH} = 10^{3.2{\pm}0.8}$ M$_{\odot}$. Further observations are necessary to determine the late-time evolution of the transient and its immediate environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07381v1-abstract-full').style.display = 'none'; document.getElementById('2308.07381v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10339">arXiv:2307.10339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10339">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202347017">10.1051/0004-6361/202347017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The ultra-long GRB 220627A at z=3.08 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=de+Wet%2C+S">S. de Wet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groot%2C+P+J">P. J. Groot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bisero%2C+S">S. Bisero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laskar%2C+T">T. Laskar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Martin-Carrillo%2C+A">A. Martin-Carrillo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guelbenzu%2C+A+N">A. Nicuesa Guelbenzu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">G. Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saccardi%2C+A">A. Saccardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Savaglio%2C+S">S. Savaglio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schady%2C+P">P. Schady</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Eerten%2C+H">H. van Eerten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S">S. Vergani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10339v1-abstract-short" style="display: inline;"> GRB 220627A is a rare burst with two distinct gamma-ray emission episodes separated by almost 1000 s that triggered the Fermi Gamma-ray Burst Monitor twice. High-energy GeV emission was detected by the Fermi Large Area Telescope coincident with the first emission episode but not the second. The discovery of the optical afterglow with MeerLICHT led to MUSE observations which secured the burst redsh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2307.10339v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10339v1-abstract-full" style="display: none;"> GRB 220627A is a rare burst with two distinct gamma-ray emission episodes separated by almost 1000 s that triggered the Fermi Gamma-ray Burst Monitor twice. High-energy GeV emission was detected by the Fermi Large Area Telescope coincident with the first emission episode but not the second. The discovery of the optical afterglow with MeerLICHT led to MUSE observations which secured the burst redshift to z=3.08, making this the most distant ultra-long gamma-ray burst (GRB) detected to date. The progenitors of some ultra-long GRBs have been suggested in the literature to be different to those of normal long GRBs. Our aim is to determine whether the afterglow and host properties of GRB 220627A agree with this interpretation. We performed empirical and theoretical modelling of the afterglow data within the external forward shock framework, and determined the metallicity of the GRB environment through modelling the absorption lines in the MUSE spectrum. Our optical data show evidence for a jet break in the light curve at ~1.2 days, while our theoretical modelling shows a preference for a homogeneous circumburst medium. Our forward shock parameters are typical for the wider GRB population, and we find that the environment of the burst is characterised by a sub-solar metallicity. Our observations and modelling of GRB 220627A do not suggest that a different progenitor compared to the progenitor of normal long GRBs is required. We find that more observations of ultra-long GRBs are needed to determine if they form a separate population with distinct prompt and afterglow features, and possibly distinct progenitors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10339v1-abstract-full').style.display = 'none'; document.getElementById('2307.10339v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 677, A32 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02098">arXiv:2307.02098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02098">pdf</a>, <a href="https://arxiv.org/format/2307.02098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06759-1">10.1038/s41586-023-06759-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST detection of heavy neutron capture elements in a compact object merger </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salafia%2C+O+S">O. S. Salafia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">M. Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotokezaka%2C+K">K. Hotokezaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">M. E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Escorial%2C+A+R">A. Rouco Escorial</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+B">B. Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarin%2C+N">N. Sarin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+G">G. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brammer%2C+G+B">G. B. Brammer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhillon%2C+V+S">V. S. Dhillon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fausnaugh%2C+M">M. Fausnaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W+-">W. -F. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02098v1-abstract-short" style="display: inline;"> The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs), sources of high-frequency gravitational waves and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process). These heavy elements include some of great geophysical, bi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02098v1-abstract-full').style.display = 'inline'; document.getElementById('2307.02098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02098v1-abstract-full" style="display: none;"> The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs), sources of high-frequency gravitational waves and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process). These heavy elements include some of great geophysical, biological and cultural importance, such as thorium, iodine and gold. Here we present observations of the exceptionally bright gamma-ray burst GRB 230307A. We show that GRB 230307A belongs to the class of long-duration gamma-ray bursts associated with compact object mergers, and contains a kilonova similar to AT2017gfo, associated with the gravitational-wave merger GW170817. We obtained James Webb Space Telescope mid-infrared (mid-IR) imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns which we interpret as tellurium (atomic mass A=130), and a very red source, emitting most of its light in the mid-IR due to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy element nucleosynthesis across the Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02098v1-abstract-full').style.display = 'none'; document.getElementById('2307.02098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted. Comments welcome! Nature (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00647">arXiv:2306.00647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.00647">pdf</a>, <a href="https://arxiv.org/format/2306.00647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Extreme damped Lyman-$伪$ absorption in young star-forming galaxies at $z=9-11$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">Kasper E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D">Darach Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brammer%2C+G">Gabriel Brammer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">Simone Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hutter%2C+A">Anne Hutter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strait%2C+V+B">Victoria B. Strait</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matthee%2C+J">Jorryt Matthee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oesch%2C+P+A">Pascal A. Oesch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P谩ll Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laursen%2C+P">Peter Laursen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naidu%2C+R+P">Rohan P. Naidu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+C+A">Charlotte A. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Killi%2C+M">Meghana Killi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jung%2C+I">Intae Jung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hsiao%2C+T+Y">Tiger Yu-Yang Hsiao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abdurro%27uf"> Abdurro&#39;uf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coe%2C+D">Dan Coe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haro%2C+P+A">Pablo Arrabal Haro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Finkelstein%2C+S+L">Steven L. Finkelstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Toft%2C+S">Sune Toft</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00647v1-abstract-short" style="display: inline;"> The onset of galaxy formation is thought to be initiated by the infall of neutral, pristine gas onto the first protogalactic halos. However, direct constraints on the abundance of neutral atomic hydrogen (HI) in galaxies have been difficult to obtain at early cosmic times. Here we present spectroscopic observations with JWST of three galaxies at redshifts $z=8.8 - 11.4$, about $400-600$ Myr after&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00647v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00647v1-abstract-full" style="display: none;"> The onset of galaxy formation is thought to be initiated by the infall of neutral, pristine gas onto the first protogalactic halos. However, direct constraints on the abundance of neutral atomic hydrogen (HI) in galaxies have been difficult to obtain at early cosmic times. Here we present spectroscopic observations with JWST of three galaxies at redshifts $z=8.8 - 11.4$, about $400-600$ Myr after the Big Bang, that show strong damped Lyman-$伪$ absorption ($N_{\rm HI} &gt; 10^{22}$ cm$^{-2}$) from HI in their local surroundings, an order of magnitude in excess of the Lyman-$伪$ absorption caused by the neutral intergalactic medium at these redshifts. Consequently, these early galaxies cannot be contributing significantly to reionization, at least at their current evolutionary stages. Simulations of galaxy formation show that such massive gas reservoirs surrounding young galaxies so early in the history of the universe is a signature of galaxy formation in progress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00647v1-abstract-full').style.display = 'none'; document.getElementById('2306.00647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12912">arXiv:2303.12912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12912">pdf</a>, <a href="https://arxiv.org/format/2303.12912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21203/rs.3.rs-2298504/v1">10.21203/rs.3.rs-2298504/v1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">Daniele B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">Benjamin P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+A+E">Anya E. Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">Matt Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S">Samantha Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J">Jillian Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">Brian D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanway%2C+E+R">Elizabeth R. Stanway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Inkenhaag%2C+A">Anne Inkenhaag</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zafar%2C+T">Tayyaba Zafar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fernandez%2C+J+F+A">J. Feliciano Agui Fernandez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A">Ashley Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhirombhakdi%2C+K">Kornpob Bhirombhakdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">Wen-fai Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">Andrew S. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fragione%2C+G">Giacomo Fragione</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">Johan P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+N">Nicola Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">Kasper E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hjorth%2C+J">Jens Hjorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">Pall Jakobsson</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12912v1-abstract-short" style="display: inline;"> The majority of long duration ($&gt;2$ s) gamma-ray bursts (GRBs) are believed to arise from the collapse of massive stars \cite{Hjorth+03}, with a small proportion created from the merger of compact objects. Most of these systems are likely formed via standard stellar evolution pathways. However, it has long been thought that a fraction of GRBs may instead be an outcome of dynamical interactions in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12912v1-abstract-full').style.display = 'inline'; document.getElementById('2303.12912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12912v1-abstract-full" style="display: none;"> The majority of long duration ($&gt;2$ s) gamma-ray bursts (GRBs) are believed to arise from the collapse of massive stars \cite{Hjorth+03}, with a small proportion created from the merger of compact objects. Most of these systems are likely formed via standard stellar evolution pathways. However, it has long been thought that a fraction of GRBs may instead be an outcome of dynamical interactions in dense environments, channels which could also contribute significantly to the samples of compact object mergers detected as gravitational wave sources. Here we report the case of GRB 191019A, a long GRB (T_90 = 64.4 +/- 4.5 s) which we pinpoint close (&lt;100 pc projected) to the nucleus of an ancient (&gt;1~Gyr old) host galaxy at z=0.248. The lack of evidence for star formation and deep limits on any supernova emission make a massive star origin difficult to reconcile with observations, while the timescales of the emission rule out a direct interaction with the supermassive black hole in the nucleus of the galaxy, We suggest that the most likely route for progenitor formation is via dynamical interactions in the dense nucleus of the host, consistent with the centres of such galaxies exhibiting interaction rates up to two orders of magnitude larger than typical field galaxies. The burst properties could naturally be explained via compact object mergers involving white dwarfs (WD), neutron stars (NS) or black holes (BH). These may form dynamically in dense stellar clusters, or originate in a gaseous disc around the supermassive black hole. Future electromagnetic and gravitational-wave observations in tandem thus offer a route to probe the dynamical fraction and the details of dynamical interactions in galactic nuclei and other high density stellar systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12912v1-abstract-full').style.display = 'none'; document.getElementById('2303.12912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Nature Astronomy. This is the submitted version and will differ from the published version due to modifications in the refereeing process</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07891">arXiv:2302.07891</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07891">pdf</a>, <a href="https://arxiv.org/format/2302.07891">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The brightest GRB ever detected: GRB 221009A as a highly luminous event at z = 0.151 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmerio%2C+J">J. Palmerio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salafia%2C+O+S">O. S. Salafia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A+A">A. A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaspari%2C+N">N. Gaspari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hjorth%2C+J">J. Hjorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07891v1-abstract-short" style="display: inline;"> Context: The extreme luminosity of gamma-ray bursts (GRBs) makes them powerful beacons for studies of the distant Universe. The most luminous bursts are typically detected at moderate/high redshift, where the volume for seeing such rare events is maximized and the star-formation activity is greater than at z = 0. For distant events, not all observations are feasible, such as at TeV energies. Aim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07891v1-abstract-full').style.display = 'inline'; document.getElementById('2302.07891v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07891v1-abstract-full" style="display: none;"> Context: The extreme luminosity of gamma-ray bursts (GRBs) makes them powerful beacons for studies of the distant Universe. The most luminous bursts are typically detected at moderate/high redshift, where the volume for seeing such rare events is maximized and the star-formation activity is greater than at z = 0. For distant events, not all observations are feasible, such as at TeV energies. Aims: Here we present a spectroscopic redshift measurement for the exceptional GRB 221009A, the brightest GRB observed to date with emission extending well into the TeV regime. Methods: We used the X-shooter spectrograph at the ESO Very Large Telescope (VLT) to obtain simultaneous optical to near-IR spectroscopy of the burst afterglow 0.5 days after the explosion. Results: The spectra exhibit both absorption and emission lines from material in a host galaxy at z = 0.151. Thus GRB 221009A was a relatively nearby burst with a luminosity distance of 745 Mpc. Its host galaxy properties (star-formation rate and metallicity) are consistent with those of LGRB hosts at low redshift. This redshift measurement yields information on the energy of the burst. The inferred isotropic energy release, $E_{\rm iso} &gt; 5 \times 10^{54}$ erg, lies at the high end of the distribution, making GRB 221009A one of the nearest and also most energetic GRBs observed to date. We estimate that such a combination (nearby as well as intrinsically bright) occurs between once every few decades to once per millennium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07891v1-abstract-full').style.display = 'none'; document.getElementById('2302.07891v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, submitted to Astronomy &amp; Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07761">arXiv:2302.07761</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07761">pdf</a>, <a href="https://arxiv.org/format/2302.07761">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acc2c1">10.3847/2041-8213/acc2c1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The first JWST spectrum of a GRB afterglow: No bright supernova in observations of the brightest GRB of all time, GRB 221009A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+B">B. Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hjorth%2C+J">J. Hjorth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zafar%2C+T">T. Zafar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sargent%2C+B">B. Sargent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mullally%2C+S+E">S. E. Mullally</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barclay%2C+T">T. Barclay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhirombhakdi%2C+K">K. Bhirombhakdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bremer%2C+M">M. Bremer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brivio%2C+R">R. Brivio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A+A">A. A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferro%2C+M">M. Ferro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07761v2-abstract-short" style="display: inline;"> We present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power-law, with $F_谓 \propto 谓^{-尾}$, we obtain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07761v2-abstract-full').style.display = 'inline'; document.getElementById('2302.07761v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07761v2-abstract-full" style="display: none;"> We present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power-law, with $F_谓 \propto 谓^{-尾}$, we obtain $尾\approx 0.35$, modified by substantial dust extinction with $A_V = 4.9$. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post jet-break model, with electron index $p&lt;2$, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/nIR to X-shooter spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disc-like host galaxy, viewed close to edge-on, that further complicates the isolation of any supernova component. The host galaxy appears rather typical amongst long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07761v2-abstract-full').style.display = 'none'; document.getElementById('2302.07761v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication to the Astrophysical Journal Letters for the GRB 221009A Special Issue. The results of this paper are under press embargo until March 28, 18 UT. 19 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16530">arXiv:2211.16530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.16530">pdf</a>, <a href="https://arxiv.org/format/2211.16530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05465-8">10.1038/s41586-022-05465-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A very luminous jet from the disruption of a star by a massive black hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yao%2C+Y">Yuhan Yao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+W">Wenbin Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sagues-Carracedo%2C+A">Ana Sagues-Carracedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N">Nial Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barway%2C+S">Sudhanshu Barway</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16530v1-abstract-short" style="display: inline;"> Tidal disruption events (TDEs) are bursts of electromagnetic energy released when supermassive black holes (SMBHs) at the centers of galaxies violently disrupt a star that passes too close. TDEs provide a new window to study accretion onto SMBHs; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best studied jett&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16530v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16530v1-abstract-full" style="display: none;"> Tidal disruption events (TDEs) are bursts of electromagnetic energy released when supermassive black holes (SMBHs) at the centers of galaxies violently disrupt a star that passes too close. TDEs provide a new window to study accretion onto SMBHs; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best studied jetted TDE to date is Swift J1644+57, which was discovered in gamma-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical discovery of AT2022cmc, a rapidly fading source at cosmological distance (redshift z=1.19325) whose unique lightcurve transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-rays, sub-millimeter, and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron &#34;afterglow&#34;, likely launched by a SMBH with spin $a \gtrsim 0.3$. Using 4 years of Zwicky Transient Facility (ZTF) survey data, we calculate a rate of $0.02 ^{+ 0.04 }_{- 0.01 }$ Gpc$^{-3}$ yr$^{-1}$ for on-axis jetted TDEs based on the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations. Correcting for the beaming angle effects, this rate confirms that about 1% of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16530v1-abstract-full').style.display = 'none'; document.getElementById('2211.16530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16524">arXiv:2211.16524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.16524">pdf</a>, <a href="https://arxiv.org/format/2211.16524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244205">10.1051/0004-6361/202244205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissecting the interstellar medium of a z=6.3 galaxy: X-shooter spectroscopy and HST imaging of the afterglow and environment of the Swift GRB 210905A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Saccardi%2C+A">A. Saccardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Cia%2C+A">A. De Cia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmerio%2C+J+T">J. T. Palmerio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Petitjean%2C+P">P. Petitjean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Konstantopoulou%2C+C">C. Konstantopoulou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B8ller%2C+P">P. M酶ller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramburuth-Hurt%2C+T">T. Ramburuth-Hurt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Th%C3%B6ne%2C+C+C">C. C. Th枚ne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vejlgaard%2C+S">S. Vejlgaard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schady%2C+P">P. Schady</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+J">D. J. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16524v2-abstract-short" style="display: inline;"> The study of the properties of galaxies in the first billion years after the Big Bang is one of the major topic of current astrophysics. Optical/near-infrared spectroscopy of the afterglows of long Gamma-ray bursts (GRBs) provide a powerful diagnostic tool to probe the interstellar medium (ISM) of their host galaxies and foreground absorbers, even up to the highest redshifts. We analyze the VLT/X-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16524v2-abstract-full').style.display = 'inline'; document.getElementById('2211.16524v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16524v2-abstract-full" style="display: none;"> The study of the properties of galaxies in the first billion years after the Big Bang is one of the major topic of current astrophysics. Optical/near-infrared spectroscopy of the afterglows of long Gamma-ray bursts (GRBs) provide a powerful diagnostic tool to probe the interstellar medium (ISM) of their host galaxies and foreground absorbers, even up to the highest redshifts. We analyze the VLT/X-shooter afterglow spectrum of GRB 210905A, triggered by the Swift Neil Gehrels Observatory, and detect neutral-hydrogen, low-ionization, high-ionization, and fine-structure absorption lines from a complex system at z=6.3118, that we associate with the GRB host galaxy. We study the ISM properties of the host system, revealing the metallicity, kinematics and chemical abundance pattern. The total metallicity of the z~6.3 system is [M/H]=-1.72+/-0.13, after correcting for dust-depletion and taking into account alpha-element enhancement. In addition, we determine the overall amount of dust and dust-to-metal mass ratio (DTM) ([Zn/Fe]_fit=0.33+/-0.09, DTM=0.18+/-0.03). We find indications of nucleosynthesis due to massive stars and evidence of peculiar over-abundance of aluminium. From the analysis of fine-structure lines, we determine distances of several kpc for the low-ionization gas clouds closest to the GRB. Those farther distances are possibly due to the high number of ionizing photons. Using the HST/F140W image of the GRB field, we show the GRB host galaxy as well as multiple objects within 2&#34; from the GRB. We discuss the galaxy structure and kinematics that could explain our observations, also taking into account a tentative detection of Lyman-alpha emission. Deep spectroscopic observations with VLT/MUSE and JWST will offer the unique possibility of combining our results with the ionized-gas properties, with the goal of better understanding how galaxies in the reionization era form and evolve. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16524v2-abstract-full').style.display = 'none'; document.getElementById('2211.16524v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted Publication (In Press on A&amp;A) - 22 pages, 10 figures, 6 tables - Appendix: 6 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 671, A84 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.13759">arXiv:2211.13759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.13759">pdf</a>, <a href="https://arxiv.org/format/2211.13759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad659">10.1093/mnras/stad659 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chasing Super-Massive Black Hole merging events with $Athena$ and LISA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Piro%2C+L">L. Piro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Colpi%2C+M">M. Colpi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aird%2C+J">J. Aird</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mangiagli%2C+A">A. Mangiagli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabian%2C+A+C">A. C. Fabian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guainazzi%2C+M">M. Guainazzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsat%2C+S">S. Marsat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sesana%2C+A">A. Sesana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McNamara%2C+P">P. McNamara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonetti%2C+M">M. Bonetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+E+M">E. M. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baker%2C+J+G">J. G. Baker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belanger%2C+G">G. Belanger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Canton%2C+T+D">T. Dal Canton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jennrich%2C+O">O. Jennrich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katz%2C+M+L">M. L. Katz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luetzgendorf%2C+N">N. Luetzgendorf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.13759v2-abstract-short" style="display: inline;"> The European Space Agency is studying two large-class missions bound to operate in the decade of the 30s, and aiming at investigating the most energetic and violent phenomena in the Universe. $Athena$ is poised to study the physical conditions of baryons locked in large-scale structures from the epoch of their formation, as well as to yield an accurate census of accreting super-massive black holes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13759v2-abstract-full').style.display = 'inline'; document.getElementById('2211.13759v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.13759v2-abstract-full" style="display: none;"> The European Space Agency is studying two large-class missions bound to operate in the decade of the 30s, and aiming at investigating the most energetic and violent phenomena in the Universe. $Athena$ is poised to study the physical conditions of baryons locked in large-scale structures from the epoch of their formation, as well as to yield an accurate census of accreting super-massive black holes down to the epoch of reionization; LISA will extend the hunt for Gravitational Wave (GW) events to the hitherto unexplored mHz regime. We discuss in this paper the science that their concurrent operation could yield, and present possible $Athena$ observational strategies. We focus on Super-Massive (M$\lesssim10^7\rm M_{\odot}$) Black Hole Mergers (SMBHMs), potentially accessible to $Athena$ up to $z\sim2$. The simultaneous measurement of their electro-magnetic (EM) and GW signals may enable unique experiments in the domains of astrophysics, fundamental physics, and cosmography, such as the magneto-hydrodynamics of fluid flows in a rapidly variable space-time, the formation of coronae and jets in Active Galactic Nuclei, and the measurement of the speed of GW, among others. Key to achieve these breakthrough results will be the LISA capability of locating a SMBHM event with an error box comparable to, or better than the field-of-view of the $Athena$ Wide Field Imager ($\simeq0.4\,$deg$^2$) and $Athena$ capability to slew fast to detect the source during the inspiral phase and the post-merger phase. Together, the two observatories will open in principle the exciting possibility of truly concurrent EM and GW studies of the SMBHMs <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13759v2-abstract-full').style.display = 'none'; document.getElementById('2211.13759v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09749">arXiv:2210.09749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09749">pdf</a>, <a href="https://arxiv.org/format/2210.09749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-022-01804-x">10.1038/s41550-022-01804-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finding high-redshift gamma-ray bursts in tandem near-infrared and optical surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+O+A">O. A. Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Landoni%2C+M">M. Landoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pariani%2C+G">G. Pariani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riva5%2C+A">A. Riva5</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riva%2C+M">M. Riva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smartt%2C+S+J">S. J. Smartt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09749v1-abstract-short" style="display: inline;"> The race for the most distant object in the Universe has been played by long-duration gamma-ray bursts (GRBs), star-forming galaxies and quasars. GRBs took a temporary lead with the discovery of GRB 090423 at a redshift z=8.2, but now the record-holder is the galaxy GN-z11 at z=11.0. Despite this record, galaxies and quasars are very faint (GN-z11 has a magnitude H=26), hampering the study of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09749v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09749v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09749v1-abstract-full" style="display: none;"> The race for the most distant object in the Universe has been played by long-duration gamma-ray bursts (GRBs), star-forming galaxies and quasars. GRBs took a temporary lead with the discovery of GRB 090423 at a redshift z=8.2, but now the record-holder is the galaxy GN-z11 at z=11.0. Despite this record, galaxies and quasars are very faint (GN-z11 has a magnitude H=26), hampering the study of the physical properties of the primordial Universe. On the other hand, GRB afterglows are brighter by a factor of &gt;100, with the drawback of lasting only for 1-2 days. Here we describe a novel approach to the discovery of high-redshift (z&gt;6) GRBs, exploiting their near-infrared (nIR) emission properties. Soon after the bright, high-energy prompt phase, a GRB is accompanied by an afterglow. The afterglows of high-redshift GRBs are naturally absorbed, like any other source, at optical wavelengths by Hydrogen along the line of sight in the intergalactic medium (Lyman-alpha absorption). We propose to take advantage of the deep monitoring of the sky by the Vera Rubin Observatory, to simultaneously observe exactly the same fields with a new, dedicated nIR facility. By comparing the two streams of transients, one can pinpoint transients detected in the nIR band and not in the optical band. These fast transients detected only in the nIR and with an AB colour index r-H&gt;3.5 are high-redshift GRBs, with a low contamination rate. Thanks to the depth reached by the Rubin observations, interlopers can be identified, allowing us to discover ~11 GRBs at z&gt;6 per year and ~3 GRBs per year at z&gt;10. This turns out to be one of the most effective probes of the high-redshift Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09749v1-abstract-full').style.display = 'none'; document.getElementById('2210.09749v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature Astronomy, Volume 6, pp. 1101-1104</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.01764">arXiv:2206.01764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.01764">pdf</a>, <a href="https://arxiv.org/format/2206.01764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac91d1">10.3847/1538-4357/ac91d1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short GRB Host Galaxies. II. A Legacy Sample of Redshifts, Stellar Population Properties, and Implications for their Neutron Star Merger Origins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+A+E">Anya E. Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">Wen-fai Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dong%2C+Y">Yuxin Dong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leja%2C+J">Joel Leja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zevin%2C+M">Michael Zevin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">Ryan Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cobb%2C+B+E">Bethany E. Cobb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kelley%2C+L+Z">Luke Zoltan Kelley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilpatrick%2C+C+D">Charles D. Kilpatrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">Andrew Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margutti%2C+R">Raffaella Margutti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paterson%2C+K">Kerry Paterson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Escorial%2C+A+R">Alicia Rouco Escorial</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+N">Nathan Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N">Nial Tanvir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.01764v3-abstract-short" style="display: inline;"> We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly-modeled sample to-date. Using the Prospector stellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of $z=0.64^{+0.83}_{-0.32}$ ($68\%$ confidence), including 10 new or revised photometri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01764v3-abstract-full').style.display = 'inline'; document.getElementById('2206.01764v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.01764v3-abstract-full" style="display: none;"> We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly-modeled sample to-date. Using the Prospector stellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of $z=0.64^{+0.83}_{-0.32}$ ($68\%$ confidence), including 10 new or revised photometric redshifts at $z\gtrsim1$. We further find a median mass-weighted age of $t_m=0.8^{+2.71}_{-0.53}$Gyr, stellar mass of $\log(M_*/M_\odot)=9.69^{+0.75}_{-0.65}$, star formation rate of SFR=$1.44^{+9.37}_{-1.35}M_\odot$yr$^{-1}$, stellar metallicity of $\log(Z_*/Z_\odot)=-0.38^{+0.44}_{-0.42}$, and dust attenuation of $A_V=0.43^{+0.85}_{-0.36}$~mag (68\% confidence). Overall, the majority of short GRB hosts are star-forming ($\approx84\%$), with small fractions that are either transitioning ($\approx6\%$) or quiescent ($\approx10\%$); however, we observe a much larger fraction ($\approx40\%$) of quiescent and transitioning hosts at $z\lesssim0.25$, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel at $z&gt;1$ and a decreased BNS formation efficiency at lower redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the BRIGHT website. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01764v3-abstract-full').style.display = 'none'; document.getElementById('2206.01764v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 15 figures, 3 tables, published with ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 940 57 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.01763">arXiv:2206.01763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.01763">pdf</a>, <a href="https://arxiv.org/format/2206.01763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac91d0">10.3847/1538-4357/ac91d0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short GRB Host Galaxies I: Photometric and Spectroscopic Catalogs, Host Associations, and Galactocentric Offsets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">Wen-fai Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+A+E">Anya E. Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dong%2C+Y">Yuxin Dong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paterson%2C+K">Kerry Paterson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">Ryan Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">Andrew Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanchard%2C+P">Peter Blanchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexander%2C+K+D">Kate D. Alexander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrews%2C+J">Jennifer Andrews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cobb%2C+B+E">Bethany E. Cobb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cucchiara%2C+A">Antonino Cucchiara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+D">Derek Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fryer%2C+C+L">Chris L. Fryer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gordon%2C+A+C">Alexa C. Gordon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilpatrick%2C+C+D">Charles D. Kilpatrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunnan%2C+R">Ragnhild Lunnan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margutti%2C+R">Raffaella Margutti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+A">Adam Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milne%2C+P">Peter Milne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">Matt Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J">Jillian Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Escorial%2C+A+R">Alicia Rouco Escorial</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schroeder%2C+G">Genevieve Schroeder</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.01763v1-abstract-short" style="display: inline;"> We present a comprehensive optical and near-infrared census of the fields of 90 short gamma-ray bursts (GRBs) discovered in 2005-2021, constituting all short GRBs for which host galaxy associations are feasible ($\approx$ 60% of the total Swift short GRB population). We contribute 245 new multi-band imaging observations across 49 distinct GRBs and 25 spectra of their host galaxies. Supplemented by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01763v1-abstract-full').style.display = 'inline'; document.getElementById('2206.01763v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.01763v1-abstract-full" style="display: none;"> We present a comprehensive optical and near-infrared census of the fields of 90 short gamma-ray bursts (GRBs) discovered in 2005-2021, constituting all short GRBs for which host galaxy associations are feasible ($\approx$ 60% of the total Swift short GRB population). We contribute 245 new multi-band imaging observations across 49 distinct GRBs and 25 spectra of their host galaxies. Supplemented by literature and archival survey data, the catalog contains 335 photometric and 40 spectroscopic data sets. The photometric catalog reaches $3蟽$ depths of $\gtrsim 24-27$ mag and $\gtrsim 23-26$ mag for the optical and near-infrared bands, respectively. We identify host galaxies for 84 bursts, in which the most robust associations make up 54% (49/90) of events, while only a small fraction, 6.7%, have inconclusive host associations. Based on new spectroscopy, we determine 17 host spectroscopic redshifts with a range of $z\approx 0.15-1.6$ and find that $\approx$ 25-44% of Swift short GRBs originate from $z&gt;1$. We also present the galactocentric offset catalog for 83 short GRBs. Taking into account the large range of individual measurement uncertainties, we find a median of projected offset of $\approx 7.9$ kpc, for which the bursts with the most robust associations have a smaller median of $\approx 4.9$ kpc. Our catalog captures more high-redshift and low-luminosity hosts, and more highly-offset bursts than previously found, thereby diversifying the population of known short GRB hosts and properties. In terms of locations and host luminosities, the populations of short GRBs with and without detectable extended emission are statistically indistinguishable. This suggests that they arise from the same progenitors, or from multiple progenitors which form and evolve in similar environments. All of the data products are available on the BRIGHT website. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.01763v1-abstract-full').style.display = 'none'; document.getElementById('2206.01763v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 9 figures, 6 tables, submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05694">arXiv:2205.05694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.05694">pdf</a>, <a href="https://arxiv.org/format/2205.05694">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2022.22">10.1017/pasa.2022.22 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SkyHopper mission science case I: Identification of high redshift Gamma-Ray Bursts through space-based near-infrared afterglow observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Thomas%2C+M">Matt Thomas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trenti%2C+M">Michele Trenti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greiner%2C+J">Jochen Greiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skrutskie%2C+M">Mike Skrutskie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forbes%2C+D+A">Duncan A. Forbes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klose%2C+S">Sylvio Klose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mack%2C+K+J">Katherine J. Mack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mearns%2C+R">Robert Mearns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metha%2C+B">Benjamin Metha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tagliaferri%2C+G">Gianpiero Tagliaferri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N">Nial Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skafidas%2C+S">Stan Skafidas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05694v1-abstract-short" style="display: inline;"> Long-duration gamma-ray burst (GRB) afterglow observations offer cutting-edge opportunities to characterise the star formation history of the Universe back to the epoch of reionisation, and to measure the chemical composition of interstellar and intergalactic gas through absorption spectroscopy. The main barrier to progress is the low efficiency in rapidly and confidently identifying which bursts&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05694v1-abstract-full').style.display = 'inline'; document.getElementById('2205.05694v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05694v1-abstract-full" style="display: none;"> Long-duration gamma-ray burst (GRB) afterglow observations offer cutting-edge opportunities to characterise the star formation history of the Universe back to the epoch of reionisation, and to measure the chemical composition of interstellar and intergalactic gas through absorption spectroscopy. The main barrier to progress is the low efficiency in rapidly and confidently identifying which bursts are high redshift ($z &gt; 5$) candidates before they fade, as this requires low-latency follow-up observations at near-infrared wavelengths (or longer) to determine a reliable photometric redshift estimate. So far this task has been performed by instruments on the ground, but sky visibility and weather constraints limit the number of GRB targets that can be observed and the speed at which follow-up is possible. In this work we develop a Monte Carlo simulation framework to investigate an alternative approach based on the use of a rapid-response near-infrared nano-satellite, capable of simultaneous imaging in four bands from $0.8$ to $1.7渭$m (a mission concept called SkyHopper). We find that such a nano-satellite is capable of detecting in the H band (1.6 $渭$m) $72.5\% \pm 3.1\%$ of GRBs concurrently observable with the Swift satellite via its UVOT instrument (and $44.1\% \pm 12.3\%$ of high redshift ($z&gt;5$) GRBs) within 60 minutes of the GRB prompt emission. This corresponds to detecting $\sim 55$ GRB afterglows per year, of which 1-3 have $z &gt; 5$. These rates represent a substantial contribution to the field of high-$z$ GRB science, as only 23 $z &gt; 5$ GRBs have been collectively discovered by the entire astronomical community over the last $\sim 24$ years. Additionally, we find that launching a mini-constellation of 3 near-infrared nano-satellites would increase the detection fraction of afterglows to $\sim 83\%$ and substantially reduce the latency in the photometric redshift determination. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05694v1-abstract-full').style.display = 'none'; document.getElementById('2205.05694v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PASA. 17 pages, 8 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05008">arXiv:2205.05008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.05008">pdf</a>, <a href="https://arxiv.org/format/2205.05008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-022-01819-4">10.1038/s41550-022-01819-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The case for a minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">M. E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">M. Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">B. D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J+C">J. C. Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">P. G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+K+L">K. L. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pe%27er%2C+A">A. Pe&#39;er</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05008v2-abstract-short" style="display: inline;"> For decades, gamma-ray bursts (GRBs) have been broadly divided into `long&#39;- and `short&#39;-duration bursts, lasting more or less than 2s, respectively. However, this dichotomy does not map perfectly to the two progenitor channels that are known to produce GRBs -- the merger of compact objects (merger-GRBs) or the collapse of massive stars (collapsar-GRBs). In particular, the merger-GRBs population ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05008v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05008v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05008v2-abstract-full" style="display: none;"> For decades, gamma-ray bursts (GRBs) have been broadly divided into `long&#39;- and `short&#39;-duration bursts, lasting more or less than 2s, respectively. However, this dichotomy does not map perfectly to the two progenitor channels that are known to produce GRBs -- the merger of compact objects (merger-GRBs) or the collapse of massive stars (collapsar-GRBs). In particular, the merger-GRBs population may also include bursts with a short, hard $\lesssim$2s spike and subsequent longer, softer extended emission (EE). The recent discovery of a kilonova -- the radioactive glow of heavy elements made in neutron star mergers -- in the 50s-duration GRB 211211A further demonstrates that mergers can drive long, complex GRBs that mimic the collapsar population. Here we present a detailed temporal and spectral analysis of the high-energy emission of GRB 211211A. We demonstrate that the emission has a purely synchrotron origin, with both the peak and cooling frequencies moving through the $纬$-ray band down to the X-rays, and that the rapidly-evolving spectrum drives the EE signature at late times. The identification of such spectral evolution in a merger-GRB opens avenues for diagnostics of the progenitor type. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05008v2-abstract-full').style.display = 'none'; document.getElementById('2205.05008v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author&#39;s final submitted version. 6 figures, 5 tables. The Supplementary Information .tex file is included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10864">arXiv:2204.10864</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10864">pdf</a>, <a href="https://arxiv.org/format/2204.10864">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05390-w">10.1038/s41586-022-05390-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Kilonova Following a Long-Duration Gamma-Ray Burst at 350 Mpc </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J+C">J. C. Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">M. Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+A+E">A. E. Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilpatrick%2C+C+D">C. D. Kilpatrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+C+J">C. J. Moore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">B. D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">M. E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schroeder%2C+G">G. Schroeder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J">J. Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sand%2C+D+J">D. J. Sand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+N">N. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">E. Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanchard%2C+P+K">P. K. Blanchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">R. Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cobb%2C+B+E">B. E. Cobb</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10864v3-abstract-short" style="display: inline;"> Here, we report the discovery of a kilonova associated with the nearby (350 Mpc) minute-duration GRB 211211A. In tandem with deep optical limits that rule out the presence of an accompanying supernova to $M_I &gt; -13$ mag at 17.7 days post-burst, the identification of a kilonova confirms that this burst&#39;s progenitor was a compact object merger. While the spectrally softer tail in GRB 211211A&#39;s gamma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10864v3-abstract-full').style.display = 'inline'; document.getElementById('2204.10864v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10864v3-abstract-full" style="display: none;"> Here, we report the discovery of a kilonova associated with the nearby (350 Mpc) minute-duration GRB 211211A. In tandem with deep optical limits that rule out the presence of an accompanying supernova to $M_I &gt; -13$ mag at 17.7 days post-burst, the identification of a kilonova confirms that this burst&#39;s progenitor was a compact object merger. While the spectrally softer tail in GRB 211211A&#39;s gamma-ray light curve is reminiscent of previous extended emission short GRBs (EE-SGRBs), its prompt, bright spikes last $\gtrsim 12$ s, separating it from past EE-SGRBs. GRB 211211A&#39;s kilonova has a similar luminosity, duration and color to AT2017gfo, the kilonova found in association with the gravitational wave (GW)-detected binary neutron star (BNS) merger GW170817. We find that the merger ejected $\approx 0.04 M_{\odot}$ of r-process-rich material, and is consistent with the merger of two neutron stars (NSs) with masses close to the canonical $1.4 M_{\odot}$. This discovery implies that GRBs with long, complex light curves can be spawned from compact object merger events and that a population of kilonovae following GRBs with durations $\gg 2$ s should be accounted for in calculations of the NS merger r-process contribution and rate. At 350 Mpc, the current network of GW interferometers at design sensitivity would have detected the merger precipitating GRB 211211A, had it been operating at the time of the event. Further searches for GW signals coincident with long GRBs are therefore a promising route for future multi-messenger astronomy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10864v3-abstract-full').style.display = 'none'; document.getElementById('2204.10864v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted. 69 pages, 11 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09701">arXiv:2204.09701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.09701">pdf</a>, <a href="https://arxiv.org/format/2204.09701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1090">10.1093/mnras/stac1090 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Where are the magnetar binary companions? Candidates from a comparison with binary population synthesis predictions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A+A">A. A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groot%2C+P+J">P. J. Groot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">P. G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lyman%2C+J+D">J. D. Lyman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanway%2C+E+R">E. R. Stanway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09701v2-abstract-short" style="display: inline;"> It is well established that magnetars are neutron stars with extreme magnetic fields and young ages, but the evolutionary pathways to their creation are still uncertain. Since most massive stars are in binaries, if magnetars are a frequent result of core-collapse supernovae, some fraction are expected to have a bound companion at the time of observation. In this paper, we utilise literature constr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09701v2-abstract-full').style.display = 'inline'; document.getElementById('2204.09701v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09701v2-abstract-full" style="display: none;"> It is well established that magnetars are neutron stars with extreme magnetic fields and young ages, but the evolutionary pathways to their creation are still uncertain. Since most massive stars are in binaries, if magnetars are a frequent result of core-collapse supernovae, some fraction are expected to have a bound companion at the time of observation. In this paper, we utilise literature constraints, including deep Hubble Space Telescope imaging, to search for bound stellar companions to magnetars. The magnitude and colour measurements are interpreted in the context of binary population synthesis predictions. We find two candidates for stellar companions associated with CXOU J171405.7-381031 and SGR 0755-2933, based on their J-H colours and H-band absolute magnitudes. Overall, the proportion of the Galactic magnetar population with a plausibly stellar near-infrared counterpart candidate, based on their magnitudes and colours, is between 5 and 10 per cent. This is consistent with a population synthesis prediction of 5 per cent, for the fraction of core-collapse neutron stars arising from primaries which remain bound to their companion after the supernova. These results are therefore consistent with magnetars being drawn in an unbiased way from the natal core-collapse neutron star population, but some contribution from alternative progenitor channels cannot be ruled out. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09701v2-abstract-full').style.display = 'none'; document.getElementById('2204.09701v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, 3 tables, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14947">arXiv:2203.14947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14947">pdf</a>, <a href="https://arxiv.org/format/2203.14947">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac870">10.1093/mnras/stac870 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New candidates for magnetar counterparts from a deep search with the Hubble Space Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chrimes%2C+A+A">A. A. Chrimes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groot%2C+P+J">P. J. Groot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lyman%2C+J+D">J. D. Lyman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wiersema%2C+K">K. Wiersema</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14947v1-abstract-short" style="display: inline;"> We report the discovery of six new magnetar counterpart candidates from deep near-infrared Hubble Space Telescope imaging. The new candidates are among a sample of nineteen magnetars for which we present HST data obtained between 2018-2020. We confirm the variability of previously established near-infrared counterparts, and newly identify candidates for PSRJ1622-4950, SwiftJ1822.3-1606, CXOUJ17140&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14947v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14947v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14947v1-abstract-full" style="display: none;"> We report the discovery of six new magnetar counterpart candidates from deep near-infrared Hubble Space Telescope imaging. The new candidates are among a sample of nineteen magnetars for which we present HST data obtained between 2018-2020. We confirm the variability of previously established near-infrared counterparts, and newly identify candidates for PSRJ1622-4950, SwiftJ1822.3-1606, CXOUJ171405.7-381031, SwiftJ1833-0832, SwiftJ1834.9-0846 and AXJ1818.8-1559 based on their proximity to X-ray localisations. The new candidates are compared with the existing counterpart population in terms of their colours, magnitudes, and near-infrared to X-ray spectral indices. We find two candidates for AXJ1818.8-1559 which are both consistent with previously established counterparts. The other new candidates are likely to be chance alignments, or otherwise have a different origin for their near-infrared emission not previously seen in magnetar counterparts. Further observations and studies of these candidates are needed to firmly establish their nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14947v1-abstract-full').style.display = 'none'; document.getElementById('2203.14947v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, 3 tables, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04544">arXiv:2202.04544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04544">pdf</a>, <a href="https://arxiv.org/format/2202.04544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243225">10.1051/0004-6361/202243225 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A blast from the infant Universe: the very high-z GRB 210905A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frederiks%2C+D+D">D. D. Frederiks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pian%2C+E">E. Pian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G">G. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guelbenzu%2C+A+N">A. Nicuesa Guelbenzu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strausbaugh%2C+R">R. Strausbaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cucchiara%2C+A">A. Cucchiara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klose%2C+S">S. Klose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Starling%2C+R">R. Starling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stratta%2C+G">G. Stratta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsvetkova%2C+A+E">A. E. Tsvetkova</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04544v2-abstract-short" style="display: inline;"> We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z = 6.312 and its luminous X-ray and optical afterglow. We obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of Eiso = 1.27E54 erg, GRB&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04544v2-abstract-full').style.display = 'inline'; document.getElementById('2202.04544v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04544v2-abstract-full" style="display: none;"> We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z = 6.312 and its luminous X-ray and optical afterglow. We obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of Eiso = 1.27E54 erg, GRB 210905A lies in the top ~7% of gamma-ray bursts (GRBs) in terms of energy released. Its afterglow is among the most luminous ever observed. It starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ~ 46.2+-16.3 d (~6.3 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to the contribution from the likely host galaxy, the fourth GRB host at z &gt; 6 known to date. We derived a half-opening angle of 8.4+-1.0 degrees, which is the highest ever measured for a z&gt;6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of 1E52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04544v2-abstract-full').style.display = 'none'; document.getElementById('2202.04544v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures, 5 tables, accepted in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 665, A125 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09796">arXiv:2201.09796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.09796">pdf</a>, <a href="https://arxiv.org/format/2201.09796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Inhomogeneous Jets from Neutron Star Mergers: One Jet to Rule them all </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">Gavin P Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nativi%2C+L">Lorenzo Nativi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosswog%2C+S">Stephan Rosswog</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">Andrew Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lundman%2C+C">Christoffer Lundman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N">Nial Tanvir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09796v2-abstract-short" style="display: inline;"> Using the resultant profiles from 3D hydrodynamic simulations of relativistic jets interacting with neutron star merger wind ejecta, we show how the inhomogeneity of energy and velocity {across the jet surface profile} can alter the observed afterglow lightcurve. We find that the peak afterglow flux depends sensitively on the observer&#39;s line-of-sight, not only via the jet inclination but also thro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09796v2-abstract-full').style.display = 'inline'; document.getElementById('2201.09796v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09796v2-abstract-full" style="display: none;"> Using the resultant profiles from 3D hydrodynamic simulations of relativistic jets interacting with neutron star merger wind ejecta, we show how the inhomogeneity of energy and velocity {across the jet surface profile} can alter the observed afterglow lightcurve. We find that the peak afterglow flux depends sensitively on the observer&#39;s line-of-sight, not only via the jet inclination but also through the jet rotation: for an observer viewing the afterglow within the GRB-bright jet core, we find a peak flux variability on the order $&lt;0.5$ dex through rotational orientation and $&lt;1.3$ dex for the polar inclination. An observed afterglow&#39;s peak flux can be used to infer the jet kinetic energy, and where a top-hat jet is assumed, we find the range of inferred jet kinetic energies for our various model afterglow lightcurves (with fixed model parameters), covers $\sim 1/3$ of the observed short GRB population. Additionally, we present an analytic jet structure function that includes physically motivated parameter uncertainties due to variability through the rotation of the source. % An approximation for the change in collimation due to the merger ejecta mass is included and we show that by considering the observed range of merger ejecta masses from short GRB kilonova candidates, a population of merger jets with a fixed intrinsic jet energy is capable of explaining the observed broad diversity seen in short GRB afterglows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09796v2-abstract-full').style.display = 'none'; document.getElementById('2201.09796v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04759">arXiv:2112.04759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04759">pdf</a>, <a href="https://arxiv.org/format/2112.04759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141788">10.1051/0004-6361/202141788 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The supernova of the MAGIC GRB190114C </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pian%2C+E">E. Pian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guetta%2C+D">D. Guetta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mazzali%2C+P+A">P. A. Mazzali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benetti%2C+S">S. Benetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masetti%2C+N">N. Masetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palazzi%2C+E">E. Palazzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Savaglio%2C+S">S. Savaglio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonelli%2C+L+A">L. A. Antonelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashall%2C+C">C. Ashall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carini%2C+R">R. Carini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">V. D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">M. De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippenko%2C+A+V">A. V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04759v1-abstract-short" style="display: inline;"> We observed GRB190114C (redshift z = 0.4245), the first GRB ever detected at TeV energies, at optical and near-infrared wavelengths with several ground-based telescopes and the Hubble Space Telescope, with the primary goal of studying its underlying supernova, SN2019jrj. The monitoring spanned the time interval between 1.3 and 370 days after the burst, in the observer frame. We find that the after&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04759v1-abstract-full').style.display = 'inline'; document.getElementById('2112.04759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04759v1-abstract-full" style="display: none;"> We observed GRB190114C (redshift z = 0.4245), the first GRB ever detected at TeV energies, at optical and near-infrared wavelengths with several ground-based telescopes and the Hubble Space Telescope, with the primary goal of studying its underlying supernova, SN2019jrj. The monitoring spanned the time interval between 1.3 and 370 days after the burst, in the observer frame. We find that the afterglow emission can be modelled with a forward shock propagating in a uniform medium modified by time-variable extinction along the line of sight. A jet break could be present after 7 rest-frame days, and accordingly the maximum luminosity of the underlying SN ranges between that of stripped-envelope corecollapse supernovae (SNe) of intermediate luminosity, and that of the luminous GRB-associated SN2013dx. The observed spectral absorption lines of SN2019jrj are not as broad as in classical GRB-SNe, and are rather more similar to those of less-luminous core-collapse SNe. Taking the broad-lined stripped-envelope core-collapse SN2004aw as an analogue, we tentatively derive the basic physical properties of SN2019jrj. We discuss the possibility that a fraction of the TeV emission of this source might have had a hadronic origin and estimate the expected high-energy neutrino detection level with IceCube. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04759v1-abstract-full').style.display = 'none'; document.getElementById('2112.04759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 659, A39 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06497">arXiv:2111.06497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.06497">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.2599293">10.1117/12.2599293 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Gamow Explorer: A gamma-ray burst observatory to study the high redshift universe and enable multi-messenger astrophysics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=White%2C+N+E">N. E. White</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bauer%2C+F+E">F. E. Bauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baumgartner%2C+W">W. Baumgartner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bautz%2C+M">M. Bautz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">E. Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+T+-">T. -C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Falcone%2C+A">A. Falcone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fausey%2C+H">H. Fausey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feldman%2C+C">C. Feldman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+D">D. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O">O. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A">A. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fryer%2C+C">C. Fryer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gorski%2C+K">K. Gorski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grant%2C+K">K. Grant</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guiriec%2C+S">S. Guiriec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hart%2C+M">M. Hart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hennawi%2C+J">J. Hennawi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D">D. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=J."> J.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+A">A. Kennea</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06497v2-abstract-short" style="display: inline;"> The Gamow Explorer will use Gamma Ray Bursts (GRBs) to: 1) probe the high redshift universe (z &gt; 6) when the first stars were born, galaxies formed and Hydrogen was reionized; and 2) enable multi-messenger astrophysics by rapidly identifying Electro-Magnetic (IR/Optical/X-ray) counterparts to Gravitational Wave (GW) events. GRBs have been detected out to z ~ 9 and their afterglows are a bright bea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06497v2-abstract-full').style.display = 'inline'; document.getElementById('2111.06497v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06497v2-abstract-full" style="display: none;"> The Gamow Explorer will use Gamma Ray Bursts (GRBs) to: 1) probe the high redshift universe (z &gt; 6) when the first stars were born, galaxies formed and Hydrogen was reionized; and 2) enable multi-messenger astrophysics by rapidly identifying Electro-Magnetic (IR/Optical/X-ray) counterparts to Gravitational Wave (GW) events. GRBs have been detected out to z ~ 9 and their afterglows are a bright beacon lasting a few days that can be used to observe the spectral fingerprints of the host galaxy and intergalactic medium to map the period of reionization and early metal enrichment. Gamow Explorer is optimized to quickly identify high-z events to trigger follow-up observations with JWST and large ground-based telescopes. A wide field of view Lobster Eye X-ray Telescope (LEXT) will search for GRBs and locate them with arc-minute precision. When a GRB is detected, the rapidly slewing spacecraft will point the 5 photometric channel Photo-z Infra-Red Telescope (PIRT) to identify high redshift (z &gt; 6) long GRBs within 100s and send an alert within 1000s of the GRB trigger. An L2 orbit provides &gt; 95% observing efficiency with pointing optimized for follow up by the James Webb Space Telescope (JWST) and ground observatories. The predicted Gamow Explorer high-z rate is &gt;10 times that of the Neil Gehrels Swift Observatory. The instrument and mission capabilities also enable rapid identification of short GRBs and their afterglows associated with GW events. The Gamow Explorer will be proposed to the 2021 NASA MIDEX call and if approved, launched in 2028. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06497v2-abstract-full').style.display = 'none'; document.getElementById('2111.06497v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 11821, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, 1182109 (24 August 2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01945">arXiv:2111.01945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01945">pdf</a>, <a href="https://arxiv.org/format/2111.01945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac617c">10.3847/1538-4365/ac617c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Target of Opportunity Observations of Gravitational Wave Events with Vera C. Rubin Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margutti%2C+R">Raffaella Margutti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salafia%2C+O+S">Om Sharan Salafia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parazin%2C+B">B. Parazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villar%2C+V+A">V. Ashley Villar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoachim%2C+P">Peter Yoachim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mortensen%2C+K">Kris Mortensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brethauer%2C+D">Daniel Brethauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smartt%2C+S+J">S. J. Smartt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexander%2C+K+D">Kate D. Alexander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">E. Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">Maria Grazia Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianco%2C+F+B">Federica B. Bianco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanchard%2C+P+K">Peter K. Blanchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brocato%2C+E">Enzo Brocato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cartier%2C+R">Regis Cartier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">Ryan Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Copperwheat%2C+C+M">Christopher M. Copperwheat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">Alessandra Corsi</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01945v2-abstract-short" style="display: inline;"> The discovery of the electromagnetic counterpart to the binary neutron star merger GW170817 has opened the era of gravitational-wave multi-messenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multi-wavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01945v2-abstract-full').style.display = 'inline'; document.getElementById('2111.01945v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01945v2-abstract-full" style="display: none;"> The discovery of the electromagnetic counterpart to the binary neutron star merger GW170817 has opened the era of gravitational-wave multi-messenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multi-wavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of neutron star mergers and other gravitational wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory&#39;s Legacy Survey of Space and Time (LSST) can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving neutron stars (about tens per year) out to distances of several hundred Mpc. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of neutron star and other compact object mergers, and yet unknown classes of gravitational wave events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01945v2-abstract-full').style.display = 'none'; document.getElementById('2111.01945v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJS. arXiv admin note: text overlap with arXiv:1812.04051</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15677">arXiv:2110.15677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.15677">pdf</a>, <a href="https://arxiv.org/format/2110.15677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10686-022-09865-6">10.1007/s10686-022-09865-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-messenger-Athena Synergy White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Piro%2C+L">L. Piro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahlers%2C+M">M. Ahlers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coleiro%2C+A">A. Coleiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Colpi%2C+M">M. Colpi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilhelmi%2C+E+d+O">E. de O帽a Wilhelmi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guainazzi%2C+M">M. Guainazzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">P. G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Namara%2C+P+M">P. Mc Namara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nichols%2C+D+A">D. A. Nichols</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P">P. O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troja%2C+E">E. Troja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vink%2C+J">J. Vink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aird%2C+J">J. Aird</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bozzo%2C+E">E. Bozzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carrera%2C+F+J">F. J. Carrera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabian%2C+A+C">A. C. Fabian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fryer%2C+C">C. Fryer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hall%2C+E">E. Hall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Korobkin%2C+O">O. Korobkin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Korol%2C+V">V. Korol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mangiagli%2C+A">A. Mangiagli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mart%C3%ADnez-N%C3%BA%C3%B1ez%2C+S">S. Mart铆nez-N煤帽ez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nissanke%2C+S">S. Nissanke</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15677v1-abstract-short" style="display: inline;"> In this paper we explore the scientific synergies between Athena and some of the key multi-messenger facilities that should be operative concurrently with Athena. These facilities include LIGO A+, Advanced Virgo+ and future detectors for ground-based observation of gravitational waves (GW), LISA for space-based observations of GW, IceCube and KM3NeT for neutrino observations, and CTA for very high&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15677v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15677v1-abstract-full" style="display: none;"> In this paper we explore the scientific synergies between Athena and some of the key multi-messenger facilities that should be operative concurrently with Athena. These facilities include LIGO A+, Advanced Virgo+ and future detectors for ground-based observation of gravitational waves (GW), LISA for space-based observations of GW, IceCube and KM3NeT for neutrino observations, and CTA for very high energy observations. These science themes encompass pressing issues in astrophysics, cosmology and fundamental physics such as: the central engine and jet physics in compact binary mergers, accretion processes and jet physics in Super-Massive Binary Black Holes (SMBBHs) and in compact stellar binaries, the equation of state of neutron stars, cosmic accelerators and the origin of Cosmic Rays (CRs), the origin of intermediate and high-Z elements in the Universe, the Cosmic distance scale and tests of General Relativity and the Standard Model. Observational strategies for implementing the identified science topics are also discussed. A significant part of the sources targeted by multi-messenger facilities is of transient nature. We have thus also discussed the synergy of \textsl{Athena} with wide-field high-energy facilities, taking THESEUS as a case study for transient discovery. This discussion covers all the Athena science goals that rely on follow-up observations of high-energy transients identified by external observatories, and includes also topics that are not based on multi-messenger observations, such as the search for missing baryons or the observation of early star populations and metal enrichment at the cosmic dawn with Gamma-Ray Bursts (GRBs). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15677v1-abstract-full').style.display = 'none'; document.getElementById('2110.15677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">White paper of the multi-messenger Athena synergy excersise</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.13838">arXiv:2109.13838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.13838">pdf</a>, <a href="https://arxiv.org/format/2109.13838">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad099">10.1093/mnras/stad099 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GRB 160410A: the first Chemical Study of the Interstellar Medium of a Short GRB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Th%C3%B6ne%2C+C+C">C. C. Th枚ne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. A. Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">A. de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Selsing%2C+J">J. Selsing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schady%2C+P">P. Schady</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yates%2C+R+M">R. M. Yates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greiner%2C+J">J. Greiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oates%2C+S+R">S. R. Oates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D">D. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+D">D. Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klotz%2C+A">A. Klotz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">S. Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">D. A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+M">M. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giunta%2C+A">A. Giunta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kirkpatrick%2C+C+C">C. C. Kirkpatrick IV</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">G. Pugliese</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.13838v2-abstract-short" style="display: inline;"> Short Gamma-Ray Bursts (SGRBs) are produced by the coalescence of compact binary systems which are remnants of massive stars. GRB 160410A is classified as a short-duration GRB with extended emission and is currently the farthest SGRB with a redshift determined from an afterglow spectrum and also one of the brightest SGRBs to date. The fast reaction to the Neil Gehrels Swift Observatory alert allow&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13838v2-abstract-full').style.display = 'inline'; document.getElementById('2109.13838v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.13838v2-abstract-full" style="display: none;"> Short Gamma-Ray Bursts (SGRBs) are produced by the coalescence of compact binary systems which are remnants of massive stars. GRB 160410A is classified as a short-duration GRB with extended emission and is currently the farthest SGRB with a redshift determined from an afterglow spectrum and also one of the brightest SGRBs to date. The fast reaction to the Neil Gehrels Swift Observatory alert allowed us to obtain a spectrum of the afterglow using the X-shooter spectrograph at the Very Large Telescope (VLT). The spectrum shows several absorption features at a redshift of z=1.7177, in addition, we detect two intervening systems at z=1.581 and z=1.444. The spectrum shows ly-alpha in absorption with a column density of log N(HI)=21.2+/-0.2 cm$^{-2}$ which, together with FeII, CII, SiII, AlII and OI, allow us to perform the first study of chemical abundances in a SGRB host galaxy. We determine a metallicity of [X/H]=-2.3+/-0.2 for FeII and -2.5+/-0.2 for SiII and no dust depletion. We also find no evidence for extinction in the afterglow spectral energy distribution (SED) modeling. The environment has a low degree of ionisation and the CIV and SiIV lines are completely absent. We do not detect an underlying host galaxy down to deep limits. Additionally, we compare GRB 160410A to GRB 201221D, another high-z short GRB that shows absorption lines at z=1.045 and an underlying massive host galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.13838v2-abstract-full').style.display = 'none'; document.getElementById('2109.13838v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 22 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society (MNRAS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09714">arXiv:2109.09714</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.09714">pdf</a>, <a href="https://arxiv.org/format/2109.09714">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1473">10.1093/mnras/stac1473 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring compact binary merger host galaxies and environments with $\rm{zELDA}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mandhai%2C+S">S. Mandhai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bray%2C+J">J. Bray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nixon%2C+C+J">C. J. Nixon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eyles-Ferris%2C+R+A+J">R. A. J. Eyles-Ferris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gompertz%2C+B+P">B. P. Gompertz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09714v2-abstract-short" style="display: inline;"> Compact binaries such as double neutron stars or a neutron star paired with a black-hole, are strong sources of gravitational waves during coalescence and also the likely progenitors of various electromagnetic phenomena, notably short-duration gamma-ray bursts (SGRBs), and kilonovae. In this work, we generate populations of synthetic binaries and place them in galaxies from the large-scale hydrody&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09714v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09714v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09714v2-abstract-full" style="display: none;"> Compact binaries such as double neutron stars or a neutron star paired with a black-hole, are strong sources of gravitational waves during coalescence and also the likely progenitors of various electromagnetic phenomena, notably short-duration gamma-ray bursts (SGRBs), and kilonovae. In this work, we generate populations of synthetic binaries and place them in galaxies from the large-scale hydrodynamical galaxy evolution simulation EAGLE. With our zELDA code, binaries are seeded in proportion to star formation rate, and we follow their evolution to merger using both the BPASS and COSMIC binary stellar evolution codes. We track their dynamical evolution within their host galaxy potential, to estimate the galactocentric distance at the time of the merger. Finally, we apply observational selection criteria to allow comparison of this model population with the legacy sample of SGRBs. We find a reasonable agreement with the redshift distribution (peaking at $0.5&lt;z&lt;1$), host morphologies and projected galactocentric offsets (modal impact parameter $\lesssim10$ kpc). Depending on the binary simulation used, we predict $\sim16-35\%$ of SGRB events would appear &#34;host-less&#34;, i.e. sources that merge with high impact parameters or have hosts fainter than the detection limit ($H&gt;26$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09714v2-abstract-full').style.display = 'none'; document.getElementById('2109.09714v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS, 21 Pages (6 Tables, 14 Figures), 14 Pages Appendix (4 Tables, 16 Figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 514, Issue 2, August 2022, Pages 2716-2735 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00424">arXiv:2109.00424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00424">pdf</a>, <a href="https://arxiv.org/format/2109.00424">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.20944/preprints202108.0033.v1">10.20944/preprints202108.0033.v1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inclination estimates from off-axis GRB afterglow modelling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">Gavin P Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+J">Joseph J Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayes%2C+F">Fergus Hayes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kong%2C+A+K+H">Albert K H Kong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+E">En-Tzu Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hendry%2C+M">Martin Hendry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heng%2C+I+S">Ik Siong Heng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saha%2C+S">Surojit Saha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Veitch%2C+J">John Veitch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00424v1-abstract-short" style="display: inline;"> For gravitational wave (GW) detected neutron star mergers, one of the leading candidates for electromagnetic (EM) counterparts is the afterglow from an ultra-relativistic jet. Where this afterglow is observed, it will likely be viewed off-axis, such as the afterglow following GW170817/GRB 170817A. The temporal behaviour of an off-axis observed GRB afterglow can be used to reveal the lateral jet st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00424v1-abstract-full').style.display = 'inline'; document.getElementById('2109.00424v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00424v1-abstract-full" style="display: none;"> For gravitational wave (GW) detected neutron star mergers, one of the leading candidates for electromagnetic (EM) counterparts is the afterglow from an ultra-relativistic jet. Where this afterglow is observed, it will likely be viewed off-axis, such as the afterglow following GW170817/GRB 170817A. The temporal behaviour of an off-axis observed GRB afterglow can be used to reveal the lateral jet structure, and statistical model fits can put constraints on the various model free-parameters. Amongst these parameters is the inclination of the system to the line of sight. Along with the GW detection, the afterglow modelling provides the best constraint on the inclination to the line-of-sight and can improve the estimates of cosmological parameters e.g. the Hubble constant, from GW-EM events. However, modelling of the afterglow depends on the assumed jet structure and, often overlooked, the effects of lateral spreading. Here we show how the inclusion of lateral spreading in the afterglow models can affect the estimated inclination of GW-EM events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00424v1-abstract-full').style.display = 'none'; document.getElementById('2109.00424v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures, Accepted to the special issue of Universe, &#34;Waiting for GODOT -- Present and Future of Multi-Messenger Astronomy&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09314">arXiv:2105.09314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09314">pdf</a>, <a href="https://arxiv.org/format/2105.09314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202140355">10.1051/0004-6361/202140355 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gamma-ray bursts as probes of high-redshift Lyman-alpha emitters and radiative transfer models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vielfaure%2C+J+-">J. -B. Vielfaure</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vergani%2C+S+D">S. D. Vergani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gronke%2C+M">M. Gronke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Japelj%2C+J">J. Japelj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmerio%2C+J+T">J. T. Palmerio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milvang-Jensen%2C+B">B. Milvang-Jensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09314v1-abstract-short" style="display: inline;"> We present the updated census and statistics of Lyman-$伪$ emitting long gamma-ray bursts host galaxies (LAE-LGRBs). We investigate the properties of a sub-sample of LAE-LGRBs and test the shell model commonly used to fit Lyman-$伪$ (Ly$伪$) emission line spectra. Among the LAE-LGRBs detected to date, we select a golden sample of four LAE-LGRBs allowing us to retrieve information on the host galaxy p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09314v1-abstract-full').style.display = 'inline'; document.getElementById('2105.09314v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09314v1-abstract-full" style="display: none;"> We present the updated census and statistics of Lyman-$伪$ emitting long gamma-ray bursts host galaxies (LAE-LGRBs). We investigate the properties of a sub-sample of LAE-LGRBs and test the shell model commonly used to fit Lyman-$伪$ (Ly$伪$) emission line spectra. Among the LAE-LGRBs detected to date, we select a golden sample of four LAE-LGRBs allowing us to retrieve information on the host galaxy properties and of its interstellar medium gas. We fit their Ly$伪$ spectra using the shell model, and constrain its parameters with the observed values. From the comparison of the statistics and properties of LAE-LGRBs to those of LAE samples in the literature, we find evidences of Ly$伪$ suppression in dusty systems, and a fraction of LAE-LGRBs among the overall LGRB hosts lower than that found for Lyman-break galaxy (LBG) samples at similar redshift range. However, we find that LAE-LGRBs are representative of Ly$伪$ emission from the bulk of UV-selected galaxies at z~2. We find that the golden sample of LAE-LGRBs are complex systems characterized by multiple emission blobs and by signs of possible galaxy interactions. The fitting procedure fails in recovering the HI column densities (NHI) measured from the afterglow spectra, and the other properties described by the shell-model parameters in the cases with very high NHI. The afterglows of most LGRBs and LAE-LGRBs show high NHI, implying that statistically the bulk of Ly$伪$ photons expected to be produced by massive stars in the star-forming region hosting the GRB will be surrounded by such opaque lines of sight. We interpret our results in the context of more sophisticated models and of different dominant Ly$伪$ emitting regions. We also compare LAE-LGRBs to LAE Lyman continuum (LyC) leakers in the literature in terms of properties identified as possible indirect indicators of LyC leakage. [Abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09314v1-abstract-full').style.display = 'none'; document.getElementById('2105.09314v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 12 figures. Abridged abstract. Submitted to A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 653, A83 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.11099">arXiv:2104.11099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.11099">pdf</a>, <a href="https://arxiv.org/format/2104.11099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2071">10.1093/mnras/stab2071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GRB jet structure and the jet break </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">Gavin P Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+J">Joseph John Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">Nial R. Tanvir</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.11099v2-abstract-short" style="display: inline;"> We investigate the shape of the jet break in within-beam gamma-ray burst (GRB) optical afterglows for various lateral jet structure profiles. We consider cases with and without lateral spreading and a range of inclinations within the jet core half-opening angle, $胃_c$. We fit model and observed afterglow lightcurves with a smoothly-broken power-law function with a free-parameter $魏$ that describes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11099v2-abstract-full').style.display = 'inline'; document.getElementById('2104.11099v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.11099v2-abstract-full" style="display: none;"> We investigate the shape of the jet break in within-beam gamma-ray burst (GRB) optical afterglows for various lateral jet structure profiles. We consider cases with and without lateral spreading and a range of inclinations within the jet core half-opening angle, $胃_c$. We fit model and observed afterglow lightcurves with a smoothly-broken power-law function with a free-parameter $魏$ that describes the sharpness of the break. We find that the jet break is sharper ($魏$ is greater) when lateral spreading is included than in the absence of lateral spreading. For profiles with a sharp-edged core, the sharpness parameter has a broad range of $0.1\lesssim魏\lesssim4.6$, whereas profiles with a smooth-edged core have a narrower range of $0.1\lesssim魏\lesssim2.2$ when models both with and without lateral spreading are included. For sharp-edged jets, the jet break sharpness depends strongly on the inclination of the system within $胃_c$, whereas for smooth-edged jets, $魏$ is more strongly dependent on the size of $胃_c$. Using a sample of 20 GRBs we find nine candidate smooth-edged jet structures and eight candidate sharp-edged jet structures, while the remaining three are consistent with either. The shape of the jet break, as measured by the sharpness parameter $魏$, can be used as an initial check for the presence of lateral structure in within-beam GRBs where the afterglow is well-sampled at and around the jet-break time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11099v2-abstract-full').style.display = 'none'; document.getElementById('2104.11099v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures, accepted for publication in MNRAS 15/07/21</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10448">arXiv:2104.10448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10448">pdf</a>, <a href="https://arxiv.org/format/2104.10448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10686-021-09763-3">10.1007/s10686-021-09763-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gamma Ray Burst studies with THESEUS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salvaterra%2C+R">R. Salvaterra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Toffano%2C+M">M. Toffano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ronchini%2C+S">S. Ronchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guidorzi%2C+C">C. Guidorzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oganesyan%2C+G">G. Oganesyan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ascenzi%2C+S">S. Ascenzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">M. G. Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Camisasca%2C+A+E">A. E. Camisasca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mereghetti%2C+S">S. Mereghetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nava%2C+L">L. Nava</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravasio%2C+M+E">M. E. Ravasio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Branchesi%2C+M">M. Branchesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castro-Tirado%2C+A">A. Castro-Tirado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blain%2C+A">A. Blain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bozzo%2C+E">E. Bozzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P">P. O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%B6tz%2C+D">D. G枚tz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Floch%2C+E+L">E. Le Floch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osborne%2C+J+P">J. P. Osborne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosati%2C+P">P. Rosati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stratta%2C+G">G. Stratta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N">N. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bogomazov%2C+A+I">A. I. Bogomazov</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10448v1-abstract-short" style="display: inline;"> Gamma-ray Bursts (GRBs) are the most powerful transients in the Universe, over-shining for a few seconds all other $纬$-ray sky sources. Their emission is produced within narrowly collimated relativistic jets launched after the core-collapse of massive stars or the merger of compact binaries. THESEUS will open a new window for the use of GRBs as cosmological tools by securing a statistically signif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10448v1-abstract-full').style.display = 'inline'; document.getElementById('2104.10448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10448v1-abstract-full" style="display: none;"> Gamma-ray Bursts (GRBs) are the most powerful transients in the Universe, over-shining for a few seconds all other $纬$-ray sky sources. Their emission is produced within narrowly collimated relativistic jets launched after the core-collapse of massive stars or the merger of compact binaries. THESEUS will open a new window for the use of GRBs as cosmological tools by securing a statistically significant sample of high-$z$ GRBs, as well as by providing a large number of GRBs at low-intermediate redshifts extending the current samples to low luminosities. The wide energy band and unprecedented sensitivity of the Soft X-ray Imager (SXI) and X-Gamma rays Imaging Spectrometer (XGIS) instruments provide us a new route to unveil the nature of the prompt emission. For the first time, a full characterisation of the prompt emission spectrum from 0.3 keV to 10 MeV with unprecedented large count statistics will be possible revealing the signatures of synchrotron emission. SXI spectra, extending down to 0.3 keV, will constrain the local metal absorption and, for the brightest events, the progenitors&#39; ejecta composition. Investigation of the nature of the internal energy dissipation mechanisms will be obtained through the systematic study with XGIS of the sub-second variability unexplored so far over such a wide energy range. THESEUS will follow the spectral evolution of the prompt emission down to the soft X-ray band during the early steep decay and through the plateau phase with the unique ability of extending above 10 keV the spectral study of these early afterglow emission phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10448v1-abstract-full').style.display = 'none'; document.getElementById('2104.10448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Experimental Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09535">arXiv:2104.09535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.09535">pdf</a>, <a href="https://arxiv.org/format/2104.09535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10686-021-09764-2">10.1007/s10686-021-09764-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rosati%2C+P">P. Rosati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blain%2C+A+W">A. W. Blain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bozzo%2C+E">E. Bozzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Branchesi%2C+M">M. Branchesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+L">L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferrara%2C+A">A. Ferrara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomboc%2C+A">A. Gomboc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P+T">P. T. O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osborne%2C+J+P">J. P. Osborne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sch%C3%BCssler%2C+F">F. Sch眉ssler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spurio%2C+M">M. Spurio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stergioulas%2C+N">N. Stergioulas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stratta%2C+G">G. Stratta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amati%2C+L">L. Amati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casewell%2C+S">S. Casewell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ciolfi%2C+R">R. Ciolfi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">G. Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grimm%2C+S">S. Grimm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guetta%2C+D">D. Guetta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harms%2C+J">J. Harms</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Floc%27h%2C+E+L">E. Le Floc&#39;h</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Longo%2C+F">F. Longo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maggiore%2C+M">M. Maggiore</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09535v2-abstract-short" style="display: inline;"> The proposed THESEUS mission will vastly expand the capabilities to monitor the high-energy sky, and will exploit large samples of gamma-ray bursts to probe the early Universe back to the first generation of stars, and to advance multi-messenger astrophysics by detecting and localizing the counterparts of gravitational waves and cosmic neutrino sources. The combination and coordination of these ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09535v2-abstract-full').style.display = 'inline'; document.getElementById('2104.09535v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09535v2-abstract-full" style="display: none;"> The proposed THESEUS mission will vastly expand the capabilities to monitor the high-energy sky, and will exploit large samples of gamma-ray bursts to probe the early Universe back to the first generation of stars, and to advance multi-messenger astrophysics by detecting and localizing the counterparts of gravitational waves and cosmic neutrino sources. The combination and coordination of these activities with multi-wavelength, multi-messenger facilities expected to be operating in the thirties will open new avenues of exploration in many areas of astrophysics, cosmology and fundamental physics, thus adding considerable strength to the overall scientific impact of THESEUS and these facilities. We discuss here a number of these powerful synergies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09535v2-abstract-full').style.display = 'none'; document.getElementById('2104.09535v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version after submission to Experimental Astronomy</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Tanvir%2C+N&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10