CINXE.COM
Search results for: safety factor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: safety factor</title> <meta name="description" content="Search results for: safety factor"> <meta name="keywords" content="safety factor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="safety factor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="safety factor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8325</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: safety factor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8325</span> Influence of the Reliability Index on the Safety Factor of the Concrete Contribution to Shear Strength of HSC Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Sagiroglu">Ali Sagiroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sema%20Noyan%20Alacali"> Sema Noyan Alacali</a>, <a href="https://publications.waset.org/abstracts/search?q=Guray%20Arslan"> Guray Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on the influence of the safety factor in the concrete contribution to shear strength of high-strength concrete (HSC) beams according to TS500. In TS500, the contribution of concrete to shear strength is obtained by reducing diagonal cracking strength with a safety factor of 0.8. It was investigated that the coefficient of 0.8 considered in determining the contribution of concrete to the shear strength corresponds to which value of failure probability. Also, the changes in the reduction factor depending on different coefficients of variation of concrete were examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=beam" title=" beam"> beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20probability" title=" failure probability"> failure probability</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor"> safety factor</a> </p> <a href="https://publications.waset.org/abstracts/22211/influence-of-the-reliability-index-on-the-safety-factor-of-the-concrete-contribution-to-shear-strength-of-hsc-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">830</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8324</span> Reliability Analysis of Partial Safety Factor Design Method for Slopes in Granular Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Daryani">K. E. Daryani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohamad"> H. Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertainties in the geo-structure analysis and design have a significant impact on the safety of slopes. Traditionally, uncertainties in the geotechnical design are addressed by incorporating a conservative factor of safety in the analytical model. In this paper, a risk-based approach is adopted to assess the influence of the geotechnical variable uncertainties on the stability of infinite slopes in cohesionless soils using the “partial factor of safety on shear strength” approach as stated in Eurocode 7. Analyses conducted using Monte Carlo simulation show that the same partial factor can have very different levels of risk depending on the degree of uncertainty of the mean values of the soil friction angle and void ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safety" title="Safety">Safety</a>, <a href="https://publications.waset.org/abstracts/search?q=Probability%20of%20Failure" title=" Probability of Failure"> Probability of Failure</a>, <a href="https://publications.waset.org/abstracts/search?q=Reliability" title=" Reliability"> Reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=Infinite%20Slopes" title=" Infinite Slopes"> Infinite Slopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sand." title=" Sand."> Sand.</a> </p> <a href="https://publications.waset.org/abstracts/17508/reliability-analysis-of-partial-safety-factor-design-method-for-slopes-in-granular-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8323</span> Comparison of Safety Factor Evaluation Methods for Buckling of High Strength Steel Welded Box Section Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balazs%20Somodi">Balazs Somodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Balazs%20Kovesdi"> Balazs Kovesdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the research praxis of civil engineering the statistical evaluation of experimental and numerical investigations is an essential task in order to compare the experimental and numerical resistances of a specific structural problem with the proposed resistances of the standards. However, in the standards and in the international literature there are several different safety factor evaluation methods that can be used to check the necessary safety level (e.g.: 5% quantile level, 2.3% quantile level, 1‰ quantile level, γM partial safety factor, γM* partial safety factor, β reliability index). Moreover, in the international literature different calculation methods could be found even for the same safety factor as well. In the present study the flexural buckling resistance of high strength steel (HSS) welded closed sections are analyzed. The authors investigated the flexural buckling resistances of the analyzed columns by laboratory experiments. In the present study the safety levels of the obtained experimental resistances are calculated based on several safety approaches and compared with the EN 1990. The results of the different safety approaches are compared and evaluated. Based on the evaluation tendencies are identified and the differences between the statistical evaluation methods are explained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexural%20buckling" title="flexural buckling">flexural buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20steel" title=" high strength steel"> high strength steel</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20safety%20factor" title=" partial safety factor"> partial safety factor</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20evaluation" title=" statistical evaluation"> statistical evaluation</a> </p> <a href="https://publications.waset.org/abstracts/82296/comparison-of-safety-factor-evaluation-methods-for-buckling-of-high-strength-steel-welded-box-section-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8322</span> Effect of Change in Angle of Slope and Height of an Embankment on Safety Factor during Rapid Drawdown</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini">Seyed Abolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Kouhpeyma"> Azam Kouhpeyma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduction of water level at which a slope is submerged with it is called drawdown. Draw down can took place rapidly or slowly and in both situations, it can affect slope stability. Using coupled analysis (seepage and stability analysis) causes more accurate results. In this study, the stability of homogeneous embankment is investigated numerically. Slope safety factor changes due to changes in three factors of height, slope and drawdown rate have been investigated and compared. It was found that with increasing height and slope, the safety factor decreases, and with increasing the discharge rate, the safety factor increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drawdown" title="drawdown">drawdown</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20seepage%20and%20stability%20analysis" title=" coupled seepage and stability analysis"> coupled seepage and stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/145809/effect-of-change-in-angle-of-slope-and-height-of-an-embankment-on-safety-factor-during-rapid-drawdown" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8321</span> A Comparative Analysis of Safety Orientation and Safety Performance in Organizations: A Project Management Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20Alfreahat">Dina Alfreahat</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoltan%20Sebestyen"> Zoltan Sebestyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safety is considered as one of the project’s success factors. Poor safety management may result in accidents that impact human, economic, and legal issues. Therefore, it is necessary to consider safety and health as a project success factor along with other project success factors, such as time, cost, and quality. Organizations have a knowledge deficit of the implementation of long-term safety practices, and due to cost control, safety problems tend to receive the least priority. They usually assume that safety management involves expenditures unrelated to production goals, thereby considering it unnecessary for profitability and competitiveness. The purpose of this study is to introduce, analysis and identify the correlation between the orientation of the public safety procedures of an organization and the public safety standards applied in the project. Therefore, the authors develop the process and collect the possible mathematical-statistical tools supporting the previously mentioned goal. The result shows that the adoption of management to safety is a major factor in implementing the safety standard in the project and thereby improving safety performance. It may take time and effort to adopt the mindset of safety orientation service development, but at the same time, the higher organizational investment in safety and health programs will contribute to the loyalty of staff to safety compliance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=project%20management%20perspective" title="project management perspective">project management perspective</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20orientation" title=" safety orientation"> safety orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20performance" title=" safety performance"> safety performance</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20standards" title=" safety standards"> safety standards</a> </p> <a href="https://publications.waset.org/abstracts/131109/a-comparative-analysis-of-safety-orientation-and-safety-performance-in-organizations-a-project-management-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8320</span> Effect of Soil and Material Characteristics on Safety of Concrete Structures Including SSI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Kurtoglu">A. E. Kurtoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cevik"> A. Cevik</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bilgehan"> M. Bilgehan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this parametric study, effect of soil and material characteristics on safety of structures is investigated. The soil parameters such as shear strength, unit weight; geometrical parameters of the structure such as foundation depth and height of building; and material properties such as weight of concrete were selected as input parameters. A real accelerogram of 1989 El-Centro earthquake recorded by the USGS in Imperial Valley is used for this study. It is contained in the standard Strong Motion CD-ROM (SMC) format, which can be recognized and interpreted by FEM software used. The soil-structure interaction model subjected to above-mentioned earthquake was analyzed for 729 cases. Effect of input parameters on safety factor of the soil-structure system was then investigated and the interaction between the input and output parameters is presented in graphical form. Findings showed that all input parameters have significant effects on factor of safety results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title="factor of safety">factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20of%20structures" title=" safety of structures"> safety of structures</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20structure%20interaction" title=" soil structure interaction"> soil structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/1885/effect-of-soil-and-material-characteristics-on-safety-of-concrete-structures-including-ssi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8319</span> Probabilistic Analysis of Bearing Capacity of Isolated Footing using Monte Carlo Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Jung%20Karki">Sameer Jung Karki</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Saygili"> Gokhan Saygili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The allowable bearing capacity of foundation systems is determined by applying a factor of safety to the ultimate bearing capacity. Conventional ultimate bearing capacity calculations routines are based on deterministic input parameters where the nonuniformity and inhomogeneity of soil and site properties are not accounted for. Hence, the laws of mathematics like probability calculus and statistical analysis cannot be directly applied to foundation engineering. It’s assumed that the Factor of Safety, typically as high as 3.0, incorporates the uncertainty of the input parameters. This factor of safety is estimated based on subjective judgement rather than objective facts. It is an ambiguous term. Hence, a probabilistic analysis of the bearing capacity of an isolated footing on a clayey soil is carried out by using the Monte Carlo Simulation method. This simulated model was compared with the traditional discrete model. It was found out that the bearing capacity of soil was found higher for the simulated model compared with the discrete model. This was verified by doing the sensitivity analysis. As the number of simulations was increased, there was a significant % increase of the bearing capacity compared with discrete bearing capacity. The bearing capacity values obtained by simulation was found to follow a normal distribution. While using the traditional value of Factor of safety 3, the allowable bearing capacity had lower probability (0.03717) of occurring in the field compared to a higher probability (0.15866), while using the simulation derived factor of safety of 1.5. This means the traditional factor of safety is giving us bearing capacity that is less likely occurring/available in the field. This shows the subjective nature of factor of safety, and hence probability method is suggested to address the variability of the input parameters in bearing capacity equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title=" factor of safety"> factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=isolated%20footing" title=" isolated footing"> isolated footing</a>, <a href="https://publications.waset.org/abstracts/search?q=montecarlo%20simulation" title=" montecarlo simulation"> montecarlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/143681/probabilistic-analysis-of-bearing-capacity-of-isolated-footing-using-monte-carlo-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8318</span> Safety Factors for Improvement of Labor's Health and Safety in Construction Industry of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahsan%20Ali%20Khan">Ahsan Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During past few years, researchers are emphasizing more on the need of safety in construction industry. This need of safety is an important issue in developing countries. As due to development they are facing huge construction growth. This research is done to evaluate labor safety condition in construction industry of Pakistan. The research carried out through questionnaire survey at different construction sites. Useful data are gathered from these sites which then factor analyzed resulting in five factors. These factors reflect that most of the workers are aware of the safety need, but they divert this responsibility towards management and claim that the work is more essential for management instead of safety. Moreover, those work force which is unaware of safety state that there is lack of any training and guidance from upper management which lead to many unfavorable events on construction sites. There is need of implementation safety activities by management like training, formulation of rules and policies. This research will be helpful to divert management attention towards safety need so they will make efforts for safety of their manpower—the workers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=labor%27s%20safety" title="labor's safety">labor's safety</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20role" title=" management role"> management role</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factors" title=" safety factors"> safety factors</a> </p> <a href="https://publications.waset.org/abstracts/99432/safety-factors-for-improvement-of-labors-health-and-safety-in-construction-industry-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8317</span> Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boo-Sung%20Koh">Boo-Sung Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Eock%20Kim"> Seung-Eock Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20design" title="direct design">direct design</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20inelastic%20analysis" title=" nonlinear inelastic analysis"> nonlinear inelastic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20geometric%20imperfection" title=" initial geometric imperfection"> initial geometric imperfection</a> </p> <a href="https://publications.waset.org/abstracts/24354/direct-design-of-steel-bridge-using-nonlinear-inelastic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8316</span> Investigation of Slope Stability in Gravel Soils in Unsaturated State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Abolhasan%20Naeini">Seyyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Azini"> Ehsan Azini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software. we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg’s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground. Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope%20stability%20analysis" title="slope stability analysis">slope stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title=" factor of safety"> factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=matric%20suction" title=" matric suction"> matric suction</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20silty%20gravel%20soil" title=" unsaturated silty gravel soil"> unsaturated silty gravel soil</a> </p> <a href="https://publications.waset.org/abstracts/107320/investigation-of-slope-stability-in-gravel-soils-in-unsaturated-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8315</span> Identifying Strategies for Improving Railway Services in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armana%20Sabiha%20Huq">Armana Sabiha Huq</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahmina%20Rahman%20Chowdhury"> Tahmina Rahman Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, based on the stated preference experiment, the service quality of Bangladesh Railway has been assessed, and particular importance has been given to investigate if there exists a relationship between service quality and safety. For investigation purposes, environmental and organizational factors were assumed to determine the safety performance of the railway. Data collected from the survey has been analyzed by importance-performance analysis (IPA). In this paper, a modification of the well-known importance-performance analysis (IPA) has been done by adopting the importance of the weights determined through a structural equation modeling (SEM) approach and by plotting the gap between importance and performance on a visual graph. It has been found that there exists a relationship between safety and serviceability to some extent. Limited resources are an important factor to improve the safety and serviceability condition of the BD railway. Moreover, it is observed that the limited resources available to monitor and improve the safety performance of railway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=importance-performance%20analysis" title="importance-performance analysis">importance-performance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GAP-IPA" title=" GAP-IPA"> GAP-IPA</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=serviceability" title=" serviceability"> serviceability</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a> </p> <a href="https://publications.waset.org/abstracts/136775/identifying-strategies-for-improving-railway-services-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8314</span> Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainul%20Huda">Zainul Huda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hani%20Ajani">Mohammed Hani Ajani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20pressure%20vessel" title="thin-walled pressure vessel">thin-walled pressure vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=hoop%20stress" title=" hoop stress"> hoop stress</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20stress" title=" longitudinal stress"> longitudinal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety%20%28FoS%29" title=" factor of safety (FoS)"> factor of safety (FoS)</a>, <a href="https://publications.waset.org/abstracts/search?q=fiberglass" title=" fiberglass "> fiberglass </a> </p> <a href="https://publications.waset.org/abstracts/22665/evaluation-of-longitudinal-and-hoop-stresses-and-a-critical-study-of-factor-of-safety-fos-in-design-of-a-glass-fiber-pressure-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8313</span> Evaluation of Longitudinal and Hoops Stresses and a Critical Study of Factor of Safety (Fos) in the Design of a Glass-Fiber Pressure Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainul%20Huda">Zainul Huda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hani%20Ajani"> Mohammad Hani Ajani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20pressure%20vessel" title="thin-walled pressure vessel">thin-walled pressure vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=hoop%20stress" title=" hoop stress"> hoop stress</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20stress" title=" longitudinal stress"> longitudinal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety%20%28FoS%29" title=" factor of safety (FoS)"> factor of safety (FoS)</a>, <a href="https://publications.waset.org/abstracts/search?q=fiberglass" title=" fiberglass"> fiberglass</a> </p> <a href="https://publications.waset.org/abstracts/24443/evaluation-of-longitudinal-and-hoops-stresses-and-a-critical-study-of-factor-of-safety-fos-in-the-design-of-a-glass-fiber-pressure-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8312</span> Radiation Safety Factor of Education and Research Institution in Republic of Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeo%20Ryeong%20Jeon">Yeo Ryeong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Pyong%20Kon%20Cho"> Pyong Kon Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ok%20Han"> Eun Ok Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyon%20Chul%20Jang"> Hyon Chul Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Min%20Kim"> Yong Min Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study surveyed on recognition related to radiation safety for radiation safety managers and workers those who have been worked in Republic of Korea education and research institution. At present, South Korea has no guideline and manual of radiation safety for education and research institution. Therefore, we tried to find an educational basis for development of radiation safety guideline and manual. To check the level of knowledge, attitude, and behavior about radiation safety, we used the questionnaire that consisted of 29 questions against knowledge, attitude and behavior, 4 questions against self-efficacy and expectation based on four factors (radiation source, human, organizational and physical environment) of the Haddon's matrix. Responses were collected between May 4 and June 30, 2015. We analyzed questionnaire by means of IBM SPSS/WIN 15 which well known as statistical package for social science. The data were compared with mean, standard deviation, Pearson's correlation, ANOVA (analysis of variance) and regression analysis. 180 copies of the questionnaire were returned from 60 workplaces. The overall mean results for behavior level was relatively lower than knowledge and attitude level. In particular, organizational environment factor on the radiation safety management indicated the lowest behavior level. Most of the factors were correlated in Pearson’s correlation analysis, especially between knowledge of human factors and behavior of human factors (Pearson’s correlation coefficient 0.809, P<.01). When analysis performed in line with the main radiation source type, institutions where have been used only opened RI (radioisotope) behavior level was the lowest among all subjects. Finally, knowledge of radiation source factor (β=0.556, P<.001) and human factor(β=0.376, P<.001) had the greatest impact in terms of behavior practice. Radiation safety managers and workers think positively about radiation safety management, but are poorly informed organizational environment of their institution. Thus, each institution need to efforts to settlement of radiation safety culture. Also, pedagogical interventions for improving knowledge on radiation safety needs in terms of safety accident prevention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20safety%20management" title="radiation safety management">radiation safety management</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SPSS" title=" SPSS"> SPSS</a>, <a href="https://publications.waset.org/abstracts/search?q=republic%20of%20Korea" title=" republic of Korea"> republic of Korea</a> </p> <a href="https://publications.waset.org/abstracts/46787/radiation-safety-factor-of-education-and-research-institution-in-republic-of-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8311</span> Influences of Slope Inclination on the Storage Capacity and Stability of Municipal Solid Waste Landfills</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feten%20Chihi">Feten Chihi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriella%20Varga"> Gabriella Varga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world's most prevalent waste management strategy is landfills. However, it grew more difficult due to a lack of acceptable waste sites. In order to develop larger landfills and extend their lifespan, the purpose of this article is to expand the capacity of the construction by varying the slope's inclination and to examine its effect on the safety factor. The capacity change with tilt is mathematically determined. Using a new probabilistic calculation method that takes into account the heterogeneity of waste layers, the safety factor for various slope angles is examined. To assess the effect of slope variation on the overall safety of landfills, over a hundred computations were performed for each angle. It has been shown that capacity increases significantly with increasing inclination. Passing from 1:3 to 2:3 slope angles and from 1:3 to 1:2 slope angles, the volume of garbage that can be deposited increases by 40 percent and 25 percent, respectively, of the initial volume. The results of the safety factor indicate that slopes of 1:3 and 1:2 are safe when the standard method (homogenous waste) is used for computation. Using the new approaches, a slope with an inclination of 2:3 can be deemed safe, despite the fact that the calculation does not account for the safety-enhancing effect of daily cover layers. Based on the study reported in this paper, the malty layered nonhomogeneous calculating technique better characterizes the safety factor. As it more closely resembles the actual state of landfills, the employed technique allows for more flexibility in design parameters. This work represents a substantial advance in limiting both safe and economical landfills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landfill" title="landfill">landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20inclination" title=" slope inclination"> slope inclination</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor"> safety factor</a> </p> <a href="https://publications.waset.org/abstracts/151175/influences-of-slope-inclination-on-the-storage-capacity-and-stability-of-municipal-solid-waste-landfills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8310</span> Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Vahedi%20Torshizi">Mohammad Vahedi Torshizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20stress" title="bending stress">bending stress</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plantary" title=" plantary"> plantary</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20equations" title=" mathematical equations"> mathematical equations</a> </p> <a href="https://publications.waset.org/abstracts/58238/checking-planetary-clutch-on-the-romania-tractor-using-mathematical-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8309</span> Unbreakable Obedience of Safety Regulation: The Study of Authoritarian Leadership and Safety Performance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong-Yi%20Kuo">Hong-Yi Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leadership is a key factor of improving workplace safety, and there have been abundant of studies which support the positive effects of appropriate leadership on employee safety performance in the western academic. However, little safety research focus on the Chinese leadership style like paternalistic leadership. To fill this gap, the resent study aims to examine the relationship between authoritarian leadership (one of the ternary mode in paternalistic leadership) and safety outcomes. This study makes hypothesis on different levels. First, on the group level, as an authoritarian leader regards safety value as the most important tasks, there would be positive effect on group safety outcomes through strengthening safety group norms by the emphasis on etiquette. Second, on the cross level, when a leader with authoritarian style has high priority on safety, employees may more obey the safety rules because of fear due to emphasis on absolute authority over the leader. Therefore, employees may show more safety performance and then increase individual safety outcomes. Survey data would be collected from 50 manufacturing groups (each group with more than 5 members and a leader) and a hierarchical linear modeling analysis would be conducted to analyze the hypothesis. Above the predictive result, the study expects to be a cornerstone of safety leadership research in the Chinese academic and practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety%20leadership" title="safety leadership">safety leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=authoritarian%20leadership" title=" authoritarian leadership"> authoritarian leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20norms" title=" group norms"> group norms</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20behavior" title=" safety behavior"> safety behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=supervisor%20safety%20priority" title=" supervisor safety priority"> supervisor safety priority</a> </p> <a href="https://publications.waset.org/abstracts/93737/unbreakable-obedience-of-safety-regulation-the-study-of-authoritarian-leadership-and-safety-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8308</span> Ethical Leadership and Individual Creativity: The Mediating Role of Psychological Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeondal%20Jeong">Hyeondal Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoonjung%20Baek"> Yoonjung Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the relationship between ethical leadership and individual creativity and focused on mediating effects of psychological safety. In order to clarify the mechanism of ethical leadership, psychological safety of the members was set as a mediator. Using data gathered from a sample of 150 employees. For data analysis, exploratory factor analysis, correlation analysis, hierarchical regression analysis and Sobel-Test were performed. The results showed that ethical leadership had a positive effect on psychological safety and individual creativity, and psychological safety had a positive mediating effect. Since the mediating effect of psychological safety has been confirmed, we need to find ways to improve the psychological safety of the members in terms of organizational management. Psychological safety has a positive effect on individual creativity, which can have a positive impact on innovation throughout the organization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethical%20leadership" title="ethical leadership">ethical leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=creativity" title=" creativity"> creativity</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20safety" title=" psychological safety"> psychological safety</a>, <a href="https://publications.waset.org/abstracts/search?q=ethics%20management" title=" ethics management"> ethics management</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20behaviors" title=" innovative behaviors"> innovative behaviors</a> </p> <a href="https://publications.waset.org/abstracts/86913/ethical-leadership-and-individual-creativity-the-mediating-role-of-psychological-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8307</span> A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heungsu%20Lee">Heungsu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngseok%20Kim"> Youngseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonghwa%20Yi"> Jonghwa Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Park"> Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FBG%20sensor" title="FBG sensor">FBG sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=harbor%20structure" title=" harbor structure"> harbor structure</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20evaluation%20system" title=" safety evaluation system"> safety evaluation system</a> </p> <a href="https://publications.waset.org/abstracts/84883/a-fundamental-study-for-real-time-safety-evaluation-system-of-landing-pier-using-fbg-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8306</span> Matric Suction Effects on Behavior of Unsaturated Soil Slope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mousivand">Mohsen Mousivand</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesam%20Aminpour"> Hesam Aminpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil slopes are usually located above the groundwater level that are largely unsaturated. It is possible that unsaturated soil of slope has expanded or collapsed as a result of wetting by rain or other factor that this type of soil behavior can cause serious problems including human and financial damage. The main factor causing this difference in behavior of saturated and unsaturated state of soil is matric suction that is created by interface of the soil and water in the soil pores. So far theoretical studies show that matric suction has important effect on the mechanical behavior of soil although the impact of this factor on slope stability has not been studied. This paper presents a numerical study of effect of matric suction on slope stability. The results of the study indicate that safety factor and stability of soil slope increase due to an increasing of matric suction and in view of matric suction leads to more accurate results and safety factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope" title="slope">slope</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=matric%20suction" title=" matric suction"> matric suction</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/42790/matric-suction-effects-on-behavior-of-unsaturated-soil-slope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8305</span> Variation of Base Width of a Typical Concrete Gravity Dam under Different Seismic Conditions Using Static Seismic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Kumar%20Khaund">Prasanna Kumar Khaund</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukanya%20Talukdar"> Sukanya Talukdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A concrete gravity dam is a major hydraulic structure and it is very essential to consider the earthquake forces, to get a proper design base width, so that the entire weight of the dam resists the overturning moment due to earthquake and other forces. The main objective of this study is to obtain the design base width of a dam for different seismic conditions by varying the earthquake coefficients in both vertical and horizontal directions. This shall be done by equating the factor of safety against overturning, factor of safety against sliding and factor of safety against shear friction factor for a dam with their limiting values, under both tail water and no tail water condition. The shape of the Mettur dam in India is considered for the study. The study has been done taking a constant head of water at the reservoir, which is the maximum reservoir water level and a constant height of tail water. Using linear approximation method of Newton Raphson, the obtained equations against different factors of safety under different earthquake conditions are solved using a programme in C++ to get different values of base width of dam for varying earthquake conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20base%20width" title="design base width">design base width</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20earthquake%20coefficient" title=" horizontal earthquake coefficient"> horizontal earthquake coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20water" title=" tail water"> tail water</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20coefficient" title=" vertical earthquake coefficient"> vertical earthquake coefficient</a> </p> <a href="https://publications.waset.org/abstracts/72683/variation-of-base-width-of-a-typical-concrete-gravity-dam-under-different-seismic-conditions-using-static-seismic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8304</span> Probabilistic Analysis of Fiber-Reinforced Infinite Slopes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assile%20Abou%20Diab">Assile Abou Diab</a>, <a href="https://publications.waset.org/abstracts/search?q=Shadi%20Najjar"> Shadi Najjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber-reinforcement is an effective soil improvement technique for applications involving the prevention of shallow failures on the slope face and the repair of existing slope failures. A typical application is the stabilization of cohesionless infinite slopes. The objective of this paper is to present a probabilistic, reliability-based methodology (based on Monte Carlo simulations) for the design of a practical fiber-reinforced cohesionless infinite slope, taking into consideration the impact of various sources of uncertainty. Recommendations are made regarding the required factors of safety that need to be used to achieve a given target reliability level. These factors of safety could differ from the traditional deterministic factor of safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title="factor of safety">factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforcement" title=" fiber reinforcement"> fiber reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20slope" title=" infinite slope"> infinite slope</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability-based%20design" title=" reliability-based design"> reliability-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/75670/probabilistic-analysis-of-fiber-reinforced-infinite-slopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8303</span> Analyzing Safety Incidents using the Fatigue Risk Index Calculator as an Indicator of Fatigue within a UK Rail Franchise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Scott%20Evans">Michael Scott Evans</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Smith"> Andrew Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The feeling of fatigue at work could potentially have devastating consequences. The aim of this study was to investigate whether the well-established objective indicator of fatigue – the Fatigue Risk Index (FRI) calculator used by the rail industry is an effective indicator to the number of safety incidents, in which fatigue could have been a contributing factor. The study received ethics approval from Cardiff University’s Ethics Committee (EC.16.06.14.4547). A total of 901 safety incidents were recorded from a single British rail franchise between 1st June 2010 – 31st December 2016, into the Safety Management Information System (SMIS). The safety incident types identified that fatigue could have been a contributing factor were: Signal Passed at Danger (SPAD), Train Protection & Warning System (TPWS) activation, Automatic Warning System (AWS) slow to cancel, failed to call, and station overrun. From the 901 recorded safety incidents, the scheduling system CrewPlan was used to extract the Fatigue Index (FI) score and Risk Index (RI) score of all train drivers on the day of the safety incident. Only the working rosters of 64.2% (N = 578) (550 men and 28 female) ranging in age from 24 – 65 years old (M = 47.13, SD = 7.30) were accessible for analyses. Analysis from all 578 train drivers who were involved in safety incidents revealed that 99.8% (N = 577) of Fatigue Index (FI) scores fell within or below the identified guideline threshold of 45 as well as 97.9% (N = 566) of Risk Index (RI) scores falling below the 1.6 threshold range. Their scores represent good practice within the rail industry. These findings seem to indicate that the current objective indicator, i.e. the FRI calculator used in this study by the British rail franchise was not an effective predictor of train driver’s FI scores and RI scores, as safety incidents in which fatigue could have been a contributing factor represented only 0.2% of FI scores and 2.1% of RI scores. Further research is needed to determine whether there are other contributing factors that could provide a better indication as to why there is such a significantly large proportion of train drivers who are involved in safety incidents, in which fatigue could have been a contributing factor have such low FI and RI scores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20risk%20index%20calculator" title="fatigue risk index calculator">fatigue risk index calculator</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20indicator%20of%20fatigue" title=" objective indicator of fatigue"> objective indicator of fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20industry" title=" rail industry"> rail industry</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20incident" title=" safety incident"> safety incident</a> </p> <a href="https://publications.waset.org/abstracts/83185/analyzing-safety-incidents-using-the-fatigue-risk-index-calculator-as-an-indicator-of-fatigue-within-a-uk-rail-franchise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8302</span> Reliability-Based Method for Assessing Liquefaction Potential of Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Naghizaderokni">Mehran Naghizaderokni</a>, <a href="https://publications.waset.org/abstracts/search?q=Asscar%20Janalizadechobbasty"> Asscar Janalizadechobbasty </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chalos%20area" title=" chalos area"> chalos area</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20and%20structural%20engineering" title=" civil and structural engineering"> civil and structural engineering</a> </p> <a href="https://publications.waset.org/abstracts/26223/reliability-based-method-for-assessing-liquefaction-potential-of-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8301</span> Incorporation of Safety into Design by Safety Cube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rajabalinejad">Mohammad Rajabalinejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safety is often seen as a requirement or a performance indicator through the design process, and this does not always result in optimally safe products or systems. This paper suggests integrating the best safety practices with the design process to enrich the exploration experience for designers and add extra values for customers. For this purpose, the commonly practiced safety standards and design methods have been reviewed and their common blocks have been merged forming Safety Cube. Safety Cube combines common blocks for design, hazard identification, risk assessment and risk reduction through an integral approach. An example application presents the use of Safety Cube for design of machinery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety" title="safety">safety</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20cube" title=" safety cube"> safety cube</a>, <a href="https://publications.waset.org/abstracts/search?q=product" title=" product"> product</a>, <a href="https://publications.waset.org/abstracts/search?q=system" title=" system"> system</a>, <a href="https://publications.waset.org/abstracts/search?q=machinery" title=" machinery"> machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a> </p> <a href="https://publications.waset.org/abstracts/88489/incorporation-of-safety-into-design-by-safety-cube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8300</span> An Investigation on the Relationship between Taxi Company Safety Climate and Safety Performance of Taxi Drivers in Iloilo City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasper%20C.%20Dioco">Jasper C. Dioco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was done to investigate the relationship of taxi company safety climate and drivers’ safety motivation and knowledge on taxi drivers’ safety performance. Data were collected from three Taxi Companies with taxi drivers as participants (N = 84). The Hiligaynon translated version of Transportation Companies’ Climate Scale (TCCS), Safety Motivation and Knowledge Scale, Occupational Safety Motivation Questionnaire and Global Safety Climate Scale were used to study the relationships among four parameters: (a) Taxi company safety climate; (b) Safety motivation; (c) Safety knowledge; and (d) Safety performance. Correlational analyses found that there is no relation between safety climate and safety performance. A Hierarchical regression demonstrated that safety motivation predicts the most variance in safety performance. The results will greatly impact how taxi company can increase safe performance through the confirmation of the proximity of variables to organizational outcome. A strong positive safety climate, in which employees perceive safety to be a priority and that managers are committed to their safety, is likely to increase motivation to be safety. Hence, to improve outcomes, providing knowledge based training and health promotion programs within the organization must be implemented. Policy change might include overtime rules and fatigue driving awareness programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety%20climate" title="safety climate">safety climate</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20knowledge" title=" safety knowledge"> safety knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20motivation" title=" safety motivation"> safety motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20performance" title=" safety performance"> safety performance</a>, <a href="https://publications.waset.org/abstracts/search?q=taxi%20drivers" title=" taxi drivers"> taxi drivers</a> </p> <a href="https://publications.waset.org/abstracts/86848/an-investigation-on-the-relationship-between-taxi-company-safety-climate-and-safety-performance-of-taxi-drivers-in-iloilo-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8299</span> Contributing Factors Affecting the Safety in Construction Sites of Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzana%20Rahman">Farzana Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hossain%20Ezaz"> Mohammed Hossain Ezaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipak%20Halder"> Dipak Halder</a>, <a href="https://publications.waset.org/abstracts/search?q=Proshanta%20Mondal"> Proshanta Mondal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Site safety is an important function regardless of project size. A key goal, which must be met for a successful project, is to finish the project with a good safety record. Construction safety is an important issue in all over the world. Today, developed countries strictly follow the safety procedure to avoid any hazard, accident or fatality. However, for a least developed country like Bangladesh, still accidents and fatalities are quite high due to lack of safety management. With the increased volume of construction work in Bangladesh, the need for proper attention in safety issues has become essential for human, economic and other consideration. Recently lots of accidents are taking place in construction sites of Bangladesh causing severe injury to death to the workers and pedestrians. There are a number of reasons/factors that these high numbers are widespread to the construction industry that are not found in most other businesses. The objective of this research work is to identify and explore the various factor that affect the construction site safety in Bangladesh. A questionnaire surveys was conducted to the reputed construction companies of Bangladesh to examine the present safety situation in construction sites. Nine factors were selected for the survey. The finding shows that 78% of organizations’ from the respondents are conscious about the safety procedure and they usually provide safety measures for the workers. Promotion of safety measures at the working site results in a better working environment, higher productivity and greater contentment among the workers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20sites" title="construction sites">construction sites</a>, <a href="https://publications.waset.org/abstracts/search?q=fatalities" title=" fatalities"> fatalities</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20issues" title=" safety issues"> safety issues</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20situation" title=" safety situation"> safety situation</a> </p> <a href="https://publications.waset.org/abstracts/21199/contributing-factors-affecting-the-safety-in-construction-sites-of-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8298</span> Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kreso%20Ivandic">Kreso Ivandic</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20Dodigovic"> Filip Dodigovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Stuhec"> Damir Stuhec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=action-resistance%20factor%20design" title="action-resistance factor design">action-resistance factor design</a>, <a href="https://publications.waset.org/abstracts/search?q=classic%20approach" title=" classic approach"> classic approach</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20retaining%20wall" title=" embedded retaining wall"> embedded retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurocode%207" title=" Eurocode 7"> Eurocode 7</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20states" title=" limit states"> limit states</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20factor%20design" title=" material factor design"> material factor design</a> </p> <a href="https://publications.waset.org/abstracts/87481/challenges-in-the-material-and-action-resistance-factor-design-for-embedded-retaining-wall-limit-state-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8297</span> Assessment of the Road Safety Performance in National Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20K.%20Jameel">Abeer K. Jameel</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Evdorides"> Harry Evdorides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Assessment of the road safety performance is a challengeable issue. This is not only because of the ineffective and unreliability of road and traffic crash data system but also because of its systematic character. Recent strategic plans and interventions implemented in some of the developed countries where a significant decline in the rate of traffic and road crashes considers that the road safety is a system. This system consists of four main elements which are: road user, road infrastructure, vehicles and speed in addition to other supporting elements such as the institutional framework and post-crash care system. To assess the performance of a system, it is required to assess all its elements. To present an understandable results of the assessment, it is required to present a unique term representing the performance of the overall system. This paper aims to develop an overall performance indicator which may be used to assess the road safety system. The variables of this indicators are the main elements of the road safety system. The data regarding these variables will be collected from the World Health Organization report. Multi-criteria analysis method is used to aggregate the four sub-indicators for the four variables. Two weighting methods will be assumed, equal weights and different weights. For the different weights method, the factor analysis method is used. The weights then will be converting to scores. The total score will be the overall indicator for the road safety performance in a national scale. This indicator will be used to compare and rank countries according to their road safety performance indicator. The country with the higher score is the country which provides most sustainable and effective interventions for successful road safety system. These indicator will be tested by comparing them with the aggregate real crash rate for each country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title="factor analysis">factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Multi-criteria%20analysis" title=" Multi-criteria analysis"> Multi-criteria analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20safety%20assessment" title=" road safety assessment"> road safety assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20system%20indicator" title=" safe system indicator"> safe system indicator</a> </p> <a href="https://publications.waset.org/abstracts/86763/assessment-of-the-road-safety-performance-in-national-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8296</span> Reliability Analysis of Dam under Quicksand Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manthan%20Patel">Manthan Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinit%20Ahlawat"> Vinit Ahlawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshh%20Singh%20Claire"> Anshh Singh Claire</a>, <a href="https://publications.waset.org/abstracts/search?q=Pijush%20Samui"> Pijush Samui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the analysis of quicksand condition for a dam foundation. The quicksand condition occurs in cohesion less soil when effective stress of soil becomes zero. In a dam, the saturated sediment may appear quite solid until a sudden change in pressure or shock initiates liquefaction. This causes the sand to form a suspension and lose strength hence resulting in failure of dam. A soil profile shows different properties at different points and the values obtained are uncertain thus reliability analysis is performed. The reliability is defined as probability of safety of a system in a given environment and loading condition and it is assessed as Reliability Index. The reliability analysis of dams under quicksand condition is carried by Gaussian Process Regression (GPR). Reliability index and factor of safety relating to liquefaction of soil is analysed using GPR. The results of reliability analysis by GPR is compared to that of conventional method and it is demonstrated that on applying GPR the probabilistic analysis reduces the computational time and efforts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title="factor of safety">factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20index" title=" reliability index"> reliability index</a>, <a href="https://publications.waset.org/abstracts/search?q=quicksand" title=" quicksand"> quicksand</a> </p> <a href="https://publications.waset.org/abstracts/27180/reliability-analysis-of-dam-under-quicksand-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=277">277</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=278">278</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=safety%20factor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>