CINXE.COM

Search results for: vegetative

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: vegetative</title> <meta name="description" content="Search results for: vegetative"> <meta name="keywords" content="vegetative"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vegetative" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vegetative"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 139</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vegetative</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Change Detection of Vegetative Areas Using Land Use Land Cover Derived from NDVI of Desert Encroached Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Garba">T. Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Quddus"> T. O. Quddus</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Y.%20Babanyara"> Y. Y. Babanyara</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Modibbo"> M. A. Modibbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Desertification is define as the changing of productive land into a desert as the result of ruination of land by man-induced soil erosion, which forces famers in the affected areas to move migrate or encourage into reserved areas in search of a fertile land for their farming activities. This study therefore used remote sensing imageries to determine the level of changes in the vegetative areas. To achieve that Normalized Difference of the Vegetative Index (NDVI), classified imageries and image slicing derived from landsat TM 1986, land sat ETM 1999 and Nigeria sat 1 2007 were used to determine changes in vegetations. From the Classified imageries it was discovered that there a more natural vegetation in classified images of 1986 than that of 1999 and 2007. This finding is also future in the three NDVI imageries, it was discovered that there is increased in high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007. The figures in the three histogram also indicted that there is increased in vegetative areas from 29.15 Km2 in 1986, to 60.58 Km2 in 1999 and then to 109 Km2 in 2007. The study recommends among other things that there is need to restore natural vegetation through discouraging of farming activities in and around the natural vegetation in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vegetative%20index" title="vegetative index">vegetative index</a>, <a href="https://publications.waset.org/abstracts/search?q=classified%20imageries" title=" classified imageries"> classified imageries</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20detection" title=" change detection"> change detection</a>, <a href="https://publications.waset.org/abstracts/search?q=landsat" title=" landsat"> landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a> </p> <a href="https://publications.waset.org/abstracts/4155/change-detection-of-vegetative-areas-using-land-use-land-cover-derived-from-ndvi-of-desert-encroached-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> A Crop Growth Subroutine for Watershed Resources Management (WRM) Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Nnaemeka%20Ogbu">Kingsley Nnaemeka Ogbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantine%20Mbajiorgu"> Constantine Mbajiorgu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20yield" title="crop yield">crop yield</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20coefficient" title=" roughness coefficient"> roughness coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=PAR" title=" PAR"> PAR</a>, <a href="https://publications.waset.org/abstracts/search?q=WRM%20model" title=" WRM model"> WRM model</a> </p> <a href="https://publications.waset.org/abstracts/68452/a-crop-growth-subroutine-for-watershed-resources-management-wrm-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Nnaemeka%20Ogbu">Kingsley Nnaemeka Ogbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantine%20Mbajiorgu"> Constantine Mbajiorgu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=runoff" title="runoff">runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20coefficient" title=" roughness coefficient"> roughness coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=PAR" title=" PAR"> PAR</a>, <a href="https://publications.waset.org/abstracts/search?q=WRM%20model" title=" WRM model"> WRM model</a> </p> <a href="https://publications.waset.org/abstracts/56608/a-crop-growth-subroutine-for-watershed-resources-management-wrm-model-1-description" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Cotton Crops Vegetative Indices Based Assessment Using Multispectral Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahzad%20Shifa">Muhammad Shahzad Shifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Amna%20Shifa"> Amna Shifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Omar"> Muhammad Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Shahzad"> Aamir Shahzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Ali%20Khan"> Rahmat Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many applications of remote sensing to vegetation and crop response depend on spectral properties of individual leaves and plants. Vegetation indices are usually determined to estimate crop biophysical parameters like crop canopies and crop leaf area indices with the help of remote sensing. Cotton crops assessment is performed with the help of vegetative indices. Remotely sensed images from an optical multispectral radiometer MSR5 are used in this study. The interpretation is based on the fact that different materials reflect and absorb light differently at different wavelengths. Non-normalized and normalized forms of these datasets are analyzed using two complementary data mining algorithms; K-means and K-nearest neighbor (KNN). Our analysis shows that the use of normalized reflectance data and vegetative indices are suitable for an automated assessment and decision making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20assessment" title=" condition assessment"> condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN%20algorithm" title=" KNN algorithm"> KNN algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=MSR5" title=" MSR5"> MSR5</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20indices" title=" vegetation indices"> vegetation indices</a> </p> <a href="https://publications.waset.org/abstracts/103787/cotton-crops-vegetative-indices-based-assessment-using-multispectral-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Adaptive Strategies of Maize in Leaf Traits to N Deficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panpan%20Fan">Panpan Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Ming"> Bo Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Niels%20Anten"> Niels Anten</a>, <a href="https://publications.waset.org/abstracts/search?q=Jochem%20Evers"> Jochem Evers</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaoyao%20Li"> Yaoyao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaokun%20Li"> Shaokun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruizhi%20xie"> Ruizhi xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen (N) utilization for crop production under N deficiency conditions is subject to a trade-off between maintaining specific leaf N content (SLN), important for radiation-use efficiency (RUE), versus maintaining leaf area (LA) development, important for light capture. This paper aims to explore how maize deals with this trade-off through responses in SLN, LA and their underlying traits during the vegetative and reproductive growth stages. In a ten-year N fertilization trial in Jilin province, Northeast China, three N fertilizer levels have been maintained: N-deficiency (N0), low N supply (N1), and high N supply (N2). We analyzed data from years 8 and 10 of this experiment for two common hybrids. Under N deficiency, maize plants maintained LA and decreased SLN during vegetative stages, while both LA and SLN decreased comparably during reproductive stages. Canopy-average specific leaf area (SLA) decreased sharply during vegetative stages and slightly during reproductive stages, mainly because senesced leaves in the lower canopy had a higher SLA. In the vegetative stage, maize maintained leaf area at low N by maintaining leaf biomass (albeit hence having N content/mass) and slightly increasing SLA. These responses to N deficiency were stronger in maize hybrid XY335 than in ZD958. We conclude the main strategy of maize to cope with low N is to maintain plant growth, mainly by increasing SLA throughout the plant during early growth. N was too limiting for either strategy to be followed during later growth stages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaf%20N%20content%20per%20unit%20leaf%20area" title="leaf N content per unit leaf area">leaf N content per unit leaf area</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20deficiency" title=" N deficiency"> N deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20leaf%20area" title=" specific leaf area"> specific leaf area</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20strateg" title=" maize strateg"> maize strateg</a> </p> <a href="https://publications.waset.org/abstracts/153846/adaptive-strategies-of-maize-in-leaf-traits-to-n-deficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> A Study on the Vegetative and Osmolyte Accumulation of Capsicum frutescens L. under Zinc Metal Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ja%E2%80%99afar%20Umar">Ja’afar Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Aliyu%20Aliero"> Adamu Aliyu Aliero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant growth, biochemical parameters, zinc metal concentrations were determined for Capsicum frutescens L. in response to varied concentration of zinc metal. The plant exhibited a decline in the vegetative parameters measured. Free proline and glycine betaine content increases with increasing concentration of zinc metal and differ significantly (P<0.05). It can be concluded that the osmolyte (pro and GB) accumulations, and high length of stem and wide leaf expansion are possible indicator of tolerance to heavy metals (Zinc) in Capsicum frutescens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20metal" title="zinc metal">zinc metal</a>, <a href="https://publications.waset.org/abstracts/search?q=osmolyte" title=" osmolyte"> osmolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Capsicum%20frutescens" title=" Capsicum frutescens"> Capsicum frutescens</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/28287/a-study-on-the-vegetative-and-osmolyte-accumulation-of-capsicum-frutescens-l-under-zinc-metal-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> The Effect of Bunch in the Branch on Vegetative Characteristics of Pistacia vera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Sohrabi">Alireza Sohrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mohammadi"> Hamid Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pistachio fruit is a strategic product in Iran. One of the problems caused the reduction of pistachio proceeds is related to biennial- bearing or alternative bearing. Biennial- bearing is very important and is happened because of the fallen female bloom buds in vintage year. This test was done according to random blocks of 6 orchards in the type of Ahmad Aghaie with 4 iterations. Vegetative properties of branch are investigated. The results are shown that if the bunch numbers are increased, the possibility of falling is increased in bloom buds. The least possibility of falling of bloom buds is specified in trimming of one bunch and has significant difference with other trimming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternate%20bearing" title="alternate bearing">alternate bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=pistachio" title=" pistachio"> pistachio</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster" title=" cluster"> cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=bud" title=" bud"> bud</a> </p> <a href="https://publications.waset.org/abstracts/39450/the-effect-of-bunch-in-the-branch-on-vegetative-characteristics-of-pistacia-vera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Mensah">Eric Mensah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title="land surface temperature">land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanisation" title=" urbanisation"> urbanisation</a> </p> <a href="https://publications.waset.org/abstracts/73804/land-cover-land-surface-temperature-and-urban-heat-island-effects-in-tropical-sub-saharan-city-of-accra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Vegetative Materia Medica for the Women Illness in mss2999 Kitab Tibb: A Modern Medical Interpretation of a Malay Medical Manuscript</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wan%20Aminah%20Hasbullah">Wan Aminah Hasbullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of medicine in Malay society stemmed out from the need to remedy disease process. Such knowledge came from observations by looking at the signs on the plants which signify it uses, the doctrine of signature, and also observing what kind of animal and its parts that can be used to treat the disease. Prayers (jampi and doa’) play a very important role in the therapeutic processes addressing the ethereal part of the body. In Malay medicine, prayers were said in the heart of the Malay bomoh (medicine man) when they are first approaching the diseased person, seeking the help of Allah in accurately directing his mind into making the right diagnosis and subsequently the right choice of treatment. In the making of medicine, similar rituals were religiously followed, starting from gathering the materia medica to the final concoction of the medicine. Thus, all the materia medica and the prayers in Malay medicine were gathered and documented in the medical manuscript known as MSS 2999 Kitab Tibb. For this study, a collection of vegetative materia medica which is specialized for the women illness from this manuscript will be gathered and analysed. A medical and cultural interpretation will be highlighted to see the relationship between efficacy in traditional Malay medicine as practiced in the past and the recent practice of the modern medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vegetative" title="vegetative">vegetative</a>, <a href="https://publications.waset.org/abstracts/search?q=materia%20medica" title=" materia medica"> materia medica</a>, <a href="https://publications.waset.org/abstracts/search?q=woman%20illness" title=" woman illness"> woman illness</a>, <a href="https://publications.waset.org/abstracts/search?q=Malay%20medical%20manuscript" title=" Malay medical manuscript"> Malay medical manuscript</a> </p> <a href="https://publications.waset.org/abstracts/52744/vegetative-materia-medica-for-the-women-illness-in-mss2999-kitab-tibb-a-modern-medical-interpretation-of-a-malay-medical-manuscript" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Contrasting Patterns of Accumulation, Partitioning, and Reallocation Patterns of Dm and N Within the Maize Canopy Under Decreased N Availabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panpan%20Fan">Panpan Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Ming"> Bo Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Niels%20P.%20R.%20Anten"> Niels P. R. Anten</a>, <a href="https://publications.waset.org/abstracts/search?q=Jochem%20B.%20Evers"> Jochem B. Evers</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaoyao%20Li"> Yaoyao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaokun%20Li"> Shaokun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruizhi%20Xie"> Ruizhi Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reallocation of dry matter (DM) and nitrogen (N) from vegetative tissues to the grain sinks are critical for grain yield. The objective of this study was to quantify the DM and N accumulation, partition, and reallocation at the single-leaf, different-organ, and individual-plant scales and clarify the responses to different levels of N availabilities. A two-year field experiment was conducted in Jinlin province, Northeast China, with three N fertilizer rates to create the different N availability levels: N0 (N deficiency), N1(low supply), and N2 (high supply). The results showed that grain N depends more on reallocations of vegetative organs compared with grain DM. Besides, vegetative organs reallocated more DM and N to grain under lower N availability, whereas more grain DM and grain N were derived from post-silking leaf photosynthesis and post-silking N uptake from the soil under high N availability. Furthermore, the reallocation amount and reallocation efficiency of leaf DM and leaf N content differed among leaf ranks and were regulated by N availability; specifically, the DM reallocation occurs mainly on senesced leaves, whereas the leaf N reallocation was in live leaves. These results provide a theoretical basis for deriving parameters in crop models for the simulation of the demand, uptake, partition, and reallocation processes of DM and N. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry%20matter" title="dry matter">dry matter</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20N%20content" title=" leaf N content"> leaf N content</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20rank" title=" leaf rank"> leaf rank</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20availability" title=" N availability"> N availability</a>, <a href="https://publications.waset.org/abstracts/search?q=reallocation%20efficiency" title=" reallocation efficiency"> reallocation efficiency</a> </p> <a href="https://publications.waset.org/abstracts/156413/contrasting-patterns-of-accumulation-partitioning-and-reallocation-patterns-of-dm-and-n-within-the-maize-canopy-under-decreased-n-availabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Remotely Sensed Data Fusion to Extract Vegetation Cover in the Cultural Park of Tassili, South of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Fekir">Y. Fekir</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mederbal"> K. Mederbal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hammadouche"> M. A. Hammadouche</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Anteur"> D. Anteur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cultural park of the Tassili, occupying a large area of Algeria, is characterized by a rich vegetative biodiversity to be preserved and managed both in time and space. The management of a large area (case of Tassili), by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information etc.), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Multispectral imaging sensors have been very useful in the last decade in very interesting applications of remote sensing. They can aid in several domains such as the de¬tection and identification of diverse surface targets, topographical details, and geological features. In this work, we try to extract vegetative areas using fusion techniques between data acquired from sensor on-board the Earth Observing 1 (EO-1) satellite and Landsat ETM+ and TM sensors. We have used images acquired over the Oasis of Djanet in the National Park of Tassili in the south of Algeria. Fusion technqiues were applied on the obtained image to extract the vegetative fraction of the different classes of land use. We compare the obtained results in vegetation end member extraction with vegetation indices calculated from both Hyperion and other multispectral sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Landsat%20ETM%2B" title="Landsat ETM+">Landsat ETM+</a>, <a href="https://publications.waset.org/abstracts/search?q=EO1" title=" EO1"> EO1</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20fusion" title=" data fusion"> data fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tassili" title=" Tassili"> Tassili</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/9997/remotely-sensed-data-fusion-to-extract-vegetation-cover-in-the-cultural-park-of-tassili-south-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> The Study of Effect the Number of Cluster in the Branch on Vegetative Characteristics of Pistacia vera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyeh%20Hassan%20Eftekhar%20Afzali">Seyeh Hassan Eftekhar Afzali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mohammadi"> Hamid Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pistachio is like almond but the second cycle of growth (third phase) has rather fast growth. This is caused to add final mass of product. When the germ grows, it and its cover are reached to the final size during six week period. As starting the second phase, the lignifications of pericarp is begun and continued for 4 or 6 weeks. Physiological maturity or easy separation of green from scutum is specified. This test was done according to random blocks of 6 orchards in the type of Ahmad Aghaie with 4 iterations. Vegetative properties of branch are investigated. The results of the bunch numbers on the growth of branch in current year are shown that the most growth of branch is happened by trimming of one and two bunches of the branch and the most diameter of the branch is happened by trimming of one to four bunches of branch. Trimming of a bunch is caused the most number of pistachio products in the bunch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pistachio" title="pistachio">pistachio</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster" title=" cluster"> cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=bud" title=" bud"> bud</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit" title=" fruit"> fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=branch" title=" branch"> branch</a> </p> <a href="https://publications.waset.org/abstracts/39449/the-study-of-effect-the-number-of-cluster-in-the-branch-on-vegetative-characteristics-of-pistacia-vera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Cutting Propagation Studies in Pennisetum divisum and Tamarix aucheriana as Native Plant Species of Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Almulla">L. Almulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Native plants are better adapted to the local environment providing a more natural effect on landscape projects; their use will both conserve natural resources and produce sustainable greenery. Continuation of evaluation of additional native plants is essential to increase diversity of plant resources for greenery projects. Therefore, in this project an effort was made to study the mass multiplication of further native plants for greenery applications. Standardization of vegetative propagation methods is essential for conservation and sustainable utilization of native plants in restoration projects. Moreover, these simple propagation methods can be readily adapted by the local nursery sector in Kuwait. In the present study, various treatments were used to mass multiply selected plants using vegetative parts to secure maximum rooting and initial growth. Soft or semi-hardwood cuttings of selected native plants were collected from mother plants and subjected to different treatments. <em>Pennisetum divisum</em> can be vegetatively propagated by cuttings/off-shoots. However, <em>Tamarix aucheriana</em> showed maximum number of rooted cuttings and stronger vigor seedlings with the lowest growth hormone concentration. Standardizing the propagation techniques for the native plant species will add to the rehabilitation and landscape revegetation projects in Kuwait. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuwait%20desert" title="Kuwait desert">Kuwait desert</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape" title=" landscape"> landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=rooting%20percentage" title=" rooting percentage"> rooting percentage</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetative%20propagation" title=" vegetative propagation"> vegetative propagation</a> </p> <a href="https://publications.waset.org/abstracts/111365/cutting-propagation-studies-in-pennisetum-divisum-and-tamarix-aucheriana-as-native-plant-species-of-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Resin-coated Controlled Release Fertilizer (CRF) for Oil Palm: Laboratory and Main Nursery Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umar%20Adli%20Amran">Umar Adli Amran</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Choon%20Chek"> Tan Choon Chek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Shahkhirat%20Norizan"> Mohd Shahkhirat Norizan</a>, <a href="https://publications.waset.org/abstracts/search?q=Then%20Kek%20Hoe"> Then Kek Hoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlled release fertilizer (CRF) enables a regulated nutrients release for more efficient plant uptake compared to the normal granular fertilizer. It reduces nutrients loss via surface run-off and leaching, hence promotes sustainable agriculture. Although the performance of CRF in providing consistent and timely nutrients supply is well known, its expensive price limits it usage in a large scale plantation. This study is conducted to evaluate the properties and performance of bio-based polyurethane (PU)-coated CRF via laboratory and oil palm main nursery trial. The CRF is produced by coating of a normal commercial compound granular fertilizer from FGV Fertiliser Sdn. Bhd., namely Felda 10 (10.5-8-20-3+0.5B), and designated as CRF FGV10. Based on laboratory evaluation, the CRF FGV10 can sustain nutrients release for more than 6 months. Vegetative growth parameters such as girth size, palm height, third frond length, and the total number of fronds produced were recorded. Besides that, dry biomass of the oil palm seedlings was also determined. From the evaluation, it is proved that at 50% reduction of nutrients application rate and for only two times application (T3), CRF FGV10 enabled the oil palm seedlings to achieve similar vegetative growth with the control samples (T1). It is also proven that only PU-coated CRF FGV10 had allowed the reduction of fertilizer rate and application rounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nutrition" title="nutrition">nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20seedlings" title=" oil palm seedlings"> oil palm seedlings</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20manuring" title=" sustainable manuring"> sustainable manuring</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetative%20growth" title=" vegetative growth"> vegetative growth</a> </p> <a href="https://publications.waset.org/abstracts/184431/resin-coated-controlled-release-fertilizer-crf-for-oil-palm-laboratory-and-main-nursery-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Effect of Different Phosphorus Levels on Vegetative Growth of Maize Variety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tegene%20Nigussie">Tegene Nigussie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Maize is the most domesticated of all the field crops. Wild maize has not been found to date and there has been much speculation on its origin. Regardless of the validity of different theories, it is generally agreed that the center of origin of maize is Central America, primarily Mexico and the Caribbean. Maize in Africa is of a recent introduction although data suggest that it was present in Nigeria even before Columbus voyages. After being taken to Europe in 1493, maize was introduced to Africa and distributed (spread through the continent by different routes. Maize is an important cereal crop in Ethiopia in general, it is the primarily stable food, and rural households show strong preference. For human food, the important constituents of grain are carbohydrates (starch and sugars), protein, fat or oil (in the embryo) and minerals. About 75 percent of the kernel is starch, a range of 60.80 percent but low protein content (8-15%). In Ethiopia, the introduction of modern farming techniques appears to be a priority. However, the adoption of modern inputs by peasant farmers is found to be very slow, for example, the adoption rate of fertilizer, an input that is relatively adopted, is very slow. The difference in socio-economic factors lay behind the low rate of technological adoption, including price & marketing input. Objective: The aim of the study is to determine the optimum application rate or level of different phosphorus fertilizers for the vegetative growth of maize and to identify the effect of different phosphorus rates on the growth and development of maize. Methods: The vegetative parameter (above ground) measurement from five plants randomly sampled from the middle rows of each plot. Results: The interaction of nitrogen and maize variety showed a significant at (p<0.01) effect on plant height, with the application of 60kg/ha and BH140 maize variety in combination and root length with the application of 60kg/ha of nitrogen and BH140 variety of maize. The highest mean (12.33) of the number of leaves per plant and mean (7.1) of the number of nodes per plant can be used as an alternative for better vegetative growth of maize. Conclusion and Recommendation: Maize is one of the popular and cultivated crops in Ethiopia. This study was conducted to investigate the best dosage of phosphorus for vegetative growth, yield, and better quality of maize variety and to recommend a level of phosphorus rate and the best variety adaptable to the specific soil condition or area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaf" title="leaf">leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate%20protein" title=" carbohydrate protein"> carbohydrate protein</a>, <a href="https://publications.waset.org/abstracts/search?q=adoption" title=" adoption"> adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar" title=" sugar"> sugar</a> </p> <a href="https://publications.waset.org/abstracts/193862/effect-of-different-phosphorus-levels-on-vegetative-growth-of-maize-variety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Comparative Life Cycle Assessment of an Extensive Green Roof with a Traditional Gravel-Asphalted Roof: An Application for the Lebanese Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makram%20El%20Bachawati">Makram El Bachawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Manneh"> Rima Manneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Dandres"> Thomas Dandres</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Nassab"> Carla Nassab</a>, <a href="https://publications.waset.org/abstracts/search?q=Henri%20El%20Zakhem"> Henri El Zakhem</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Belarbi"> Rafik Belarbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A vegetative roof, also called a garden roof, is a "roofing system that endorses the growth of plants on a rooftop". Garden roofs serve several purposes for a building, such as embellishing the roofing system, enhancing the water management, and reducing the energy consumption and heat island effects. Lebanon is a Middle East country that lacks the use of a sustainable energy system. It imports 98% of its non-renewable energy from neighboring countries and suffers flooding during heavy rains. The objective of this paper is to determine if the implementation of vegetative roofs is effectively better than the traditional roofs for the Lebanese context. A Life Cycle Assessment (LCA) is performed in order to compare an existing extensive green roof to a traditional gravel-asphalted roof. The life cycle inventory (LCI) was established and modeled using the SimaPro 8.0 software, while the environmental impacts were classified using the IMPACT 2002+ methodology. Results indicated that, for the existing extensive green roof, the waterproofing membrane and the growing medium were the highest contributors to the potential environmental impacts. When comparing the vegetative to the traditional roof, results showed that, for all impact categories, the extensive green roof had the less environmental impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roofs" title=" green roofs"> green roofs</a>, <a href="https://publications.waset.org/abstracts/search?q=vegatative%20roof" title=" vegatative roof"> vegatative roof</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/23142/comparative-life-cycle-assessment-of-an-extensive-green-roof-with-a-traditional-gravel-asphalted-roof-an-application-for-the-lebanese-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Efficacy of Remote Sensing Application in Monitoring the Effectiveness of Afforestation Project in Northern Nigeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Garba">T. Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Y.%20Babanyara"> Y. Y. Babanyara</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Ilellah"> K. G. Ilellah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Modibbo"> M. A. Modibbo</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Quddus"> T. O. Quddus</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Sani"> M. J. Sani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the United Nation Convention on Desertification (UNCD) in 1977 which was preceded by extensive, regional, and local studies, and consultations with numerous scientists, decision-makers, and relevant institutions. Global Plan of Action to Combat Desertification (PACD) was formulated, endorsed by member Countries. The role of implementing PACD was vested with Governments of countries affected by desertification. The Federal Government of Nigeria as a signatory and World Bank funded and implement afforestation project aimed at combating desertification between 1988 and 1999. This research, therefore, applied remote sensing techniques to assess the effectiveness of the project. To achieve that a small portion of about 143,609 hectares was curved out from the project area. Normalized Difference of the Vegetative Index (NDVI) and Land Use Land Cover were derived from Landsat TM 1986, Landsat ETM 1999 and Nigeria Sat 1, 2007 of the project area. The findings show that there was an increase in cultivated area due to the project from 1986 through 1999 and 2007. This is further buttressed by the three NDVI imageries due to their high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007 These signifies the gradual physical development of Afforestation project in the area. In addition, it was also verified by histograms of changes in vegetation which indicated an increased vegetative cover from 60,192 in 1986, to 102,476 in 1999 and then to 88,343 in 2007. The study concluded that Remote Sensing approach has actually confirmed that the project was indeed successful and effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=afforestation" title="afforestation">afforestation</a>, <a href="https://publications.waset.org/abstracts/search?q=desertification" title=" desertification"> desertification</a>, <a href="https://publications.waset.org/abstracts/search?q=landsat" title=" landsat"> landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetative%20index" title=" vegetative index"> vegetative index</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/8290/efficacy-of-remote-sensing-application-in-monitoring-the-effectiveness-of-afforestation-project-in-northern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Simulation of Antimicrobial Resistance Gene Fate in Narrow Grass Hedges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Khedmati">Marzieh Khedmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20L.%20Bartelt-Hunt"> Shannon L. Bartelt-Hunt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetative Filter Strips (VFS) are used for controlling the volume of runoff and decreasing contaminant concentrations in runoff before entering water bodies. Many studies have investigated the role of VFS in sediment and nutrient removal, but little is known about their efficiency for the removal of emerging contaminants such as antimicrobial resistance genes (ARGs). Vegetative Filter Strip Modeling System (VFSMOD) was used to simulate the efficiency of VFS in this regard. Several studies demonstrated the ability of VFSMOD to predict reductions in runoff volume and sediment concentration moving through the filters. The objectives of this study were to calibrate the VFSMOD with experimental data and assess the efficiency of the model in simulating the filter behavior in removing ARGs (ermB) and tylosin. The experimental data were obtained from a prior study conducted at the University of Nebraska (UNL) Rogers Memorial Farm. Three treatment factors were tested in the experiments, including manure amendment, narrow grass hedges and rainfall events. Sediment Delivery Ratio (SDR) was defined as the filter efficiency and the related experimental and model values were compared to each other. The VFS Model generally agreed with the experimental results and as a result, the model was used for predicting filter efficiencies when the runoff data are not available. Narrow Grass Hedges (NGH) were shown to be effective in reducing tylosin and ARGs concentration. The simulation showed that the filter efficiency in removing ARGs is different for different soil types and filter lengths. There is an optimum length for the filter strip that produces minimum runoff volume. Based on the model results increasing the length of the filter by 1-meter leads to higher efficiency but widening beyond that decreases the efficiency. The VFSMOD, which was proved to work well in estimation of VFS trapping efficiency, showed confirming results for ARG removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance%20genes" title="antimicrobial resistance genes">antimicrobial resistance genes</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20contaminants" title=" emerging contaminants"> emerging contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=narrow%20grass%20hedges" title=" narrow grass hedges"> narrow grass hedges</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetative%20filter%20strips" title=" vegetative filter strips"> vegetative filter strips</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetative%20filter%20strip%20modeling%20system" title=" vegetative filter strip modeling system"> vegetative filter strip modeling system</a> </p> <a href="https://publications.waset.org/abstracts/129712/simulation-of-antimicrobial-resistance-gene-fate-in-narrow-grass-hedges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Application Use of Slaughterhouse Waste to Improve Nutrient Level in Apium glaviolens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Basri%20Jumin">Hasan Basri Jumin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using the slaughterhouse waste combined to suitable dose of nitrogen fertilizer to Apium glaviolen gives the significant effect to mean relative growth rate. The same pattern also showed significantly in net assimilation rate. The net assimilation rate increased significantly during 42 days old plants. Combination of treatment of 100 ml/l animal slaughterhouse waste and 0.1 g/kg nitrogen fertilizer/kg soil increased the vegetative growth of Apium glaviolens. The biomass of plant and mean relative growth rate of Apium glaviolens were rapidly increased in 4 weeks after planting and gradually decreased after 35 days at the harvest time. Combination of 100 ml/l slaughterhouse waste and applied 0.1 g/kg nitrogen fertilizer has increased all parameters. The highest vegetative growth, biomass, mean relative growth rate and net assimilation rate were received from 0.56 mg-l.m-2.days-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apium%20glaviolent" title="Apium glaviolent">Apium glaviolent</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant" title=" pollutant"> pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=slaughterhouse" title=" slaughterhouse"> slaughterhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/87586/application-use-of-slaughterhouse-waste-to-improve-nutrient-level-in-apium-glaviolens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Studies on Propagation of Celastrus paniculatus Willd: An Endangered Medicinal Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Raviraja%20Shetty">G. Raviraja Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Poojitha"> K. G. Poojitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted to study the effect of different growth regulators on seed germination and vegetative propagation by cuttings of an endangered medicinal plant species, Celastrus paniculatus Willd. at College of Horticulture, Mudigere during June- Sept 2014. Various growth parameters were recorded for seed germination and significantly higher results for Rate of germination (0.78), Plant vigour (2082.74), Plant height (22.10cm), number of leaves (7.83) fresh weight (136.58mg) and dry weight of plant (59.16mg) noticed in seeds treated with GA3 400 ppm when compared to control. In vegetative propagation the cuttings treated with IBA 2000 ppm recorded significantly highest sprouting percentage (98.00) when compared to control (71.00). The results of present investigation will be helpful for large scale multiplication of the species. It will also help for cultivation and conservation of this endangered species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celastrus%20paniculatus%20Willd" title="Celastrus paniculatus Willd">Celastrus paniculatus Willd</a>, <a href="https://publications.waset.org/abstracts/search?q=seeds" title=" seeds"> seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=cuttings" title=" cuttings"> cuttings</a> </p> <a href="https://publications.waset.org/abstracts/34874/studies-on-propagation-of-celastrus-paniculatus-willd-an-endangered-medicinal-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Conservation Studies on Endangered and Potential Native Ornamentals and Their Domestication for Novelty in Floriculture Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Puja%20Sharma">Puja Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dhiman"> S. R. Dhiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhararti%20Kashyap"> Bhararti Kashyap</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Gupta"> Y. C. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Shabnam%20Pangtu"> Shabnam Pangtu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experiments were carried out for mass multiplication and domestication of an endangered native tree spp, an orchid and an ornamental shrub having high medicinal value. Floriculture industry is novelty driven, hence the potential of these native ornamentals was assessed for their utilization as a novelty in the industry. For the mass propagation of endangered tree Oroxylum indicum, seed propagation and vegetative propagation techniques were successfully utilized. Highest seed germination was recorded in a medium containing cocopeat and perlite (1:1 v/v). Semi hard wood cuttings treated with IBA 2000 ppm planted in cocopeat+ sand+ perlite medium and maintained at 80% RH has resulted in about 90% rooting. The low growing tree was successfully domestication and has potential to be utilized in landscape industry. In the present study, cutting propagation and division of clump were used as methods for multiplication of Aerides multiflora, a native orchid spp. Soft wood cuttings treated with IBA 500 ppm planted in cocopeat medium was found to be the most suitable vegetative method resulting in 90 % rooting. It was domesticated as pot plant and for making hanging baskets. Propagation through seeds and cuttings was carried out for Pyracantha crenulata, a native ornamental shrub which is a cardiovascular medicine. For vegetative propagation, treatment of basal end of semi- hardwood cuttings of Pyracantha with IBA 3000 ppm (quick dip) and planting in cocopeat under mist chamber maintained at a relative humidity of 70-80% resulted in about 90% rooting out of all applied treatments in the study. For seed propagation, treatment of seeds in boiling water for 20 minutes and planting in cocopeat resulted in 82.55 % germination. The shrub was domesticated for its use as pot plant, protective hedge and for making bonsai. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=native" title="native">native</a>, <a href="https://publications.waset.org/abstracts/search?q=endangered" title=" endangered"> endangered</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplication" title=" multiplication"> multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=domestication" title=" domestication"> domestication</a>, <a href="https://publications.waset.org/abstracts/search?q=oroxylum" title=" oroxylum"> oroxylum</a>, <a href="https://publications.waset.org/abstracts/search?q=aerides" title=" aerides"> aerides</a>, <a href="https://publications.waset.org/abstracts/search?q=pyracantha" title=" pyracantha"> pyracantha</a> </p> <a href="https://publications.waset.org/abstracts/166545/conservation-studies-on-endangered-and-potential-native-ornamentals-and-their-domestication-for-novelty-in-floriculture-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali.%20Marjani">Ali. Marjani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farsi"> M. Farsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimizadeh"> M. Rahimizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (<em>Cicer arietinum</em> L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20stage" title=" growth stage"> growth stage</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/55202/response-of-chickpea-cicer-arietinum-l-genotypes-to-drought-stress-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Utilization of Two Kind of Recycling Greywater in Irrigation of Syngonium SP. Plants Grown Under Different Water Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Ali%20Metwally">Sami Ali Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Bedour%20Helmy%20Abou-Leila"> Bedour Helmy Abou-Leila</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussien%20I.Abdel-Shafy"> Hussien I.Abdel-Shafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work was carried out at the greenhouse of National Research Centre, Pot experiment was carried out during of 2020 and 2021 seasons aimed to study the effect of two types of water (two recycling gray water treatments((SMR (Sequencing Batch Reactor) and MBR(Membrane Biology Reactor) and three watering intervals 15, 20 and 25 days on Syangonium plants growth. Examination of data cleared that, (MBR) recorded increase in vegetative growth parameters, osmotic pressure, transpiration rate chlorophyll a,b,carotenoids and carbohydrate)in compared with SBR.As for water, intervalsthe highest values of most growth parameters were obtained from plants irrigated with after (20 days) compared with other treatments.15 days irrigation intervals recorded significantly increased in osmotic pressure, transpiration rate and photosynthetic pigments, while carbohydrate values recorded decreased. Interaction between water type and water intervals(SBR) recorded the highest values of most growth parameters by irrigation after 20 days. While the treatment (MBR)and irrigated after 25 days showed the highest values on leaf area and leaves fresh weight compared with other treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grey%20water" title="grey water">grey water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20intervals" title=" water intervals"> water intervals</a>, <a href="https://publications.waset.org/abstracts/search?q=Syngonium%20plant" title=" Syngonium plant"> Syngonium plant</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20water" title=" recycling water"> recycling water</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetative%20growth" title=" vegetative growth"> vegetative growth</a> </p> <a href="https://publications.waset.org/abstracts/169919/utilization-of-two-kind-of-recycling-greywater-in-irrigation-of-syngonium-sp-plants-grown-under-different-water-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Preliminary Study of the Potential of Propagation by Cuttings of Juniperus thurefera in Aures (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Khater">N. Khater</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Djbablia"> I. Djbablia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Telaoumaten"> A. Telaoumaten</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Menina"> S. A. Menina</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benbouza"> H. Benbouza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thureferous Juniper is an endemic cupressacée constitutes a forest cover in the mountains of Aures (Algeria ). It is an heritage and important ecological richness, but continues to decline, highly endangered species in danger of extinction, these populations show significant originality due to climatic conditions of the environment, because of its strength and extraordinary vitality, made a powerful but fragile and unique ecosystem in which natural regeneration by seed is almost absent in Algeria. Because of the quality of seeds that are either dormant or affected at the tree and the ground level by a large number of pests and parasites, which will lead to the total disappearance of this species and consequently leading to the biodiversity. View the ecological and social- economic interest presented by this case, it deserves to be preserved and produced in large quantities in this respect. The present work aims to try to regenerate the Juniperus thurefera via vegetative propagation. We studied the potential of cuttings to form adventitious roots and buds. Cuttings were taken from young subjects from 5 to 20 years treated with indole butyric acid (AIB) and planted out inside perlite under atomizer whose temperature and light are controlled. The results show that the rate of rooting is important and encourages the regeneration of this species through vegetative propagation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=juniperus%20thurefera" title="juniperus thurefera">juniperus thurefera</a>, <a href="https://publications.waset.org/abstracts/search?q=indole%20butyric%20acid" title=" indole butyric acid"> indole butyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting" title=" cutting"> cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=buds" title=" buds"> buds</a>, <a href="https://publications.waset.org/abstracts/search?q=rooting" title=" rooting"> rooting</a> </p> <a href="https://publications.waset.org/abstracts/31483/preliminary-study-of-the-potential-of-propagation-by-cuttings-of-juniperus-thurefera-in-aures-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> A Novel Gene Encoding Ankyrin-Repeat Protein, SHG1, Is Indispensable for Seed Germination under Moderate Salt Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Sakamoto">H. Sakamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Tochimoto"> J. Tochimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kurosawa"> S. Kurosawa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Suzuki"> M. Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Oguri"> S. Oguri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salt stress adversely affects plant growth at various stages of development including seed germination, seedling establishment, vegetative growth and finally reproduction. Because of their immobile nature, plants have evolved mechanisms to sense and respond to salt stress. Seed dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. We identified a novel locus of Arabidopsis, designated SHG1 (salt hypersensitive germination 1), whose disruption leads to reduced germination rate under moderate salt stress conditions. SHG1 encodes a transmembrane protein with an ankyrin repeat motif that has been implicated in diverse cellular processes such as signal transduction. The SGH1-disrupted Arabidopsis mutant died at the cotyledon stage when sown on salt-containing medium, although wild type plants could form true leaves under the same conditions. On the other hand, this mutant showed similar phenotypes to wild type plants when sown on medium without salt and transferred to salt-containing medium at the vegetative stage. These results suggested that SHG1 played indispensable role in the seed germination and seedling establishment under moderate salt stress conditions. SHG1 may be involved in the release of seed dormancy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germination" title="germination">germination</a>, <a href="https://publications.waset.org/abstracts/search?q=ankyrin%20repeat" title=" ankyrin repeat"> ankyrin repeat</a>, <a href="https://publications.waset.org/abstracts/search?q=arabidopsis" title=" arabidopsis"> arabidopsis</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20tolerance" title=" salt tolerance"> salt tolerance</a> </p> <a href="https://publications.waset.org/abstracts/7011/a-novel-gene-encoding-ankyrin-repeat-protein-shg1-is-indispensable-for-seed-germination-under-moderate-salt-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) Susceptibility to Bacillus thuringiensis Crystal Toxins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jawad%20Saleem">Muhammad Jawad Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Hafeez"> Faisal Hafeez</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Afifa%20Naeem"> Afifa Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Iftekhar"> Ayesha Iftekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacillus thuringiensis is a gram-positive spore-forming bacterium that belongs to the Bacillus cereus group of Bacilli and it produces ICP (insecticidal crystal protein) Cry toxins or Cysts toxins. Spores are produced as parasporal crystalline inclusions bodies (also known as endotoxins) at the onset of sporulation during the stationary growth phase. During vegetative growth that does not form crystals and is called vegetative insecticidal proteins (VIP) and secreted an insecticidal protein (SIP). Bacillus thuringiensis (Bt) is important for pest management either in the form of insecticides or through incorporated in the gene of the crop. Bioassays were conducted on the F2 generation of 1st instar larvae of H. armigera by the diet incorporation method to determine the susceptibility to Bt Cry toxins (Cry1Ac, Cry2Ab, Cry2A). The median lethal concentration (LC₅₀) of Cry1Ac, Cry2Ab, Cry2A ranged from 0.11 to 1.06 µg/ml and moult inhibitory concentration (MIC₅₀) of Cry1Ac, Cry2Ab, Cry2A ranged from 0.05 to 0.25 µg/ml. Cry1Ac was found most toxic to 1st instar larvae of H. armigera as compared to other Bt Cry toxins (Cry1Ac, Cry2Ab, Cry2A). The experimental results are important to policy-makers and technology providers to develop strategies for the exploitation of transgenic Bt cotton varieties as a component of integrated pest management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bt%20toxin" title="Bt toxin">Bt toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cry1Ac" title=" Cry1Ac"> Cry1Ac</a>, <a href="https://publications.waset.org/abstracts/search?q=Cry2Ab" title=" Cry2Ab"> Cry2Ab</a>, <a href="https://publications.waset.org/abstracts/search?q=Cry2A" title=" Cry2A"> Cry2A</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptibility" title=" susceptibility"> susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicoverpa%20armigera" title=" Helicoverpa armigera"> Helicoverpa armigera</a> </p> <a href="https://publications.waset.org/abstracts/97825/helicoverpa-armigera-hubner-lepidoptera-noctuidae-susceptibility-to-bacillus-thuringiensis-crystal-toxins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Anji%20Reddy">M. Anji Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Uma%20Devi"> R. Uma Devi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution%20tolerance%20index" title="air pollution tolerance index">air pollution tolerance index</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-indicators" title=" bio-indicators"> bio-indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20vegetation" title=" eco-friendly vegetation"> eco-friendly vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20greenery" title=" urban greenery"> urban greenery</a> </p> <a href="https://publications.waset.org/abstracts/34265/urban-vegetative-planning-for-ambient-ozone-pollution-an-eco-management-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Effect of Plant Growth Regulator on Vegetative Growth and Yield Components of Winter Wheat under Different Levels of Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmed%20Alghamdi">Mohammed Ahmed Alghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiment were carried out to investigate the effect of the plant growth regulator on vegetative growth and yield components of reduced height isogenic lines of the wheat (Triticum aestivum L.) cultivar Mercia. The Field experiment compared the growth regulator response of seven isogenic lines of Mercia. Growth regulators reduced plant height significantly in all lines. Growth regulator decreased total dry matter and grain yield with greatest reduction generally for the control and Rht8 lines. Rht1 was the least affected. There were few significant effects of growth regulator on gas exchange and chlorophyll fluorescence but the trend was for greater values with growth regulator. In this field experiment, a rate of 2.0 l ha-1 applied just before the third node detectable stage under non water stressed and water stressed conditions gave slight increases in yield of up to 14% except for line Rht10 which increased significantly in non-stressed conditions. In the second glasshouse experiment, a rate of 2.5 l ha-1 applied at the start of stem elongation under 30% FC and 100% FC gave reductions in yield up to 16% for the growth regulator and 55% under water stress. In the field experiment, rates of 2.5 and 3.0 l ha-1 applied at the start of stem elongation gave reductions in yield up to 20% mainly through individual seed weight. In the final glasshouse experiment, rates of 2.5 and 3.0 l ha-1 applied at 6 leaves unfolded and 1st node detectable both reduced grain yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20regulator" title="growth regulator">growth regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=isogenic%20lines" title=" isogenic lines"> isogenic lines</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=winter%20wheat" title=" winter wheat"> winter wheat</a> </p> <a href="https://publications.waset.org/abstracts/27090/effect-of-plant-growth-regulator-on-vegetative-growth-and-yield-components-of-winter-wheat-under-different-levels-of-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meenal%20Surawar">Meenal Surawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajashree%20Kotharkar"> Rajashree Kotharkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7&deg;C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8&deg;C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title="land use/land cover">land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title=" land surface temperature"> land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20island" title=" urban heat island"> urban heat island</a> </p> <a href="https://publications.waset.org/abstracts/73361/assessment-of-urban-heat-island-through-remote-sensing-in-nagpur-urban-area-using-landsat-7-etm-satellite-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Rehabilitation Team after Brain Damages as Complex System Integrating Consciousness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20Maksakova">Olga Maksakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A work with unconscious patients after acute brain damages besides special knowledge and practical skills of all the participants requires a very specific organization. A lot of said about team approach in neurorehabilitation, usually as for outpatient mode. Rehabilitologists deal with fixed patient problems or deficits (motion, speech, cognitive or emotional disorder). Team-building means superficial paradigm of management psychology. Linear mode of teamwork fits casual relationships there. Cases with deep altered states of consciousness (vegetative states, coma, and confusion) require non-linear mode of teamwork: recovery of consciousness might not be the goal due to phenomenon uncertainty. Rehabilitation team as Semi-open Complex System includes the patient as a part. Patient's response pattern becomes formed not only with brain deficits but questions-stimuli, context, and inquiring person. Teamwork is sourcing of phenomenology knowledge of patient's processes as Third-person approach is replaced with Second- and after First-person approaches. Here is a chance for real-time change. Patient’s contacts with his own body and outward things create a basement for restoration of consciousness. The most important condition is systematic feedbacks to any minimal movement or vegetative signal of the patient. Up to now, recovery work with the most severe contingent is carried out in the mode of passive physical interventions, while an effective rehabilitation team should include specially trained psychologists and psychotherapists. It is they who are able to create a network of feedbacks with the patient and inter-professional ones building up the team. Characteristics of ‘Team-Patient’ system (TPS) are energy, entropy, and complexity. Impairment of consciousness as the absence of linear contact appears together with a loss of essential functions (low energy), vegetative-visceral fits (excessive energy and low order), motor agitation (excessive energy and excessive order), etc. Techniques of teamwork are different in these cases for resulting optimization of the system condition. Directed regulation of the system complexity is one of the recovery tools. Different signs of awareness appear as a result of system self-organization. Joint meetings are an important part of teamwork. Regular or event-related discussions form the language of inter-professional communication, as well as the patient's shared mental model. Analysis of complex communication process in TPS may be useful for creation of the general theory of consciousness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20team" title="rehabilitation team">rehabilitation team</a>, <a href="https://publications.waset.org/abstracts/search?q=urgent%20rehabilitation" title=" urgent rehabilitation"> urgent rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20brain%20damage" title=" severe brain damage"> severe brain damage</a>, <a href="https://publications.waset.org/abstracts/search?q=consciousness%20disorders" title=" consciousness disorders"> consciousness disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20system%20theory" title=" complex system theory"> complex system theory</a> </p> <a href="https://publications.waset.org/abstracts/88522/rehabilitation-team-after-brain-damages-as-complex-system-integrating-consciousness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vegetative&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vegetative&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vegetative&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vegetative&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vegetative&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10