CINXE.COM
Search results for: regularization parameter search
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: regularization parameter search</title> <meta name="description" content="Search results for: regularization parameter search"> <meta name="keywords" content="regularization parameter search"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="regularization parameter search" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="regularization parameter search"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3941</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: regularization parameter search</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3941</span> Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoonsuh%20Jung">Yoonsuh Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20validation" title="cross validation">cross validation</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20averaging" title=" parameter averaging"> parameter averaging</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20selection" title=" parameter selection"> parameter selection</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search" title=" regularization parameter search"> regularization parameter search</a> </p> <a href="https://publications.waset.org/abstracts/36409/efficient-tuning-parameter-selection-by-cross-validated-score-in-high-dimensional-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3940</span> Ill-Posed Inverse Problems in Molecular Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranadhir%20Roy">Ranadhir Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inverse problems arise in medical (molecular) imaging. These problems are characterized by large in three dimensions, and by the diffusion equation which models the physical phenomena within the media. The inverse problems are posed as a nonlinear optimization where the unknown parameters are found by minimizing the difference between the predicted data and the measured data. To obtain a unique and stable solution to an ill-posed inverse problem, a priori information must be used. Mathematical conditions to obtain stable solutions are established in Tikhonov’s regularization method, where the a priori information is introduced via a stabilizing functional, which may be designed to incorporate some relevant information of an inverse problem. Effective determination of the Tikhonov regularization parameter requires knowledge of the true solution, or in the case of optical imaging, the true image. Yet, in, clinically-based imaging, true image is not known. To alleviate these difficulties we have applied the penalty/modified barrier function (PMBF) method instead of Tikhonov regularization technique to make the inverse problems well-posed. Unlike the Tikhonov regularization method, the constrained optimization technique, which is based on simple bounds of the optical parameter properties of the tissue, can easily be implemented in the PMBF method. Imposing the constraints on the optical properties of the tissue explicitly restricts solution sets and can restore uniqueness. Like the Tikhonov regularization method, the PMBF method limits the size of the condition number of the Hessian matrix of the given objective function. The accuracy and the rapid convergence of the PMBF method require a good initial guess of the Lagrange multipliers. To obtain the initial guess of the multipliers, we use a least square unconstrained minimization problem. Three-dimensional images of fluorescence absorption coefficients and lifetimes were reconstructed from contact and noncontact experimentally measured data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constrained%20minimization" title="constrained minimization">constrained minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=ill-conditioned%20inverse%20problems" title=" ill-conditioned inverse problems"> ill-conditioned inverse problems</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikhonov%20regularization%20method" title=" Tikhonov regularization method"> Tikhonov regularization method</a>, <a href="https://publications.waset.org/abstracts/search?q=penalty%20modified%20barrier%20function%20method" title=" penalty modified barrier function method"> penalty modified barrier function method</a> </p> <a href="https://publications.waset.org/abstracts/50067/ill-posed-inverse-problems-in-molecular-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3939</span> A New Conjugate Gradient Method with Guaranteed Descent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sellami">B. Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belloufi"> M. Belloufi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20optimization" title="unconstrained optimization">unconstrained optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title=" conjugate gradient method"> conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20search" title=" line search"> line search</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20convergence" title=" global convergence"> global convergence</a> </p> <a href="https://publications.waset.org/abstracts/41734/a-new-conjugate-gradient-method-with-guaranteed-descent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3938</span> Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Nawaz%20Cheema">Tahir Nawaz Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Dumitru%20Baleanu"> Dumitru Baleanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raza"> Ali Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20models" title="mathematical models">mathematical models</a>, <a href="https://publications.waset.org/abstracts/search?q=beysian%20regularization" title=" beysian regularization"> beysian regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian-regularization%20backpropagation%20networks" title=" bayesian-regularization backpropagation networks"> bayesian-regularization backpropagation networks</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20computing" title=" numerical computing"> numerical computing</a> </p> <a href="https://publications.waset.org/abstracts/145835/intelligent-computing-with-bayesian-regularization-artificial-neural-networks-for-a-nonlinear-system-of-covid-19-epidemic-model-for-future-generation-disease-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3937</span> Divergence Regularization Method for Solving Ill-Posed Cauchy Problem for the Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedict%20Barnes">Benedict Barnes</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Y.%20Aidoo"> Anthony Y. Aidoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Divergence Regularization Method (DRM) is used to regularize the ill-posed Helmholtz equation where the boundary deflection is inhomogeneous in a Hilbert space H. The DRM incorporates a positive integer scaler which homogenizes the inhomogeneous boundary deflection in Cauchy problem of the Helmholtz equation. This ensures the existence, as well as, uniqueness of solution for the equation. The DRM restores all the three conditions of well-posedness in the sense of Hadamard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=divergence%20regularization%20method" title="divergence regularization method">divergence regularization method</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title=" Helmholtz equation"> Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=ill-posed%20inhomogeneous%20Cauchy%20boundary%20conditions" title=" ill-posed inhomogeneous Cauchy boundary conditions"> ill-posed inhomogeneous Cauchy boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/137727/divergence-regularization-method-for-solving-ill-posed-cauchy-problem-for-the-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3936</span> Regularizing Software for Aerosol Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christine%20B%C3%B6ckmann">Christine Böckmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Rosemann"> Julia Rosemann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20particles" title="aerosol particles">aerosol particles</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=microphysical%20particle%20properties" title=" microphysical particle properties"> microphysical particle properties</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization" title=" regularization"> regularization</a> </p> <a href="https://publications.waset.org/abstracts/36572/regularizing-software-for-aerosol-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3935</span> Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bry%20X.">Bry X.</a>, <a href="https://publications.waset.org/abstracts/search?q=Trottier%20C."> Trottier C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mortier%20F."> Mortier F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Cornu%20G."> Cornu G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Verron%20T."> Verron T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Component-Model" title="Component-Model">Component-Model</a>, <a href="https://publications.waset.org/abstracts/search?q=Fisher%20Scoring%20Algorithm" title=" Fisher Scoring Algorithm"> Fisher Scoring Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=GLM" title=" GLM"> GLM</a>, <a href="https://publications.waset.org/abstracts/search?q=PLS%20Regression" title=" PLS Regression"> PLS Regression</a>, <a href="https://publications.waset.org/abstracts/search?q=SCGLR" title=" SCGLR"> SCGLR</a>, <a href="https://publications.waset.org/abstracts/search?q=SEER" title=" SEER"> SEER</a>, <a href="https://publications.waset.org/abstracts/search?q=THEME" title=" THEME"> THEME</a> </p> <a href="https://publications.waset.org/abstracts/19061/supervised-component-based-generalised-linear-regression-with-multiple-explanatory-blocks-theme-scglr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3934</span> Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laidi%20Maamar">Laidi Maamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Achwak%20Madani"> Achwak Madani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20El%20Ahdj%20Abdellah"> Abdellah El Ahdj Abdellah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20regression%20%28SVR%29" title="support vector regression (SVR)">support vector regression (SVR)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20algorithms" title=" optimization algorithms"> optimization algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20solar%20radiation%20prediction" title=" global solar radiation prediction"> global solar radiation prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models" title=" hybrid forecasting models"> hybrid forecasting models</a> </p> <a href="https://publications.waset.org/abstracts/186719/support-vector-regression-combined-with-different-optimization-algorithms-to-predict-global-solar-radiation-on-horizontal-surfaces-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3933</span> Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Akta%C5%9F">Ömer Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20A.%20Suvorova"> Olga A. Suvorova</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Tretyakov"> Oleg Tretyakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20regularization%20method" title="analytical regularization method">analytical regularization method</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20theory%20evolutionary%20equations%20of%20time-domain" title=" electromagnetic theory evolutionary equations of time-domain"> electromagnetic theory evolutionary equations of time-domain</a>, <a href="https://publications.waset.org/abstracts/search?q=TM%20Field" title=" TM Field"> TM Field</a> </p> <a href="https://publications.waset.org/abstracts/44904/analysis-and-simulation-of-tm-fields-in-waveguides-with-arbitrary-cross-section-shapes-by-means-of-evolutionary-equations-of-time-domain-electromagnetic-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3932</span> Satellite Imagery Classification Based on Deep Convolution Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhong%20Ma">Zhong Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuping%20Wang"> Zhuping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Congxin%20Liu"> Congxin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangzeng%20Liu"> Xiangzeng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery%20classification" title="satellite imagery classification">satellite imagery classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20convolution%20network" title=" deep convolution network"> deep convolution network</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-parameter%20optimization" title=" hyper-parameter optimization"> hyper-parameter optimization</a> </p> <a href="https://publications.waset.org/abstracts/44963/satellite-imagery-classification-based-on-deep-convolution-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3931</span> Pattern Recognition Search: An Advancement Over Interpolation Search</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahpar%20Yilmaz">Shahpar Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Nadeem"> Yasir Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20A.%20Mehdi"> Syed A. Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Searching for a record in a dataset is always a frequent task for any data structure-related application. Hence, a fast and efficient algorithm for the approach has its importance in yielding the quickest results and enhancing the overall productivity of the company. Interpolation search is one such technique used to search through a sorted set of elements. This paper proposes a new algorithm, an advancement over interpolation search for the application of search over a sorted array. Pattern Recognition Search or PR Search (PRS), like interpolation search, is a pattern-based divide and conquer algorithm whose objective is to reduce the sample size in order to quicken the process and it does so by treating the array as a perfect arithmetic progression series and thereby deducing the key element’s position. We look to highlight some of the key drawbacks of interpolation search, which are accounted for in the Pattern Recognition Search. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array" title="array">array</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity" title=" complexity"> complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=index" title=" index"> index</a>, <a href="https://publications.waset.org/abstracts/search?q=sorting" title=" sorting"> sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/142819/pattern-recognition-search-an-advancement-over-interpolation-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3930</span> Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Soltani">Fethi Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Almarashi"> Adel Almarashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Idir%20Mechai"> Idir Mechai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fourier%20multiplier%20operators" title="fourier multiplier operators">fourier multiplier operators</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss-Kronrod%20method%20of%20integration" title=" Gauss-Kronrod method of integration"> Gauss-Kronrod method of integration</a>, <a href="https://publications.waset.org/abstracts/search?q=Paley-Wiener%20space" title=" Paley-Wiener space"> Paley-Wiener space</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikhonov%20regularization" title=" Tikhonov regularization"> Tikhonov regularization</a> </p> <a href="https://publications.waset.org/abstracts/38538/numerical-applications-of-tikhonov-regularization-for-the-fourier-multiplier-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3929</span> Estimation of Fuel Cost Function Characteristics Using Cuckoo Search</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Al-Rashidi">M. R. Al-Rashidi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20El-Naggar"> K. M. El-Naggar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Al-Hajri"> M. F. Al-Hajri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fuel cost function describes the electric power generation-cost relationship in thermal plants, hence, it sheds light on economical aspects of power industry. Different models have been proposed to describe this relationship with the quadratic function model being the most popular one. Parameters of second order fuel cost function are estimated in this paper using cuckoo search algorithm. It is a new population based meta-heuristic optimization technique that has been used in this study primarily as an accurate estimation tool. Its main features are flexibility, simplicity, and effectiveness when compared to other estimation techniques. The parameter estimation problem is formulated as an optimization one with the goal being minimizing the error associated with the estimated parameters. A case study is considered in this paper to illustrate cuckoo search promising potential as a valuable estimation and optimization technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cuckoo%20search" title="cuckoo search">cuckoo search</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters%20estimation" title=" parameters estimation"> parameters estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cost%20function" title=" fuel cost function"> fuel cost function</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20dispatch" title=" economic dispatch"> economic dispatch</a> </p> <a href="https://publications.waset.org/abstracts/25377/estimation-of-fuel-cost-function-characteristics-using-cuckoo-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3928</span> An Improved Total Variation Regularization Method for Denoising Magnetocardiography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanping%20Liao">Yanping Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Congcong%20He"> Congcong He</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruigang%20Zhao"> Ruigang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constraint%20parameters" title="constraint parameters">constraint parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=derivative%20matrix" title=" derivative matrix"> derivative matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocardiography" title=" magnetocardiography"> magnetocardiography</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20term" title=" regular term"> regular term</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20variation" title=" total variation"> total variation</a> </p> <a href="https://publications.waset.org/abstracts/108358/an-improved-total-variation-regularization-method-for-denoising-magnetocardiography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3927</span> A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouafa%20Amira">Ouafa Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangshe%20Zhang"> Jiangshe Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20c-means" title=" fuzzy c-means"> fuzzy c-means</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization" title=" regularization"> regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20entropy" title=" relative entropy"> relative entropy</a> </p> <a href="https://publications.waset.org/abstracts/96361/a-relative-entropy-regularization-approach-for-fuzzy-c-means-clustering-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3926</span> A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Mukherjee">Manisha Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Diptarka%20Saha"> Diptarka Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series" title="time series">time series</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA" title=" ARIMA"> ARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=auto.arima" title=" auto.arima"> auto.arima</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20parameters" title=" ARIMA parameters"> ARIMA parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=R%20function" title=" R function"> R function</a> </p> <a href="https://publications.waset.org/abstracts/104469/a-stepwise-approach-to-automate-the-search-for-optimal-parameters-in-seasonal-arima-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3925</span> Arabic Quran Search Tool Based on Ontology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alqahtani">Mohammad Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Atwell"> Eric Atwell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reviews and classifies most of the important types of search techniques that have been applied on the holy Quran. Then, it addresses the limitations in these techniques. Additionally, this paper surveys most existing Quranic ontologies and what are their deficiencies. Finally, it explains a new search tool called: A semantic search tool for Al Quran based on Qur’anic ontologies. This tool will overcome all limitations in the existing Quranic search applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=holy%20Quran" title="holy Quran">holy Quran</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing%20%28NLP%29" title=" natural language processing (NLP)"> natural language processing (NLP)</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20search" title=" semantic search"> semantic search</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval%20%28IR%29" title=" information retrieval (IR)"> information retrieval (IR)</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a> </p> <a href="https://publications.waset.org/abstracts/31315/arabic-quran-search-tool-based-on-ontology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3924</span> Design of Microwave Building Block by Using Numerical Search Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haifeng%20Zhou">Haifeng Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsungyang%20Liow"> Tsungyang Liow</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoguang%20Tu"> Xiaoguang Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Eujin%20Lim"> Eujin Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Li"> Chao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Junfeng%20Song"> Junfeng Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianshu%20Luo"> Xianshu Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Huang"> Ying Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianxi%20Jia"> Lianxi Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianwee%20Luo"> Lianwee Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Fang"> Qing Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingbin%20Yu"> Mingbin Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqiang%20Lo"> Guoqiang Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of technology, countries gradually allocated more and more frequency spectrums for civilization and commercial usage, especially those high radio frequency bands indicating high information capacity. The field effect becomes more and more prominent in microwave components as frequency increases, which invalidates the transmission line theory and complicate the design of microwave components. Here a modeling approach based on numerical search algorithm is proposed to design various building blocks for microwave circuits to avoid complicated impedance matching and equivalent electrical circuit approximation. Concretely, a microwave component is discretized to a set of segments along the microwave propagation path. Each of the segment is initialized with random dimensions, which constructs a multiple-dimension parameter space. Then numerical searching algorithms (e.g. Pattern search algorithm) are used to find out the ideal geometrical parameters. The optimal parameter set is achieved by evaluating the fitness of S parameters after a number of iterations. We had adopted this approach in our current projects and designed many microwave components including sharp bends, T-branches, Y-branches, microstrip-to-stripline converters and etc. For example, a stripline 90° bend was designed in 2.54 mm x 2.54 mm space for dual-band operation (Ka band and Ku band) with < 0.18 dB insertion loss and < -55 dB reflection. We expect that this approach can enrich the tool kits for microwave designers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20component" title="microwave component">microwave component</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20and%20stripline" title=" microstrip and stripline"> microstrip and stripline</a>, <a href="https://publications.waset.org/abstracts/search?q=bend" title=" bend"> bend</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20division" title=" power division"> power division</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20numerical%20search%20algorithm." title=" the numerical search algorithm."> the numerical search algorithm.</a> </p> <a href="https://publications.waset.org/abstracts/37516/design-of-microwave-building-block-by-using-numerical-search-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3923</span> Weighted Rank Regression with Adaptive Penalty Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang-Mo%20Jung">Kang-Mo Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20penalty%20function" title="adaptive penalty function">adaptive penalty function</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20penalized%20regression" title=" robust penalized regression"> robust penalized regression</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20selection" title=" variable selection"> variable selection</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20rank%20regression" title=" weighted rank regression"> weighted rank regression</a> </p> <a href="https://publications.waset.org/abstracts/79449/weighted-rank-regression-with-adaptive-penalty-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3922</span> A Context-Sensitive Algorithm for Media Similarity Search </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guang-Ho%20Cha">Guang-Ho Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=context-sensitive%20search" title="context-sensitive search">context-sensitive search</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20search" title=" image search"> image search</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20ranking" title=" similarity ranking"> similarity ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20search" title=" similarity search"> similarity search</a> </p> <a href="https://publications.waset.org/abstracts/65150/a-context-sensitive-algorithm-for-media-similarity-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3921</span> Regularization of Gene Regulatory Networks Perturbed by White Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20I.%20Kadiev">Ramazan I. Kadiev</a>, <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov"> Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ill-posed%20problems" title="ill-posed problems">ill-posed problems</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20perturbation%20analysis" title=" singular perturbation analysis"> singular perturbation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20differential%20equations" title=" stochastic differential equations"> stochastic differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20nonlinearities" title=" switching nonlinearities"> switching nonlinearities</a> </p> <a href="https://publications.waset.org/abstracts/85883/regularization-of-gene-regulatory-networks-perturbed-by-white-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3920</span> User Modeling from the Perspective of Improvement in Search Results: A Survey of the State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Karimi-Mansoub">Samira Karimi-Mansoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahem%20Abri"> Rahem Abri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, users expect high quality and personalized information from search results. To satisfy user’s needs, personalized approaches to web search have been proposed. These approaches can provide the most appropriate answer for user’s needs by using user context and incorporating information about query provided by combining search technologies. To carry out personalized web search, there is a need to make different techniques on whole of user search process. There are the number of possible deployment of personalized approaches such as personalized web search, personalized recommendation, personalized summarization and filtering systems and etc. but the common feature of all approaches in various domains is that user modeling is utilized to provide personalized information from the Web. So the most important work in personalized approaches is user model mining. User modeling applications and technologies can be used in various domains depending on how the user collected information may be extracted. In addition to, the used techniques to create user model is also different in each of these applications. Since in the previous studies, there was not a complete survey in this field, our purpose is to present a survey on applications and techniques of user modeling from the viewpoint of improvement in search results by considering the existing literature and researches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filtering%20systems" title="filtering systems">filtering systems</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20web%20search" title=" personalized web search"> personalized web search</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20modeling" title=" user modeling"> user modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20search%20behavior" title=" user search behavior"> user search behavior</a> </p> <a href="https://publications.waset.org/abstracts/73551/user-modeling-from-the-perspective-of-improvement-in-search-results-a-survey-of-the-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3919</span> The Application of Pareto Local Search to the Single-Objective Quadratic Assignment Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alsheddy">Abdullah Alsheddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the employment of Pareto optimality as a strategy to help (single-objective) local search escaping local optima. Instead of local search, Pareto local search is applied to solve the quadratic assignment problem which is multi-objectivized by adding a helper objective. The additional objective is defined as a function of the primary one with augmented penalties that are dynamically updated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pareto%20optimization" title="Pareto optimization">Pareto optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objectivization" title=" multi-objectivization"> multi-objectivization</a>, <a href="https://publications.waset.org/abstracts/search?q=quadratic%20assignment%20problem" title=" quadratic assignment problem"> quadratic assignment problem</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20search" title=" local search"> local search</a> </p> <a href="https://publications.waset.org/abstracts/9877/the-application-of-pareto-local-search-to-the-single-objective-quadratic-assignment-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3918</span> Global Direct Search Optimization of a Tuned Liquid Column Damper Subject to Stochastic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20H.%20Alkmim">Mansour H. Alkmim</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriano%20T.%20Fabro"> Adriano T. Fabro</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20V.%20G.%20De%20Morais"> Marcus V. G. De Morais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of an undamped primary system under white noise excitation. Finally, a numerical example considering a simplified wind turbine model is given to illustrate the efficacy of the TLCD. Results from the random vibration analysis are shown for four types of random excitation wind model where the response PSDs obtained showed good vibration attenuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20pattern%20search" title="generalized pattern search">generalized pattern search</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20optimization" title=" parameter optimization"> parameter optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20vibration%20analysis" title=" random vibration analysis"> random vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20suppression" title=" vibration suppression"> vibration suppression</a> </p> <a href="https://publications.waset.org/abstracts/68674/global-direct-search-optimization-of-a-tuned-liquid-column-damper-subject-to-stochastic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3917</span> Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paola%20Causin">Paola Causin</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Aspri"> Andrea Aspri</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Benfenati"> Alessandro Benfenati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem%20in%20tomography" title="inverse problem in tomography">inverse problem in tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuse%20optical%20tomography" title=" diffuse optical tomography"> diffuse optical tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization" title=" regularization"> regularization</a> </p> <a href="https://publications.waset.org/abstracts/162372/hybrid-knowledge-and-data-driven-neural-networks-for-diffuse-optical-tomography-reconstruction-in-medical-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3916</span> Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Didier%20Auroux">Didier Auroux</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Groza"> Vladimir Groza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abrasive%20Waterjet%20Milling" title="Abrasive Waterjet Milling">Abrasive Waterjet Milling</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20parameters%20identification" title=" model parameters identification"> model parameters identification</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization" title=" regularization"> regularization</a> </p> <a href="https://publications.waset.org/abstracts/46293/parameters-identification-and-sensitivity-study-for-abrasive-waterjet-milling-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3915</span> Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stylianos%20Kampakis">Stylianos Kampakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=regularization" title=" regularization"> regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=aggressive%20reweighting" title=" aggressive reweighting"> aggressive reweighting</a> </p> <a href="https://publications.waset.org/abstracts/20362/training-a-neural-network-using-input-dropout-with-aggressive-reweighting-idar-on-datasets-with-many-useless-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3914</span> A Study on Inverse Determination of Impact Force on a Honeycomb Composite Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Kalhori">Hamed Kalhori</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Ye"> Lin Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an inverse method was developed to reconstruct the magnitude and duration of impact forces exerted to a rectangular carbon fibre-epoxy composite honeycomb sandwich panel. The dynamic signals captured by Piezoelectric (PZT) sensors installed on the panel remotely from the impact locations were utilized to reconstruct the impact force generated by an instrumented hammer through an extended deconvolution approach. Two discretized forms of convolution integral are considered; the traditional one with an explicit transfer function and the modified one without an explicit transfer function. Deconvolution, usually applied to reconstruct the time history (e.g. magnitude) of a stochastic force at a defined location, is extended to identify both the location and magnitude of the impact force among a number of potential impact locations. It is assumed that a number of impact forces are simultaneously exerted to all potential locations, but the magnitude of all forces except one is zero, implicating that the impact occurs only at one location. The extended deconvolution is then applied to determine the magnitude as well as location (among the potential ones), incorporating the linear superposition of responses resulted from impact at each potential location. The problem can be categorized into under-determined (the number of sensors is less than that of impact locations), even-determined (the number of sensors equals that of impact locations), or over-determined (the number of sensors is greater than that of impact locations) cases. For an under-determined case, it comprises three potential impact locations and one PZT sensor for the rectangular carbon fibre-epoxy composite honeycomb sandwich panel. Assessments are conducted to evaluate the factors affecting the precision of the reconstructed force. Truncated Singular Value Decomposition (TSVD) and the Tikhonov regularization are independently chosen to regularize the problem to find the most suitable method for this system. The selection of optimal value of the regularization parameter is investigated through L-curve and Generalized Cross Validation (GCV) methods. In addition, the effect of different width of signal windows on the reconstructed force is examined. It is observed that the impact force generated by the instrumented impact hammer is sensitive to the impact locations of the structure, having a shape from a simple half-sine to a complicated one. The accuracy of the reconstructed impact force is evaluated using the correlation co-efficient between the reconstructed force and the actual one. Based on this criterion, it is concluded that the forces reconstructed by using the extended deconvolution without an explicit transfer function together with Tikhonov regularization match well with the actual forces in terms of magnitude and duration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20composite%20panel" title="honeycomb composite panel">honeycomb composite panel</a>, <a href="https://publications.waset.org/abstracts/search?q=deconvolution" title=" deconvolution"> deconvolution</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20localization" title=" impact localization"> impact localization</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20reconstruction" title=" force reconstruction"> force reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/30671/a-study-on-inverse-determination-of-impact-force-on-a-honeycomb-composite-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3913</span> Interactive, Topic-Oriented Search Support by a Centroid-Based Text Categorisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Kubek">Mario Kubek</a>, <a href="https://publications.waset.org/abstracts/search?q=Herwig%20Unger"> Herwig Unger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centroid terms are single words that semantically and topically characterise text documents and so may serve as their very compact representation in automatic text processing. In the present paper, centroids are used to measure the relevance of text documents with respect to a given search query. Thus, a new graphbased paradigm for searching texts in large corpora is proposed and evaluated against keyword-based methods. The first, promising experimental results demonstrate the usefulness of the centroid-based search procedure. It is shown that especially the routing of search queries in interactive and decentralised search systems can be greatly improved by applying this approach. A detailed discussion on further fields of its application completes this contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=search%20algorithm" title="search algorithm">search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=centroid" title=" centroid"> centroid</a>, <a href="https://publications.waset.org/abstracts/search?q=query" title=" query"> query</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword" title=" keyword"> keyword</a>, <a href="https://publications.waset.org/abstracts/search?q=co-occurrence" title=" co-occurrence"> co-occurrence</a>, <a href="https://publications.waset.org/abstracts/search?q=categorisation" title=" categorisation"> categorisation</a> </p> <a href="https://publications.waset.org/abstracts/82581/interactive-topic-oriented-search-support-by-a-centroid-based-text-categorisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3912</span> On the Interactive Search with Web Documents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Kubek">Mario Kubek</a>, <a href="https://publications.waset.org/abstracts/search?q=Herwig%20Unger"> Herwig Unger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the large amount of information in the World Wide Web (WWW, web) and the lengthy and usually linearly ordered result lists of web search engines that do not indicate semantic relationships between their entries, the search for topically similar and related documents can become a tedious task. Especially, the process of formulating queries with proper terms representing specific information needs requires much effort from the user. This problem gets even bigger when the user's knowledge on a subject and its technical terms is not sufficient enough to do so. This article presents the new and interactive search application DocAnalyser that addresses this problem by enabling users to find similar and related web documents based on automatic query formulation and state-of-the-art search word extraction. Additionally, this tool can be used to track topics across semantically connected web documents <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DocAnalyser" title="DocAnalyser">DocAnalyser</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20web%20search" title=" interactive web search"> interactive web search</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20word%20extraction" title=" search word extraction"> search word extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=query%20formulation" title=" query formulation"> query formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20topic%20detection" title=" source topic detection"> source topic detection</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20tracking" title=" topic tracking "> topic tracking </a> </p> <a href="https://publications.waset.org/abstracts/17687/on-the-interactive-search-with-web-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=131">131</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=132">132</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=regularization%20parameter%20search&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>