CINXE.COM

Multiset - Wikipedia

<!doctype html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <base href="https://en.m.wikipedia.org/wiki/Multiset"> <meta charset="UTF-8"> <title>Multiset - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"8906557a-98ca-41cc-b73a-40e3616b30ac","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Multiset","wgTitle":"Multiset","wgCurRevisionId":1252743927,"wgRevisionId":1252743927,"wgArticleId":305303,"wgIsArticle": true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Multiset","wgRelevantArticleId":305303,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ar","autonym":"العربية","dir":"rtl"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym": "Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym": "বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym": "Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym": "arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym": "客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir": "ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal", "dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"} ,{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym": "Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag", "autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym": "ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr", "autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang": "to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"}, {"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din", "diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so", "sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q864377","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true, "talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Multiset - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Multiset&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Multiset"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=corsproxy" data-sourceurl="https://en.m.wikipedia.org/wiki/Multiset"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://en.m.wikipedia.org/wiki/Multiset"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Multiset rootpage-Multiset stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=navigationui" data-environment="prod" data-proxy-url="https://en-m-wikipedia-org.translate.goog" data-proxy-full-url="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-source-url="https://en.m.wikipedia.org/wiki/Multiset" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="en" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.m.wikipedia.org/wiki/Multiset&amp;anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Random?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Nearby?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&amp;returnto=Multiset&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:MobileOptions&amp;returnto=Multiset&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_en.wikipedia.org%26uselang%3Den%26utm_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Special:Search"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Multiset</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" rel="" data-event-name="tabs.subject">Article</a></li> <li class="minerva__tab "><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Talk:Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" rel="discussion" data-event-name="tabs.talk">Talk</a></li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&amp;returnto=Multiset&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style> <div role="note" class="hatnote navigation-not-searchable"> This article is about the mathematical concept. For the computer science data structure, see <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset_(abstract_data_type)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Multiset (abstract data type)">Multiset (abstract data type)</a>. </div> <p>In <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mathematics">mathematics</a>, a <b>multiset</b> (or <b>bag</b>, or <b>mset</b>) is a modification of the concept of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Set_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Set (mathematics)">set</a> that, unlike a set,<sup id="cite_ref-Cantor_1-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Cantor-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> allows for multiple instances for each of its <a href="https://en-m-wikipedia-org.translate.goog/wiki/Element_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Element (mathematics)">elements</a>. The number of instances given for each element is called the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiplicity_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Multiplicity (mathematics)"><i>multiplicity</i></a> of that element in the multiset. As a consequence, an infinite number of multisets exist that contain only elements <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span>, but vary in the multiplicities of their elements:</p> <ul> <li>The set <span class="texhtml">{<i>a</i>, <i>b</i>}</span> contains only elements <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span>, each having multiplicity 1 when <span class="texhtml">{<i>a</i>, <i>b</i>}</span> is seen as a multiset.</li> <li>In the multiset <span class="texhtml">{<i>a</i>, <i>a</i>, <i>b</i>}</span>, the element <span class="texhtml mvar" style="font-style:italic;">a</span> has multiplicity 2, and <span class="texhtml mvar" style="font-style:italic;">b</span> has multiplicity 1.</li> <li>In the multiset <span class="texhtml">{<i>a</i>, <i>a</i>, <i>a</i>, <i>b</i>, <i>b</i>, <i>b</i>}</span>, <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> both have multiplicity 3.</li> </ul> <p>These objects are all different when viewed as multisets, although they are the same set, since they all consist of the same elements. As with sets, and in contrast to <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Tuple?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Tuple">tuples</a></i>, the order in which elements are listed does not matter in discriminating multisets, so <span class="texhtml">{<i>a</i>, <i>a</i>, <i>b</i>}</span> and <span class="texhtml">{<i>a</i>, <i>b</i>, <i>a</i>}</span> denote the same multiset. To distinguish between sets and multisets, a notation that incorporates square brackets is sometimes used: the multiset <span class="texhtml">{<i>a</i>, <i>a</i>, <i>b</i>}</span> can be denoted by <span class="texhtml">[<i>a</i>, <i>a</i>, <i>b</i>]</span>.<sup id="cite_ref-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></p> <p>The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Cardinality?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Cardinality">cardinality</a> or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset <span class="texhtml">{<i>a</i>, <i>a</i>, <i>b</i>, <i>b</i>, <i>b</i>, <i>c</i>}</span> the multiplicities of the members <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span>, and <span class="texhtml mvar" style="font-style:italic;">c</span> are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.</p> <p><a href="https://en-m-wikipedia-org.translate.goog/wiki/Nicolaas_Govert_de_Bruijn?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Nicolaas Govert de Bruijn">Nicolaas Govert de Bruijn</a> coined the word <i>multiset</i> in the 1970s, according to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Donald_Knuth?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Donald Knuth">Donald Knuth</a>.<sup id="cite_ref-Knuth1998_3-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Knuth1998-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 694">: 694 </span></sup> However, the concept of multisets predates the coinage of the word <i>multiset</i> by many centuries. Knuth himself attributes the first study of multisets to the Indian mathematician <a href="https://en-m-wikipedia-org.translate.goog/wiki/Bh%C4%81skara_II?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Bhāskara II">Bhāskarāchārya</a>, who described <a href="https://en-m-wikipedia-org.translate.goog/wiki/Permutation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Permutations_of_multisets" title="Permutation">permutations of multisets</a> around 1150. Other names have been proposed or used for this concept, including <i>list</i>, <i>bunch</i>, <i>bag</i>, <i>heap</i>, <i>sample</i>, <i>weighted set</i>, <i>collection</i>, and <i>suite</i>.<sup id="cite_ref-Knuth1998_3-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Knuth1998-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 694">: 694 </span></sup></p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="en" dir="ltr"> <h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#History"><span class="tocnumber">1</span> <span class="toctext">History</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Examples"><span class="tocnumber">2</span> <span class="toctext">Examples</span></a></li> <li class="toclevel-1 tocsection-3"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Definition"><span class="tocnumber">3</span> <span class="toctext">Definition</span></a></li> <li class="toclevel-1 tocsection-4"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Basic_properties_and_operations"><span class="tocnumber">4</span> <span class="toctext">Basic properties and operations</span></a></li> <li class="toclevel-1 tocsection-5"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Counting_multisets"><span class="tocnumber">5</span> <span class="toctext">Counting multisets</span></a> <ul> <li class="toclevel-2 tocsection-6"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Recurrence_relation"><span class="tocnumber">5.1</span> <span class="toctext">Recurrence relation</span></a></li> <li class="toclevel-2 tocsection-7"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Generating_series"><span class="tocnumber">5.2</span> <span class="toctext">Generating series</span></a></li> <li class="toclevel-2 tocsection-8"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Generalization_and_connection_to_the_negative_binomial_series"><span class="tocnumber">5.3</span> <span class="toctext">Generalization and connection to the negative binomial series</span></a></li> </ul></li> <li class="toclevel-1 tocsection-9"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Applications"><span class="tocnumber">6</span> <span class="toctext">Applications</span></a></li> <li class="toclevel-1 tocsection-10"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Generalizations"><span class="tocnumber">7</span> <span class="toctext">Generalizations</span></a></li> <li class="toclevel-1 tocsection-11"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#See_also"><span class="tocnumber">8</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-12"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Notes"><span class="tocnumber">9</span> <span class="toctext">Notes</span></a></li> <li class="toclevel-1 tocsection-13"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#References"><span class="tocnumber">10</span> <span class="toctext">References</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="History">History</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: History" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Wayne Blizard traced multisets back to the very origin of numbers, arguing that "in ancient times, the number <i>n</i> was often represented by a collection of <i>n</i> strokes, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Tally_mark?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Tally mark">tally marks</a>, or units."<sup id="cite_ref-Blizard1989_4-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Blizard1989-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> These and similar collections of objects can be regarded as multisets, because strokes, tally marks, or units are considered indistinguishable. This shows that people implicitly used multisets even before mathematics emerged.</p> <p>Practical needs for this structure have caused multisets to be rediscovered several times, appearing in literature under different names.<sup id="cite_ref-Blizard1991_5-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Blizard1991-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 323">: 323 </span></sup> For instance, they were important in early <a href="https://en-m-wikipedia-org.translate.goog/wiki/AI?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="AI">AI</a> languages, such as QA4, where they were referred to as <i>bags,</i> a term attributed to <a href="https://en-m-wikipedia-org.translate.goog/wiki/L._Peter_Deutsch?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="L. Peter Deutsch">Peter Deutsch</a>.<sup id="cite_ref-Rulifson1972_6-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Rulifson1972-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> A multiset has been also called an aggregate, heap, bunch, sample, weighted set, occurrence set, and fireset (finitely repeated element set).<sup id="cite_ref-Blizard1991_5-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Blizard1991-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 320">: 320 </span></sup><sup id="cite_ref-Singh2007_7-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Singh2007-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></p> <p>Although multisets were used implicitly from ancient times, their explicit exploration happened much later. The first known study of multisets is attributed to the Indian mathematician <a href="https://en-m-wikipedia-org.translate.goog/wiki/Bh%C4%81skara_II?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Bhāskara II">Bhāskarāchārya</a> circa 1150, who described permutations of multisets.<sup id="cite_ref-Knuth1998_3-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Knuth1998-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 694">: 694 </span></sup> The work of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Marius_Nizolius?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Marius Nizolius">Marius Nizolius</a> (1498–1576) contains another early reference to the concept of multisets.<sup id="cite_ref-Angelelli1965_8-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Angelelli1965-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Athanasius_Kircher?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Athanasius Kircher">Athanasius Kircher</a> found the number of multiset permutations when one element can be repeated.<sup id="cite_ref-9" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Jean_Prestet?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Jean Prestet">Jean Prestet</a> published a general rule for multiset permutations in 1675.<sup id="cite_ref-10" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> <a href="https://en-m-wikipedia-org.translate.goog/wiki/John_Wallis?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="John Wallis">John Wallis</a> explained this rule in more detail in 1685.<sup id="cite_ref-11" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup></p> <p>Multisets appeared explicitly in the work of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Richard_Dedekind?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Richard Dedekind">Richard Dedekind</a>.<sup id="cite_ref-12" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-syropoulos_13-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-syropoulos-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup></p> <p>Other mathematicians formalized multisets and began to study them as precise mathematical structures in the 20th century. For example, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hassler_Whitney?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Hassler Whitney">Hassler Whitney</a> (1933) described <i>generalized sets</i> ("sets" whose <a href="https://en-m-wikipedia-org.translate.goog/wiki/Characteristic_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Characteristic function">characteristic functions</a> may take any <a href="https://en-m-wikipedia-org.translate.goog/wiki/Integer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Integer">integer</a> value: positive, negative or zero).<sup id="cite_ref-Blizard1991_5-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Blizard1991-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 326">: 326 </span></sup><sup id="cite_ref-Whitney_14-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Whitney-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page: 405">: 405 </span></sup> Monro (1987) investigated the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Category_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Category (mathematics)">category</a> <b>Mul</b> of multisets and their <a href="https://en-m-wikipedia-org.translate.goog/wiki/Morphism?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Morphism">morphisms</a>, defining a <i>multiset</i> as a set with an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Equivalence_relation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Equivalence relation">equivalence relation</a> between elements "of the same <i>sort</i>", and a <i>morphism</i> between multisets as a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Function_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Function (mathematics)">function</a> that respects <i>sorts</i>. He also introduced a <i>multinumber</i> : a function <i>f</i> (<i>x</i>) from a multiset to the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Natural_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Natural number">natural numbers</a>, giving the <i>multiplicity</i> of element <i>x</i> in the multiset. Monro argued that the concepts of multiset and multinumber are often mixed indiscriminately, though both are useful.<sup id="cite_ref-Blizard1991_5-3" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Blizard1991-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: 327–328">: 327–328 </span></sup><sup id="cite_ref-15" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Examples">Examples</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=2&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Examples" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>One of the simplest and most natural examples is the multiset of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Prime_factor?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Prime factor">prime factors</a> of a natural number <span class="texhtml mvar" style="font-style:italic;">n</span>. Here the underlying set of elements is the set of prime factors of <span class="texhtml mvar" style="font-style:italic;">n</span>. For example, the number <a href="https://en-m-wikipedia-org.translate.goog/wiki/120_(number)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="120 (number)">120</a> has the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Prime_factorization?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Prime factorization">prime factorization</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 120=2^{3}3^{1}5^{1},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn> 120 </mn> <mo> = </mo> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <msup> <mn> 3 </mn> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msup> <msup> <mn> 5 </mn> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle 120=2^{3}3^{1}5^{1},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c629f4c3d9baa2eabbace9e09ce3c4a7e0286539" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.883ex; height:3.009ex;" alt="{\displaystyle 120=2^{3}3^{1}5^{1},}"> </noscript><span class="lazy-image-placeholder" style="width: 13.883ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c629f4c3d9baa2eabbace9e09ce3c4a7e0286539" data-alt="{\displaystyle 120=2^{3}3^{1}5^{1},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> which gives the multiset <span class="texhtml">{2, 2, 2, 3, 5}</span>.</p> <p>A related example is the multiset of solutions of an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Algebraic_equation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Algebraic equation">algebraic equation</a>. A <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quadratic_equation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Quadratic equation">quadratic equation</a>, for example, has two solutions. However, in some cases they are both the same number. Thus the multiset of solutions of the equation could be <span class="texhtml">{3, 5}</span>, or it could be <span class="texhtml">{4, 4}</span>. In the latter case it has a solution of multiplicity 2. More generally, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Fundamental_theorem_of_algebra?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Fundamental theorem of algebra">fundamental theorem of algebra</a> asserts that the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Complex_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Complex number">complex</a> solutions of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Polynomial_equation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Polynomial equation">polynomial equation</a> of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Degree_of_a_polynomial?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Degree of a polynomial">degree</a> <span class="texhtml mvar" style="font-style:italic;">d</span> always form a multiset of cardinality <span class="texhtml mvar" style="font-style:italic;">d</span>.</p> <p>A special case of the above are the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Eigenvalue?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Eigenvalue">eigenvalues</a> of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Matrix_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Matrix (mathematics)">matrix</a>, whose multiplicity is usually defined as their multiplicity as <a href="https://en-m-wikipedia-org.translate.goog/wiki/Root_of_a_polynomial?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Root of a polynomial">roots</a> of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Characteristic_polynomial?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Characteristic polynomial">characteristic polynomial</a>. However two other multiplicities are naturally defined for eigenvalues, their multiplicities as roots of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Minimal_polynomial_(linear_algebra)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Minimal polynomial (linear algebra)">minimal polynomial</a>, and the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Geometric_multiplicity?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Geometric multiplicity">geometric multiplicity</a>, which is defined as the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Dimension_(vector_space)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Dimension (vector space)">dimension</a> of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Kernel_(linear_algebra)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Kernel (linear algebra)">kernel</a> of <span class="texhtml"><i>A</i> − <i>λI</i></span> (where <span class="texhtml mvar" style="font-style:italic;">λ</span> is an eigenvalue of the matrix <span class="texhtml mvar" style="font-style:italic;">A</span>). These three multiplicities define three multisets of eigenvalues, which may be all different: Let <span class="texhtml mvar" style="font-style:italic;">A</span> be a <span class="texhtml"><i>n</i> × <i>n</i></span> matrix in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Jordan_normal_form?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Jordan normal form">Jordan normal form</a> that has a single eigenvalue. Its multiplicity is <span class="texhtml mvar" style="font-style:italic;">n</span>, its multiplicity as a root of the minimal polynomial is the size of the largest Jordan block, and its geometric multiplicity is the number of Jordan blocks.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Definition">Definition</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=3&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Definition" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>A <b>multiset</b> may be formally defined as an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Ordered_pair?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Ordered pair">ordered pair</a> <span class="texhtml">(<i>A</i>, <i>m</i>)</span> where <span class="texhtml mvar" style="font-style:italic;">A</span> is the <i>underlying set</i> of the multiset, formed from its distinct elements, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\colon A\to \mathbb {Z} ^{+}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <mo> :<!-- : --> </mo> <mi> A </mi> <mo stretchy="false"> →<!-- → --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> Z </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m\colon A\to \mathbb {Z} ^{+}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f0777fda3ca3afbfa3aa58c7df5221a924c0c8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.493ex; height:2.509ex;" alt="{\displaystyle m\colon A\to \mathbb {Z} ^{+}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.493ex;height: 2.509ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f0777fda3ca3afbfa3aa58c7df5221a924c0c8d" data-alt="{\displaystyle m\colon A\to \mathbb {Z} ^{+}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is a function from <span class="texhtml mvar" style="font-style:italic;">A</span> to the set of positive integers, giving the <i>multiplicity</i> – that is, the number of occurrences – of the element <span class="texhtml mvar" style="font-style:italic;">a</span> in the multiset as the number <span class="texhtml"><i>m</i>(<i>a</i>)</span>.</p> <p>(It is also possible to allow multiplicity 0 or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \infty } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\displaystyle \infty }"> </noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26c105004f30c27aa7c2a9c601550a4183b1f21" data-alt="{\displaystyle \infty }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, especially when considering submultisets.<sup id="cite_ref-16" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> This article is restricted to finite, positive multiplicities.)</p> <p>Representing the function <span class="texhtml mvar" style="font-style:italic;">m</span> by its <a href="https://en-m-wikipedia-org.translate.goog/wiki/Graph_of_a_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Graph of a function">graph</a> (the set of ordered pairs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{(a,m(a)):a\in A\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> , </mo> <mi> m </mi> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo> : </mo> <mi> a </mi> <mo> ∈<!-- ∈ --> </mo> <mi> A </mi> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{(a,m(a)):a\in A\}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6eec64e9171b64c01fa8d789f7c87204295005d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.228ex; height:2.843ex;" alt="{\displaystyle \{(a,m(a)):a\in A\}}"> </noscript><span class="lazy-image-placeholder" style="width: 19.228ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6eec64e9171b64c01fa8d789f7c87204295005d" data-alt="{\displaystyle \{(a,m(a)):a\in A\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>) allows for writing the multiset <span class="texhtml">{<i>a</i>, <i>a</i>, <i>b</i>}</span> as <span class="texhtml"> {(<i>a</i>, 2), (<i>b</i>, 1)</span>}, and the multiset <span class="texhtml">{<i>a</i>, <i>b</i>}</span> as <span class="texhtml"> {(<i>a</i>, 1), (<i>b</i>, 1)</span>}. This notation is however not commonly used; more compact notations are employed.</p> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\{a_{1},\ldots ,a_{n}\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> = </mo> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A=\{a_{1},\ldots ,a_{n}\}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04ad1d6d9c8b7851d73837fe9c160851abac4777" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.077ex; height:2.843ex;" alt="{\displaystyle A=\{a_{1},\ldots ,a_{n}\}}"> </noscript><span class="lazy-image-placeholder" style="width: 17.077ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04ad1d6d9c8b7851d73837fe9c160851abac4777" data-alt="{\displaystyle A=\{a_{1},\ldots ,a_{n}\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Finite_set?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Finite set">finite set</a>, the multiset <span class="texhtml">(<i>A</i>, <i>m</i>)</span> is often represented as</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{a_{1}^{m(a_{1})},\ldots ,a_{n}^{m(a_{n})}\right\},\quad }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> { </mo> <mrow> <msubsup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> <mo stretchy="false"> ( </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msubsup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> <mo stretchy="false"> ( </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mrow> </msubsup> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mspace width="1em"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left\{a_{1}^{m(a_{1})},\ldots ,a_{n}^{m(a_{n})}\right\},\quad } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d537f9e55708d22f056ba6e445c11a35807a3b7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.54ex; height:4.843ex;" alt="{\displaystyle \left\{a_{1}^{m(a_{1})},\ldots ,a_{n}^{m(a_{n})}\right\},\quad }"> </noscript><span class="lazy-image-placeholder" style="width: 23.54ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d537f9e55708d22f056ba6e445c11a35807a3b7e" data-alt="{\displaystyle \left\{a_{1}^{m(a_{1})},\ldots ,a_{n}^{m(a_{n})}\right\},\quad }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> sometimes simplified to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad a_{1}^{m(a_{1})}\cdots a_{n}^{m(a_{n})},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em"></mspace> <msubsup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> <mo stretchy="false"> ( </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> ⋯<!-- ⋯ --> </mo> <msubsup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> <mo stretchy="false"> ( </mo> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \quad a_{1}^{m(a_{1})}\cdots a_{n}^{m(a_{n})},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1a18debd0ededc6515c7b4628ad99e3f6fc27c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.371ex; height:3.676ex;" alt="{\displaystyle \quad a_{1}^{m(a_{1})}\cdots a_{n}^{m(a_{n})},}"> </noscript><span class="lazy-image-placeholder" style="width: 18.371ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1a18debd0ededc6515c7b4628ad99e3f6fc27c7" data-alt="{\displaystyle \quad a_{1}^{m(a_{1})}\cdots a_{n}^{m(a_{n})},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>where upper indices equal to 1 are omitted. For example, the multiset {<i>a</i>, <i>a</i>, <i>b</i>} may be written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{a^{2},b\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> <mi> b </mi> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{a^{2},b\}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8779c4198c27967767f68825e7b721cdd7d737da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.64ex; height:3.176ex;" alt="{\displaystyle \{a^{2},b\}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.64ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8779c4198c27967767f68825e7b721cdd7d737da" data-alt="{\displaystyle \{a^{2},b\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}b.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> b </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a^{2}b.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/748588f7899b95e4d696564b0dc1234f481158fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.928ex; height:2.676ex;" alt="{\displaystyle a^{2}b.}"> </noscript><span class="lazy-image-placeholder" style="width: 3.928ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/748588f7899b95e4d696564b0dc1234f481158fe" data-alt="{\displaystyle a^{2}b.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> If the elements of the multiset are numbers, a confusion is possible with ordinary <a href="https://en-m-wikipedia-org.translate.goog/wiki/Arithmetic_operations?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Arithmetic operations">arithmetic operations</a>; those normally can be excluded from the context. On the other hand, the latter notation is coherent with the fact that the prime factorization of a positive integer is a uniquely defined multiset, as asserted by the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Fundamental_theorem_of_arithmetic?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Fundamental theorem of arithmetic">fundamental theorem of arithmetic</a>. Also, a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Monomial?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Monomial">monomial</a> is a multiset of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Indeterminate_(variable)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Indeterminate (variable)">indeterminates</a>; for example, the monomial <i>x</i><sup>3</sup><i>y</i><sup>2</sup> corresponds to the multiset {<i>x</i>, <i>x</i>, <i>x</i>, <i>y</i>, <i>y</i>}.</p> <p>A multiset corresponds to an ordinary set if the multiplicity of every element is 1. An <a href="https://en-m-wikipedia-org.translate.goog/wiki/Indexed_family?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Indexed family">indexed family</a> <span class="texhtml">(<i>a</i><sub><i>i</i></sub>)<sub><i>i</i>∈<i>I</i></sub></span>, where <span class="texhtml mvar" style="font-style:italic;">i</span> varies over some <a href="https://en-m-wikipedia-org.translate.goog/wiki/Index_set?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Index set">index set</a> <i>I</i>, may define a multiset, sometimes written <span class="texhtml">{<i>a</i><sub><i>i</i></sub>}</span>. In this view the underlying set of the multiset is given by the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Image_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Image (mathematics)">image</a> of the family, and the multiplicity of any element <span class="texhtml mvar" style="font-style:italic;">x</span> is the number of index values <span class="texhtml mvar" style="font-style:italic;">i</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}=x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a_{i}=x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b561c9515f6a90ce3f72cd5af3014b85e148977" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.458ex; height:2.009ex;" alt="{\displaystyle a_{i}=x}"> </noscript><span class="lazy-image-placeholder" style="width: 6.458ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b561c9515f6a90ce3f72cd5af3014b85e148977" data-alt="{\displaystyle a_{i}=x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. In this article the multiplicities are considered to be finite, so that no element occurs infinitely many times in the family; even in an infinite multiset, the multiplicities are finite numbers.</p> <p>It is possible to extend the definition of a multiset by allowing multiplicities of individual elements to be infinite <a href="https://en-m-wikipedia-org.translate.goog/wiki/Cardinal_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Cardinal number">cardinals</a> instead of positive integers, but not all properties carry over to this generalization.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Basic_properties_and_operations">Basic properties and operations</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=4&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Basic properties and operations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>Elements of a multiset are generally taken in a fixed set <span class="texhtml mvar" style="font-style:italic;">U</span>, sometimes called a <i>universe</i>, which is often the set of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Natural_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Natural number">natural numbers</a>. An element of <span class="texhtml mvar" style="font-style:italic;">U</span> that does not belong to a given multiset is said to have a multiplicity 0 in this multiset. This extends the multiplicity function of the multiset to a function from <span class="texhtml mvar" style="font-style:italic;">U</span> to the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> N </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbb {N} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" data-alt="{\displaystyle \mathbb {N} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> of non-negative integers. This defines a <a href="https://en-m-wikipedia-org.translate.goog/wiki/One-to-one_correspondence?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="One-to-one correspondence">one-to-one correspondence</a> between these functions and the multisets that have their elements in <span class="texhtml mvar" style="font-style:italic;">U</span>.</p> <p>This extended multiplicity function is commonly called simply the <b>multiplicity function</b>, and suffices for defining multisets when the universe containing the elements has been fixed. This multiplicity function is a generalization of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Indicator_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Indicator function">indicator function</a> of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Subset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Subset">subset</a>, and shares some properties with it.</p> <p>The <b>support</b> of a multiset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"> </noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> in a universe <span class="texhtml mvar" style="font-style:italic;">U</span> is the underlying set of the multiset. Using the multiplicity function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, it is characterized as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Supp} (A):=\{x\in U\mid m_{A}(x)>0\}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> Supp </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> <mo> := </mo> <mo fence="false" stretchy="false"> { </mo> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <mi> U </mi> <mo> ∣<!-- ∣ --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> &gt; </mo> <mn> 0 </mn> <mo fence="false" stretchy="false"> } </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {Supp} (A):=\{x\in U\mid m_{A}(x)&gt;0\}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4de66657e1d8924701479ed8f9bfce5b08bb011b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.235ex; height:2.843ex;" alt="{\displaystyle \operatorname {Supp} (A):=\{x\in U\mid m_{A}(x)>0\}.}"> </noscript><span class="lazy-image-placeholder" style="width: 34.235ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4de66657e1d8924701479ed8f9bfce5b08bb011b" data-alt="{\displaystyle \operatorname {Supp} (A):=\{x\in U\mid m_{A}(x)>0\}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>A multiset is <i>finite</i> if its support is finite, or, equivalently, if its cardinality <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |A|=\sum _{x\in \operatorname {Supp} (A)}m_{A}(x)=\sum _{x\in U}m_{A}(x)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> = </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <mi> Supp </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mi> A </mi> <mo stretchy="false"> ) </mo> </mrow> </munder> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <mi> U </mi> </mrow> </munder> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |A|=\sum _{x\in \operatorname {Supp} (A)}m_{A}(x)=\sum _{x\in U}m_{A}(x)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0518a72400bc45e77381435ac3cb66577741a46b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:34.855ex; height:6.009ex;" alt="{\displaystyle |A|=\sum _{x\in \operatorname {Supp} (A)}m_{A}(x)=\sum _{x\in U}m_{A}(x)}"> </noscript><span class="lazy-image-placeholder" style="width: 34.855ex;height: 6.009ex;vertical-align: -3.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0518a72400bc45e77381435ac3cb66577741a46b" data-alt="{\displaystyle |A|=\sum _{x\in \operatorname {Supp} (A)}m_{A}(x)=\sum _{x\in U}m_{A}(x)}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> is finite. The <i>empty multiset</i> is the unique multiset with an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Empty_set?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Empty set">empty</a> support (underlying set), and thus a cardinality 0.</p> <p>The usual operations of sets may be extended to multisets by using the multiplicity function, in a similar way to using the indicator function for subsets. In the following, <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are multisets in a given universe <span class="texhtml mvar" style="font-style:italic;">U</span>, with multiplicity functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{A}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{A}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b38fd8717ed74667ad31b45948df4058db8ddb35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.505ex; height:2.009ex;" alt="{\displaystyle m_{A}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.505ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b38fd8717ed74667ad31b45948df4058db8ddb35" data-alt="{\displaystyle m_{A}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{B}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msub> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{B}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b03be0d99db960a1dcdf30c66aec3ad3dcd42b5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.167ex; height:2.009ex;" alt="{\displaystyle m_{B}.}"> </noscript><span class="lazy-image-placeholder" style="width: 4.167ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b03be0d99db960a1dcdf30c66aec3ad3dcd42b5f" data-alt="{\displaystyle m_{B}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <ul> <li><b>Inclusion:</b> <span class="texhtml mvar" style="font-style:italic;">A</span> is <i>included</i> in <span class="texhtml mvar" style="font-style:italic;">B</span>, denoted <span class="texhtml"><i>A</i> ⊆ <i>B</i></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{A}(x)\leq m_{B}(x)\quad \forall x\in U.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> ≤<!-- ≤ --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mspace width="1em"></mspace> <mi mathvariant="normal"> ∀<!-- ∀ --> </mi> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <mi> U </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{A}(x)\leq m_{B}(x)\quad \forall x\in U.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed7a0f4521a8a7985f40beee4e4e8d936eb60b77" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.617ex; height:2.843ex;" alt="{\displaystyle m_{A}(x)\leq m_{B}(x)\quad \forall x\in U.}"> </noscript><span class="lazy-image-placeholder" style="width: 26.617ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed7a0f4521a8a7985f40beee4e4e8d936eb60b77" data-alt="{\displaystyle m_{A}(x)\leq m_{B}(x)\quad \forall x\in U.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></li> <li><b>Union:</b> the <i>union</i> (called, in some contexts, the <i>maximum</i> or <i>lowest common multiple</i>) of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> is the multiset <span class="texhtml mvar" style="font-style:italic;">C</span> with multiplicity function<sup id="cite_ref-syropoulos_13-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-syropoulos-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{C}(x)=\max(m_{A}(x),m_{B}(x))\quad \forall x\in U.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mo movablelimits="true" form="prefix"> max </mo> <mo stretchy="false"> ( </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mspace width="1em"></mspace> <mi mathvariant="normal"> ∀<!-- ∀ --> </mi> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <mi> U </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{C}(x)=\max(m_{A}(x),m_{B}(x))\quad \forall x\in U.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31ac7c0a50ea1ac9b87b519b2be538c6c663358b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.446ex; height:2.843ex;" alt="{\displaystyle m_{C}(x)=\max(m_{A}(x),m_{B}(x))\quad \forall x\in U.}"> </noscript><span class="lazy-image-placeholder" style="width: 40.446ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31ac7c0a50ea1ac9b87b519b2be538c6c663358b" data-alt="{\displaystyle m_{C}(x)=\max(m_{A}(x),m_{B}(x))\quad \forall x\in U.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></li> <li><b>Intersection:</b> the <i>intersection</i> (called, in some contexts, the <i>infimum</i> or <i>greatest common divisor</i>) of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> is the multiset <span class="texhtml mvar" style="font-style:italic;">C</span> with multiplicity function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{C}(x)=\min(m_{A}(x),m_{B}(x))\quad \forall x\in U.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mo movablelimits="true" form="prefix"> min </mo> <mo stretchy="false"> ( </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mspace width="1em"></mspace> <mi mathvariant="normal"> ∀<!-- ∀ --> </mi> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <mi> U </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{C}(x)=\min(m_{A}(x),m_{B}(x))\quad \forall x\in U.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16dd168b1555393b7c516ba2409139e3adf2c14f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.996ex; height:2.843ex;" alt="{\displaystyle m_{C}(x)=\min(m_{A}(x),m_{B}(x))\quad \forall x\in U.}"> </noscript><span class="lazy-image-placeholder" style="width: 39.996ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16dd168b1555393b7c516ba2409139e3adf2c14f" data-alt="{\displaystyle m_{C}(x)=\min(m_{A}(x),m_{B}(x))\quad \forall x\in U.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></li> <li><b>Sum:</b> the <i>sum</i> of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> is the multiset <span class="texhtml mvar" style="font-style:italic;">C</span> with multiplicity function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{C}(x)=m_{A}(x)+m_{B}(x)\quad \forall x\in U.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mspace width="1em"></mspace> <mi mathvariant="normal"> ∀<!-- ∀ --> </mi> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <mi> U </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{C}(x)=m_{A}(x)+m_{B}(x)\quad \forall x\in U.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cd040ecf0fb3f495ba58fc2093acc9aba32c52f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.118ex; height:2.843ex;" alt="{\displaystyle m_{C}(x)=m_{A}(x)+m_{B}(x)\quad \forall x\in U.}"> </noscript><span class="lazy-image-placeholder" style="width: 36.118ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cd040ecf0fb3f495ba58fc2093acc9aba32c52f" data-alt="{\displaystyle m_{C}(x)=m_{A}(x)+m_{B}(x)\quad \forall x\in U.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> It may be viewed as a generalization of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Disjoint_union?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Disjoint union">disjoint union</a> of sets. It defines a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Commutative_monoid?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Commutative monoid">commutative monoid</a> structure on the finite multisets in a given universe. This monoid is a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Free_commutative_monoid?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Free commutative monoid">free commutative monoid</a>, with the universe as a basis.</li> <li><b>Difference:</b> the <i>difference</i> of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> is the multiset <span class="texhtml mvar" style="font-style:italic;">C</span> with multiplicity function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{C}(x)=\max(m_{A}(x)-m_{B}(x),0)\quad \forall x\in U.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mo movablelimits="true" form="prefix"> max </mo> <mo stretchy="false"> ( </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <mn> 0 </mn> <mo stretchy="false"> ) </mo> <mspace width="1em"></mspace> <mi mathvariant="normal"> ∀<!-- ∀ --> </mi> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <mi> U </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{C}(x)=\max(m_{A}(x)-m_{B}(x),0)\quad \forall x\in U.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80a917a0d6ed8f0e4dacdca7b33792d0858ce725" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.449ex; height:2.843ex;" alt="{\displaystyle m_{C}(x)=\max(m_{A}(x)-m_{B}(x),0)\quad \forall x\in U.}"> </noscript><span class="lazy-image-placeholder" style="width: 44.449ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80a917a0d6ed8f0e4dacdca7b33792d0858ce725" data-alt="{\displaystyle m_{C}(x)=\max(m_{A}(x)-m_{B}(x),0)\quad \forall x\in U.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></li> </ul> <p>Two multisets are <i>disjoint</i> if their supports are <a href="https://en-m-wikipedia-org.translate.goog/wiki/Disjoint_sets?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Disjoint sets">disjoint sets</a>. This is equivalent to saying that their intersection is the empty multiset or that their sum equals their union.</p> <p>There is an inclusion–exclusion principle for finite multisets (similar to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Inclusion%E2%80%93exclusion_principle?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Inclusion–exclusion principle">the one for sets</a>), stating that a finite union of finite multisets is the difference of two sums of multisets: in the first sum we consider all possible intersections of an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Parity_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Parity (mathematics)">odd</a> number of the given multisets, while in the second sum we consider all possible intersections of an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Parity_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Parity (mathematics)">even</a> number of the given multisets.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:Citation_needed?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2019)">citation needed</span></a></i>]</sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Counting_multisets">Counting multisets</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=5&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Counting multisets" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <figure typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Combinations_with_repetition;_5_multichoose_3.svg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/Combinations_with_repetition%3B_5_multichoose_3.svg/370px-Combinations_with_repetition%3B_5_multichoose_3.svg.png" decoding="async" width="370" height="405" class="mw-file-element" data-file-width="626" data-file-height="685"> </noscript><span class="lazy-image-placeholder" style="width: 370px;height: 405px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/Combinations_with_repetition%3B_5_multichoose_3.svg/370px-Combinations_with_repetition%3B_5_multichoose_3.svg.png" data-width="370" data-height="405" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/Combinations_with_repetition%3B_5_multichoose_3.svg/555px-Combinations_with_repetition%3B_5_multichoose_3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/62/Combinations_with_repetition%3B_5_multichoose_3.svg/740px-Combinations_with_repetition%3B_5_multichoose_3.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Bijection?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Bijection">Bijection</a> between 3-subsets of a 7-set (left)<br> and 3-multisets with elements from a 5-set (right)<br> So this illustrates that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {7 \choose 3}=\left(\!\!{5 \choose 3}\!\!\right).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> <mfrac linethickness="0"> <mn> 7 </mn> <mn> 3 </mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> <mfrac linethickness="0"> <mn> 5 </mn> <mn> 3 </mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\textstyle {7 \choose 3}=\left(\!\!{5 \choose 3}\!\!\right).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c12f5fc13644266bb9aa331ada0e9af3b2ff968a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.617ex; height:3.509ex;" alt="{\textstyle {7 \choose 3}=\left(\!\!{5 \choose 3}\!\!\right).}"> </noscript><span class="lazy-image-placeholder" style="width: 10.617ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c12f5fc13644266bb9aa331ada0e9af3b2ff968a" data-alt="{\textstyle {7 \choose 3}=\left(\!\!{5 \choose 3}\!\!\right).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </figcaption> </figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"> <div role="note" class="hatnote navigation-not-searchable"> See also: <a href="https://en-m-wikipedia-org.translate.goog/wiki/Stars_and_bars_(combinatorics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Stars and bars (combinatorics)">Stars and bars (combinatorics)</a> </div> <p>The number of multisets of cardinality <span class="texhtml mvar" style="font-style:italic;">k</span>, with elements taken from a finite set of cardinality <span class="texhtml mvar" style="font-style:italic;">n</span>, is sometimes called the <b>multiset coefficient</b> or <b>multiset number</b>. This number is written by some authors as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \left(\!\!{n \choose k}\!\!\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \textstyle \left(\!\!{n \choose k}\!\!\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/646388f9720fa95a72e8947270361909ce61e4f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.697ex; height:3.176ex;" alt="{\displaystyle \textstyle \left(\!\!{n \choose k}\!\!\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 3.697ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/646388f9720fa95a72e8947270361909ce61e4f0" data-alt="{\displaystyle \textstyle \left(\!\!{n \choose k}\!\!\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, a notation that is meant to resemble that of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Binomial_coefficient?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Binomial coefficient">binomial coefficients</a>; it is used for instance in (Stanley, 1997), and could be pronounced "<span class="texhtml mvar" style="font-style:italic;">n</span> multichoose <span class="texhtml mvar" style="font-style:italic;">k</span>" to resemble "<span class="texhtml mvar" style="font-style:italic;">n</span> choose <span class="texhtml mvar" style="font-style:italic;">k</span>" for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tbinom {n}{k}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mstyle> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\tbinom {n}{k}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39c7822635a8fa426d00ca72733ea1bd6fe90b01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.763ex; height:3.176ex;" alt="{\displaystyle {\tbinom {n}{k}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 3.763ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39c7822635a8fa426d00ca72733ea1bd6fe90b01" data-alt="{\displaystyle {\tbinom {n}{k}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> Like the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Binomial_distribution?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Binomial distribution">binomial distribution</a> that involves binomial coefficients, there is a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Negative_binomial_distribution?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Negative binomial distribution">negative binomial distribution</a> in which the multiset coefficients occur. Multiset coefficients should not be confused with the unrelated <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multinomial_coefficient?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Multinomial coefficient">multinomial coefficients</a> that occur in the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multinomial_theorem?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Multinomial theorem">multinomial theorem</a>.</p> <p>The value of multiset coefficients can be given explicitly as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose k}\!\!\right)={n+k-1 \choose k}={\frac {(n+k-1)!}{k!\,(n-1)!}}={n(n+1)(n+2)\cdots (n+k-1) \over k!},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> n </mi> <mo> + </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> + </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> <mspace width="thinmathspace"></mspace> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> n </mi> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> + </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose k}\!\!\right)={n+k-1 \choose k}={\frac {(n+k-1)!}{k!\,(n-1)!}}={n(n+1)(n+2)\cdots (n+k-1) \over k!},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3085c625fdc63db0b0cf48f07516a78a87109a56" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:73.643ex; height:6.509ex;" alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)={n+k-1 \choose k}={\frac {(n+k-1)!}{k!\,(n-1)!}}={n(n+1)(n+2)\cdots (n+k-1) \over k!},}"> </noscript><span class="lazy-image-placeholder" style="width: 73.643ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3085c625fdc63db0b0cf48f07516a78a87109a56" data-alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)={n+k-1 \choose k}={\frac {(n+k-1)!}{k!\,(n-1)!}}={n(n+1)(n+2)\cdots (n+k-1) \over k!},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> where the second expression is as a binomial coefficient;<sup id="cite_ref-17" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-17"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> many authors in fact avoid separate notation and just write binomial coefficients. So, the number of such multisets is the same as the number of subsets of cardinality <span class="texhtml mvar" style="font-style:italic;">k</span> of a set of cardinality <span class="texhtml"><i>n</i> + <i>k</i> − 1</span>. The analogy with binomial coefficients can be stressed by writing the numerator in the above expression as a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Rising_factorial_power?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Rising factorial power">rising factorial power</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose k}\!\!\right)={n^{\overline {k}} \over k!},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo accent="false"> ¯<!-- ¯ --> </mo> </mover> </mrow> </msup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose k}\!\!\right)={n^{\overline {k}} \over k!},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03a76bd55fd25d9a67f3fbe52bf36804ff1969a7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.847ex; height:6.843ex;" alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)={n^{\overline {k}} \over k!},}"> </noscript><span class="lazy-image-placeholder" style="width: 13.847ex;height: 6.843ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03a76bd55fd25d9a67f3fbe52bf36804ff1969a7" data-alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)={n^{\overline {k}} \over k!},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> to match the expression of binomial coefficients using a falling factorial power: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {n \choose k}={n^{\underline {k}} \over k!}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi> k </mi> <mo> _<!-- _ --> </mo> </munder> </mrow> </msup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {n \choose k}={n^{\underline {k}} \over k!}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc84d073d8ca2a395d37ff296d4ae1f04653b3e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.882ex; height:6.343ex;" alt="{\displaystyle {n \choose k}={n^{\underline {k}} \over k!}.}"> </noscript><span class="lazy-image-placeholder" style="width: 11.882ex;height: 6.343ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc84d073d8ca2a395d37ff296d4ae1f04653b3e" data-alt="{\displaystyle {n \choose k}={n^{\underline {k}} \over k!}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>For example, there are 4 multisets of cardinality 3 with elements taken from the set <span class="texhtml">{1, 2}</span> of cardinality 2 (<span class="texhtml"><i>n</i> = 2</span>, <span class="texhtml"><i>k</i> = 3</span>), namely <span class="texhtml">{1, 1, 1}</span>, <span class="texhtml">{1, 1, 2}</span>, <span class="texhtml">{1, 2, 2}</span>, <span class="texhtml">{2, 2, 2}</span>. There are also 4 <i>subsets</i> of cardinality 3 in the set <span class="texhtml">{1, 2, 3, 4}</span> of cardinality 4 (<span class="texhtml"><i>n</i> + <i>k</i> − 1</span>), namely <span class="texhtml">{1, 2, 3}</span>, <span class="texhtml">{1, 2, 4}</span>, <span class="texhtml">{1, 3, 4}</span>, <span class="texhtml">{2, 3, 4}</span>.</p> <p>One simple way to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematical_proof?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mathematical proof">prove</a> the equality of multiset coefficients and binomial coefficients given above involves representing multisets in the following way. First, consider the notation for multisets that would represent <span class="texhtml">{<i>a</i>, <i>a</i>, <i>a</i>, <i>a</i>, <i>a</i>, <i>a</i>, <i>b</i>, <i>b</i>, <i>c</i>, <i>c</i>, <i>c</i>, <i>d</i>, <i>d</i>, <i>d</i>, <i>d</i>, <i>d</i>, <i>d</i>, <i>d</i>}</span> (6 <span class="texhtml mvar" style="font-style:italic;">a</span>s, 2 <span class="texhtml mvar" style="font-style:italic;">b</span>s, 3 <span class="texhtml mvar" style="font-style:italic;">c</span>s, 7 <span class="texhtml mvar" style="font-style:italic;">d</span>s) in this form:</p> <dl> <dd> <span class="nowrap">&nbsp;• &nbsp;• &nbsp;• &nbsp;• &nbsp;• &nbsp;• &nbsp;| &nbsp;• &nbsp;• &nbsp;| &nbsp;• &nbsp;• &nbsp;• &nbsp;| &nbsp;• &nbsp;• &nbsp;• &nbsp;• &nbsp;• &nbsp;• &nbsp;• </span> </dd> </dl> <p>This is a multiset of cardinality <span class="texhtml"><i>k</i> = 18</span> made of elements of a set of cardinality <span class="texhtml"><i>n</i> = 4</span>. The number of characters including both dots and vertical lines used in this notation is <span class="texhtml">18 + 4 − 1</span>. The number of vertical lines is 4 − 1. The number of multisets of cardinality 18 is then the number of ways to arrange the <span class="texhtml">4 − 1</span> vertical lines among the 18 + 4 − 1 characters, and is thus the number of subsets of cardinality 4 − 1 of a set of cardinality <span class="texhtml">18 + 4 − 1</span>. Equivalently, it is the number of ways to arrange the 18 dots among the <span class="texhtml">18 + 4 − 1</span> characters, which is the number of subsets of cardinality 18 of a set of cardinality <span class="texhtml">18 + 4 − 1</span>. This is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {4+18-1 \choose 4-1}={4+18-1 \choose 18}=1330,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mn> 4 </mn> <mo> + </mo> <mn> 18 </mn> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mn> 4 </mn> <mo> + </mo> <mn> 18 </mn> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mn> 18 </mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo> = </mo> <mn> 1330 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {4+18-1 \choose 4-1}={4+18-1 \choose 18}=1330,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46065be8842febd05224cfbc91bee1a4e5024eb1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.997ex; height:6.176ex;" alt="{\displaystyle {4+18-1 \choose 4-1}={4+18-1 \choose 18}=1330,}"> </noscript><span class="lazy-image-placeholder" style="width: 38.997ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46065be8842febd05224cfbc91bee1a4e5024eb1" data-alt="{\displaystyle {4+18-1 \choose 4-1}={4+18-1 \choose 18}=1330,}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> thus is the value of the multiset coefficient and its equivalencies: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left(\!\!{4 \choose 18}\!\!\right)&amp;={21 \choose 18}={\frac {21!}{18!\,3!}}={21 \choose 3},\\[1ex]&amp;={\frac {{\color {red}{\mathfrak {4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}}}\cdot \mathbf {19\cdot 20\cdot 21} }{\mathbf {1\cdot 2\cdot 3} \cdot {\color {red}{\mathfrak {4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}}}}},\\[1ex]&amp;={\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdots 16\cdot 17\cdot 18\;\mathbf {\cdot \;19\cdot 20\cdot 21} }{\,1\cdot 2\cdot 3\cdot 4\cdot 5\cdots 16\cdot 17\cdot 18\;\mathbf {\cdot \;1\cdot 2\cdot 3\quad } }},\\[1ex]&amp;={\frac {19\cdot 20\cdot 21}{1\cdot 2\cdot 3}}.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.73em 0.73em 0.73em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mn> 4 </mn> <mn> 18 </mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mn> 21 </mn> <mn> 18 </mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 21 </mn> <mo> ! </mo> </mrow> <mrow> <mn> 18 </mn> <mo> ! </mo> <mspace width="thinmathspace"></mspace> <mn> 3 </mn> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mn> 21 </mn> <mn> 3 </mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="fraktur"> 4 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 5 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 6 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 7 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 8 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 9 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 10 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 11 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 12 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 13 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 14 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 15 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 16 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 17 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 18 </mn> </mrow> </mrow> </mstyle> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold"> 19 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="bold"> 20 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="bold"> 21 </mn> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold"> 1 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="bold"> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="bold"> 3 </mn> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="fraktur"> 4 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 5 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 6 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 7 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 8 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 9 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 10 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 11 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 12 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 13 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 14 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 15 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 16 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 17 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="fraktur"> 18 </mn> </mrow> </mrow> </mstyle> </mrow> </mrow> </mfrac> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 1 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 3 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 4 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 5 </mn> <mo> ⋯<!-- ⋯ --> </mo> <mn> 16 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 17 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 18 </mn> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mo> ⋅<!-- ⋅ --> </mo> <mspace width="thickmathspace"></mspace> <mn mathvariant="bold"> 19 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="bold"> 20 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="bold"> 21 </mn> </mrow> </mrow> <mrow> <mspace width="thinmathspace"></mspace> <mn> 1 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 3 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 4 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 5 </mn> <mo> ⋯<!-- ⋯ --> </mo> <mn> 16 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 17 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 18 </mn> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mo> ⋅<!-- ⋅ --> </mo> <mspace width="thickmathspace"></mspace> <mn mathvariant="bold"> 1 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="bold"> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn mathvariant="bold"> 3 </mn> <mspace width="1em"></mspace> </mrow> </mrow> </mfrac> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 19 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 20 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 21 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 3 </mn> </mrow> </mfrac> </mrow> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\left(\!\!{4 \choose 18}\!\!\right)&amp;={21 \choose 18}={\frac {21!}{18!\,3!}}={21 \choose 3},\\[1ex]&amp;={\frac {{\color {red}{\mathfrak {4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}}}\cdot \mathbf {19\cdot 20\cdot 21} }{\mathbf {1\cdot 2\cdot 3} \cdot {\color {red}{\mathfrak {4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}}}}},\\[1ex]&amp;={\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdots 16\cdot 17\cdot 18\;\mathbf {\cdot \;19\cdot 20\cdot 21} }{\,1\cdot 2\cdot 3\cdot 4\cdot 5\cdots 16\cdot 17\cdot 18\;\mathbf {\cdot \;1\cdot 2\cdot 3\quad } }},\\[1ex]&amp;={\frac {19\cdot 20\cdot 21}{1\cdot 2\cdot 3}}.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37ec5dd66fc50e14645949792c2330cddb34e6a4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.505ex; width:77.527ex; height:26.176ex;" alt="{\displaystyle {\begin{aligned}\left(\!\!{4 \choose 18}\!\!\right)&amp;={21 \choose 18}={\frac {21!}{18!\,3!}}={21 \choose 3},\\[1ex]&amp;={\frac {{\color {red}{\mathfrak {4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}}}\cdot \mathbf {19\cdot 20\cdot 21} }{\mathbf {1\cdot 2\cdot 3} \cdot {\color {red}{\mathfrak {4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}}}}},\\[1ex]&amp;={\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdots 16\cdot 17\cdot 18\;\mathbf {\cdot \;19\cdot 20\cdot 21} }{\,1\cdot 2\cdot 3\cdot 4\cdot 5\cdots 16\cdot 17\cdot 18\;\mathbf {\cdot \;1\cdot 2\cdot 3\quad } }},\\[1ex]&amp;={\frac {19\cdot 20\cdot 21}{1\cdot 2\cdot 3}}.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 77.527ex;height: 26.176ex;vertical-align: -12.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37ec5dd66fc50e14645949792c2330cddb34e6a4" data-alt="{\displaystyle {\begin{aligned}\left(\!\!{4 \choose 18}\!\!\right)&amp;={21 \choose 18}={\frac {21!}{18!\,3!}}={21 \choose 3},\\[1ex]&amp;={\frac {{\color {red}{\mathfrak {4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}}}\cdot \mathbf {19\cdot 20\cdot 21} }{\mathbf {1\cdot 2\cdot 3} \cdot {\color {red}{\mathfrak {4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9\cdot 10\cdot 11\cdot 12\cdot 13\cdot 14\cdot 15\cdot 16\cdot 17\cdot 18}}}}},\\[1ex]&amp;={\frac {1\cdot 2\cdot 3\cdot 4\cdot 5\cdots 16\cdot 17\cdot 18\;\mathbf {\cdot \;19\cdot 20\cdot 21} }{\,1\cdot 2\cdot 3\cdot 4\cdot 5\cdots 16\cdot 17\cdot 18\;\mathbf {\cdot \;1\cdot 2\cdot 3\quad } }},\\[1ex]&amp;={\frac {19\cdot 20\cdot 21}{1\cdot 2\cdot 3}}.\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>From the relation between binomial coefficients and multiset coefficients, it follows that the number of multisets of cardinality <span class="texhtml mvar" style="font-style:italic;">k</span> in a set of cardinality <span class="texhtml mvar" style="font-style:italic;">n</span> can be written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=(-1)^{k}{-n \choose k}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mo> −<!-- − --> </mo> <mi> n </mi> </mrow> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose k}\!\!\right)=(-1)^{k}{-n \choose k}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/686bb689a4e560b2fbf2edbb867fbbf411670bf3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.927ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=(-1)^{k}{-n \choose k}.}"> </noscript><span class="lazy-image-placeholder" style="width: 22.927ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/686bb689a4e560b2fbf2edbb867fbbf411670bf3" data-alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=(-1)^{k}{-n \choose k}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> Additionally, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{k+1 \choose n-1}\!\!\right).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{k+1 \choose n-1}\!\!\right).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/109d5fda4a74e69fec93c090cda923082e7fdca1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.513ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{k+1 \choose n-1}\!\!\right).}"> </noscript><span class="lazy-image-placeholder" style="width: 21.513ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/109d5fda4a74e69fec93c090cda923082e7fdca1" data-alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{k+1 \choose n-1}\!\!\right).}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <div class="mw-heading mw-heading3"> <h3 id="Recurrence_relation">Recurrence relation</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=6&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Recurrence relation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A <a href="https://en-m-wikipedia-org.translate.goog/wiki/Recurrence_relation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Recurrence relation">recurrence relation</a> for multiset coefficients may be given as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{n \choose k-1}\!\!\right)+\left(\!\!{n-1 \choose k}\!\!\right)\quad {\mbox{for }}n,k>0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mrow> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> for&nbsp; </mtext> </mstyle> </mrow> <mi> n </mi> <mo> , </mo> <mi> k </mi> <mo> &gt; </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{n \choose k-1}\!\!\right)+\left(\!\!{n-1 \choose k}\!\!\right)\quad {\mbox{for }}n,k&gt;0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/845ce7b53eff000466674250587d4f11bdec7ac3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:47.804ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{n \choose k-1}\!\!\right)+\left(\!\!{n-1 \choose k}\!\!\right)\quad {\mbox{for }}n,k>0}"> </noscript><span class="lazy-image-placeholder" style="width: 47.804ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/845ce7b53eff000466674250587d4f11bdec7ac3" data-alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{n \choose k-1}\!\!\right)+\left(\!\!{n-1 \choose k}\!\!\right)\quad {\mbox{for }}n,k>0}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose 0}\!\!\right)=1,\quad n\in \mathbb {N} ,\quad {\mbox{and}}\quad \left(\!\!{0 \choose k}\!\!\right)=0,\quad k>0.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mn> 0 </mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mspace width="1em"></mspace> <mi> n </mi> <mo> ∈<!-- ∈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> N </mi> </mrow> <mo> , </mo> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext> and </mtext> </mstyle> </mrow> <mspace width="1em"></mspace> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mn> 0 </mn> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mn> 0 </mn> <mo> , </mo> <mspace width="1em"></mspace> <mi> k </mi> <mo> &gt; </mo> <mn> 0. </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose 0}\!\!\right)=1,\quad n\in \mathbb {N} ,\quad {\mbox{and}}\quad \left(\!\!{0 \choose k}\!\!\right)=0,\quad k&gt;0.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8ee422e69c1366d3e290015afcb3e14057f0fa7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.275ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{n \choose 0}\!\!\right)=1,\quad n\in \mathbb {N} ,\quad {\mbox{and}}\quad \left(\!\!{0 \choose k}\!\!\right)=0,\quad k>0.}"> </noscript><span class="lazy-image-placeholder" style="width: 50.275ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8ee422e69c1366d3e290015afcb3e14057f0fa7" data-alt="{\displaystyle \left(\!\!{n \choose 0}\!\!\right)=1,\quad n\in \mathbb {N} ,\quad {\mbox{and}}\quad \left(\!\!{0 \choose k}\!\!\right)=0,\quad k>0.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>The above recurrence may be interpreted as follows. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [n]:=\{1,\dots ,n\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mi> n </mi> <mo stretchy="false"> ] </mo> <mo> := </mo> <mo fence="false" stretchy="false"> { </mo> <mn> 1 </mn> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <mi> n </mi> <mo fence="false" stretchy="false"> } </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [n]:=\{1,\dots ,n\}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bef8db9982c85930794abcf92517522123bd0407" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.494ex; height:2.843ex;" alt="{\displaystyle [n]:=\{1,\dots ,n\}}"> </noscript><span class="lazy-image-placeholder" style="width: 16.494ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bef8db9982c85930794abcf92517522123bd0407" data-alt="{\displaystyle [n]:=\{1,\dots ,n\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> be the source set. There is always exactly one (empty) multiset of size 0, and if <span class="texhtml"><i>n</i> = 0</span> there are no larger multisets, which gives the initial conditions.</p> <p>Now, consider the case in which <span class="texhtml"><i>n</i>, <i>k</i> &gt; 0</span>. A multiset of cardinality <span class="texhtml mvar" style="font-style:italic;">k</span> with elements from <span class="texhtml">[<i>n</i>]</span> might or might not contain any instance of the final element <span class="texhtml mvar" style="font-style:italic;">n</span>. If it does appear, then by removing <span class="texhtml mvar" style="font-style:italic;">n</span> once, one is left with a multiset of cardinality <span class="texhtml"><i>k</i> − 1</span> of elements from <span class="texhtml">[<i>n</i>]</span>, and every such multiset can arise, which gives a total of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose k-1}\!\!\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mrow> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose k-1}\!\!\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49373df496fe6f0e08eb7569578019dde28658df" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.508ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{n \choose k-1}\!\!\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 10.508ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49373df496fe6f0e08eb7569578019dde28658df" data-alt="{\displaystyle \left(\!\!{n \choose k-1}\!\!\right)}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> possibilities.</p> <p>If <span class="texhtml mvar" style="font-style:italic;">n</span> does not appear, then our original multiset is equal to a multiset of cardinality <span class="texhtml mvar" style="font-style:italic;">k</span> with elements from <span class="texhtml">[<i>n</i> − 1]</span>, of which there are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n-1 \choose k}\!\!\right).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n-1 \choose k}\!\!\right).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59cb57a373bd07688baa98077052fc518fbedff1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.725ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{n-1 \choose k}\!\!\right).}"> </noscript><span class="lazy-image-placeholder" style="width: 11.725ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59cb57a373bd07688baa98077052fc518fbedff1" data-alt="{\displaystyle \left(\!\!{n-1 \choose k}\!\!\right).}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{n \choose k-1}\!\!\right)+\left(\!\!{n-1 \choose k}\!\!\right).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mrow> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{n \choose k-1}\!\!\right)+\left(\!\!{n-1 \choose k}\!\!\right).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dc6c3a6ecfdeb28483542d14c62c05abc393653" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.861ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{n \choose k-1}\!\!\right)+\left(\!\!{n-1 \choose k}\!\!\right).}"> </noscript><span class="lazy-image-placeholder" style="width: 34.861ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4dc6c3a6ecfdeb28483542d14c62c05abc393653" data-alt="{\displaystyle \left(\!\!{n \choose k}\!\!\right)=\left(\!\!{n \choose k-1}\!\!\right)+\left(\!\!{n-1 \choose k}\!\!\right).}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <div class="mw-heading mw-heading3"> <h3 id="Generating_series">Generating series</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=7&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Generating series" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Generating_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Generating function">generating function</a> of the multiset coefficients is very simple, being <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{d=0}^{\infty }\left(\!\!{n \choose d}\!\!\right)t^{d}={\frac {1}{(1-t)^{n}}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> d </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> d </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <msup> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> d </mi> </mrow> </msup> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mrow> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> t </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{d=0}^{\infty }\left(\!\!{n \choose d}\!\!\right)t^{d}={\frac {1}{(1-t)^{n}}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e51cd6e55b75aaa845dc16e233459f822a13ecd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:25.201ex; height:7.009ex;" alt="{\displaystyle \sum _{d=0}^{\infty }\left(\!\!{n \choose d}\!\!\right)t^{d}={\frac {1}{(1-t)^{n}}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 25.201ex;height: 7.009ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e51cd6e55b75aaa845dc16e233459f822a13ecd" data-alt="{\displaystyle \sum _{d=0}^{\infty }\left(\!\!{n \choose d}\!\!\right)t^{d}={\frac {1}{(1-t)^{n}}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> As multisets are in one-to-one correspondence with <a href="https://en-m-wikipedia-org.translate.goog/wiki/Monomial?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Monomial">monomials</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose d}\!\!\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> d </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose d}\!\!\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/201fb6444da34b269f5fa3f2774ea61f670e60f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:6.689ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{n \choose d}\!\!\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 6.689ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/201fb6444da34b269f5fa3f2774ea61f670e60f9" data-alt="{\displaystyle \left(\!\!{n \choose d}\!\!\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is also the number of monomials of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Degree_of_a_polynomial?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Extension_to_polynomials_with_two_or_more_variables" title="Degree of a polynomial">degree</a> <span class="texhtml mvar" style="font-style:italic;">d</span> in <span class="texhtml mvar" style="font-style:italic;">n</span> indeterminates. Thus, the above series is also the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hilbert_series?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Hilbert series">Hilbert series</a> of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Polynomial_ring?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Polynomial ring">polynomial ring</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k[x_{1},\ldots ,x_{n}].}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> <mo stretchy="false"> [ </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo stretchy="false"> ] </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k[x_{1},\ldots ,x_{n}].} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c109f59bd548c669a7645880f875a11422061bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.262ex; height:2.843ex;" alt="{\displaystyle k[x_{1},\ldots ,x_{n}].}"> </noscript><span class="lazy-image-placeholder" style="width: 13.262ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c109f59bd548c669a7645880f875a11422061bb" data-alt="{\displaystyle k[x_{1},\ldots ,x_{n}].}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>As <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{n \choose d}\!\!\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> d </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{n \choose d}\!\!\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/201fb6444da34b269f5fa3f2774ea61f670e60f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:6.689ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{n \choose d}\!\!\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 6.689ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/201fb6444da34b269f5fa3f2774ea61f670e60f9" data-alt="{\displaystyle \left(\!\!{n \choose d}\!\!\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is a polynomial in <span class="texhtml mvar" style="font-style:italic;">n</span>, it and the generating function are well defined for any <a href="https://en-m-wikipedia-org.translate.goog/wiki/Complex_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Complex number">complex</a> value of <span class="texhtml mvar" style="font-style:italic;">n</span>.</p> <div class="mw-heading mw-heading3"> <h3 id="Generalization_and_connection_to_the_negative_binomial_series">Generalization and connection to the negative binomial series</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=8&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Generalization and connection to the negative binomial series" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The multiplicative formula allows the definition of multiset coefficients to be extended by replacing <span class="texhtml mvar" style="font-style:italic;">n</span> by an arbitrary number <span class="texhtml mvar" style="font-style:italic;">α</span> (negative, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Real_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Real number">real</a>, or complex): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{\alpha \choose k}\!\!\right)={\frac {\alpha ^{\overline {k}}}{k!}}={\frac {\alpha (\alpha +1)(\alpha +2)\cdots (\alpha +k-1)}{k(k-1)(k-2)\cdots 1}}\quad {\text{for }}k\in \mathbb {N} {\text{ and arbitrary }}\alpha .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> α<!-- α --> </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo accent="false"> ¯<!-- ¯ --> </mo> </mover> </mrow> </msup> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo> + </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo> + </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> <mrow> <mi> k </mi> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo> ⋯<!-- ⋯ --> </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> for&nbsp; </mtext> </mrow> <mi> k </mi> <mo> ∈<!-- ∈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;and arbitrary&nbsp; </mtext> </mrow> <mi> α<!-- α --> </mi> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{\alpha \choose k}\!\!\right)={\frac {\alpha ^{\overline {k}}}{k!}}={\frac {\alpha (\alpha +1)(\alpha +2)\cdots (\alpha +k-1)}{k(k-1)(k-2)\cdots 1}}\quad {\text{for }}k\in \mathbb {N} {\text{ and arbitrary }}\alpha .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5659f439a2da55d00f4fbb0233223c2723236aa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:76.431ex; height:7.009ex;" alt="{\displaystyle \left(\!\!{\alpha \choose k}\!\!\right)={\frac {\alpha ^{\overline {k}}}{k!}}={\frac {\alpha (\alpha +1)(\alpha +2)\cdots (\alpha +k-1)}{k(k-1)(k-2)\cdots 1}}\quad {\text{for }}k\in \mathbb {N} {\text{ and arbitrary }}\alpha .}"> </noscript><span class="lazy-image-placeholder" style="width: 76.431ex;height: 7.009ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5659f439a2da55d00f4fbb0233223c2723236aa" data-alt="{\displaystyle \left(\!\!{\alpha \choose k}\!\!\right)={\frac {\alpha ^{\overline {k}}}{k!}}={\frac {\alpha (\alpha +1)(\alpha +2)\cdots (\alpha +k-1)}{k(k-1)(k-2)\cdots 1}}\quad {\text{for }}k\in \mathbb {N} {\text{ and arbitrary }}\alpha .}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>With this definition one has a generalization of the negative binomial formula (with one of the variables set to 1), which justifies calling the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\!\!{\alpha \choose k}\!\!\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> α<!-- α --> </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\!\!{\alpha \choose k}\!\!\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc5e1de79dde0bf8c8fd15d3ec38f369e7ec259f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:6.782ex; height:6.176ex;" alt="{\displaystyle \left(\!\!{\alpha \choose k}\!\!\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 6.782ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc5e1de79dde0bf8c8fd15d3ec38f369e7ec259f" data-alt="{\displaystyle \left(\!\!{\alpha \choose k}\!\!\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> negative binomial coefficients: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-X)^{-\alpha }=\sum _{k=0}^{\infty }\left(\!\!{\alpha \choose k}\!\!\right)X^{k}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> X </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> </mrow> </msup> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> α<!-- α --> </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mrow> <mo> ) </mo> </mrow> <msup> <mi> X </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (1-X)^{-\alpha }=\sum _{k=0}^{\infty }\left(\!\!{\alpha \choose k}\!\!\right)X^{k}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bea979dd6ed915ea38172742ce4348126e93312b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.096ex; height:7.009ex;" alt="{\displaystyle (1-X)^{-\alpha }=\sum _{k=0}^{\infty }\left(\!\!{\alpha \choose k}\!\!\right)X^{k}.}"> </noscript><span class="lazy-image-placeholder" style="width: 28.096ex;height: 7.009ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bea979dd6ed915ea38172742ce4348126e93312b" data-alt="{\displaystyle (1-X)^{-\alpha }=\sum _{k=0}^{\infty }\left(\!\!{\alpha \choose k}\!\!\right)X^{k}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span></p> <p>This <a href="https://en-m-wikipedia-org.translate.goog/wiki/Taylor_series?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Taylor series">Taylor series</a> formula is valid for all complex numbers <i>α</i> and <i>X</i> with <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>X</i></span>| &lt; 1</span>. It can also be interpreted as an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Identity_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Identity (mathematics)">identity</a> of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Formal_power_series?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Formal power series">formal power series</a> in <i>X</i>, where it actually can serve as definition of arbitrary powers of series with constant coefficient equal to&nbsp;1; the point is that with this definition all identities hold that one expects for <a href="https://en-m-wikipedia-org.translate.goog/wiki/Exponentiation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Exponentiation">exponentiation</a>, notably</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-X)^{-\alpha }(1-X)^{-\beta }=(1-X)^{-(\alpha +\beta )}\quad {\text{and}}\quad ((1-X)^{-\alpha })^{-\beta }=(1-X)^{-(-\alpha \beta )},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> X </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> </mrow> </msup> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> X </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> β<!-- β --> </mi> </mrow> </msup> <mo> = </mo> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> X </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo> + </mo> <mi> β<!-- β --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mspace width="1em"></mspace> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> X </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> β<!-- β --> </mi> </mrow> </msup> <mo> = </mo> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> X </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> <mi> β<!-- β --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (1-X)^{-\alpha }(1-X)^{-\beta }=(1-X)^{-(\alpha +\beta )}\quad {\text{and}}\quad ((1-X)^{-\alpha })^{-\beta }=(1-X)^{-(-\alpha \beta )},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1879548421f48121103b551c34fc6372655c480" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:78.162ex; height:3.343ex;" alt="{\displaystyle (1-X)^{-\alpha }(1-X)^{-\beta }=(1-X)^{-(\alpha +\beta )}\quad {\text{and}}\quad ((1-X)^{-\alpha })^{-\beta }=(1-X)^{-(-\alpha \beta )},}"> </noscript><span class="lazy-image-placeholder" style="width: 78.162ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1879548421f48121103b551c34fc6372655c480" data-alt="{\displaystyle (1-X)^{-\alpha }(1-X)^{-\beta }=(1-X)^{-(\alpha +\beta )}\quad {\text{and}}\quad ((1-X)^{-\alpha })^{-\beta }=(1-X)^{-(-\alpha \beta )},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert">&nbsp;</span></span> and formulas such as these can be used to prove identities for the multiset coefficients.</p> <p>If <span class="texhtml mvar" style="font-style:italic;">α</span> is a nonpositive integer <span class="texhtml mvar" style="font-style:italic;">n</span>, then all terms with <span class="texhtml"><i>k</i> &gt; −<i>n</i></span> are zero, and the infinite series becomes a finite sum. However, for other values of <span class="texhtml mvar" style="font-style:italic;">α</span>, including positive integers and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Rational_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Rational number">rational numbers</a>, the series is infinite.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Applications">Applications</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=9&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Applications" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <p>Multisets have various applications.<sup id="cite_ref-Singh2007_7-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Singh2007-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> They are becoming fundamental in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Combinatorics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Combinatorics">combinatorics</a>.<sup id="cite_ref-Aigner1979_18-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Aigner1979-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Anderson1987_19-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Anderson1987-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Stanley1997_20-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Stanley1997-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Stanley1999_21-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Stanley1999-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Multisets have become an important tool in the theory of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Relational_database?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Relational database">relational databases</a>, which often uses the synonym <i>bag</i>.<sup id="cite_ref-GrumbachMilo1996_22-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrumbachMilo1996-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-LibkinWong1994_23-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-LibkinWong1994-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-LibkingWong1995_24-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-LibkingWong1995-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> For instance, multisets are often used to implement relations in database systems. In particular, a table (without a primary key) works as a multiset, because it can have multiple identical records. Similarly, <a href="https://en-m-wikipedia-org.translate.goog/wiki/SQL?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="SQL">SQL</a> operates on multisets and returns identical records. For instance, consider "SELECT name from Student". In the case that there are multiple records with name "Sara" in the student table, all of them are shown. That means the result of an SQL query is a multiset; if the result were instead a set, the repetitive records in the result set would have been eliminated. Another application of multisets is in modeling <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multigraph?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Multigraph">multigraphs</a>. In multigraphs there can be multiple edges between any two given <a href="https://en-m-wikipedia-org.translate.goog/wiki/Vertex_(graph_theory)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Vertex (graph theory)">vertices</a>. As such, the entity that specifies the edges is a multiset, and not a set.</p> <p>There are also other applications. For instance, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Richard_Rado?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Richard Rado">Richard Rado</a> used multisets as a device to investigate the properties of families of sets. He wrote, "The notion of a set takes no account of multiple occurrence of any one of its members, and yet it is just this kind of information that is frequently of importance. We need only think of the set of roots of a polynomial <i>f</i> (<i>x</i>) or the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Spectrum_of_an_operator?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Spectrum of an operator">spectrum</a> of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Linear_operator?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Linear operator">linear operator</a>."<sup id="cite_ref-Blizard1991_5-4" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Blizard1991-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Pages: 328–329">: 328–329 </span></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=10&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Generalizations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-7 collapsible-block" id="mf-section-7"> <p>Different generalizations of multisets have been introduced, studied and applied to solving problems.</p> <ul> <li>Real-valued multisets (in which multiplicity of an element can be any <a href="https://en-m-wikipedia-org.translate.goog/wiki/Real_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Real number">real number</a>)<sup id="cite_ref-25" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-25"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Blizard1990_26-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Blizard1990-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup></li> <li>Fuzzy multisets<sup id="cite_ref-Yager1986_27-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Yager1986-27"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup></li> <li>Rough multisets<sup id="cite_ref-Grzymala-Busse1987_28-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Grzymala-Busse1987-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup></li> <li>Hybrid sets<sup id="cite_ref-Loeb1992_29-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Loeb1992-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup></li> <li>Multisets whose multiplicity is any real-valued <a href="https://en-m-wikipedia-org.translate.goog/wiki/Step_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Step function">step function</a><sup id="cite_ref-Miyamoto2001_30-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Miyamoto2001-30"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></li> <li>Soft multisets<sup id="cite_ref-Alkhazaleh2011_31-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Alkhazaleh2011-31"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup></li> <li>Soft fuzzy multisets<sup id="cite_ref-Alkhazaleh2012_32-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Alkhazaleh2012-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup></li> <li>Named sets (unification of all generalizations of sets)<sup id="cite_ref-33" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-33"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-34" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-34"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-35" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-35"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-36" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-36"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup></li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=11&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-8 collapsible-block" id="mf-section-8"> <ul> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Frequency_(statistics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Frequency (statistics)">Frequency (statistics)</a> as multiplicity analog</li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quasi-set_theory?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Quasi-set theory">Quasi-sets</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Set_theory?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Set theory">Set theory</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Bag-of-words_model?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Bag-of-words model">Bag-of-words model</a></li> <li><span class="noviewer" typeof="mw:File"><a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Wikiversity_logo_2017.svg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" data-file-width="626" data-file-height="512"> </noscript><span class="lazy-image-placeholder" style="width: 16px;height: 13px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" data-alt="" data-width="16" data-height="13" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a></span> Learning materials related to <a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikiversity.org/wiki/Partitions_of_multisets" class="extiw" title="v:Partitions of multisets">Partitions of multisets</a> at Wikiversity</li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Notes">Notes</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=12&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Notes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-9 collapsible-block" id="mf-section-9"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style> <div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-17">^</a></b></span> <span class="reference-text">The formula <span class="texhtml">(<style data-mw-deduplicate="TemplateStyles:r1249493202">.mw-parser-output .RMbox{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.2)}.mw-parser-output .RMinline{float:none;width:100%;margin:0;border:none}.mw-parser-output table.routemap{padding:0;border:0;border-collapse:collapse;background:transparent;white-space:nowrap;line-height:1.2;margin:auto}.mw-parser-output table.routemap .RMcollapse{margin:0;border-collapse:collapse;vertical-align:middle}.mw-parser-output table.routemap .RMreplace{margin:0;border-collapse:collapse;vertical-align:middle;position:absolute;bottom:0}.mw-parser-output table.routemap .RMsi{display:inline;font-size:90%}.mw-parser-output table.routemap .RMir{padding:0!important}.mw-parser-output table.routemap .RMl1{padding:0 3px!important;text-align:left}.mw-parser-output table.routemap .RMr1{padding:0 3px!important;text-align:right}.mw-parser-output table.routemap .RMl{padding:0!important;text-align:right}.mw-parser-output table.routemap .RMr{padding:0!important;text-align:left}.mw-parser-output table.routemap .RMl4{padding:0 3px 0 0!important;text-align:left}.mw-parser-output table.routemap .RMr4{padding:0 0 0 3px!important;text-align:right}.mw-parser-output table.routemap>tbody>tr{line-height:1}.mw-parser-output table.routemap>tbody>tr>td,.mw-parser-output table.RMcollapse>tbody>tr>td,.mw-parser-output table.RMreplace>tbody>tr>td{padding:0;width:auto;vertical-align:middle;text-align:center}.mw-parser-output .RMir>div{display:inline-block;vertical-align:middle;padding:0;height:20px;min-height:20px}.mw-parser-output .RMir img{height:initial!important;max-width:initial!important}.mw-parser-output .RMir .RMov{position:relative}.mw-parser-output .RMir .RMov .RMic,.mw-parser-output .RMir .RMov .RMtx{position:absolute;left:0;top:0;padding:0}.mw-parser-output .RMir .RMtx{line-height:20px;height:20px;min-height:20px;vertical-align:middle;text-align:center}.mw-parser-output .RMir .RMsp{height:20px;min-height:20px}.mw-parser-output .RMir .RMtx>abbr,.mw-parser-output .RMir .RMtx>div{line-height:.975;display:inline-block;vertical-align:middle}.mw-parser-output .RMir .RMts{font-size:90%;transform:scaleX(.89)}.mw-parser-output .RMir .RMf_{height:5px;min-height:5px;width:20px;min-width:20px}.mw-parser-output .RMir .RMfm{height:100%;min-height:100%;width:4px;min-width:4px;margin:0 auto}.mw-parser-output .RMir .RMo{width:2.5px;min-width:2.5px}.mw-parser-output .RMir .RMc{width:5px;min-width:5px}.mw-parser-output .RMir .RMoc{width:7.5px;min-width:7.5px}.mw-parser-output .RMir .RMd{width:10px;min-width:10px}.mw-parser-output .RMir .RMod{width:12.5px;min-width:12.5px}.mw-parser-output .RMir .RMcd{width:15px;min-width:15px}.mw-parser-output .RMir .RMocd{width:17.5px;min-width:17.5px}.mw-parser-output .RMir .RM_{width:20px;min-width:20px}.mw-parser-output .RMir .RM_o{width:22.5px;min-width:22.5px}.mw-parser-output .RMir .RM_c{width:25px;min-width:25px}.mw-parser-output .RMir .RM_oc{width:27.5px;min-width:27.5px}.mw-parser-output .RMir .RM_d{width:30px;min-width:30px}.mw-parser-output .RMir .RM_od{width:32.5px;min-width:32.5px}.mw-parser-output .RMir .RM_cd{width:35px;min-width:35px}.mw-parser-output .RMir .RM_ocd{width:37.5px;min-width:37.5px}.mw-parser-output .RMir .RMb{width:40px;min-width:40px}.mw-parser-output .RMir .RMcb{width:45px;min-width:45px}.mw-parser-output .RMir .RMdb{width:50px;min-width:50px}.mw-parser-output .RMir .RMcdb{width:55px;min-width:55px}.mw-parser-output .RMir .RM_b{width:60px;min-width:60px}.mw-parser-output .RMir .RM_cb{width:65px;min-width:65px}.mw-parser-output .RMir .RM_db{width:70px;min-width:70px}.mw-parser-output .RMir .RM_cdb{width:75px;min-width:75px}.mw-parser-output .RMir .RMs{width:80px;min-width:80px}.mw-parser-output .RMir .RMds{width:90px;min-width:90px}.mw-parser-output .RMir .RM_s{width:100px;min-width:100px}.mw-parser-output .RMir .RM_ds{width:110px;min-width:110px}.mw-parser-output .RMir .RMbs{width:120px;min-width:120px}.mw-parser-output .RMir .RMdbs{width:130px;min-width:130px}.mw-parser-output .RMir .RM_bs{width:140px;min-width:140px}.mw-parser-output .RMir .RM_dbs{width:150px;min-width:150px}.mw-parser-output .RMir .RMw{width:160px;min-width:160px}.mw-parser-output .RMir .RM_w{width:180px;min-width:180px}.mw-parser-output .RMir .RMbw{width:200px;min-width:200px}.mw-parser-output .RMir .RM_bw{width:220px;min-width:220px}.mw-parser-output .RMir .RMsw{width:240px;min-width:240px}.mw-parser-output .RMir .RM_sw{width:260px;min-width:260px}.mw-parser-output .RMir .RMbsw{width:280px;min-width:280px}.mw-parser-output .RMir .RM_bsw{width:300px;min-width:300px}.mw-parser-output .RMsplit{font-weight:inherit;color:black;background:transparent;margin-top:-3px;margin-bottom:-3px;width:initial!important;box-sizing:initial;display:inline-table;vertical-align:middle}.mw-parser-output table.routemap .RMl>.RMsplit,.mw-parser-output table.routemap .RMr>.RMsplit{font-size:90%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .RMbox{background:inherit!important;color:white}html.skin-theme-clientpref-night .mw-parser-output .RMbox img{filter:contrast(0.4)}html.skin-theme-clientpref-night .mw-parser-output .navbar-brackets a abbr{color:white!important}html.skin-theme-clientpref-night .mw-parser-output .RMbox th{background:inherit!important;color:inherit!important;border-bottom:solid 1px #be2d2c}html.skin-theme-clientpref-night .mw-parser-output .RMbox small{color:white}html.skin-theme-clientpref-night .mw-parser-output .RMsplit{color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .RMbox img{filter:contrast(0.4)}html.skin-theme-clientpref-os .mw-parser-output .navbar-brackets a abbr{color:white!important}html.skin-theme-clientpref-os .mw-parser-output .RMbox{background:inherit!important;color:white}html.skin-theme-clientpref-os .mw-parser-output .RMbox th{background:inherit!important;color:inherit!important;border-bottom:solid 1px #be2d2c}html.skin-theme-clientpref-os .mw-parser-output .RMbox small{color:white}html.skin-theme-clientpref-os .mw-parser-output .RMsplit{color:white}}</style> <table cellspacing="0" cellpadding="0" class="RMsplit" style="text-align:center;"> <tbody> <tr> <td style="text-align:inherit;padding:0;line-height:.9;font-size:inherit"><i>n</i>+<i>k</i> −1</td> </tr> <tr> <td style="text-align:inherit;padding:0;line-height:.9;font-size:inherit"><i>k</i></td> </tr> </tbody> </table> )</span> does not work for <span class="texhtml"><i>n</i> = 0</span> (where necessarily also <span class="texhtml"><i>k</i> = 0</span>) if viewed as an ordinary binomial coefficient since it evaluates to <span class="texhtml">( <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1249493202"> <table cellspacing="0" cellpadding="0" class="RMsplit" style="text-align:center;"> <tbody> <tr> <td style="text-align:inherit;padding:0;line-height:.9;font-size:inherit">−1</td> </tr> <tr> <td style="text-align:inherit;padding:0;line-height:.9;font-size:inherit">0</td> </tr> </tbody> </table> )</span>, however the formula <span class="texhtml"><i>n</i>(<i>n</i>+1)(<i>n</i>+2)...(<i>n</i>+<i>k</i> −1)/<i>k</i>!</span> does work in this case because the numerator is an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Empty_product?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Empty product">empty product</a> giving <span class="texhtml">1/0! = 1</span>. However <span class="texhtml">( <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1249493202"> <table cellspacing="0" cellpadding="0" class="RMsplit" style="text-align:center;"> <tbody> <tr> <td style="text-align:inherit;padding:0;line-height:.9;font-size:inherit"><i>n</i>+<i>k</i> −1</td> </tr> <tr> <td style="text-align:inherit;padding:0;line-height:.9;font-size:inherit"><i>k</i></td> </tr> </tbody> </table> )</span> does make sense for <span class="texhtml"><i>n</i> = <i>k</i> = 0</span> if interpreted as a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Binomial_coefficient?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Binomial_coefficients_as_polynomials" title="Binomial coefficient">generalized binomial coefficient</a>; indeed <span class="texhtml">( <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1249493202"> <table cellspacing="0" cellpadding="0" class="RMsplit" style="text-align:center;"> <tbody> <tr> <td style="text-align:inherit;padding:0;line-height:.9;font-size:inherit"><i>n</i>+<i>k</i> −1</td> </tr> <tr> <td style="text-align:inherit;padding:0;line-height:.9;font-size:inherit"><i>k</i></td> </tr> </tbody> </table> )</span> seen as a generalized binomial coefficient equals the extreme right-hand side of the above equation.</span></li> </ol> </div> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=edit&amp;section=13&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-10 collapsible-block" id="mf-section-10"> <div class="mw-references-wrap mw-references-columns"> <ol class="references"> <li id="cite_note-Cantor-1"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Cantor_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCantorJourdain1895" class="citation journal cs1 cs1-prop-long-vol cs1-prop-foreign-lang-source"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Georg_Cantor?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Georg Cantor">Cantor, Georg</a>; Jourdain, Philip E.B. (Translator) (1895). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://web.archive.org/web/20110610133240/http://brinkmann-du.de/mathe/fos/fos01_03.htm">"beiträge zur begründung der transfiniten Mengenlehre"</a> [contributions to the founding of the theory of transfinite numbers]. <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematische_Annalen?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mathematische Annalen">Mathematische Annalen</a></i> (in German). xlvi, xlix. New York Dover Publications (1954 English translation): 481–512, 207–246. Archived from <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://brinkmann-du.de/mathe/fos/fos01_03.htm">the original</a> on 2011-06-10. <q>By a set (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Gansen) M of definite and <b>separate</b> objects m (p.85)</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=beitr%C3%A4ge+zur+begr%C3%BCndung+der+transfiniten+Mengenlehre&amp;rft.volume=xlvi%3Bxlix&amp;rft.pages=481-512%2C+207-246&amp;rft.date=1895&amp;rft.aulast=Cantor&amp;rft.aufirst=Georg&amp;rft.au=Jourdain%2C+Philip+E.B.+%28Translator%29&amp;rft_id=http%3A%2F%2Fbrinkmann-du.de%2Fmathe%2Ffos%2Ffos01_03.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-2">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHein2003" class="citation book cs1">Hein, James L. (2003). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/discretemathemat00hein_966"><i>Discrete mathematics</i></a></span>. Jones &amp; Bartlett Publishers. pp.&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/discretemathemat00hein_966/page/n43">29</a>–30. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-7637-2210-3?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/0-7637-2210-3"><bdi>0-7637-2210-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Discrete+mathematics&amp;rft.pages=29-30&amp;rft.pub=Jones+%26+Bartlett+Publishers&amp;rft.date=2003&amp;rft.isbn=0-7637-2210-3&amp;rft.aulast=Hein&amp;rft.aufirst=James+L.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdiscretemathemat00hein_966&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Knuth1998-3"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Knuth1998_3-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Knuth1998_3-1"><sup><i><b>b</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Knuth1998_3-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1998" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Donald_Knuth?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Donald Knuth">Knuth, Donald E.</a> (1998). <i>Seminumerical Algorithms</i>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/The_Art_of_Computer_Programming?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="The Art of Computer Programming">The Art of Computer Programming</a>. Vol.&nbsp;2 (3rd&nbsp;ed.). <a href="https://en-m-wikipedia-org.translate.goog/wiki/Addison_Wesley?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Addison Wesley">Addison Wesley</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-201-89684-2?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/0-201-89684-2"><bdi>0-201-89684-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Seminumerical+Algorithms&amp;rft.series=The+Art+of+Computer+Programming&amp;rft.edition=3rd&amp;rft.pub=Addison+Wesley&amp;rft.date=1998&amp;rft.isbn=0-201-89684-2&amp;rft.aulast=Knuth&amp;rft.aufirst=Donald+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Blizard1989-4"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Blizard1989_4-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlizard1989" class="citation journal cs1">Blizard, Wayne D (1989). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://projecteuclid.org/download/pdf_1/euclid.ndjfl/1093634995">"Multiset theory"</a>. <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Notre_Dame_Journal_of_Formal_Logic?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Notre Dame Journal of Formal Logic">Notre Dame Journal of Formal Logic</a></i>. <b>30</b> (1): 36–66. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1305%252Fndjfl%252F1093634995">10.1305/ndjfl/1093634995</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notre+Dame+Journal+of+Formal+Logic&amp;rft.atitle=Multiset+theory&amp;rft.volume=30&amp;rft.issue=1&amp;rft.pages=36-66&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1305%2Fndjfl%2F1093634995&amp;rft.aulast=Blizard&amp;rft.aufirst=Wayne+D&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Fdownload%2Fpdf_1%2Feuclid.ndjfl%2F1093634995&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Blizard1991-5"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Blizard1991_5-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Blizard1991_5-1"><sup><i><b>b</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Blizard1991_5-2"><sup><i><b>c</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Blizard1991_5-3"><sup><i><b>d</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Blizard1991_5-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlizard1991" class="citation journal cs1">Blizard, Wayne D. (1991). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://projecteuclid.org/download/pdf_1/euclid.rml/1204834739">"The Development of Multiset Theory"</a>. <i>Modern Logic</i>. <b>1</b> (4): 319–352.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Modern+Logic&amp;rft.atitle=The+Development+of+Multiset+Theory&amp;rft.volume=1&amp;rft.issue=4&amp;rft.pages=319-352&amp;rft.date=1991&amp;rft.aulast=Blizard&amp;rft.aufirst=Wayne+D.&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Fdownload%2Fpdf_1%2Feuclid.rml%2F1204834739&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Rulifson1972-6"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Rulifson1972_6-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRulifsonDerksonWaldinger1972" class="citation techreport cs1">Rulifson, J. F.; Derkson, J. A.; Waldinger, R. J. (November 1972). <i>QA4: A Procedural Calculus for Intuitive Reasoning</i> (Technical report). SRI International. 73.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=report&amp;rft.btitle=QA4%3A+A+Procedural+Calculus+for+Intuitive+Reasoning&amp;rft.pub=SRI+International&amp;rft.date=1972-11&amp;rft.aulast=Rulifson&amp;rft.aufirst=J.+F.&amp;rft.au=Derkson%2C+J.+A.&amp;rft.au=Waldinger%2C+R.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Singh2007-7"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Singh2007_7-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Singh2007_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSinghIbrahimYohannaSingh2007" class="citation journal cs1">Singh, D.; Ibrahim, A. M.; Yohanna, T.; Singh, J. N. (2007). "An overview of the applications of multisets". <i>Novi Sad Journal of Mathematics</i>. <b>37</b> (2): 73–92.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Novi+Sad+Journal+of+Mathematics&amp;rft.atitle=An+overview+of+the+applications+of+multisets&amp;rft.volume=37&amp;rft.issue=2&amp;rft.pages=73-92&amp;rft.date=2007&amp;rft.aulast=Singh&amp;rft.aufirst=D.&amp;rft.au=Ibrahim%2C+A.+M.&amp;rft.au=Yohanna%2C+T.&amp;rft.au=Singh%2C+J.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Angelelli1965-8"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Angelelli1965_8-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAngelelli1965" class="citation journal cs1">Angelelli, I. (1965). "Leibniz's misunderstanding of Nizolius' notion of 'multitudo'<span class="cs1-kern-right"></span>". <i>Notre Dame Journal of Formal Logic</i> (6): 319–322.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notre+Dame+Journal+of+Formal+Logic&amp;rft.atitle=Leibniz%27s+misunderstanding+of+Nizolius%27+notion+of+%27multitudo%27&amp;rft.issue=6&amp;rft.pages=319-322&amp;rft.date=1965&amp;rft.aulast=Angelelli&amp;rft.aufirst=I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-9">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKircher1650" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Athanasius_Kircher?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Athanasius Kircher">Kircher, Athanasius</a> (1650). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/bub_gb_97xCAAAAcAAJ"><i>Musurgia Universalis</i></a>. Rome: Corbelletti.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Musurgia+Universalis&amp;rft.place=Rome&amp;rft.pub=Corbelletti&amp;rft.date=1650&amp;rft.aulast=Kircher&amp;rft.aufirst=Athanasius&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbub_gb_97xCAAAAcAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-10">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrestet1675" class="citation book cs1">Prestet, Jean (1675). <i>Elemens des Mathematiques</i>. Paris: André Pralard.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elemens+des+Mathematiques&amp;rft.place=Paris&amp;rft.pub=Andr%C3%A9+Pralard&amp;rft.date=1675&amp;rft.aulast=Prestet&amp;rft.aufirst=Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-11">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWallis1685" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/John_Wallis?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="John Wallis">Wallis, John</a> (1685). <i>A treatise of algebra</i>. London: John Playford.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+treatise+of+algebra&amp;rft.place=London&amp;rft.pub=John+Playford&amp;rft.date=1685&amp;rft.aulast=Wallis&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-12">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDedekind1888" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Richard_Dedekind?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Richard Dedekind">Dedekind, Richard</a> (1888). <i>Was sind und was sollen die Zahlen?</i>. Braunschweig: Vieweg. p.&nbsp;114.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Was+sind+und+was+sollen+die+Zahlen%3F&amp;rft.place=Braunschweig&amp;rft.pages=114&amp;rft.pub=Vieweg&amp;rft.date=1888&amp;rft.aulast=Dedekind&amp;rft.aufirst=Richard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-syropoulos-13"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-syropoulos_13-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-syropoulos_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSyropoulos2000" class="citation conference cs1">Syropoulos, Apostolos (2000). "Mathematics of multisets". In Calude, Cristian; Paun, Gheorghe; Rozenberg, Grzegorz; Salomaa, Arto (eds.). <i>Multiset Processing, Mathematical, Computer Science, and Molecular Computing Points of View [Workshop on Multiset Processing, WMP 2000, Curtea de Arges, Romania, August 21–25, 2000]</i>. Lecture Notes in Computer Science. Vol.&nbsp;2235. Springer. pp.&nbsp;347–358. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1007%252F3-540-45523-X_17">10.1007/3-540-45523-X_17</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Mathematics+of+multisets&amp;rft.btitle=Multiset+Processing%2C+Mathematical%2C+Computer+Science%2C+and+Molecular+Computing+Points+of+View+%5BWorkshop+on+Multiset+Processing%2C+WMP+2000%2C+Curtea+de+Arges%2C+Romania%2C+August+21%E2%80%9325%2C+2000%5D&amp;rft.series=Lecture+Notes+in+Computer+Science&amp;rft.pages=347-358&amp;rft.pub=Springer&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1007%2F3-540-45523-X_17&amp;rft.aulast=Syropoulos&amp;rft.aufirst=Apostolos&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Whitney-14"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Whitney_14-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhitney1933" class="citation journal cs1">Whitney, Hassler (1933). "Characteristic Functions and the Algebra of Logic". <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Annals_of_Mathematics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Annals of Mathematics">Annals of Mathematics</a></i>. <b>34</b> (3): 405–414. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.2307%252F1968168">10.2307/1968168</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/JSTOR_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://www.jstor.org/stable/1968168">1968168</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Mathematics&amp;rft.atitle=Characteristic+Functions+and+the+Algebra+of+Logic&amp;rft.volume=34&amp;rft.issue=3&amp;rft.pages=405-414&amp;rft.date=1933&amp;rft_id=info%3Adoi%2F10.2307%2F1968168&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1968168%23id-name%3DJSTOR&amp;rft.aulast=Whitney&amp;rft.aufirst=Hassler&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-15">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonro1987" class="citation journal cs1">Monro, G. P. (1987). "The Concept of Multiset". <i>Zeitschrift für Mathematische Logik und Grundlagen der Mathematik</i>. <b>33</b> (2): 171–178. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1002%252Fmalq.19870330212">10.1002/malq.19870330212</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Zeitschrift+f%C3%BCr+Mathematische+Logik+und+Grundlagen+der+Mathematik&amp;rft.atitle=The+Concept+of+Multiset&amp;rft.volume=33&amp;rft.issue=2&amp;rft.pages=171-178&amp;rft.date=1987&amp;rft_id=info%3Adoi%2F10.1002%2Fmalq.19870330212&amp;rft.aulast=Monro&amp;rft.aufirst=G.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-16">^</a></b></span> <span class="reference-text">Cf., for instance, Richard Brualdi, <i>Introductory Combinatorics</i>, Pearson.</span></li> <li id="cite_note-Aigner1979-18"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Aigner1979_18-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAigner1979" class="citation book cs1">Aigner, M. (1979). <i>Combinatorial Theory</i>. New York/Berlin: Springer Verlag.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Combinatorial+Theory&amp;rft.place=New+York%2FBerlin&amp;rft.pub=Springer+Verlag&amp;rft.date=1979&amp;rft.aulast=Aigner&amp;rft.aufirst=M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Anderson1987-19"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Anderson1987_19-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnderson1987" class="citation book cs1">Anderson, I. (1987). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/combinatoricsoff0000ande"><i>Combinatorics of Finite Sets</i></a></span>. Oxford: Clarendon Press. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-19-853367-2?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-19-853367-2"><bdi>978-0-19-853367-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Combinatorics+of+Finite+Sets&amp;rft.place=Oxford&amp;rft.pub=Clarendon+Press&amp;rft.date=1987&amp;rft.isbn=978-0-19-853367-2&amp;rft.aulast=Anderson&amp;rft.aufirst=I.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcombinatoricsoff0000ande&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Stanley1997-20"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Stanley1997_20-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStanley1997" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Richard_P._Stanley?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Richard P. Stanley">Stanley, Richard P.</a> (1997). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www-math.mit.edu/~rstan/ec/"><i>Enumerative Combinatorics</i></a>. Vol.&nbsp;1. Cambridge University Press. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-521-55309-1?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/0-521-55309-1"><bdi>0-521-55309-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Enumerative+Combinatorics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1997&amp;rft.isbn=0-521-55309-1&amp;rft.aulast=Stanley&amp;rft.aufirst=Richard+P.&amp;rft_id=http%3A%2F%2Fwww-math.mit.edu%2F~rstan%2Fec%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Stanley1999-21"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Stanley1999_21-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStanley1999" class="citation book cs1">Stanley, Richard P. (1999). <i>Enumerative Combinatorics</i>. Vol.&nbsp;2. Cambridge University Press. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-521-56069-1?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/0-521-56069-1"><bdi>0-521-56069-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Enumerative+Combinatorics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1999&amp;rft.isbn=0-521-56069-1&amp;rft.aulast=Stanley&amp;rft.aufirst=Richard+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-GrumbachMilo1996-22"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrumbachMilo1996_22-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrumbachMilo1996" class="citation journal cs1">Grumbach, S.; Milo, T (1996). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1006%252Fjcss.1996.0042">"Towards tractable algebras for bags"</a>. <i>Journal of Computer and System Sciences</i>. <b>52</b> (3): 570–588. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1006%252Fjcss.1996.0042">10.1006/jcss.1996.0042</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Computer+and+System+Sciences&amp;rft.atitle=Towards+tractable+algebras+for+bags&amp;rft.volume=52&amp;rft.issue=3&amp;rft.pages=570-588&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1006%2Fjcss.1996.0042&amp;rft.aulast=Grumbach&amp;rft.aufirst=S.&amp;rft.au=Milo%2C+T&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1006%252Fjcss.1996.0042&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-LibkinWong1994-23"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-LibkinWong1994_23-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLibkinWong1994" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Leonid_Libkin?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Leonid Libkin">Libkin, L.</a>; Wong, L. (1994). "Some properties of query languages for bags". <i>Proceedings of the Workshop on Database Programming Languages</i>. Springer Verlag. pp.&nbsp;97–114.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Some+properties+of+query+languages+for+bags&amp;rft.btitle=Proceedings+of+the+Workshop+on+Database+Programming+Languages&amp;rft.pages=97-114&amp;rft.pub=Springer+Verlag&amp;rft.date=1994&amp;rft.aulast=Libkin&amp;rft.aufirst=L.&amp;rft.au=Wong%2C+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-LibkingWong1995-24"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-LibkingWong1995_24-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLibkinWong1995" class="citation journal cs1">Libkin, L.; Wong, L. (1995). "On representation and querying incomplete information in databases with bags". <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Information_Processing_Letters?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Information Processing Letters">Information Processing Letters</a></i>. <b>56</b> (4): 209–214. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1016%252F0020-0190%252895%252900154-5">10.1016/0020-0190(95)00154-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Information+Processing+Letters&amp;rft.atitle=On+representation+and+querying+incomplete+information+in+databases+with+bags&amp;rft.volume=56&amp;rft.issue=4&amp;rft.pages=209-214&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1016%2F0020-0190%2895%2900154-5&amp;rft.aulast=Libkin&amp;rft.aufirst=L.&amp;rft.au=Wong%2C+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-25">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlizard1989" class="citation journal cs1">Blizard, Wayne D. (1989). "Real-valued Multisets and Fuzzy Sets". <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Fuzzy_Sets_and_Systems?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Fuzzy Sets and Systems">Fuzzy Sets and Systems</a></i>. <b>33</b>: 77–97. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1016%252F0165-0114%252889%252990218-2">10.1016/0165-0114(89)90218-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fuzzy+Sets+and+Systems&amp;rft.atitle=Real-valued+Multisets+and+Fuzzy+Sets&amp;rft.volume=33&amp;rft.pages=77-97&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1016%2F0165-0114%2889%2990218-2&amp;rft.aulast=Blizard&amp;rft.aufirst=Wayne+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Blizard1990-26"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Blizard1990_26-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlizard1990" class="citation journal cs1">Blizard, Wayne D. (1990). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1305%252Fndjfl%252F1093635499">"Negative Membership"</a>. <i>Notre Dame Journal of Formal Logic</i>. <b>31</b> (1): 346–368. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1305%252Fndjfl%252F1093635499">10.1305/ndjfl/1093635499</a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:42766971">42766971</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notre+Dame+Journal+of+Formal+Logic&amp;rft.atitle=Negative+Membership&amp;rft.volume=31&amp;rft.issue=1&amp;rft.pages=346-368&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1305%2Fndjfl%2F1093635499&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A42766971%23id-name%3DS2CID&amp;rft.aulast=Blizard&amp;rft.aufirst=Wayne+D.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1305%252Fndjfl%252F1093635499&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Yager1986-27"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Yager1986_27-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYager1986" class="citation journal cs1">Yager, R. R. (1986). "On the Theory of Bags". <i>International Journal of General Systems</i>. <b>13</b>: 23–37. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1080%252F03081078608934952">10.1080/03081078608934952</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+General+Systems&amp;rft.atitle=On+the+Theory+of+Bags&amp;rft.volume=13&amp;rft.pages=23-37&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1080%2F03081078608934952&amp;rft.aulast=Yager&amp;rft.aufirst=R.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Grzymala-Busse1987-28"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Grzymala-Busse1987_28-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrzymala-Busse1987" class="citation book cs1">Grzymala-Busse, J. (1987). "Learning from examples based on rough multisets". <i>Proceedings of the 2nd International Symposium on Methodologies for Intelligent Systems</i>. Charlotte, North Carolina. pp.&nbsp;325–332.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Learning+from+examples+based+on+rough+multisets&amp;rft.btitle=Proceedings+of+the+2nd+International+Symposium+on+Methodologies+for+Intelligent+Systems&amp;rft.place=Charlotte%2C+North+Carolina&amp;rft.pages=325-332&amp;rft.date=1987&amp;rft.aulast=Grzymala-Busse&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="https://en-m-wikipedia-org.translate.goog/wiki/Template:Cite_book?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="https://en-m-wikipedia-org.translate.goog/wiki/Category:CS1_maint:_location_missing_publisher?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Category:CS1 maint: location missing publisher">link</a>)</span></span></li> <li id="cite_note-Loeb1992-29"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Loeb1992_29-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoeb1992" class="citation journal cs1">Loeb, D. (1992). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1016%252F0001-8708%252892%252990011-9">"Sets with a negative numbers of elements"</a>. <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Advances_in_Mathematics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Advances in Mathematics">Advances in Mathematics</a></i>. <b>91</b>: 64–74. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1016%252F0001-8708%252892%252990011-9">10.1016/0001-8708(92)90011-9</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Mathematics&amp;rft.atitle=Sets+with+a+negative+numbers+of+elements&amp;rft.volume=91&amp;rft.pages=64-74&amp;rft.date=1992&amp;rft_id=info%3Adoi%2F10.1016%2F0001-8708%2892%2990011-9&amp;rft.aulast=Loeb&amp;rft.aufirst=D.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0001-8708%252892%252990011-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Miyamoto2001-30"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Miyamoto2001_30-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiyamoto2001" class="citation book cs1">Miyamoto, S. (2001). "Fuzzy Multisets and Their Generalizations". <i>Multiset Processing</i>. Lecture Notes in Computer Science. Vol.&nbsp;2235. pp.&nbsp;225–235. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1007%252F3-540-45523-X_11">10.1007/3-540-45523-X_11</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-3-540-43063-6?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-3-540-43063-6"><bdi>978-3-540-43063-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Fuzzy+Multisets+and+Their+Generalizations&amp;rft.btitle=Multiset+Processing&amp;rft.series=Lecture+Notes+in+Computer+Science&amp;rft.pages=225-235&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1007%2F3-540-45523-X_11&amp;rft.isbn=978-3-540-43063-6&amp;rft.aulast=Miyamoto&amp;rft.aufirst=S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Alkhazaleh2011-31"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Alkhazaleh2011_31-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlkhazalehSallehHassan2011" class="citation journal cs1">Alkhazaleh, S.; Salleh, A. R.; Hassan, N. (2011). "Soft Multisets Theory". <i>Applied Mathematical Sciences</i>. <b>5</b> (72): 3561–3573.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Mathematical+Sciences&amp;rft.atitle=Soft+Multisets+Theory&amp;rft.volume=5&amp;rft.issue=72&amp;rft.pages=3561-3573&amp;rft.date=2011&amp;rft.aulast=Alkhazaleh&amp;rft.aufirst=S.&amp;rft.au=Salleh%2C+A.+R.&amp;rft.au=Hassan%2C+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-Alkhazaleh2012-32"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Alkhazaleh2012_32-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlkhazalehSalleh2012" class="citation journal cs1">Alkhazaleh, S.; Salleh, A. R. (2012). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1155%252F2012%252F350603">"Fuzzy Soft Multiset Theory"</a>. <i>Abstract and Applied Analysis</i>. <b>2012</b>: 1–20. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1155%252F2012%252F350603">10.1155/2012/350603</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Abstract+and+Applied+Analysis&amp;rft.atitle=Fuzzy+Soft+Multiset+Theory&amp;rft.volume=2012&amp;rft.pages=1-20&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1155%2F2012%2F350603&amp;rft.aulast=Alkhazaleh&amp;rft.aufirst=S.&amp;rft.au=Salleh%2C+A.+R.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2012%252F350603&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-33">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurgin1990" class="citation book cs1">Burgin, Mark (1990). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.blogg.org/blog-30140-date-2005-10-26.html">"Theory of Named Sets as a Foundational Basis for Mathematics"</a>. <i>Structures in Mathematical Theories</i>. San Sebastian. pp.&nbsp;417–420.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Theory+of+Named+Sets+as+a+Foundational+Basis+for+Mathematics&amp;rft.btitle=Structures+in+Mathematical+Theories&amp;rft.pages=417-420&amp;rft.pub=San+Sebastian&amp;rft.date=1990&amp;rft.aulast=Burgin&amp;rft.aufirst=Mark&amp;rft_id=http%3A%2F%2Fwww.blogg.org%2Fblog-30140-date-2005-10-26.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-34">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurgin1992" class="citation journal cs1">Burgin, Mark (1992). "On the concept of a multiset in cybernetics". <i>Cybernetics and System Analysis</i>. <b>3</b>: 165–167.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cybernetics+and+System+Analysis&amp;rft.atitle=On+the+concept+of+a+multiset+in+cybernetics&amp;rft.volume=3&amp;rft.pages=165-167&amp;rft.date=1992&amp;rft.aulast=Burgin&amp;rft.aufirst=Mark&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-35">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurgin2004" class="citation arxiv cs1">Burgin, Mark (2004). "Unified Foundations of Mathematics". <a href="https://en-m-wikipedia-org.translate.goog/wiki/ArXiv_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://arxiv.org/abs/math/0403186">math/0403186</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Unified+Foundations+of+Mathematics&amp;rft.date=2004&amp;rft_id=info%3Aarxiv%2Fmath%2F0403186&amp;rft.aulast=Burgin&amp;rft.aufirst=Mark&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-36">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurgin2011" class="citation book cs1">Burgin, Mark (2011). <i>Theory of Named Sets</i>. Mathematics Research Developments. Nova Science Pub Inc. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-1-61122-788-8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-1-61122-788-8"><bdi>978-1-61122-788-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Named+Sets&amp;rft.series=Mathematics+Research+Developments&amp;rft.pub=Nova+Science+Pub+Inc&amp;rft.date=2011&amp;rft.isbn=978-1-61122-788-8&amp;rft.aulast=Burgin&amp;rft.aufirst=Mark&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AMultiset" class="Z3988"></span></span></li> </ol> </div><!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐vrhlg Cached time: 20241122140558 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.652 seconds Real time usage: 0.846 seconds Preprocessor visited node count: 8504/1000000 Post‐expand include size: 84479/2097152 bytes Template argument size: 11485/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 148382/5000000 bytes Lua time usage: 0.290/10.000 seconds Lua memory usage: 7284965/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 628.639 1 -total 21.96% 138.071 63 Template:Math 21.51% 135.241 16 Template:Cite_journal 13.08% 82.238 1 Template:Short_description 12.35% 77.639 1 Template:Efn 10.58% 66.487 4 Template:BSsplit 9.33% 58.622 15 Template:Cite_book 8.82% 55.453 9 Template:Rp 7.71% 48.454 9 Template:R/superscript 7.63% 47.969 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:305303-0!canonical and timestamp 20241122140558 and revision id 1252743927. Rendering was triggered because: page-view --> </section> </div><!-- MobileFormatter took 0.045 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Retrieved from "<a dir="ltr" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/w/index.php?title%3DMultiset%26oldid%3D1252743927">https://en.wikipedia.org/w/index.php?title=Multiset&amp;oldid=1252743927</a>" </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Multiset&amp;action=history&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Gravidus25" data-user-gender="male" data-timestamp="1729625149"> <span>Last edited on 22 October 2024, at 19:25</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ca.wikipedia.org/wiki/Multiconjunt" title="Multiconjunt – Catalan" lang="ca" hreflang="ca" data-title="Multiconjunt" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://cs.wikipedia.org/wiki/Multimno%25C5%25BEina" title="Multimnožina – Czech" lang="cs" hreflang="cs" data-title="Multimnožina" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://de.wikipedia.org/wiki/Multimenge" title="Multimenge – German" lang="de" hreflang="de" data-title="Multimenge" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://es.wikipedia.org/wiki/Multiconjunto" title="Multiconjunto – Spanish" lang="es" hreflang="es" data-title="Multiconjunto" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://eo.wikipedia.org/wiki/Multaro" title="Multaro – Esperanto" lang="eo" hreflang="eo" data-title="Multaro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li> <li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://eu.wikipedia.org/wiki/Multimultzo" title="Multimultzo – Basque" lang="eu" hreflang="eu" data-title="Multimultzo" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fa.wikipedia.org/wiki/%25DA%2586%25D9%2586%25D8%25AF%25D9%2585%25D8%25AC%25D9%2585%25D9%2588%25D8%25B9%25D9%2587" title="چندمجموعه – Persian" lang="fa" hreflang="fa" data-title="چندمجموعه" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/wiki/Multiensemble" title="Multiensemble – French" lang="fr" hreflang="fr" data-title="Multiensemble" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ko.wikipedia.org/wiki/%25EC%25A4%2591%25EB%25B3%25B5%25EC%25A7%2591%25ED%2595%25A9" title="중복집합 – Korean" lang="ko" hreflang="ko" data-title="중복집합" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://it.wikipedia.org/wiki/Multiinsieme" title="Multiinsieme – Italian" lang="it" hreflang="it" data-title="Multiinsieme" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://he.wikipedia.org/wiki/%25D7%259E%25D7%2595%25D7%259C%25D7%2598%25D7%2599_%25D7%25A7%25D7%2591%25D7%2595%25D7%25A6%25D7%2594" title="מולטי קבוצה – Hebrew" lang="he" hreflang="he" data-title="מולטי קבוצה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nl.wikipedia.org/wiki/Multiset" title="Multiset – Dutch" lang="nl" hreflang="nl" data-title="Multiset" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ja.wikipedia.org/wiki/%25E5%25A4%259A%25E9%2587%258D%25E9%259B%2586%25E5%2590%2588" title="多重集合 – Japanese" lang="ja" hreflang="ja" data-title="多重集合" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pl.wikipedia.org/wiki/Multizbi%25C3%25B3r" title="Multizbiór – Polish" lang="pl" hreflang="pl" data-title="Multizbiór" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pt.wikipedia.org/wiki/Multiconjunto" title="Multiconjunto – Portuguese" lang="pt" hreflang="pt" data-title="Multiconjunto" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ro.wikipedia.org/wiki/Multimul%25C8%259Bime" title="Multimulțime – Romanian" lang="ro" hreflang="ro" data-title="Multimulțime" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ru.wikipedia.org/wiki/%25D0%259C%25D1%2583%25D0%25BB%25D1%258C%25D1%2582%25D0%25B8%25D0%25BC%25D0%25BD%25D0%25BE%25D0%25B6%25D0%25B5%25D1%2581%25D1%2582%25D0%25B2%25D0%25BE" title="Мультимножество – Russian" lang="ru" hreflang="ru" data-title="Мультимножество" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://simple.wikipedia.org/wiki/Multiset" title="Multiset – Simple English" lang="en-simple" hreflang="en-simple" data-title="Multiset" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li> <li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sl.wikipedia.org/wiki/Ve%25C4%258Dkratna_mno%25C5%25BEica" title="Večkratna množica – Slovenian" lang="sl" hreflang="sl" data-title="Večkratna množica" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sv.wikipedia.org/wiki/Multim%25C3%25A4ngd" title="Multimängd – Swedish" lang="sv" hreflang="sv" data-title="Multimängd" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ta.wikipedia.org/wiki/%25E0%25AE%25AA%25E0%25AE%25B2%25E0%25AF%258D%25E0%25AE%2595%25E0%25AE%25A3%25E0%25AE%25AE%25E0%25AF%258D" title="பல்கணம் – Tamil" lang="ta" hreflang="ta" data-title="பல்கணம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li> <li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://tr.wikipedia.org/wiki/%25C3%2587okluk%25C3%25BCme" title="Çokluküme – Turkish" lang="tr" hreflang="tr" data-title="Çokluküme" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://uk.wikipedia.org/wiki/%25D0%259C%25D1%2583%25D0%25BB%25D1%258C%25D1%2582%25D0%25B8%25D0%25BC%25D0%25BD%25D0%25BE%25D0%25B6%25D0%25B8%25D0%25BD%25D0%25B0" title="Мультимножина – Ukrainian" lang="uk" hreflang="uk" data-title="Мультимножина" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh-yue.wikipedia.org/wiki/%25E5%25A4%259A%25E9%2587%258D%25E9%259B%2586" title="多重集 – Cantonese" lang="yue" hreflang="yue" data-title="多重集" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh.wikipedia.org/wiki/%25E5%25A4%259A%25E9%2587%258D%25E9%259B%2586" title="多重集 – Chinese" lang="zh" hreflang="zh" data-title="多重集" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">This page was last edited on 22 October 2024, at 19:25<span class="anonymous-show">&nbsp;(UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Disclaimers</a></li> <li id="footer-places-contact"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://stats.wikimedia.org/%23/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/w/index.php?title%3DMultiset%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-tggkq","wgBackendResponseTime":251,"wgPageParseReport":{"limitreport":{"cputime":"0.652","walltime":"0.846","ppvisitednodes":{"value":8504,"limit":1000000},"postexpandincludesize":{"value":84479,"limit":2097152},"templateargumentsize":{"value":11485,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":148382,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 628.639 1 -total"," 21.96% 138.071 63 Template:Math"," 21.51% 135.241 16 Template:Cite_journal"," 13.08% 82.238 1 Template:Short_description"," 12.35% 77.639 1 Template:Efn"," 10.58% 66.487 4 Template:BSsplit"," 9.33% 58.622 15 Template:Cite_book"," 8.82% 55.453 9 Template:Rp"," 7.71% 48.454 9 Template:R/superscript"," 7.63% 47.969 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.290","limit":"10.000"},"limitreport-memusage":{"value":7284965,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-vrhlg","timestamp":"20241122140558","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Multiset","url":"https:\/\/en.wikipedia.org\/wiki\/Multiset","sameAs":"http:\/\/www.wikidata.org\/entity\/Q864377","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q864377","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-08-26T23:02:50Z","dateModified":"2024-10-22T19:25:49Z","headline":"mathematical set with repetitions allowed"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('en', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&amp;hl=en-GB&amp;client=wt" type="text/javascript"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10