CINXE.COM

Spitzenform – Wikipedia

<!DOCTYPE html> <html class="client-nojs" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Spitzenform – Wikipedia</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"eee9df48-21f6-4983-a2c3-d892aa14db43","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Spitzenform","wgTitle":"Spitzenform","wgCurRevisionId":249306196,"wgRevisionId":249306196,"wgArticleId":9538907,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":[ "Funktionentheorie","Analytische Zahlentheorie","Gruppentheorie","Mathematische Funktion"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Spitzenform","wgRelevantArticleId":9538907,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":249306196,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":4000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage", "wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2400580","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.page.media","site","mediawiki.page.ready","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=codex-search-styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&amp;only=styles&amp;skin=vector"> <script async="" src="/w/load.php?lang=de&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle&amp;only=styles&amp;skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=site.styles&amp;only=styles&amp;skin=vector"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/a/ad/ModularGroup-FundamentalDomain-01.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="603"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/a/ad/ModularGroup-FundamentalDomain-01.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="402"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="322"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Spitzenform – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Spitzenform"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Spitzenform&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Spitzenform"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Spitzenform rootpage-Spitzenform skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Spitzenform</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Zur Navigation springen</a> <a class="mw-jump-link" href="#searchInput">Zur Suche springen</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><figure typeof="mw:File/Thumb"><a href="/wiki/Datei:ModularGroup-FundamentalDomain-01.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/ModularGroup-FundamentalDomain-01.png/400px-ModularGroup-FundamentalDomain-01.png" decoding="async" width="400" height="201" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/ModularGroup-FundamentalDomain-01.png/600px-ModularGroup-FundamentalDomain-01.png 1.5x, //upload.wikimedia.org/wikipedia/commons/a/ad/ModularGroup-FundamentalDomain-01.png 2x" data-file-width="619" data-file-height="311" /></a><figcaption>Randpunkte im Unendlichen sind die Spitzen von SL(2,Z). Ein Fundamentalbereich ist grau eingefärbt.</figcaption></figure> <p>In der Zahlentheorie wird eine <a href="/wiki/Holomorphie" class="mw-redirect" title="Holomorphie">holomorphe</a> <a href="/wiki/Modulform" title="Modulform">Modulform</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> zur <a href="/wiki/Modulgruppe" class="mw-redirect" title="Modulgruppe">Modulgruppe</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma =SL(2,\mathbb {Z} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>=</mo> <mi>S</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma =SL(2,\mathbb {Z} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd234c172fad835932f78c4a7c69e0ace3e152aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.189ex; height:2.843ex;" alt="{\displaystyle \Gamma =SL(2,\mathbb {Z} )}"></span> (manchmal wird auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PSL(2,\mathbb {Z} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>S</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PSL(2,\mathbb {Z} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/460a802991b66e02afb2cc7ba867de7f39a01927" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.384ex; height:2.843ex;" alt="{\displaystyle PSL(2,\mathbb {Z} )}"></span> als Modulgruppe definiert) als <b>Spitzenform</b> (engl.: <i>cusp form</i>) bezeichnet, wenn sie in der Spitze (cusp), das heißt für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Im\,z\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>m</mi> <mspace width="thinmathspace" /> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Im\,z\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6e471d2ad64607ee4fc5c2e7f6984fbc0b6bb91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.625ex; height:2.176ex;" alt="{\displaystyle Im\,z\to \infty }"></span> verschwindet. </p><p>Eine äquivalente Bedingung ist, dass der konstante Term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}=f(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}=f(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9615b85fe73d992e94806e49a2c9f5cfaa3c05ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.633ex; height:2.843ex;" alt="{\displaystyle a_{0}=f(0)}"></span> in der <a href="/wiki/Fourier-Entwicklung" class="mw-redirect" title="Fourier-Entwicklung">Fourier-Entwicklung</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=\sum a_{n}e^{2\pi inz}=\sum a_{n}q^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>n</mi> <mi>z</mi> </mrow> </msup> <mo>=</mo> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=\sum a_{n}e^{2\pi inz}=\sum a_{n}q^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/691166ba99a460656600f292dcb94360a1b86daa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:30.454ex; height:3.843ex;" alt="{\displaystyle f(z)=\sum a_{n}e^{2\pi inz}=\sum a_{n}q^{n}}"></span></dd></dl> <p>mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=e^{2\pi iz}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>z</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=e^{2\pi iz}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd4a07533fb952a40f930a40b1d7437aad86b26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.584ex; height:3.009ex;" alt="{\displaystyle q=e^{2\pi iz}}"></span>, verschwindet: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8f3589226b1f07bd27b7c82d8f470a4685fffe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.545ex; height:2.509ex;" alt="{\displaystyle a_{0}=0}"></span>.</dd></dl> <p>und keine negativen n in der Entwicklung vorhanden sind (die Modulform ist holomorph). Dann verschwindet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> in der Spitze <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/654c2d5dc1a26e0af36dc0deb5fd252c6178977a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q=0}"></span>. </p><p>Man kann auch Spitzenformen zu <a href="/wiki/Kongruenzuntergruppe" title="Kongruenzuntergruppe">Kongruenzuntergruppen</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma _{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma _{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f42436d97046f25f4e7afa271b82698270b185fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.293ex; margin-bottom: -0.379ex; width:2.507ex; height:2.509ex;" alt="{\displaystyle \Gamma _{*}}"></span> der Modulgruppe betrachten, dann gibt es im Allgemeinen mehrere Spitzen, parametrisiert durch rationale Zahlen im Unendlichen. Das entspricht dem Grenzwert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a}{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>c</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a}{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80360da5dd0b679fc5403715f2c96a7c24db3035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.066ex; height:4.676ex;" alt="{\displaystyle {\frac {a}{c}}}"></span> für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/380ee74715fed4cd83f76bacac1add6aad2d58c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.026ex; height:1.843ex;" alt="{\displaystyle z\to \infty }"></span> im Transformationsgesetz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\to {\frac {az+b}{cz+d}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>z</mi> <mo>+</mo> <mi>b</mi> </mrow> <mrow> <mi>c</mi> <mi>z</mi> <mo>+</mo> <mi>d</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\to {\frac {az+b}{cz+d}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29acbe6481c3d737e4ed8166f144ccb631c833aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.694ex; height:5.676ex;" alt="{\displaystyle z\to {\frac {az+b}{cz+d}}}"></span> der Modulform, wobei sich nur endliche viele Spitzen im Unendlichen ergeben als Repräsentant jeweils eines Orbits. Kompaktifiziert man den Quotientenraum der oberen Halbebene <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {H} \backslash \Gamma _{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> <mi class="MJX-variant" mathvariant="normal">&#x2216;<!-- ∖ --></mi> <msub> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {H} \backslash \Gamma _{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fbc8fe9a6d756d4b496eacde5046ec8be316f22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.478ex; height:2.843ex;" alt="{\displaystyle \mathbb {H} \backslash \Gamma _{*}}"></span> durch Hinzunahme der Spitzen erhält man die Riemannsche Flächen der zugehörigen Modulkurven. </p> <div class="mw-heading mw-heading2"><h2 id="Spitzenformen_mit_gegebenem_Gewicht">Spitzenformen mit gegebenem Gewicht</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spitzenform&amp;veaction=edit&amp;section=1" title="Abschnitt bearbeiten: Spitzenformen mit gegebenem Gewicht" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spitzenform&amp;action=edit&amp;section=1" title="Quellcode des Abschnitts bearbeiten: Spitzenformen mit gegebenem Gewicht"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Im Folgenden werden die Spitzenformen zur vollen Modulgruppe betrachtet. Aus der Definition folgt, dass es für <a href="/wiki/Ungerade_Zahl" class="mw-redirect" title="Ungerade Zahl">ungerade</a> <a href="/wiki/Modulform#Definition" title="Modulform">Gewichte</a> keine nicht-verschwindenden Spitzenformen gibt. Die Dimension des Raumes der Spitzenformen mit gegebenem <a href="/wiki/Modulform#Definition" title="Modulform">Gewicht</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59a12237af5f2ec5fc7c5023f439266bae1380f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.602ex; height:2.176ex;" alt="{\displaystyle k\in \mathbb {Z} }"></span> kann mit dem <a href="/wiki/Satz_von_Riemann-Roch" title="Satz von Riemann-Roch">Satz von Riemann-Roch</a> berechnet werden. Die kleinsten Gewichte, für die nichttriviale Spitzenformen existieren, sind </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=12,16,18,20,22,26}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>12</mn> <mo>,</mo> <mn>16</mn> <mo>,</mo> <mn>18</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>22</mn> <mo>,</mo> <mn>26</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=12,16,18,20,22,26}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a25ae74a5b776ddbd0abd8177108dcdb2ed2288" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.429ex; height:2.509ex;" alt="{\displaystyle k=12,16,18,20,22,26}"></span>,</dd></dl> <p>in allen diesen Fällen ist der <a href="/wiki/Vektorraum" title="Vektorraum">Raum</a> der Spitzenformen 1-dimensional, es gibt zu diesen Gewichten also jeweils eine bis auf Multiplikation mit <a href="/wiki/Komplexe_Zahl" title="Komplexe Zahl">komplexen Zahlen</a> eindeutige Spitzenform. Allgemein ist die Dimension des Vektorraums der Spitzenformen zum Gewicht <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=2m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=2m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dc454c7e1d9d3b26c08b7516ea0504140bd004c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.513ex; height:2.176ex;" alt="{\displaystyle k=2m}"></span> gleich <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\frac {m}{6}}\right]-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mn>6</mn> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\frac {m}{6}}\right]-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ea82b7c340c773df828a8691b77560644b3871d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.074ex; height:4.843ex;" alt="{\displaystyle \left[{\frac {m}{6}}\right]-1}"></span> falls <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\equiv 1\ mod\ 6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mi>m</mi> <mi>o</mi> <mi>d</mi> <mtext>&#xA0;</mtext> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\equiv 1\ mod\ 6}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1230994cba8aa19d55fcec138372f179b67899f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.009ex; height:2.176ex;" alt="{\displaystyle m\equiv 1\ mod\ 6}"></span> ist und gleich <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\frac {m}{6}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mn>6</mn> </mfrac> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\frac {m}{6}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7477392feeaff446ad0e4455354b97add580bafa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:5.071ex; height:4.843ex;" alt="{\displaystyle \left[{\frac {m}{6}}\right]}"></span> sonst. </p><p>Beispielsweise ist die bis auf Multiplikation mit komplexen Zahlen eindeutige Spitzenform zum Gewicht 12 die <a href="/wiki/Diskriminante_(Modulform)" title="Diskriminante (Modulform)">Diskriminante</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta (z)=(2\pi )^{12}\sum _{n=1}^{\infty }\tau (n)\,{\mathrm {e} }^{2\pi inz}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> <mi>n</mi> <mi>z</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta (z)=(2\pi )^{12}\sum _{n=1}^{\infty }\tau (n)\,{\mathrm {e} }^{2\pi inz}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21d09f16b85b0c8a766080a42517840614646c83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.386ex; height:6.843ex;" alt="{\displaystyle \Delta (z)=(2\pi )^{12}\sum _{n=1}^{\infty }\tau (n)\,{\mathrm {e} }^{2\pi inz}}"></span>,</dd></dl> <p>deren Fourier-Koeffizienten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau (n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau (n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05beffb0ed8df4f7bc2e581167c805a74f7afb4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.406ex; height:2.843ex;" alt="{\displaystyle \tau (n)}"></span> die <a href="/wiki/Ramanujansche_tau-Funktion" title="Ramanujansche tau-Funktion">Ramanujansche tau-Funktion</a> definieren. </p><p>Die Fourier-Koeffizienten einer Spitzenform zum Gewicht <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=2m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=2m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dc454c7e1d9d3b26c08b7516ea0504140bd004c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.513ex; height:2.176ex;" alt="{\displaystyle k=2m}"></span> verschwinden in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> zur Ordnung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}=O(n^{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}=O(n^{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bef788ab564119e4f50068a3a06520b271d6b78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.613ex; height:3.176ex;" alt="{\displaystyle a_{n}=O(n^{k})}"></span>.</dd></dl> <p>Das <a href="/wiki/Petersson-Skalarprodukt" title="Petersson-Skalarprodukt">Petersson-Skalarprodukt</a> auf dem Raum der Spitzenformen ist definiert durch </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle :=\int _{\mathrm {F} }f(\tau ){\overline {g(z)}}(\operatorname {Im} z)^{k}{\rm {d}}\nu (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>:=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">F</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle :=\int _{\mathrm {F} }f(\tau ){\overline {g(z)}}(\operatorname {Im} z)^{k}{\rm {d}}\nu (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22d32039ae84352e53a14f93d1f3e359b8b0acba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.957ex; height:5.676ex;" alt="{\displaystyle \langle f,g\rangle :=\int _{\mathrm {F} }f(\tau ){\overline {g(z)}}(\operatorname {Im} z)^{k}{\rm {d}}\nu (z)}"></span>,</dd></dl> <p>wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {F} =\{z\in \mathrm {H} |\left|\operatorname {Re} z\right|\leq {\tfrac {1}{2}},\left|z\right|\geq 1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">F</mi> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">H</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>z</mi> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {F} =\{z\in \mathrm {H} |\left|\operatorname {Re} z\right|\leq {\tfrac {1}{2}},\left|z\right|\geq 1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0574a3ee0ef22098d2ede66f2289644cf4b37843" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:31.592ex; height:3.509ex;" alt="{\displaystyle \mathrm {F} =\{z\in \mathrm {H} |\left|\operatorname {Re} z\right|\leq {\tfrac {1}{2}},\left|z\right|\geq 1\}}"></span> der <a href="/wiki/Fundamentalbereich" title="Fundamentalbereich">Fundamentalbereich</a> der <a href="/wiki/Modulgruppe" class="mw-redirect" title="Modulgruppe">Modulgruppe</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;" alt="{\displaystyle \Gamma }"></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {d}}\nu (z)=y^{-2}{\rm {d}}x{\rm {d}}y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rm {d}}\nu (z)=y^{-2}{\rm {d}}x{\rm {d}}y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f1db8f9f90bc2d88a2bea96f60be0355036d64e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.084ex; height:3.176ex;" alt="{\displaystyle {\rm {d}}\nu (z)=y^{-2}{\rm {d}}x{\rm {d}}y}"></span> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=x+iy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=x+iy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08e90bb6b36fef59c6113eed2a08f10d77240741" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.315ex; height:2.509ex;" alt="{\displaystyle z=x+iy}"></span> das hyperbolische Volumenelement ist. </p> <div class="mw-heading mw-heading2"><h2 id="Literatur">Literatur</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spitzenform&amp;veaction=edit&amp;section=2" title="Abschnitt bearbeiten: Literatur" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spitzenform&amp;action=edit&amp;section=2" title="Quellcode des Abschnitts bearbeiten: Literatur"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Tom_Apostol" title="Tom Apostol">Tom Apostol</a>: <i>Modular functions and Dirichlet series in number theory.</i> Second edition. Graduate Texts in Mathematics, 41. Springer-Verlag, New York, 1990. <a href="/wiki/Spezial:ISBN-Suche/0387971270" class="internal mw-magiclink-isbn">ISBN 0-387-97127-0</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Weblinks">Weblinks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Spitzenform&amp;veaction=edit&amp;section=3" title="Abschnitt bearbeiten: Weblinks" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Spitzenform&amp;action=edit&amp;section=3" title="Quellcode des Abschnitts bearbeiten: Weblinks"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/CuspForm.html">Cusp Form</a> (<a href="/wiki/MathWorld" title="MathWorld">MathWorld</a>)</li> <li><a rel="nofollow" class="external text" href="http://www.lmfdb.org/">The L-functions and modular forms data base</a></li></ul></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Spitzenform&amp;oldid=249306196">https://de.wikipedia.org/w/index.php?title=Spitzenform&amp;oldid=249306196</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorien</a>: <ul><li><a href="/wiki/Kategorie:Funktionentheorie" title="Kategorie:Funktionentheorie">Funktionentheorie</a></li><li><a href="/wiki/Kategorie:Analytische_Zahlentheorie" title="Kategorie:Analytische Zahlentheorie">Analytische Zahlentheorie</a></li><li><a href="/wiki/Kategorie:Gruppentheorie" title="Kategorie:Gruppentheorie">Gruppentheorie</a></li><li><a href="/wiki/Kategorie:Mathematische_Funktion" title="Kategorie:Mathematische Funktion">Mathematische Funktion</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Navigationsmenü</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Meine Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Benutzerseite der IP-Adresse, von der aus du Änderungen durchführst">Nicht angemeldet</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&amp;returnto=Spitzenform" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&amp;returnto=Spitzenform" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span>Anmelden</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Namensräume</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/Spitzenform" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="new mw-list-item"><a href="/w/index.php?title=Diskussion:Spitzenform&amp;action=edit&amp;redlink=1" rel="discussion" class="new" title="Diskussion zum Seiteninhalt (Seite nicht vorhanden) [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Deutsch</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ansichten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/Spitzenform"><span>Lesen</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=Spitzenform&amp;veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=Spitzenform&amp;action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=Spitzenform&amp;action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Weitere Optionen" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Weitere</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Suche</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Spezial:Suche"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Suche nach Seiten, die diesen Text enthalten" value="Suchen"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Gehe direkt zu der Seite mit genau diesem Namen, falls sie vorhanden ist." value="Artikel"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/Wikipedia:Hauptseite" title="Hauptseite"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Navigation</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li> </ul> </div> </nav> <nav id="p-Mitmachen" class="mw-portlet mw-portlet-Mitmachen vector-menu-portal portal vector-menu" aria-labelledby="p-Mitmachen-label" > <h3 id="p-Mitmachen-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Mitmachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_de.wikipedia.org&amp;uselang=de" title="Unterstütze uns"><span>Spenden</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Werkzeuge</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Spitzenform" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Spitzenform" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten" title="Liste aller Spezialseiten [q]" accesskey="q"><span>Spezialseiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Spitzenform&amp;oldid=249306196" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Spitzenform&amp;action=info" title="Weitere Informationen über diese Seite"><span>Seiten­­informationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&amp;page=Spitzenform&amp;id=249306196&amp;wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FSpitzenform"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrCode&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FSpitzenform"><span>QR-Code herunterladen</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Drucken/​exportieren</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&amp;page=Spitzenform&amp;action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Spitzenform&amp;printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Projekten</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2400580" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">In anderen Sprachen</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Cusp_form" title="Cusp form – Englisch" lang="en" hreflang="en" data-title="Cusp form" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Forma_de_c%C3%BAspide" title="Forma de cúspide – Spanisch" lang="es" hreflang="es" data-title="Forma de cúspide" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Forme_parabolique" title="Forme parabolique – Französisch" lang="fr" hreflang="fr" data-title="Forme parabolique" data-language-autonym="Français" data-language-local-name="Französisch" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AB%E3%82%B9%E3%83%97%E5%BD%A2%E5%BC%8F" title="カスプ形式 – Japanisch" lang="ja" hreflang="ja" data-title="カスプ形式" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%B2%A8%EC%A0%90_%ED%98%95%EC%8B%9D" title="첨점 형식 – Koreanisch" lang="ko" hreflang="ko" data-title="첨점 형식" data-language-autonym="한국어" data-language-local-name="Koreanisch" class="interlanguage-link-target"><span>한국어</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2400580#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 10. Oktober 2024 um 14:10 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Spitzenform&amp;project=de.wikipedia.org">Abrufstatistik</a>&#160;· <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Spitzenform?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Spitzenform&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-7jdc6","wgBackendResponseTime":142,"wgPageParseReport":{"limitreport":{"cputime":"0.054","walltime":"0.240","ppvisitednodes":{"value":186,"limit":1000000},"postexpandincludesize":{"value":0,"limit":2097152},"templateargumentsize":{"value":0,"limit":2097152},"expansiondepth":{"value":2,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":1152,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 0.000 1 -total"]},"cachereport":{"origin":"mw-web.codfw.main-568dbbbfd9-2lfsk","timestamp":"20241109152409","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Spitzenform","url":"https:\/\/de.wikipedia.org\/wiki\/Spitzenform","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2400580","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2400580","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2016-07-31T10:47:48Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/ad\/ModularGroup-FundamentalDomain-01.png"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10