CINXE.COM

Search results for: microscopic techniques

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microscopic techniques</title> <meta name="description" content="Search results for: microscopic techniques"> <meta name="keywords" content="microscopic techniques"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microscopic techniques" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microscopic techniques"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7131</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microscopic techniques</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7131</span> SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zouhour%20Neji%20Ben%20Salem">Zouhour Neji Ben Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organization%20map" title=" self-organization map"> self-organization map</a>, <a href="https://publications.waset.org/abstracts/search?q=hopfield%20network" title=" hopfield network"> hopfield network</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20evacuation" title=" microscopic evacuation"> microscopic evacuation</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20building%20evacuation" title=" fire building evacuation"> fire building evacuation</a> </p> <a href="https://publications.waset.org/abstracts/27689/som-map-vs-hopfield-neural-network-a-comparative-study-in-microscopic-evacuation-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7130</span> Distributed Actor System for Traffic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Wang">Han Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoxian%20Dai"> Zhuoxian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Zhu"> Zhe Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhang"> Hui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Zeng"> Zhenyu Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actor%20system" title="actor system">actor system</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/128664/distributed-actor-system-for-traffic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7129</span> A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20John-Otumu">A. M. John-Otumu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Onuoha"> M. C. Onuoha</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20P.%20Ojonugwa"> E. P. Ojonugwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20smear" title=" blood smear"> blood smear</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Lassa%20fever" title=" Lassa fever"> Lassa fever</a> </p> <a href="https://publications.waset.org/abstracts/149806/a-convolutional-neural-network-based-model-for-lassa-fever-virus-prediction-using-patient-blood-smear-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7128</span> Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Chuan%20Huang">Hsiao-Chuan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=King-Lung%20Kuo"> King-Lung Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Hsin%20Lo"> Mei-Hsin Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Yun%20Chou"> Hsiao-Yun Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusen%20Lin"> Yusen Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TB%20smears" title="TB smears">TB smears</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20microscope" title=" automated microscope"> automated microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title=" medical imaging"> medical imaging</a> </p> <a href="https://publications.waset.org/abstracts/136682/improvement-of-microscopic-detection-of-acid-fast-bacilli-for-tuberculosis-by-artificial-intelligence-assisted-microscopic-platform-and-medical-image-recognition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7127</span> Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eva%20Slaninova">Eva Slaninova</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Cernayova"> Diana Cernayova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Sedrlova"> Zuzana Sedrlova</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Mrazova"> Katerina Mrazova</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Sedlacek"> Petr Sedlacek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Nebesarova"> Jana Nebesarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Obruca"> Stanislav Obruca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title="cyanobacteria">cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20probe" title=" fluorescent probe"> fluorescent probe</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques" title=" microscopic techniques"> microscopic techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%283hydroxybutyrate%29" title=" poly(3hydroxybutyrate)"> poly(3hydroxybutyrate)</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatography" title=" chromatography"> chromatography</a> </p> <a href="https://publications.waset.org/abstracts/139809/instrumental-characterization-of-cyanobacteria-as-polyhydroxybutyrate-producer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7126</span> Experimental Research on the Elastic Modulus of Bones at the Lamellar Level under Fatigue Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xianjia%20Meng">Xianjia Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuanyong%20Qu"> Chuanyong Qu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compact bone produces fatigue damage under the inevitable physiological load. The accumulation of fatigue damage can change the bone’s micro-structure at different scales and cause the catastrophic failure eventually. However, most tests were limited to the macroscopic modulus of bone and there is a need to assess the microscopic modulus during fatigue progress. In this paper, nano-identation was used to investigate the bone specimen subjected to four point bending. The microscopic modulus of the same area were measured at different degrees of damage including fracture. So microscopic damage can be divided into three stages: first, the modulus decreased rapidly and then They fell slowly, before fracture the decline became fast again. After fracture, the average modulus decreased by 20%. The results of inner and outer planes explained the influence of compressive and tensile loads on modulus. Both the compressive and tensile moduli decreased with the accumulation of damage. They reached the minimum at ending and increased after fracture. The modulus evolution under different strains were revealed by the side. They all fell slowly and then fast with the accumulation of damage. The fractured results indicated that the elastic modulus decreased obviously at the high strain while decreased less at the low strain. During the fatigue progress, there was a significant difference in modulus at low degree of damage. However, the dispersed modulus tended to be similar at high degree of damage, but they became different again after the failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue%20damage" title="fatigue damage">fatigue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20modulus" title=" microscopic modulus"> microscopic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=bone" title=" bone"> bone</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-identation" title=" nano-identation"> nano-identation</a> </p> <a href="https://publications.waset.org/abstracts/107066/experimental-research-on-the-elastic-modulus-of-bones-at-the-lamellar-level-under-fatigue-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7125</span> The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayat%20Adnan%20Atwah">Ayat Adnan Atwah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Khan"> Muhammad A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning%20fabric" title=" self-cleaning fabric"> self-cleaning fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20features" title=" microscopic features"> microscopic features</a>, <a href="https://publications.waset.org/abstracts/search?q=printing%20parameters" title=" printing parameters"> printing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=fabrication" title=" fabrication"> fabrication</a> </p> <a href="https://publications.waset.org/abstracts/168395/the-influence-of-microscopic-features-on-the-self-cleaning-ability-of-developed-3d-printed-fabric-like-structures-using-different-printing-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7124</span> Use of Smartphone in Practical Classes to Facilitate Teaching and Learning of Microscopic Analysis and Interpretation of Tissues Sections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lise%20P.%20Lab%C3%A9jof">Lise P. Labéjof</a>, <a href="https://publications.waset.org/abstracts/search?q=Krisnayne%20S.%20Ribeiro"> Krisnayne S. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolle%20P.%20dos%20Santos"> Nicolle P. dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An unrecorded experiment of use of the smartphone as a tool for practical classes of histology is presented in this article. Behavior, learning of the students of three science courses at the University were analyzed and compared as well as the mode of teaching of this discipline and the appreciation of the students, using either digital photographs taken by phone or drawings for record microscopic observations, analyze and interpret histological sections of human or animal tissues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20phone" title="cell phone">cell phone</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20micrographies" title=" digital micrographies"> digital micrographies</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20of%20sciences" title=" learning of sciences"> learning of sciences</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20practices" title=" teaching practices"> teaching practices</a> </p> <a href="https://publications.waset.org/abstracts/19458/use-of-smartphone-in-practical-classes-to-facilitate-teaching-and-learning-of-microscopic-analysis-and-interpretation-of-tissues-sections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">596</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7123</span> Microscopic Simulation of Toll Plaza Safety and Operations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekir%20O.%20Bartin">Bekir O. Bartin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Ozbay"> Kaan Ozbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Mudigonda"> Sandeep Mudigonda</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Yang"> Hong Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of microscopic traffic simulation in evaluating the operational and safety conditions at toll plazas is demonstrated. Two toll plazas in New Jersey are selected as case studies and were developed and validated in Paramics traffic simulation software. In order to simulate drivers&rsquo; lane selection behavior in Paramics, a utility-based lane selection approach is implemented in Paramics Application Programming Interface (API). For each vehicle approaching the toll plaza, a utility value is assigned to each toll lane by taking into account the factors that are likely to impact drivers&rsquo; lane selection behavior, such as approach lane, exit lane and queue lengths. The results demonstrate that similar operational conditions, such as lane-by-lane toll plaza traffic volume can be attained using this approach. In addition, assessment of safety at toll plazas is conducted via a surrogate safety measure. In particular, the crash index (CI), an improved surrogate measure of time-to-collision (TTC), which reflects the severity of a crash is used in the simulation analyses. The results indicate that the spatial and temporal frequency of observed crashes can be simulated using the proposed methodology. Further analyses can be conducted to evaluate and compare various different operational decisions and safety measures using microscopic simulation models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microscopic%20simulation" title="microscopic simulation">microscopic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=toll%20plaza" title=" toll plaza"> toll plaza</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogate%20safety" title=" surrogate safety"> surrogate safety</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20programming%20interface" title=" application programming interface"> application programming interface</a> </p> <a href="https://publications.waset.org/abstracts/95990/microscopic-simulation-of-toll-plaza-safety-and-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7122</span> Investigation of Martensitic Transformation Zone at the Crack Tip of NiTi under Mode-I Loading Using Microscopic Image Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Shafaghi">Nima Shafaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunay%20Anla%C5%9F"> Gunay Anlaş</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Can%20Aydiner"> C. Can Aydiner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A realistic understanding of martensitic phase transition under complex stress states is key for accurately describing the mechanical behavior of shape memory alloys (SMAs). Particularly regarding the sharply changing stress fields at the tip of a crack, the size, nature and shape of transformed zones are of great interest. There is significant variation among various analytical models in their predictions of the size and shape of the transformation zone. As the fully transformed region remains inside a very small boundary at the tip of the crack, experimental validation requires microscopic resolution. Here, the crack tip vicinity of NiTi compact tension specimen has been monitored in situ with microscopic image correlation with 20x magnification. With nominal 15 micrometer grains and 0.2 micrometer per pixel optical resolution, the strains at the crack tip are mapped with intra-grain detail. The transformation regions are then deduced using an equivalent strain formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20phase%20transition" title=" martensitic phase transition"> martensitic phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20I" title=" mode I"> mode I</a>, <a href="https://publications.waset.org/abstracts/search?q=NiTi" title=" NiTi"> NiTi</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20zone" title=" transformation zone"> transformation zone</a> </p> <a href="https://publications.waset.org/abstracts/70661/investigation-of-martensitic-transformation-zone-at-the-crack-tip-of-niti-under-mode-i-loading-using-microscopic-image-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7121</span> Simulation of 1D Dielectric Barrier Discharge in Argon Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucas%20Wilman%20Crispim">Lucas Wilman Crispim</a>, <a href="https://publications.waset.org/abstracts/search?q=Patr%C3%ADcia%20Hallack"> Patrícia Hallack</a>, <a href="https://publications.waset.org/abstracts/search?q=Maikel%20%20Ballester"> Maikel Ballester</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims at modeling electric discharges in gas mixtures. The mathematical model mimics the ignition process in a commercial spark-plug when a high voltage is applied to the plug terminals. A longitudinal unidimensional Cartesian domain is chosen for the simulation region. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions are contemplated at microscopic level. The macroscopic model is represented by a set of uncoupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modeling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The simulation gas is a mixture of atomic Argon neutral, excited and ionized. Spatial and temporal evolution of such species and temperature are presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20discharge" title=" electronic discharge"> electronic discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition" title=" ignition"> ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plug" title=" spark plug"> spark plug</a> </p> <a href="https://publications.waset.org/abstracts/91943/simulation-of-1d-dielectric-barrier-discharge-in-argon-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7120</span> Effect of Anion Variation on the CO2 Capture Performance of Pyridinium Containing Poly(ionic liquid)s </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Zulfiqar">Sonia Zulfiqar</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Mantione"> Daniele Mantione</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ilyas%20Sarwar"> Muhammad Ilyas Sarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Rothenberger"> Alexander Rothenberger</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Mecerreyes"> David Mecerreyes </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change due to escalating carbon dioxide concentration in the atmosphere is an issue of paramount importance that needs immediate attention. CO2 capture and sequestration (CCS) is a promising route to mitigate climate change and adsorption is the most widely recognized technology owing to possible energy savings relative to the conventional absorption techniques. In this conference, the potential of a new family of solid sorbents for CO2 capture and separation will be presented. Novel pyridinium containing poly(ionic liquid)s (PILs) were synthesized with varying anions i.e bis(trifluoromethylsulfonyl)imide and hexafluorophosphate. The resulting polymers were characterized using NMR, XRD, TGA, BET surface area and microscopic techniques. Furthermore, CO2 adsorption measurements at two different temperatures were also carried out and revealed great potential of these PILs as CO2 scavengers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title=" CO2 capture"> CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ionic%20liquid%29s" title=" poly(ionic liquid)s"> poly(ionic liquid)s</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%2FN2%20selectivity" title=" CO2/N2 selectivity"> CO2/N2 selectivity</a> </p> <a href="https://publications.waset.org/abstracts/40211/effect-of-anion-variation-on-the-co2-capture-performance-of-pyridinium-containing-polyionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7119</span> A New Mathematical Model of Human Olfaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Namazi">H. Namazi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20N.%20Kuan"> H. T. N. Kuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that in humans, the adaptation to a given odor occurs within a quite short span of time (typically one minute) after the odor is presented to the brain. Different models of human olfaction have been developed by scientists but none of these models consider the diffusion phenomenon in olfaction. A novel microscopic model of the human olfaction is presented in this paper. We develop this model by incorporating the transient diffusivity. In fact, the mathematical model is written based on diffusion of the odorant within the mucus layer. By the use of the model developed in this paper, it becomes possible to provide quantification of the objective strength of odor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion" title="diffusion">diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20model" title=" microscopic model"> microscopic model</a>, <a href="https://publications.waset.org/abstracts/search?q=mucus%20layer" title=" mucus layer"> mucus layer</a>, <a href="https://publications.waset.org/abstracts/search?q=olfaction" title=" olfaction"> olfaction</a> </p> <a href="https://publications.waset.org/abstracts/18991/a-new-mathematical-model-of-human-olfaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7118</span> Histomorphological Comparisons of Liver of Broiler Chickens and Wild Boar in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khenenou%20Tarek">Khenenou Tarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The objective of present study was to compare the normal macro and microscopic appearance of the liver in two very different species, one is an omnivorous mammal; the wild boar and the other belongs to the family of poultry; broiler chicken from the region of Bouhmama (Khenchela). Materials and methods: Eight broilers (58 days of age) and eight wild boars were included in the experiment to obtain information about the morpho-histological appearances of liver in two species. Results: There is a big difference in the liver appearance between the two species, in the wild boar it is of firm consistency with a tiger aspect and divided into four lobes, whereas in the broiler, the liver is brown and sometimes pale during the first 10-14 days, so it was divided into two lobes. Concerning the liver parenchyma, we used the Russian LOMBO MBS-10 stereo microscope, our results showed that the liver parenchyma was well developed in wild boar than in broiler chickens whereas, in broiler chickens; an excessive development of the sinus; the latter were less developed in the wild boar. Conclusion: The macroscopic observation showed a marked difference in liver between the two species. The microscopic examination of liver showed that the parenchyma is less pronounced in broilers whereas the sinuses were highly developed in the wild boar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title="broiler chicken">broiler chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20and%20microscopic%20appearances" title=" macro and microscopic appearances"> macro and microscopic appearances</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20boar" title=" wild boar"> wild boar</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/190129/histomorphological-comparisons-of-liver-of-broiler-chickens-and-wild-boar-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7117</span> Modeling Curriculum for High School Students to Learn about Electric Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng-Fei%20Cheng">Meng-Fei Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Lun%20Chen"> Wei-Lun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Chang%20Ma"> Han-Chang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Che%20Tsai"> Chi-Che Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent K–12 Taiwan Science Education Curriculum Guideline emphasize the essential role of modeling curriculum in science learning; however, few modeling curricula have been designed and adopted in current science teaching. Therefore, this study aims to develop modeling curriculum on electric circuits to investigate any learning difficulties students have with modeling curriculum and further enhance modeling teaching. This study was conducted with 44 10th-grade students in Central Taiwan. Data collection included a students’ understanding of models in science (SUMS) survey that explored the students' epistemology of scientific models and modeling and a complex circuit problem to investigate the students’ modeling abilities. Data analysis included the following: (1) Paired sample t-tests were used to examine the improvement of students’ modeling abilities and conceptual understanding before and after the curriculum was taught. (2) Paired sample t-tests were also utilized to determine the students’ modeling abilities before and after the modeling activities, and a Pearson correlation was used to understand the relationship between students’ modeling abilities during the activities and on the posttest. (3) ANOVA analysis was used during different stages of the modeling curriculum to investigate the differences between the students’ who developed microscopic models and macroscopic models after the modeling curriculum was taught. (4) Independent sample t-tests were employed to determine whether the students who changed their models had significantly different understandings of scientific models than the students who did not change their models. The results revealed the following: (1) After the modeling curriculum was taught, the students had made significant progress in both their understanding of the science concept and their modeling abilities. In terms of science concepts, this modeling curriculum helped the students overcome the misconception that electric currents reduce after flowing through light bulbs. In terms of modeling abilities, this modeling curriculum helped students employ macroscopic or microscopic models to explain their observed phenomena. (2) Encouraging the students to explain scientific phenomena in different context prompts during the modeling process allowed them to convert their models to microscopic models, but it did not help them continuously employ microscopic models throughout the whole curriculum. The students finally consistently employed microscopic models when they had help visualizing the microscopic models. (3) During the modeling process, the students who revised their own models better understood that models can be changed than the students who did not revise their own models. Also, the students who revised their models to explain different scientific phenomena tended to regard models as explanatory tools. In short, this study explored different strategies to facilitate students’ modeling processes as well as their difficulties with the modeling process. The findings can be used to design and teach modeling curricula and help students enhance their modeling abilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20circuits" title="electric circuits">electric circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20curriculum" title=" modeling curriculum"> modeling curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=science%20learning" title=" science learning"> science learning</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20model" title=" scientific model"> scientific model</a> </p> <a href="https://publications.waset.org/abstracts/76563/modeling-curriculum-for-high-school-students-to-learn-about-electric-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7116</span> Three Macrofungi Taxa Records of Basidiomycota from Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Afyon">Ahmet Afyon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dursun%20Yagiz"> Dursun Yagiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Kutret%20Gezer"> Kutret Gezer</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Turkoglu"> Aziz Turkoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted in order to contribute to Turkey’s macrofungus flora. The fungi samples forming the study material were collected from Afyonkarahisar province in 2009. The photos of mushrooms were taken in their own habitats. Their tastes, odors and clours were determined. These samples were brought to the laboratory. The microscopic properties of fungi were determined in the laboratory. The fungi were identified according to their macroscopic and microscopic features with the help of written literature. The identified macrofungi are; Limacella furnace (Letell.) E.-J. Gilbert from the Amanitaceae familia, Marasmiellus vaiillantii (Pers.) Singer from Omphalotaceae familia, Mycena flos-nivium Kuhner from Mycenaceae familia. With this study, it has been contributed to Turkey’s macrofungi flora and biodiversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afyonkarahisar" title="Afyonkarahisar">Afyonkarahisar</a>, <a href="https://publications.waset.org/abstracts/search?q=macrofungi" title=" macrofungi"> macrofungi</a>, <a href="https://publications.waset.org/abstracts/search?q=records" title=" records"> records</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/51774/three-macrofungi-taxa-records-of-basidiomycota-from-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7115</span> Digital Art Fabric Prints: Procedure, Process and Progress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tripti%20Singh">Tripti Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital tools are merging boundaries of different mediums as endeavoured artists exploring new areas. Digital fabric printing has motivated artists to create prints by combining images acquired by photograph, scanned images, computer graphics and microscopic imaginary etc to name few, with traditional media such as hand drawing, weaving, hand printed patterns, printing making techniques and so on. It opened whole new world of possibilities for artists to search, research and combine old and contemporary mediums for their unique art prints. As artistic medium digital art fabrics have aesthetic values which have impact and influence on not only on a personality but also interiors of a living or work space. In this way it can be worn, as fashion statement and also an interior decoration. Digital art fabric prints gives opportunity to print almost everything on any fabric with long lasting prints quality. Single edition and limited editions are possible for maintaining scarcity and uniqueness of an art form. These fabric prints fulfill today’s need, as they are eco-friendly in nature and they produce less wastage compared to traditional fabric printing techniques. These prints can be used to make unique and customized curtains, quilts, clothes, bags, furniture, dolls, pillows, framed artwork, costumes, banners and much, much more. This paper will explore the procedure, process, and progress techniques of digital art fabric printing in depth with suitable pictorial examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20art" title="digital art">digital art</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20prints" title=" fabric prints"> fabric prints</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20fabric%20prints" title=" digital fabric prints"> digital fabric prints</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20media" title=" new media"> new media</a> </p> <a href="https://publications.waset.org/abstracts/35137/digital-art-fabric-prints-procedure-process-and-progress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7114</span> Dynamic Thin Film Morphology near the Contact Line of a Condensing Droplet: Nanoscale Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbasali%20Abouei%20Mehrizi">Abbasali Abouei Mehrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang"> Hao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thin film region is so important in heat transfer process due to its low thermal resistance. On the other hand, the dynamic contact angle is crucial boundary condition in numerical simulations. While different modeling contains different assumption of the microscopic contact angle, none of them has experimental evidence for their assumption, and the contact line movement mechanism still remains vague. The experimental investigation in complete wetting is more popular than partial wetting, especially in nanoscale resolution when there is sharp variation in thin film profile in partial wetting. In the present study, an experimental investigation of water film morphology near the triple phase contact line during the condensation is performed. The state-of-the-art tapping-mode atomic force microscopy (TM-AFM) was used to get the high-resolution film profile goes down to 2 nm from the contact line. The droplet was put in saturated chamber. The pristine silicon wafer was used as a smooth substrate. The substrate was heated by PI film heater. So the chamber would be over saturated by droplet evaporation. By turning off the heater, water vapor gradually started condensing on the droplet and the droplet advanced. The advancing speed was less than 20 nm/s. The dominant results indicate that in contrast to nonvolatile liquid, the film profile goes down straightly to the surface till 2 nm from the substrate. However, small bending has been observed below 20 nm, occasionally. So, it can be claimed that for the low condensation rate the microscopic contact angle equals to the optically detectable macroscopic contact angle. This result can be used to simplify the heat transfer modeling in partial wetting. The experimental result of the equality of microscopic and macroscopic contact angle can be used as a solid evidence for using this boundary condition in numerical simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advancing" title="advancing">advancing</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20contact%20angle" title=" microscopic contact angle"> microscopic contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20wetting" title=" partial wetting"> partial wetting</a> </p> <a href="https://publications.waset.org/abstracts/69914/dynamic-thin-film-morphology-near-the-contact-line-of-a-condensing-droplet-nanoscale-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7113</span> The Role Collagen VI Plays in Heart Failure: A Tale Untold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Summer%20Hassan">Summer Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Crossman"> David Crossman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myocardial fibrosis (MF) has been loosely defined as the process occurring in the pathological remodeling of the myocardium due to excessive production and deposition of extracellular matrix (ECM) proteins, including collagen. This reduces tissue compliance and accelerates progression to heart failure, as well as affecting the electrical properties of the myocytes resulting in arrhythmias. Microscopic interrogation of MF is key to understanding the molecular orchestrators of disease. It is well-established that recruitment and stimulation of myofibroblasts result in Collagen deposition and the resulting expansion in the ECM. Many types of Collagens have been identified and implicated in scarring of tissue. In a series of experiments conducted at our lab, we aim to elucidate the role collagen VI plays in the development of myocardial fibrosis and its direct impact on myocardial function. This was investigated through an animal experiment in Rats with Collagen VI knockout diseased and healthy animals as well as Collagen VI wild diseased and healthy rats. Echocardiogram assessments of these rats ensued at four-time points, followed by microscopic interrogation of the myocardium aiming to correlate the role collagen VI plays in myocardial function. Our results demonstrate a deterioration in cardiac function as represented by the ejection fraction in the knockout healthy and diseased rats. This elucidates a potential protective role that collagen-VI plays following a myocardial insult. Current work is dedicated to the microscopic characterisation of the fibrotic process in all rat groups, with the results to follow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title="heart failure">heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=myocardial%20fibrosis" title=" myocardial fibrosis"> myocardial fibrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=echocardiogram" title=" echocardiogram"> echocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=confocal%20microscopy" title=" confocal microscopy"> confocal microscopy</a> </p> <a href="https://publications.waset.org/abstracts/159033/the-role-collagen-vi-plays-in-heart-failure-a-tale-untold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7112</span> Two Taxa of Paradiacheopsis Genera Recordings of the Myxomycetes from Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dursun%20Ya%C4%9F%C4%B1z">Dursun Yağız</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Afyon"> Ahmet Afyon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study materials were collected from Isparta province in 2008. These materials were moved to the laboratory. The 'Most Chamber Techniques' were applied to the materials in the laboratory. Materials were examined with a stereo microscope. As a result of investigations carried out on the samples of sporophores which were developed in the laboratory, Paradiacheopsis erythropodia (Ing) Nann.-Bremek. and Paradiacheopsis longipes Hooff & Nann.-Bremek. species were identified. As a result of the literature research, it is determined that these taxa were new recordings in Turkey. The identified taxa have been added to Turkey's myxomycota. These two taxa’ microscopic features, photos, localities and substrate information were given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=myxomycete" title="myxomycete">myxomycete</a>, <a href="https://publications.waset.org/abstracts/search?q=paradiacheopsis" title=" paradiacheopsis"> paradiacheopsis</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a>, <a href="https://publications.waset.org/abstracts/search?q=slime%20mould" title=" slime mould"> slime mould</a> </p> <a href="https://publications.waset.org/abstracts/51780/two-taxa-of-paradiacheopsis-genera-recordings-of-the-myxomycetes-from-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7111</span> Microscopic Examination of the Pre-Hatching Development of the Chicken Ovary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Alsafy">Mohamed Alsafy</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20El-Gendy"> Samir El-Gendy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Karkoura"> Ashraf Karkoura</a>, <a href="https://publications.waset.org/abstracts/search?q=Doha%20Shokry"> Doha Shokry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the current study was to investigate the development of the chicken ovary. One hundred fertilized egg of Alexandria breed of chicken used. The whole embryo has undergone the light microscopic examination at HH20 (E.3), HH21 (E.3.5), HH23 (E.4), HH29 (E.6) and HH34 (E.8). The ovary has undergone the light microscopic examination at HH38 (E.12) and HH42 (E.16), SEM at HH26 (E.5), HH29 (E.6), HH36 (E.10), HH38 (E.12), HH39 (E.13) and HH42 (E.16), TEM at HH38 (E.12) and HH42 (E.16). The genital ridge appeared by a thickening of the coelomic epithelium medioventral surface of the developing mesonephroi at HH20 (E.3). The boundaries of the undifferentiating gonads defined clearly separated from the mesonephroi. The undifferentiated gonads bulged as a distinct organ in the coelomic cavity at HH23 (E.4). At the initial stages of the gonadogenesis, the germinal epithelium was stratified squamous epithelium. The PGCs appeared at the genital ridge at HH21 (E.3.5). The PGCs observed at the dorsal mesentery with few microvilli and showed positive PAS reaction due to the glycogen content in their cytoplasm. The left-right gonadal asymmetry firstly detected by the number of PGCs migrating toward the left gonadal ridge more than the right at HH20 (E.3) and the macroscopic examination of gonadal asymmetry began at HH34 (E.8). The left ovary appeared a smooth rod-shape, its stroma showed lipid droplets, and its parenchyma showed an extensive arrangement of interstitial cords at HH42 (E.16). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ovary" title="ovary">ovary</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandria%20chicken" title=" Alexandria chicken"> Alexandria chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20microscopy" title=" light microscopy"> light microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/67184/microscopic-examination-of-the-pre-hatching-development-of-the-chicken-ovary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7110</span> Synthesis and Characterization of Some Nano-Structured Metal Hexacyanoferrates Using Sapindus mukorossi, a Natural Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uma%20Shanker">Uma Shanker</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidhisha%20Jassal"> Vidhisha Jassal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel green route was used to synthesize few metal hexacyanoferrates (FeHCF, NiHCF, CoHCF and CuHCF) nanoparticles using Sapindus mukorossias a natural surfactant and water as a solvent. The synthesized nanoparticles were characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermo gravimetric techniques. Trasmission electron microscopic images showed that synthesized MHCF nanoparticles exhibited cubic and spherical shapes with exceptionally small sizes ranging from 3nm - 186 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20hexacyanoferrates" title="metal hexacyanoferrates">metal hexacyanoferrates</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20surfactant" title=" natural surfactant"> natural surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=Sapindus%20mukorossias" title=" Sapindus mukorossias"> Sapindus mukorossias</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles "> nanoparticles </a> </p> <a href="https://publications.waset.org/abstracts/17815/synthesis-and-characterization-of-some-nano-structured-metal-hexacyanoferrates-using-sapindus-mukorossi-a-natural-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7109</span> The Digital Microscopy in Organ Transplantation: Ergonomics of the Tele-Pathological Evaluation of Renal, Liver, and Pancreatic Grafts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Constantinos%20S.%20Mammas">Constantinos S. Mammas</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Lazaris"> Andreas Lazaris</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamantia%20S.%20Mamma-Graham"> Adamantia S. Mamma-Graham</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia%20Kostopanagiotou"> Georgia Kostopanagiotou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chryssa%20Lemonidou"> Chryssa Lemonidou</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Mantas"> John Mantas</a>, <a href="https://publications.waset.org/abstracts/search?q=Eustratios%20Patsouris"> Eustratios Patsouris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process to build a better safety culture, methods of error analysis, and preventive measures, starts with an understanding of the effects when human factors engineering refer to remote microscopic diagnosis in surgery and specially in organ transplantation for the evaluation of the grafts. Α high percentage of solid organs arrive at the recipient hospitals and are considered as injured or improper for transplantation in the UK. Digital microscopy adds information on a microscopic level about the grafts (G) in Organ Transplant (OT), and may lead to a change in their management. Such a method will reduce the possibility that a diseased G will arrive at the recipient hospital for implantation. Aim: The aim of this study is to analyze the ergonomics of digital microscopy (DM) based on virtual slides, on telemedicine systems (TS) for tele-pathological evaluation (TPE) of the grafts (G) in organ transplantation (OT). Material and Methods: By experimental simulation, the ergonomics of DM for microscopic TPE of renal graft (RG), liver graft (LG) and pancreatic graft (PG) tissues is analyzed. In fact, this corresponded to the ergonomics of digital microscopy for TPE in OT by applying virtual slide (VS) system for graft tissue image capture, for remote diagnoses of possible microscopic inflammatory and/or neoplastic lesions. Experimentation included the development of an OTE-TS similar experimental telemedicine system (Exp.-TS) for simulating the integrated VS based microscopic TPE of RG, LG and PG Simulation of DM on TS based TPE performed by 2 specialists on a total of 238 human renal graft (RG), 172 liver graft (LG) and 108 pancreatic graft (PG) tissues digital microscopic images for inflammatory and neoplastic lesions on four electronic spaces of the four used TS. Results: Statistical analysis of specialist‘s answers about the ability to accurately diagnose the diseased RG, LG and PG tissues on the electronic space among four TS (A,B,C,D) showed that DM on TS for TPE in OT is elaborated perfectly on the ES of a desktop, followed by the ES of the applied Exp.-TS. Tablet and mobile-phone ES seem significantly risky for the application of DM in OT (p<.001). Conclusion: To make the largest reduction in errors and adverse events referring to the quality of the grafts, it will take application of human factors engineering to procurement, design, audit, and awareness-raising activities. Consequently, it will take an investment in new training, people, and other changes to management activities for DM in OT. The simulating VS based TPE with DM of RG, LG and PG tissues after retrieval, seem feasible and reliable and dependable on the size of the electronic space of the applied TS, for remote prevention of diseased grafts from being retrieved and/or sent to the recipient hospital and for post-grafting and pre-transplant planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20microscopy" title="digital microscopy">digital microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=organ%20transplantation" title=" organ transplantation"> organ transplantation</a>, <a href="https://publications.waset.org/abstracts/search?q=tele-pathology" title=" tele-pathology"> tele-pathology</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20slides" title=" virtual slides"> virtual slides</a> </p> <a href="https://publications.waset.org/abstracts/33170/the-digital-microscopy-in-organ-transplantation-ergonomics-of-the-tele-pathological-evaluation-of-renal-liver-and-pancreatic-grafts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7108</span> Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Mansouri">Elham Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Mesbahi"> Asghar Mesbahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MCNPX" title="MCNPX">MCNPX</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNP6" title=" MCNP6"> MCNP6</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=brachytherapy" title=" brachytherapy"> brachytherapy</a> </p> <a href="https://publications.waset.org/abstracts/148055/radiosensitization-properties-of-gold-nanoparticles-in-brachytherapy-of-uterus-cancer-by-high-dose-rate-i-125-seed-a-simulation-study-by-mcnpx-and-mcnp6-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7107</span> Contribution to the Compliance Study of Drugs for Herbal Teas Sold in Pharmacies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahiout%20Tassadit">Mahiout Tassadit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As part of the study of a compliance and quality aspect concerning one of the plant-based products: drugs for herbal teas sold in pharmacies, a survey targeting: the general population (100 people of different age groups) as well as dispensary pharmacists (40 pharmacists from rural or urban areas) of the wilaya of Tizi-Ouzou (central Algeria) was carried out followed by a macroscopic and microscopic analysis of 4 samples of the said drugs, the survey carried out using two questionnaires, the data of which were collected and then analyzed, made it possible to estimate the population's use of herbal products and medicinal plants, and the place occupied by herbal medicine in our pharmacies. The second part made it possible to control and evaluate the information present on the packaging of drugs for herbal teas; anomalies concerning the packaging, labeling and composition of these products were noted. As a result, it is more than necessary to establish regulations for this type of product; the community pharmacist again places himself as an essential element for the proper dispensation of these remedies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drugs" title="drugs">drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20teas" title=" herbal teas"> herbal teas</a>, <a href="https://publications.waset.org/abstracts/search?q=macroscopic%20analysis" title=" macroscopic analysis"> macroscopic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20analysis" title=" microscopic analysis"> microscopic analysis</a> </p> <a href="https://publications.waset.org/abstracts/166070/contribution-to-the-compliance-study-of-drugs-for-herbal-teas-sold-in-pharmacies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7106</span> Renal Amyloidosis in Domestic Iranian Sheep</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Jamshidi">Keivan Jamshidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateme%20Behbahani"> Fateme Behbahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Omidi"> Sara Omidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Shahi"> Nadia Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Farkhonde"> Alireza Farkhonde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloidosis represents a heterogenous group of diseases that have in common the deposition of fibrils composed of proteins of beta-pleated sheet structure, which can be specifically identified by histochemistry using the Congo red or similar stains. Between October 2013 to April 2014 (6 months) different patterns of renal amyloidosis was diagnosed on histopathological examination of kidneys belong to 196 out of 7065 slaughtered sheep subjected to postmortem examination. Microscopic examination of renal tissue sections stained with H&E and CR staining techniques revealed 3 patterns of renal amyloid deposition; including glomerular (22.72%), medullary (68.18%), and vascular (9.09%) were recognized. Renal medullary amyloidosis (RMA) was detected as the most prevalence pattern of renal amyloidosis in domestic sheep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sheep" title="sheep">sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloidosis" title=" amyloidosis"> amyloidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=slaughterhouse" title=" slaughterhouse"> slaughterhouse</a> </p> <a href="https://publications.waset.org/abstracts/79052/renal-amyloidosis-in-domestic-iranian-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7105</span> Application of Pattern Recognition Technique to the Quality Characterization of Superficial Microstructures in Steel Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gonzalez-Rivera">H. Gonzalez-Rivera</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Palmeros-Torres"> J. L. Palmeros-Torres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the application of traditional computer vision techniques as a procedure for automatic measurement of the secondary dendrite arm spacing (SDAS) from microscopic images. The algorithm is capable of finding the lineal or curve-shaped secondary column of the main microstructure, measuring its length size in a micro-meter and counting the number of spaces between dendrites. The automatic characterization was compared with a set of 1728 manually characterized images, leading to an accuracy of −0.27 µm for the length size determination and a precision of ± 2.78 counts for dendrite spacing counting, also reducing the characterization time from 7 hours to 2 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrite%20arm%20spacing" title="dendrite arm spacing">dendrite arm spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20inspection" title=" microstructure inspection"> microstructure inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20regression" title=" polynomial regression"> polynomial regression</a> </p> <a href="https://publications.waset.org/abstracts/184692/application-of-pattern-recognition-technique-to-the-quality-characterization-of-superficial-microstructures-in-steel-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7104</span> Modelling of Atomic Force Microscopic Nano Robot&#039;s Friction Force on Rough Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kharazmi">M. Kharazmi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zakeri"> M. Zakeri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Packirisamy"> M. Packirisamy</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Faraji"> J. Faraji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title="atomic force microscopy">atomic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20model" title=" contact model"> contact model</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Greenwood-Williamson%20model" title=" Greenwood-Williamson model"> Greenwood-Williamson model</a> </p> <a href="https://publications.waset.org/abstracts/85332/modelling-of-atomic-force-microscopic-nano-robots-friction-force-on-rough-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7103</span> Application of Optimization Techniques in Overcurrent Relay Coordination: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Auon%20Raza">Syed Auon Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Mahmood"> Tahir Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Basit%20Ali%20Bukhari"> Syed Basit Ali Bukhari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power system properly coordinated protection scheme is designed to make sure that only the faulty part of the system will be isolated when abnormal operating condition of the system will reach. The complexity of the system as well as the increased user demand and the deregulated environment enforce the utilities to improve system reliability by using a properly coordinated protection scheme. This paper presents overview of over current relay coordination techniques. Different techniques such as Deterministic Techniques, Meta Heuristic Optimization techniques, Hybrid Optimization Techniques, and Trial and Error Optimization Techniques have been reviewed in terms of method of their implementation, operation modes, nature of distribution system, and finally their advantages as well as the disadvantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title="distribution system">distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=relay%20coordination" title=" relay coordination"> relay coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Plug%20Setting%20Multiplier%20%28PSM%29" title=" Plug Setting Multiplier (PSM)"> Plug Setting Multiplier (PSM)</a> </p> <a href="https://publications.waset.org/abstracts/3872/application-of-optimization-techniques-in-overcurrent-relay-coordination-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7102</span> The Structural Analysis of Out-of-Sequence Thrust: Insights from Chaura Thrust of Higher Himalaya in Himachal Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the structural analysis of Chaura Thrust in Himachal Pradesh, India. It investigates mylonitised zones under microscopic observation, characterizes the box fold and its signature in the regional geology of Himachal Himalaya, and documents the Higher Himalayan Out-of-Sequence Thrust (OOST) in the region. The study aims to provide field evidence and documentation for Chaura Thrust (CT), which was previously considered a blind thrust. The research methodology involves geological field observation, microscopic studies, and strain analysis of oriented samples collected along the Jhakri-Chaura transect. The study presents findings such as the activation ages of MCT and STDS, the identification of mylonitised zones and various types of crenulated schistosity, and the manifestation of box folds and OOST. The presence of meso- and micro-scale box folds around Chaura suggests structural upliftment, while kink folds and shear sense indicators were identified. The research highlights the importance of microscopic studies and contributes to the understanding of the structural analysis of CT and its implications in the regional geology of the Himachal Himalaya. Mylonitised zones with S-C fabric were observed under the microscope, along with dynamic and bulging recrystallization and sub-grain formation. Various types of crenulated schistosity were documented, including a rare case of crenulation cleavage and sigmoid Muscovite occurring together. The conclusions emphasize the non-blind nature of Chaura Thrust, the characterization of box folds, the activation timing of different thrusts, and the significance of microscopic observations. Jhakri/Chaura/Sarahan thrusts are the zone of tectonic imbrication that transport Higher Himalayan gneissic rock on Rampur Quartzite. The evidence of frequent earthquakes and landslides in the Jhakri region confirm the study of morphometric conclusion that there is considerable neo-tectonic activity along an active fault in the Sutlej river basin. The study also documents the presence of OOST in Himachal Pradesh and its potential impact on strain accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Main%20Central%20Thrust" title="Main Central Thrust">Main Central Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhakri%20Thrust" title=" Jhakri Thrust"> Jhakri Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaura%20Thrust" title=" Chaura Thrust"> Chaura Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Higher%20Himalaya" title=" Higher Himalaya"> Higher Himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Out-of-Sequence%20Thrust" title=" Out-of-Sequence Thrust"> Out-of-Sequence Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarahan%20Thrust" title=" Sarahan Thrust"> Sarahan Thrust</a> </p> <a href="https://publications.waset.org/abstracts/168723/the-structural-analysis-of-out-of-sequence-thrust-insights-from-chaura-thrust-of-higher-himalaya-in-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=237">237</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=238">238</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microscopic%20techniques&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10