CINXE.COM

A027187 - OEIS

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> <html> <head> <link rel="stylesheet" href="/styles.css"> <meta name="format-detection" content="telephone=no"> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta name="keywords" content="OEIS,integer sequences,Sloane" /> <title>A027187 - OEIS</title> <link rel="search" type="application/opensearchdescription+xml" title="OEIS" href="/oeis.xml"> <script> var myURL = "\/A027187" function redir() { var host = document.location.hostname; if(host != "oeis.org" && host != "127.0.0.1" && !/^([0-9.]+)$/.test(host) && host != "localhost" && host != "localhost.localdomain") { document.location = "https"+":"+"//"+"oeis"+".org/" + myURL; } } function sf() { if(document.location.pathname == "/" && document.f) document.f.q.focus(); } </script> </head> <body bgcolor=#ffffff onload="redir();sf()"> <div class=loginbar> <div class=login> <a href="/login?redirect=%2fA027187">login</a> </div> </div> <div class=center><div class=top> <center> <div class=donors> The OEIS is supported by <a href="http://oeisf.org/#DONATE">the many generous donors to the OEIS Foundation</a>. </div> <div class=banner> <a href="/"><img class=banner border="0" width="600" src="/banner2021.jpg" alt="A027187 - OEIS"></a> </div> <div class="motdbox"> <div class="motd"> <p>Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).</p> </div> <div class="donate"> <div id="donate-button-container"> <div id="donate-button"></div> <script src="https://www.paypalobjects.com/donate/sdk/donate-sdk.js" charset="UTF-8"></script> <script> PayPal.Donation.Button({ env:'production', hosted_button_id:'SVPGSDDCJ734A', image: { src:'https://www.paypalobjects.com/en_US/i/btn/btn_donateCC_LG.gif', alt:'Donate with PayPal button', title:'PayPal - The safer, easier way to pay online!', } }).render('#donate-button'); </script> </div> <a href="https://oeisf.org/donate/"> <strong>Other ways to Give</strong> </a> </div> </div> </center> </div></div> <div class=center><div class=pagebody> <div class=searchbarcenter> <form name=f action="/search" method="GET"> <div class=searchbargreet> <div class=searchbar> <div class=searchq> <input class=searchbox maxLength=1024 name=q value="" title="Search Query"> </div> <div class=searchsubmit> <input type=submit value="Search" name=go> </div> <div class=hints> <span class=hints><a href="/hints.html">Hints</a></span> </div> </div> <div class=searchgreet> (Greetings from <a href="/welcome">The On-Line Encyclopedia of Integer Sequences</a>!) </div> </div> </form> </div> <div class=sequence> <div class=space1></div> <div class=line></div> <div class=seqhead> <div class=seqnumname> <div class=seqnum> A027187 </div> <div class=seqname> Number of partitions of n into an even number of parts. </div> </div> <div class=scorerefs> 185 </div> </div> <div> <div class=seqdatabox> <div class=seqdata>1, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 27, 40, 49, 69, 86, 118, 146, 195, 242, 317, 392, 505, 623, 793, 973, 1224, 1498, 1867, 2274, 2811, 3411, 4186, 5059, 6168, 7427, 9005, 10801, 13026, 15572, 18692, 22267, 26613, 31602, 37619, 44533, 52815, 62338, 73680, 86716, 102162, 119918</div> <div class=seqdatalinks> (<a href="/A027187/list">list</a>; <a href="/A027187/graph">graph</a>; <a href="/search?q=A027187+-id:A027187">refs</a>; <a href="/A027187/listen">listen</a>; <a href="/history?seq=A027187">history</a>; <a href="/search?q=id:A027187&fmt=text">text</a>; <a href="/A027187/internal">internal format</a>) </div> </div> </div> <div class=entry> <div class=section> <div class=sectname>OFFSET</div> <div class=sectbody> <div class=sectline>0,5</div> </div> </div> <div class=section> <div class=sectname>COMMENTS</div> <div class=sectbody> <div class=sectline>Ramanujan theta functions: f(q) (see <a href="/A121373" title="Expansion of f(x) = f(x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function.">A121373</a>), phi(q) (<a href="/A000122" title="Expansion of Jacobi theta function theta_3(x) = Sum_{m =-oo..oo} x^(m^2) (number of integer solutions to k^2 = n).">A000122</a>), psi(q) (<a href="/A010054" title="a(n) = 1 if n is a triangular number, otherwise 0.">A010054</a>), chi(q) (<a href="/A000700" title="Expansion of Product_{k&gt;=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate part...">A000700</a>).</div> <div class=sectline>For n &gt; 0, also the number of partitions of n whose greatest part is even. [Edited by <a href="/wiki/User:Gus_Wiseman">Gus Wiseman</a>, Jan 05 2021]</div> <div class=sectline>Number of partitions of n+1 into an odd number of parts, the least being 1.</div> <div class=sectline>Also the number of partitions of n such that the number of even parts has the same parity as the number of odd parts; see Comments at <a href="/A027193" title="Number of partitions of n into an odd number of parts.">A027193</a>. - <a href="/wiki/User:Clark_Kimberling">Clark Kimberling</a>, Feb 01 2014, corrected Jan 06 2021</div> <div class=sectline>Suppose that c(0) = 1, that c(1), c(2), ... are indeterminates, that d(0) = 1, and that d(n) = -c(n) - c(n-1)*d(1) - ... - c(0)*d(n-1). When d(n) is expanded as a polynomial in c(1), c(2),..,c(n), the terms are of the form H*c(i_1)*c(i_2)*...*c(i_k). Let P(n) = [c(i_1), c(i_2), ..., c(i_k)], a partition of n. Then H is negative if P has an odd number of parts, and H is positive if P has an even number of parts. That is, d(n) has <a href="/A027193" title="Number of partitions of n into an odd number of parts.">A027193</a>(n) negative coefficients, <a href="/A027187" title="Number of partitions of n into an even number of parts.">A027187</a>(n) positive coefficients, and <a href="/A000041" title="a(n) is the number of partitions of n (the partition numbers).">A000041</a> terms. The maximal coefficient in d(n), in absolute value, is <a href="/A102462" title="Max{ k!/(a(1)!*a(2)!*..*a(n)!) : a(1) + 2*a(2) + 3*a(3) + ... + n*a(n) = n, a(1) + a(2) + ... + a(n) = k }.">A102462</a>(n). - <a href="/wiki/User:Clark_Kimberling">Clark Kimberling</a>, Dec 15 2016</div> </div> </div> <div class=section> <div class=sectname>REFERENCES</div> <div class=sectbody> <div class=sectline>N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; See p. 8, (7.323) and p. 39, Example 7.</div> </div> </div> <div class=section> <div class=sectname>LINKS</div> <div class=sectbody> <div class=sectline>Alois P. Heinz, <a href="/A027187/b027187.txt">Table of n, a(n) for n = 0..10000</a> (first 1000 terms from T. D. Noe)</div> <div class=sectline>George E. Andrews and David Newman, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Andrews/andrews5.html">The Minimal Excludant in Integer Partitions</a>, J. Int. Seq., Vol. 23 (2020), Article 20.2.3.</div> <div class=sectline>Arvind Ayyer, Hiranya Kishore Dey, and Digjoy Paul, <a href="https://arxiv.org/abs/2406.06036">How large is the character degree sum compared to the character table sum for a finite group?</a>, arXiv:2406.06036 [math.RT], 2024. See p. 13.</div> <div class=sectline>Roland Bacher and Pierre De La Harpe, <a href="https://hal.science/hal-01285685">Conjugacy growth series of some infinitely generated groups</a>, International Mathematics Research Notices, 2016, pp.1-53. (hal-01285685v2)</div> <div class=sectline>N. J. Fine, <a href="http://www.jstor.org/stable/2307653">Problem 4314</a>, Amer. Math. Monthly, Vol. 57, 1950, 421-423.</div> <div class=sectline>Mircea Merca, <a href="http://dx.doi.org/10.1016/j.jnt.2015.08.014">Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer</a>, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function p_e(n).</div> <div class=sectline>Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a></div> <div class=sectline>Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a></div> </div> </div> <div class=section> <div class=sectname>FORMULA</div> <div class=sectbody> <div class=sectline>a(n) = (<a href="/A000041" title="a(n) is the number of partitions of n (the partition numbers).">A000041</a>(n) + (-1)^n * <a href="/A000700" title="Expansion of Product_{k&gt;=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate part...">A000700</a>(n))/2.</div> <div class=sectline>a(n) = p(n) - p(n-1) + p(n-4) - p(n-9) + ... where p(n) is the number of unrestricted partitions of n, <a href="/A000041" title="a(n) is the number of partitions of n (the partition numbers).">A000041</a>. [Fine] - <a href="/wiki/User:David_Callan">David Callan</a>, Mar 14 2004</div> <div class=sectline>From <a href="/wiki/User:Bill_Gosper">Bill Gosper</a>, Jun 25 2005: (Start)</div> <div class=sectline>G.f.: A(q) = Sum_{n &gt;= 0} a(n) q^n = 1 + q^2 + q^3 + 3 q^4 + 3 q^5 + 6 q^6 + ...</div> <div class=sectline>= Sum_{n &gt;= 0} q^(2n)/(q; q)_{2n}</div> <div class=sectline>= ((Product_{k &gt;= 1} 1/(1-q^k) + (Product_{k &gt;= 1} 1/(1+q^k))/2.</div> <div class=sectline>Also, let B(q) = Sum_{n &gt;= 0} <a href="/A027193" title="Number of partitions of n into an odd number of parts.">A027193</a>(n) q^n = q + q^2 + 2 q^3 + 2 q^4 + 4 q^5 + 5 q^6 + ...</div> <div class=sectline>Then B(q) = Sum_{n &gt;= 0} q^(2n+1)/(q; q)_{2n+1} = ((Product_{k &gt;= 1} 1/(1-q^k) - (Product_{k &gt;= 1} 1/(1+q^k))/2.</div> <div class=sectline>Also we have the following identity involving 2 X 2 matrices:</div> <div class=sectline>Product_{k &gt;= 1} [ 1/(1-q^2k) q^k/(1-q^2k / q^k/(1-q^2k) 1/(1-q^2k) ]</div> <div class=sectline>= [ A(q) B(q) / B(q) A(q) ]. (End)</div> <div class=sectline>a(2*n) = <a href="/A046682" title="Number of cycle types of conjugacy classes of all even permutations of n elements.">A046682</a>(2*n), a(2*n+1) = <a href="/A000701" title="One half of number of non-self-conjugate partitions; also half of number of asymmetric Ferrers graphs with n nodes.">A000701</a>(2*n+1); a(n) = <a href="/A000041" title="a(n) is the number of partitions of n (the partition numbers).">A000041</a>(n)-<a href="/A027193" title="Number of partitions of n into an odd number of parts.">A027193</a>(n). - <a href="/wiki/User:Reinhard_Zumkeller">Reinhard Zumkeller</a>, Apr 22 2006</div> <div class=sectline>Expansion of (1 + phi(-q)) / (2 * f(-q)) where phi(), f() are Ramanujan theta functions. - <a href="/wiki/User:Michael_Somos">Michael Somos</a>, Aug 19 2006</div> <div class=sectline>G.f.: (Sum_{k&gt;=0} (-1)^k * x^(k^2)) / (Product_{k&gt;0} (1 - x^k)). - <a href="/wiki/User:Michael_Somos">Michael Somos</a>, Aug 19 2006</div> <div class=sectline>a(n) = <a href="/A338914" title="Number of integer partitions of n of even length whose greatest multiplicity is at most half their length.">A338914</a>(n) + <a href="/A096373" title="Number of partitions of n such that the least part occurs exactly twice.">A096373</a>(n). - <a href="/wiki/User:Gus_Wiseman">Gus Wiseman</a>, Jan 06 2021</div> </div> </div> <div class=section> <div class=sectname>EXAMPLE</div> <div class=sectbody> <div class=sectline>G.f. = 1 + x^2 + x^3 + 3*x^4 + 3*x^5 + 6*x^6 + 7*x^7 + 12*x^8 + 14*x^9 + 22*x^10 + ...</div> <div class=sectline>From <a href="/wiki/User:Gus_Wiseman">Gus Wiseman</a>, Jan 05 2021: (Start)</div> <div class=sectline>The a(2) = 1 through a(8) = 12 partitions into an even number of parts are the following. The Heinz numbers of these partitions are given by <a href="/A028260" title="Numbers with an even number of prime divisors (counted with multiplicity); numbers k such that the Liouville function lambda...">A028260</a>.</div> <div class=sectline> (11) (21) (22) (32) (33) (43) (44)</div> <div class=sectline> (31) (41) (42) (52) (53)</div> <div class=sectline> (1111) (2111) (51) (61) (62)</div> <div class=sectline> (2211) (2221) (71)</div> <div class=sectline> (3111) (3211) (2222)</div> <div class=sectline> (111111) (4111) (3221)</div> <div class=sectline> (211111) (3311)</div> <div class=sectline> (4211)</div> <div class=sectline> (5111)</div> <div class=sectline> (221111)</div> <div class=sectline> (311111)</div> <div class=sectline> (11111111)</div> <div class=sectline>The a(2) = 1 through a(8) = 12 partitions whose greatest part is even are the following. The Heinz numbers of these partitions are given by <a href="/A244990" title="After 1, numbers whose greatest prime factor is a prime with an even index; n such that A061395(n) is even.">A244990</a>.</div> <div class=sectline> (2) (21) (4) (41) (6) (43) (8)</div> <div class=sectline> (22) (221) (42) (61) (44)</div> <div class=sectline> (211) (2111) (222) (421) (62)</div> <div class=sectline> (411) (2221) (422)</div> <div class=sectline> (2211) (4111) (431)</div> <div class=sectline> (21111) (22111) (611)</div> <div class=sectline> (211111) (2222)</div> <div class=sectline> (4211)</div> <div class=sectline> (22211)</div> <div class=sectline> (41111)</div> <div class=sectline> (221111)</div> <div class=sectline> (2111111)</div> <div class=sectline>(End)</div> </div> </div> <div class=section> <div class=sectname>MATHEMATICA</div> <div class=sectbody> <div class=sectline>f[n_] := Length[Select[IntegerPartitions[n], IntegerQ[First[#]/2] &amp;]]; Table[f[n], {n, 1, 30}] (* <a href="/wiki/User:Clark_Kimberling">Clark Kimberling</a>, Mar 13 2012 *)</div> <div class=sectline>a[ n_] := SeriesCoefficient[ (1 + EllipticTheta[ 4, 0, x]) / (2 QPochhammer[ x]), {x, 0, n}]; (* <a href="/wiki/User:Michael_Somos">Michael Somos</a>, May 06 2015 *)</div> <div class=sectline>a[ n_] := If[ n &lt; 0, 0, Length@Select[ IntegerPartitions[n], EvenQ[Length @ #] &amp;]]; (* <a href="/wiki/User:Michael_Somos">Michael Somos</a>, May 06 2015 *)</div> </div> </div> <div class=section> <div class=sectname>PROG</div> <div class=sectbody> <div class=sectline>(PARI) {a(n) = my(A); if( n&lt;0, 0, A = x * O(x^n); polcoeff( sum( k=0, sqrtint(n), (-x)^k^2, A) / eta(x + A), n))}; /* <a href="/wiki/User:Michael_Somos">Michael Somos</a>, Aug 19 2006 */</div> <div class=sectline>(PARI) q='q+O('q^66); Vec( (1/eta(q)+eta(q)/eta(q^2))/2 ) \\ <a href="/wiki/User:Joerg_Arndt">Joerg Arndt</a>, Mar 23 2014</div> </div> </div> <div class=section> <div class=sectname>CROSSREFS</div> <div class=sectbody> <div class=sectline>Cf. <a href="/A000701" title="One half of number of non-self-conjugate partitions; also half of number of asymmetric Ferrers graphs with n nodes.">A000701</a>, <a href="/A046682" title="Number of cycle types of conjugacy classes of all even permutations of n elements.">A046682</a>, <a href="/A026838" title="Number of partitions of n into distinct parts, the greatest being even.">A026838</a>, <a href="/A102462" title="Max{ k!/(a(1)!*a(2)!*..*a(n)!) : a(1) + 2*a(2) + 3*a(3) + ... + n*a(n) = n, a(1) + a(2) + ... + a(n) = k }.">A102462</a>.</div> <div class=sectline>The Heinz numbers of these partitions are <a href="/A028260" title="Numbers with an even number of prime divisors (counted with multiplicity); numbers k such that the Liouville function lambda...">A028260</a>.</div> <div class=sectline>The odd version is <a href="/A027193" title="Number of partitions of n into an odd number of parts.">A027193</a>.</div> <div class=sectline>The strict case is <a href="/A067661" title="Number of partitions of n into distinct parts such that number of parts is even.">A067661</a>.</div> <div class=sectline>The case of even sum as well as length is <a href="/A236913" title="Number of partitions of 2n of type EE (see Comments).">A236913</a> (the even bisection).</div> <div class=sectline>Other cases of even length:</div> <div class=sectline>- <a href="/A024430" title="Expansion of e.g.f. cosh(exp(x)-1).">A024430</a> counts set partitions of even length.</div> <div class=sectline>- <a href="/A034008" title="a(n) = floor(2^|n-1|/2). Or: 1, 0, followed by powers of 2.">A034008</a> counts compositions of even length.</div> <div class=sectline>- <a href="/A052841" title="Expansion of e.g.f.: 1/(exp(x)*(2-exp(x))).">A052841</a> counts ordered set partitions of even length.</div> <div class=sectline>- <a href="/A174725" title="a(n) = (A074206(n) + A008683(n))/2.">A174725</a> counts ordered factorizations of even length.</div> <div class=sectline>- <a href="/A332305" title="Number of compositions (ordered partitions) of n into distinct parts such that number of parts is even.">A332305</a> counts strict compositions of even length</div> <div class=sectline>- <a href="/A339846" title="Number of even-length factorizations of n into factors &gt; 1.">A339846</a> counts factorizations of even length.</div> <div class=sectline><a href="/A000009" title="Expansion of Product_{m &gt;= 1} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd p...">A000009</a> counts partitions into odd parts, ranked by <a href="/A066208" title="All primes that divide n are of the form prime(2k-1), where prime(k) is k-th prime.">A066208</a>.</div> <div class=sectline><a href="/A026805" title="Number of partitions of n in which the least part is even.">A026805</a> counts partitions whose least part is even.</div> <div class=sectline><a href="/A072233" title="Square array T(n,k) read by antidiagonals giving number of ways to distribute n indistinguishable objects in k indistinguish...">A072233</a> counts partitions by sum and length.</div> <div class=sectline><a href="/A101708" title="Number of partitions of n having positive even rank (the rank of a partition is the largest part minus the number of parts).">A101708</a> counts partitions of even positive rank.</div> <div class=sectline>Cf. <a href="/A000700" title="Expansion of Product_{k&gt;=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate part...">A000700</a>, <a href="/A026424" title="Number of prime divisors (counted with multiplicity) is odd; Liouville function lambda(n) (A008836) is negative.">A026424</a>, <a href="/A058696" title="Number of ways to partition 2n into positive integers.">A058696</a>, <a href="/A096373" title="Number of partitions of n such that the least part occurs exactly twice.">A096373</a>, <a href="/A244990" title="After 1, numbers whose greatest prime factor is a prime with an even index; n such that A061395(n) is even.">A244990</a>, <a href="/A300061" title="Heinz numbers of integer partitions of even numbers.">A300061</a>.</div> <div class=sectline>Sequence in context: <a href="/A325834" title="Number of integer partitions of n whose number of submultisets is less than or equal to n.">A325834</a> <a href="/A365924" title="Number of incomplete integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.">A365924</a> <a href="/A241832" title="Number of partitions p = [x(1), ..., x(k)], where x(1) &gt;= x(2) &gt;= ... &gt;= x(k), of n such that max(x(i) - x(i-1)) &gt; number o...">A241832</a> * <a href="/A056508" title="Number of periodic palindromic structures of length n using exactly two different symbols.">A056508</a> <a href="/A050065" title="a(n) = a(n-1) + a(m) for n &gt;= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p &lt; n - 1 &lt;= 2^(p+1), sta...">A050065</a> <a href="/A367394" title="Number of integer partitions of n whose length is a semi-sum of the parts.">A367394</a></div> <div class=sectline>Adjacent sequences: <a href="/A027184" title="a(n) = (1/2)*(n-th largest even number in array T given by A027170).">A027184</a> <a href="/A027185" title="Triangular array O by rows: O(n,k) = number of partitions of n into an odd number of parts, the least being k.">A027185</a> <a href="/A027186" title="Triangular array E by rows: E(n,k) = number of partitions of n into an even number of parts, the least being k.">A027186</a> * <a href="/A027188" title="a(n) = number of partitions of n into an odd number of parts, the least being 2; also a(n+2) = number of partitions of n int...">A027188</a> <a href="/A027189" title="Number of partitions of n into an odd number of parts, the least being 3; also, a(n+3) = number of partitions of n into an e...">A027189</a> <a href="/A027190" title="Number of partitions of n into an odd number of parts, the least being 4; also, a(n+4) = number of partitions of n into an e...">A027190</a></div> </div> </div> <div class=section> <div class=sectname>KEYWORD</div> <div class=sectbody> <div class=sectline><span title="a sequence of nonnegative numbers">nonn</span></div> </div> </div> <div class=section> <div class=sectname>AUTHOR</div> <div class=sectbody> <div class=sectline><a href="/wiki/User:Clark_Kimberling">Clark Kimberling</a></div> </div> </div> <div class=section> <div class=sectname>EXTENSIONS</div> <div class=sectbody> <div class=sectline>Offset changed to 0 by <a href="/wiki/User:Michael_Somos">Michael Somos</a>, Jul 24 2012</div> </div> </div> <div class=section> <div class=sectname>STATUS</div> <div class=sectbody> <div class=sectline>approved</div> </div> </div> </div> <div class=space10></div> </div> </div></div> <p> <div class=footerpad></div> <div class=footer> <center> <div class=bottom> <div class=linksbar> <a href="/">Lookup</a> <a href="/wiki/Welcome"><font color="red">Welcome</font></a> <a href="/wiki/Main_Page"><font color="red">Wiki</font></a> <a href="/wiki/Special:RequestAccount">Register</a> <a href="/play.html">Music</a> <a href="/plot2.html">Plot 2</a> <a href="/demo1.html">Demos</a> <a href="/wiki/Index_to_OEIS">Index</a> <a href="/webcam">WebCam</a> <a href="/Submit.html">Contribute</a> <a href="/eishelp2.html">Format</a> <a href="/wiki/Style_Sheet">Style Sheet</a> <a href="/transforms.html">Transforms</a> <a href="/ol.html">Superseeker</a> <a href="/recent">Recents</a> </div> <div class=linksbar> <a href="/community.html">The OEIS Community</a> </div> <div class=linksbar> Maintained by <a href="http://oeisf.org">The OEIS Foundation Inc.</a> </div> <div class=dbinfo>Last modified December 12 09:24 EST 2024. Contains 378631 sequences.</div> <div class=legal> <a href="/wiki/Legal_Documents">License Agreements, Terms of Use, Privacy Policy</a> </div> </div> </center> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10