CINXE.COM
congruence in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> congruence in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> congruence </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/4221/#Item_19" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Congruences</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="relations">Relations</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/relation">relation</a></strong>, <a class="existingWikiWord" href="/nlab/show/internal+relation">internal relation</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/Rel">Rel</a></strong>, <a class="existingWikiWord" href="/nlab/show/bicategory+of+relations">bicategory of relations</a>, <a class="existingWikiWord" href="/nlab/show/allegory">allegory</a></p> <h2 id="types_of_binary_relation">Types of Binary relation</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/reflexive+relation">reflexive</a>, <a class="existingWikiWord" href="/nlab/show/irreflexive+relation">irreflexive</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+relation">symmetric</a>, <a class="existingWikiWord" href="/nlab/show/antisymmetric+relation">antisymmetric</a> <a class="existingWikiWord" href="/nlab/show/asymmetric+relation">asymmetric</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/transitive+relation">transitive</a>, <a class="existingWikiWord" href="/nlab/show/comparison">comparison</a>;</p> </li> <li> <p>left and right <a class="existingWikiWord" href="/nlab/show/euclidean+relation">euclidean</a>;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/total+relation">total</a>, <a class="existingWikiWord" href="/nlab/show/connected+relation">connected</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extensional+relation">extensional</a>, <a class="existingWikiWord" href="/nlab/show/well-founded+relation">well-founded</a> relations.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functional+relations">functional relations</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/entire+relations">entire relations</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+relations">equivalence relations</a>, <a class="existingWikiWord" href="/nlab/show/congruence">congruence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/apartness+relations">apartness relations</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simple+graph">simple graph</a></p> </li> </ul> <h2 id="in_higher_category_theory">In higher category theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-congruence">2-congruence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-congruence">(n,r)-congruence</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/relations+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="category_theory">Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></strong></p> <h2 id="sidebar_concepts">Concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> </li> </ul> <h2 id="sidebar_universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor">adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/limit">limit</a>/<a class="existingWikiWord" href="/nlab/show/colimit">colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>/<a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> </li> </ul> </li> </ul> <h2 id="sidebar_theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+construction">Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+functor+theorem">adjoint functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">monadicity theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+lifting+theorem">adjoint lifting theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabriel-Ulmer+duality">Gabriel-Ulmer duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/small+object+argument">small object argument</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freyd-Mitchell+embedding+theorem">Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+type+theory+and+category+theory">relation between type theory and category theory</a></p> </li> </ul> <h2 id="sidebar_extensions">Extensions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf+and+topos+theory">sheaf and topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> </ul> <h2 id="sidebar_applications">Applications</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></li> </ul> <div> <p> <a href="/nlab/edit/category+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="congruences">Congruences</h1> <div class='maruku_toc'> <ul> <li><a href='#Idea'>Idea</a></li> <li><a href='#definitions'>Definitions</a></li> <li><a href='#properties'>Properties</a></li> <li><a href='#examples'>Examples</a></li> <li><a href='#related_pages'>Related pages</a></li> <li><a href='#see_also'>See also</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#in_common_mathematics'>In common mathematics</a></li> <li><a href='#in_category_theory'>In category theory</a></li> </ul> </ul> </div> <h2 id="Idea">Idea</h2> <p>In <a class="existingWikiWord" href="/nlab/show/Euclidean+geometry">Euclidean geometry</a>, by <em>congruence</em> one means the <a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a> on the collection of <a class="existingWikiWord" href="/nlab/show/subsets">subsets</a> of a <a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a> which regards two of these as equivalent if one is carried into the other by an <a class="existingWikiWord" href="/nlab/show/isometry">isometry</a> (of the ambient Euclidean space).</p> <p>Similarly, in <a class="existingWikiWord" href="/nlab/show/algebra">algebra</a>, by a <em>congruence</em> one means certain <a class="existingWikiWord" href="/nlab/show/equivalence+relations">equivalence relations</a> on elements of algebraic <a class="existingWikiWord" href="/nlab/show/structures">structures</a>, such as <a class="existingWikiWord" href="/nlab/show/groups">groups</a> or <a class="existingWikiWord" href="/nlab/show/rings">rings</a> (cf. e.g. the <a class="existingWikiWord" href="/nlab/show/multiplicative+group+of+integers+modulo+n">multiplicative group of integers modulo n</a>).</p> <p>Therefore, in <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a> the term <em>congruence</em> is used in the broad generality of <a class="existingWikiWord" href="/nlab/show/equivalence+relations">equivalence relations</a> on (the <a class="existingWikiWord" href="/nlab/show/generalized+elements">generalized elements</a> of) <em>any object</em> <a class="existingWikiWord" href="/nlab/show/internalization">internal to</a> <em>any</em> <a class="existingWikiWord" href="/nlab/show/finitely+complete+category">finitely complete category</a>.</p> <h2 id="definitions">Definitions</h2> <div class="num_defn" id="Definition"> <h6 id="definition">Definition</h6> <p>In a <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/pullbacks">pullbacks</a>, a <strong>congruence</strong> on an <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/internalization">internal</a> <a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> (i.e.: an <a class="existingWikiWord" href="/nlab/show/internal+groupoid">internal groupoid</a> — hence an <a class="existingWikiWord" href="/nlab/show/internal+category">internal category</a> with all <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> being <a class="existingWikiWord" href="/nlab/show/isomorphisms">isomorphisms</a> — but with no non-<a class="existingWikiWord" href="/nlab/show/identity+morphism">identity</a> <a class="existingWikiWord" href="/nlab/show/automorphisms">automorphisms</a>).</p> <p>This means that it consists of a <a class="existingWikiWord" href="/nlab/show/subobject">subobject</a></p> <div class="maruku-equation" id="eq:TheSubobject"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>i</mi><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mi>R</mi><mover><mo>↪</mo><mrow><mo stretchy="false">(</mo><msub><mi>p</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>p</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow></mover><mi>X</mi><mo>×</mo><mi>X</mi></mrow><annotation encoding="application/x-tex"> i \;\colon\; R\stackrel{(p_1,p_2)}\hookrightarrow X \times X </annotation></semantics></math></div> <p>of the <a class="existingWikiWord" href="/nlab/show/Cartesian+product">Cartesian product</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> with itself, equipped with the following <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a>:</p> <ul> <li> <p>internal <a class="existingWikiWord" href="/nlab/show/reflexive+relation">reflexivity</a>: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">r \colon X \to R</annotation></semantics></math> which is a <a class="existingWikiWord" href="/nlab/show/section">section</a> both of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">p_1</annotation></semantics></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">p_2</annotation></semantics></math>, i.e., <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub><mi>r</mi><mo>=</mo><msub><mi>p</mi> <mn>2</mn></msub><mi>r</mi><mo>=</mo><msub><mn>1</mn> <mi>X</mi></msub></mrow><annotation encoding="application/x-tex">p_1 r = p_2 r = 1_X</annotation></semantics></math>;</p> </li> <li> <p>internal <a class="existingWikiWord" href="/nlab/show/symmetric+relation">symmetry</a>: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo lspace="verythinmathspace">:</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">s \colon R \to R</annotation></semantics></math> which interchanges <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">p_1</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">p_2</annotation></semantics></math>, i.e., <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub><mo>∘</mo><mi>s</mi><mo>=</mo><msub><mi>p</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">p_1\circ s = p_2</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mn>2</mn></msub><mo>∘</mo><mi>s</mi><mo>=</mo><msub><mi>p</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">p_2\circ s = p_1</annotation></semantics></math>;</p> </li> <li id="InternalTransitivity"> <p>internal <a class="existingWikiWord" href="/nlab/show/transitive+relation">transitivity</a>:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>t</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>R</mi><msub><mo>×</mo> <mi>X</mi></msub><mi>R</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding="application/x-tex">t \,\colon\, R \times_X R \to R</annotation></semantics></math></p> <p>(where on the left we have the <a class="existingWikiWord" href="/nlab/show/fiber+product">fiber product</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>↪</mo><mi>X</mi><mo>×</mo><mi>X</mi><mover><mo>→</mo><mrow><msub><mi>p</mi> <mn>2</mn></msub></mrow></mover><mi>X</mi></mrow><annotation encoding="application/x-tex">R \hookrightarrow X \times X \overset{p_2}{\to} X</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>↪</mo><mi>X</mi><mo>×</mo><mi>X</mi><mover><mo>→</mo><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow></mover><mi>X</mi></mrow><annotation encoding="application/x-tex">R \hookrightarrow X \times X \overset{p_1}{\to} X</annotation></semantics></math>, i.e. the subobject of pairs of <em>composable</em> pairs in relation)</p> <p>which factors the left/right projection map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><msub><mo>×</mo> <mi>X</mi></msub><mi>R</mi><mo>→</mo><mi>X</mi><mo>×</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">R \times_X R \to X \times X</annotation></semantics></math> through <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math>, i.e., the following <a class="existingWikiWord" href="/nlab/show/commuting+diagram">diagram commutes</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>R</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mi>t</mi></mpadded></msup><mo>↗</mo></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd></mtr> <mtr><mtd><mi>R</mi><msub><mo>×</mo> <mi>X</mi></msub><mi>R</mi></mtd> <mtd><munder><mo>⟶</mo><mrow><mo stretchy="false">(</mo><msub><mi>p</mi> <mn>1</mn></msub><msub><mi>q</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>p</mi> <mn>2</mn></msub><msub><mi>q</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow></munder></mtd> <mtd><mi>X</mi><mo>×</mo><mi>X</mi><mpadded width="0"><mrow><mspace width="thinmathspace"></mspace><mo>,</mo></mrow></mpadded></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ && R \\ & {}^{\mathllap{t}}\nearrow & \big\downarrow \\ R \times_X R & \underset{(p_1 q_1,p_2 q_2)}{\longrightarrow} & X \times X \mathrlap{\,,} } </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>q</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">q_1</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>q</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">q_2</annotation></semantics></math> are the <a class="existingWikiWord" href="/nlab/show/projections">projections</a> defined by the <a class="existingWikiWord" href="/nlab/show/pullback"> pullback diagram</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>R</mi><msub><mo>×</mo> <mi>X</mi></msub><mi>R</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><msub><mi>q</mi> <mn>2</mn></msub></mrow></mover></mtd> <mtd><mi>R</mi></mtd></mtr> <mtr><mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mpadded width="0"><mrow><msup><mrow></mrow> <mrow><msub><mi>q</mi> <mn>1</mn></msub></mrow></msup></mrow></mpadded></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mpadded width="0"><mrow><msup><mrow></mrow> <mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow></msup></mrow></mpadded></mtd></mtr> <mtr><mtd><mi>R</mi></mtd> <mtd><munder><mo>⟶</mo><mrow><msub><mi>p</mi> <mn>2</mn></msub></mrow></munder></mtd> <mtd><mi>X</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ R \times_X R & \overset{q_2}\longrightarrow & R \\ \big\downarrow{\mathrlap{{}^{q_1}}} && \big\downarrow{\mathrlap{{}^{p_1}}} \\ R & \underset{p_2}\longrightarrow & X } </annotation></semantics></math></div></li> </ul> </div> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>Since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/monomorphism">monomorphism</a>, the maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math> are necessarily unique if they exist.</p> </div> <div class="num_remark"> <h6 id="remark_2">Remark</h6> <p>Equivalently, a congruence on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/internal+category">internal category</a> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> the object of <a class="existingWikiWord" href="/nlab/show/objects">objects</a>, such that the (source,target)-map is a <a class="existingWikiWord" href="/nlab/show/monomorphism">monomorphism</a> and such that if there is a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>x</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">x_1 \to x_2</annotation></semantics></math> then there is also a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>2</mn></msub><mo>→</mo><msub><mi>x</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">x_2 \to x_1</annotation></semantics></math> (internally).</p> </div> <div class="num_remark"> <h6 id="remark_3">Remark</h6> <p>We can equivalently define a congruence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math> as (a representing object of) a representable sub-presheaf of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>hom</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\hom(-, X \times X)</annotation></semantics></math> so that for each object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math>, the composite of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo><mo>↪</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo stretchy="false">)</mo><mo>≅</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo><mo>×</mo><mi>hom</mi><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">R(Y) \hookrightarrow \hom(Y, X \times X) \cong \hom(Y, X) \times \hom(Y, X)</annotation></semantics></math> exhibits <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">R(Y)</annotation></semantics></math> as an equivalence relation on the set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>hom</mi><mo stretchy="false">(</mo><mi>Y</mi><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\hom(Y, X)</annotation></semantics></math>. The upshot of this definition is that it makes sense even when <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is not finitely complete.</p> </div> <div class="num_defn" id="EffectiveCongruence"> <h6 id="definition_2">Definition</h6> <p>A congruence which is the kernel pair of some morphism (example <a class="maruku-ref" href="#KernelPairIsCongruence"></a>) is called <strong>effective</strong>.</p> </div> <div class="num_defn" id="QuotientObject"> <h6 id="definition_3">Definition</h6> <p>The <a class="existingWikiWord" href="/nlab/show/coequalizer">coequalizer</a> of a congruence is called a <strong><a class="existingWikiWord" href="/nlab/show/quotient+object">quotient object</a></strong>.</p> <p>The quotient of an effective congruence is called an <strong>effective quotient</strong>.</p> </div> <div class="num_defn"> <h6 id="definition_4">Definition</h6> <p>A <a class="existingWikiWord" href="/nlab/show/regular+category">regular category</a> is called an <a class="existingWikiWord" href="/nlab/show/exact+category">exact category</a> if every congruence is effective.</p> </div> <h2 id="properties">Properties</h2> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>An effective congruence, def. <a class="maruku-ref" href="#EffectiveCongruence"></a>, is always the <a class="existingWikiWord" href="/nlab/show/kernel+pair">kernel pair</a> of its quotient, def. <a class="maruku-ref" href="#QuotientObject"></a>, if that quotient exists.</p> </div> <h2 id="examples">Examples</h2> <div class="num_example" id="DiagonalMorphismIsCongruence"> <h6 id="example">Example</h6> <p>Every <a class="existingWikiWord" href="/nlab/show/diagonal+morphism">diagonal morphism</a> on an object is a congruence and has a <a class="existingWikiWord" href="/nlab/show/quotient+object">quotient object</a> <a class="existingWikiWord" href="/nlab/show/isomorphic">isomorphic</a> to the original object.</p> </div> <div class="num_example" id="KernelPairIsCongruence"> <h6 id="example_2">Example</h6> <p>Every <a class="existingWikiWord" href="/nlab/show/kernel+pair">kernel pair</a> is a congruence.</p> </div> <div class="num_example"> <h6 id="example_3">Example</h6> <p>An <a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a> is precisely a congruence in <a class="existingWikiWord" href="/nlab/show/Set">Set</a>.</p> </div> <div class="num_example"> <h6 id="example_4">Example</h6> <p>The eponymous example is congruence modulo <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> (for a fixed <a class="existingWikiWord" href="/nlab/show/natural+number">natural number</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>), which can be considered a congruence on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathbb{N}</annotation></semantics></math> in the category of <a class="existingWikiWord" href="/nlab/show/rigs">rigs</a>, or on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi></mrow><annotation encoding="application/x-tex">\mathbb{Z}</annotation></semantics></math> in the category of <a class="existingWikiWord" href="/nlab/show/rings">rings</a>.</p> </div> <div class="num_example"> <h6 id="example_5">Example</h6> <p>A <a class="existingWikiWord" href="/nlab/show/quotient+group">quotient group</a> by a <a class="existingWikiWord" href="/nlab/show/normal+subgroup">normal subgroup</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi><mo>↪</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">K \hookrightarrow G</annotation></semantics></math> is the quotient of the congruence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>R</mi><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>:</mo><msup><mi>xy</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>∈</mo><mi>K</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">R = \{(x,y) : xy^{-1} \in K \}</annotation></semantics></math>.</p> <p>Alternatively, a <a class="existingWikiWord" href="/nlab/show/quotient+group">quotient group</a> by a <a class="existingWikiWord" href="/nlab/show/normal+subgroup">normal subgroup</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi><mo>↪</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">K \hookrightarrow G</annotation></semantics></math> is the quotient of the congruence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>×</mo><mi>K</mi><mover><mo>↪</mo><mrow><mo stretchy="false">(</mo><msub><mi>p</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>p</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow></mover><mi>G</mi><mo>×</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">G \times K \stackrel{(p_1,p_2)}{\hookrightarrow} G \times G</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">p_1</annotation></semantics></math> is projection on the first factor and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">p_2</annotation></semantics></math> is multiplication in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> (these are source and target maps in the <a class="existingWikiWord" href="/nlab/show/action+groupoid">action groupoid</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>⫽</mo><mi>K</mi></mrow><annotation encoding="application/x-tex">G \sslash K</annotation></semantics></math>).</p> <p>A special case of this is that of a <em><a class="existingWikiWord" href="/nlab/show/quotient+module">quotient module</a></em>.</p> </div> <h2 id="related_pages">Related pages</h2> <ul> <li> <p>The notions of <a class="existingWikiWord" href="/nlab/show/regular+category">regular category</a> and <a class="existingWikiWord" href="/nlab/show/exact+category">exact category</a> can naturally be formulated in terms of congruences. A “higher arity” version, corresponding to <a class="existingWikiWord" href="/nlab/show/coherent+categories">coherent categories</a> and <a class="existingWikiWord" href="/nlab/show/pretoposes">pretoposes</a> is discussed at <a class="existingWikiWord" href="/nlab/show/familial+regularity+and+exactness">familial regularity and exactness</a>.</p> </li> <li> <p>A <a class="existingWikiWord" href="/nlab/show/Mal%27cev+category">Mal'cev category</a> is a <a class="existingWikiWord" href="/nlab/show/finitely+complete+category">finitely complete category</a> in which every internal relation satisfying reflexivity is thereby actually a congruence.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">Higher-categorical</a> generalizations are that of a <a class="existingWikiWord" href="/nlab/show/2-congruence">2-congruence</a> and of a <a class="existingWikiWord" href="/nlab/show/groupoid+object+in+an+%28%E2%88%9E%2C1%29-category">groupoid object in an (∞,1)-category</a>. See also <a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-congruence">(n,r)-congruence</a>.</p> </li> </ul> <h2 id="see_also">See also</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/preordered+object">preordered object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+pseudo-equivalence+relation">internal pseudo-equivalence relation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/setoid+object">setoid object</a></p> </li> </ul> <h2 id="references">References</h2> <h3 id="in_common_mathematics">In common mathematics</h3> <ul> <li> <p>Wikipedia, <a href="https://en.wikipedia.org/wiki/Congruence_(geometry)">Congruence (geometry)</a></p> </li> <li> <p>Wikipedia, <em><a href="https://en.wikipedia.org/wiki/Congruence_relation">Congruence relation</a></em></p> </li> </ul> <h3 id="in_category_theory">In category theory</h3> <p>References using terminology as above:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Jiri+Adamek">Jiri Adamek</a>, <a class="existingWikiWord" href="/nlab/show/Horst+Herrlich">Horst Herrlich</a>, <a class="existingWikiWord" href="/nlab/show/George+Strecker">George Strecker</a>, p. 195 of: <em><a class="existingWikiWord" href="/nlab/show/Abstract+and+Concrete+Categories">Abstract and Concrete Categories</a></em>, John Wiley and Sons, New York (1990) reprinted as: Reprints in Theory and Applications of Categories <strong>17</strong> (2006) 1-507 [<a href="http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html">tac:tr17</a>, <a href="http://katmat.math.uni-bremen.de/acc/">book webpage</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Francis+Borceux">Francis Borceux</a>, Exp. 2.10.3.b in: <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Categorical+Algebra">Handbook of Categorical Algebra</a></em> Vol. 1 <em>Basic Category Theory</em>, Encyclopedia of Mathematics and its Applications <strong>50</strong>, Cambridge University Press (1994) [<a href="https://doi.org/10.1017/CBO9780511525858">doi:10.1017/CBO9780511525858</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Francis+Borceux">Francis Borceux</a>, Exps. 2.5.6 in: <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Categorical+Algebra">Handbook of Categorical Algebra</a></em> Vol. 2 <em>Categories and Structures</em>, Encyclopedia of Mathematics and its Applications <strong>50</strong>, Cambridge University Press (1994) [<a href="https://doi.org/10.1017/CBO9780511525865">doi:10.1017/CBO9780511525865</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Marek+A.+Bednarczyk">Marek A. Bednarczyk</a>, <a class="existingWikiWord" href="/nlab/show/Andrzej+M.+Borzyszkowski">Andrzej M. Borzyszkowski</a>, <a class="existingWikiWord" href="/nlab/show/Wieslaw+Pawlowski">Wieslaw Pawlowski</a>, <em>Generalized congruences – epimorphisms in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi><mi>at</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}at</annotation></semantics></math></em>, Theory and Applications of Categories <strong>5</strong> 11 (1999) 266-280 [<a href="http://www.tac.mta.ca/tac/volumes/1999/n11/5-11abs.html">tac:5-11</a>, <a href="https://eudml.org/doc/120226?lang=fr&limit=5">dml:120226</a>]</p> </li> </ul> <p>…</p> <p>But, for what it’s worth, a <em>different</em> use of the term “congruence” in category theory appears in Def. 3.5.1 on <a href="https://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf#page=107">p. 89</a> in:</p> <ul> <li id="BarrWells95"><a class="existingWikiWord" href="/nlab/show/Michael+Barr">Michael Barr</a>, <a class="existingWikiWord" href="/nlab/show/Charles+Wells">Charles Wells</a>, <em>Category theory for computing science</em>, Prentice-Hall International Series in Computer Science (1995); reprinted in: Reprints in Theory and Applications of Categories <strong>22</strong> (2012) 1-538 [<a href="http://www.math.mcgill.ca/barr/papers/ctcs.pdf">pdf</a>, <a href="http://www.tac.mta.ca/tac/reprints/articles/22/tr22abs.html">tac:tr22</a>]</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on July 30, 2024 at 13:47:01. See the <a href="/nlab/history/congruence" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/congruence" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/4221/#Item_19">Discuss</a><span class="backintime"><a href="/nlab/revision/congruence/36" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/congruence" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/congruence" accesskey="S" class="navlink" id="history" rel="nofollow">History (36 revisions)</a> <a href="/nlab/show/congruence/cite" style="color: black">Cite</a> <a href="/nlab/print/congruence" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/congruence" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>