CINXE.COM

Search results for: salinity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: salinity</title> <meta name="description" content="Search results for: salinity"> <meta name="keywords" content="salinity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="salinity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="salinity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 358</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: salinity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Hossen">B. Hossen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Helmut"> Y. Helmut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity" title="soil salinity">soil salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=EC" title=" EC"> EC</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat%208" title=" Landsat 8"> Landsat 8</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20indices" title=" salinity indices"> salinity indices</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing "> remote sensing </a> </p> <a href="https://publications.waset.org/abstracts/139666/assessment-of-soil-salinity-through-remote-sensing-technique-in-the-coastal-region-of-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Growth and Yield Response of Solanum retroflexum to Different Level of Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fhatuwani%20Herman%20Nndwambi">Fhatuwani Herman Nndwambi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Mashela"> P. W. Mashela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is a major constraint limiting crop productivity. It has been predicted that by the year 2050, more than 50% of the arable land will be affected by salinity. Two similar salinity experiments were conducted in two seasons under greenhouse condition. Six levels of salinity plus control (viz; control, 2, 4, 8, 16, 32 and 64 % NaCl and CaCl2 at 3:1 ratio) were applied in a form of irrigation water in a single factor experiment arranged in a complete block design with 20 replications. Plant growth and yield were negatively affected by salinity treatments especially at the high levels of salinity. For example, our results suggest that the 32 and 64% of NaCl and CaCl2 treatment were too much for the plant to withstand as determined by reduced dry shoot mass, stem diameter and plant height in both seasons. On the other hand, stomatal conductance and chlorophyll content increased with an increased level of salinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth" title="growth">growth</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=season" title=" season"> season</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/107899/growth-and-yield-response-of-solanum-retroflexum-to-different-level-of-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Impact of Saline Water and Water Restriction in Laying Hens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Vakili">Reza Vakili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted to investigate the effect of duration water restriction of drinking water and salinity level on production performance, egg quality and biochemical and hematological blood indices of laying hens. A total of 240 Hy-Line laying hens were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Experimental treatments were: 1) free access to drinking water and a low level of salinity (TDS below 500 mg/L) (FAW+LS), 2) free access to water and a high level of salinity (TDS above 1500 mg/L), (FAW+HS), 3) 12 h nightly water restriction and a low level of salinity (LAW+LS), and 4) 12 h water restriction and a high level of salinity (LAW+HS). Intake of feed, percentage of egg production and egg weight and mass were not affected by water restriction or salinity level (P > 0.05), however, a trend (P < 0.01) for lower water consumption was detected in water-restricted hens, regardless of salinity level (213 vs 187). A tendency for lower eggshell and yolk weights was observed in hens that had limited access to water with high salinity compared to those had free access to high saline water (P = 0.08). Serum total protein and glucose concentrations significantly reduced (P < 0.05) in hens drank high salinity water, regardless of water restriction. Moreover, saline water increased the concentration of uric acid, creatinine, and cholesterol when compared to low salinity drank-hens (P < 0.05). The concentrations of ALT and AST increased with salinity level (P < 0.05) and water restriction caused an increment in AST content (P < 0.05). In conclusion, Hy-Line laying hens could withstand water restriction, whilst could not tolerate water salinity of about 1500 mg/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20pollutants" title="chemical pollutants">chemical pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=eggs" title=" eggs"> eggs</a>, <a href="https://publications.waset.org/abstracts/search?q=laying%20hens" title=" laying hens"> laying hens</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/191494/impact-of-saline-water-and-water-restriction-in-laying-hens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Effect of Pre-treatment with Salicylic Acid on Vegetative Growth and Yield Components of Wheat under Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20M.%20Howladar">Saad M. Howladar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Dennett"> Mike Dennett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20fluorescence" title=" chlorophyll fluorescence"> chlorophyll fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20exchange" title=" gas exchange"> gas exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/7202/effect-of-pre-treatment-with-salicylic-acid-on-vegetative-growth-and-yield-components-of-wheat-under-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Effect of Pre-Treatment with Salicylic Acid on Vegetative Growth and Yield Components of Saudi’s Wheat under Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Howladar">Saad Howladar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Dennett"> Mike Dennett </a> </p> <p class="card-text"><strong>Abstract:</strong></p> At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20fluorescence" title=" chlorophyll fluorescence"> chlorophyll fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20exchange" title=" gas exchange"> gas exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/10390/effect-of-pre-treatment-with-salicylic-acid-on-vegetative-growth-and-yield-components-of-saudis-wheat-under-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Role of Osmoregulators for Enhancing Salinity Stress Tolerance in Chickpea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Ahmed%20Khater">Mahmoud Ahmed Khater</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to improve the deleterious effects of salinity stress in chickpeas using both proline and glycine betaine as osmoregulants. The aim was achieved using foliar spraying with different concentrations of proline (5 mM and 10 mM) and glycinebetaine (10 mM and 20 mM) to chickpea plants grown in pots under salinity stress (3000 mg/l NaCl) at the greenhouse of the National Research Centre, Egypt, during two successive seasons 2021/2022 and 2022/2023. Results indicated that all applied treatments caused significant increases in most of the investigated parameters of chickpea plants irrigated with either tap water or saline solution relative to the corresponding control. It is worth mentioning that proline treatments were more effective than glycine betaine treatments in increasing the salinity tolerance of chickpea plants, reflected in their quality and quantity. Moreover, proline treatment at 5mM was the most pronounced treatment in alleviating the deleterious effect of salinity on chickpea plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cicer%20arietinum%20L." title="cicer arietinum L.">cicer arietinum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=osmoprotectant" title=" osmoprotectant"> osmoprotectant</a>, <a href="https://publications.waset.org/abstracts/search?q=proline" title=" proline"> proline</a>, <a href="https://publications.waset.org/abstracts/search?q=glycinebetaine%20salinity%20tolerance" title=" glycinebetaine salinity tolerance"> glycinebetaine salinity tolerance</a> </p> <a href="https://publications.waset.org/abstracts/186071/role-of-osmoregulators-for-enhancing-salinity-stress-tolerance-in-chickpea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Dynamics of Soil Carbon and Nitrogen Contents and Stocks along a Salinity Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingqing%20Zhao">Qingqing Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhong%20Bai"> Junhong Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the effects of salinity on dynamics of soil carbon and nitrogen contents and stocks, soil samples were collected at a depth of 30 cm at four sampling sites (Sites B, T, S and P) along a salinity gradient in a drained coastal wetland, the Yellow River Delta, China. The salinity of these four sites ranked in the order: B (8.68±4.25 ms/cm) > T (5.89±3.17 ms/cm) > S (3.19±1.01 ms/cm) > P (2.26±0.39 ms/cm). Soil total carbon (TC), soil organic carbon (SOC), soil microbial biomass carbon (MBC), soil total nitrogen (TC) and soil microbial biomass carbon (MBC) were measured. Based on these data, soil organic carbon density (SOCD), soil microbial biomass carbon density (MBCD), soil nitrogen density (TCD) and soil microbial biomass nitrogen density (MBND) were calculated at four sites. The results showed that the mean concentrations of TC, SOC, MBC, TN and MBN showed a general deceasing tendency with increasing salinities in the top 30 cm of soils. The values of SOCD, MBCD, TND and MBND exhibited similar tendency along the salinity gradient. As for profile distribution pattern, The C/N ratios ranged from 8.28 to 56. 51. Higher C/N ratios were found in samples with high salinity. Correlation analysis showed that the concentrations of TC, SOC and MBC at four sampling sites were significantly negatively correlated with salinity (P < 0.01 or P < 0.05), indicating that salinity could inhibit soil carbon accumulation. However, no significant relationship was observed between TN, MBN and salinity (P > 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20content%20and%20stock" title="carbon content and stock">carbon content and stock</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20content%20and%20stock" title=" nitrogen content and stock"> nitrogen content and stock</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20wetland" title=" coastal wetland"> coastal wetland</a> </p> <a href="https://publications.waset.org/abstracts/39880/dynamics-of-soil-carbon-and-nitrogen-contents-and-stocks-along-a-salinity-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Isolation and Characterization of Salt-Tolerance of Rhizobia under the Effects of Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Sobti">Sarra Sobti</a>, <a href="https://publications.waset.org/abstracts/search?q=Baelhadj%20Hamdi-A%C3%AFssa"> Baelhadj Hamdi-Aïssa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bacteria of the soil, usually called rhizobium, have a considerable importance in agriculture because of their capacity to fix the atmospheric nitrogen in symbiosis with the plants of the family of legumes. The present work was to study the effect of the salinity on growth and nodulation of alfalfa-rhizobia symbiosis at different agricultural experimental sites in Ouargla. The experiment was conducted in 3 steps. The first one was the isolation and characterization of the Rhizobia; next, the evolution of the isolates tolerance to salinity at three levels of NaCl (6, 8,12 and 16 g/L); and the last step was the evolution of the tolerance on symbiotic characteristics. The results showed that the phenotypic characterizations behave practically as Rhizobia spp, and the effects of salinity affect the symbiotic process. The tolerance to high levels of salinity and the survival and persistence in severe and harsh desert conditions make these rhizobia highly valuable inoculums to improve productivity of the leguminous plants cultivated under extreme environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title="rhizobia">rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=symbiosis" title=" symbiosis"> symbiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=nodulation" title=" nodulation"> nodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20sativa%20L." title=" Medicago sativa L."> Medicago sativa L.</a> </p> <a href="https://publications.waset.org/abstracts/8701/isolation-and-characterization-of-salt-tolerance-of-rhizobia-under-the-effects-of-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Geochemical Controls of Salinity in a Typical Acid Mine Drainage Neutralized Groundwater System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Modreck%20Gomo">Modreck Gomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the dolomite and calcite carbonates can neutralize Acid Mine Drainage (AMD) and prevent leaching of metals, salinity still remains a huge problem. The study presents a conceptual discussion of geochemical controls of salinity in a typical calcite and dolomite AMD neutralised groundwater systems. Thereafter field evidence is presented to support the conceptual discussions. 1020 field data sets of from a groundwater system reported to be under circumneutral conditions from the neutralization effect of calcite and dolomite is analysed using correlation analysis and bivariate plots. Field evidence indicates that sulphate, calcium and magnesium are strongly and positively correlated to Total Dissolved Solids (TDS) which is used as measure of salinity. In this, a hydrogeochemical system, the dissolution of sulphate, calcium and magnesium form AMD neutralization process contributed 50%, 10% and 5% of the salinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title="acid mine drainage">acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonates" title=" carbonates"> carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=neutralization" title=" neutralization"> neutralization</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/95133/geochemical-controls-of-salinity-in-a-typical-acid-mine-drainage-neutralized-groundwater-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Study of Salinity Stress and Calcium Interaction on Morphological and Physiological Traits of Vicia villosa under Hydroponic Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raheleh%20Khademian">Raheleh Khademian</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghayeh%20Aminian"> Roghayeh Aminian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the study of salinity stress on <em>Vicia villosa</em> and calcium effect for modulation of that, an experiment was conducted under hydroponic condition, and some important morphological and physiological characteristics were evaluated. This experiment was conducted as a factorial based on randomized complete design with three replications. The treatments include salinity stress in three levels (0, 50, and 100 mM NaCl) and calcium in two levels (content in Hoagland solution and double content). The results showed that all morphological and physiological traits include root and shoot length, root and shoot wet and dry weight, leaf area, leaf chlorophyll content, RWC, CMS, and biological yield was significantly different from the control and is affected by the salinity stress severely. But, calcium effect on them was not significant despite of decreasing salinity effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vicia%20villossa" title="Vicia villossa">Vicia villossa</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20stress" title=" salinity stress"> salinity stress</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title=" hydroponic"> hydroponic</a> </p> <a href="https://publications.waset.org/abstracts/55356/study-of-salinity-stress-and-calcium-interaction-on-morphological-and-physiological-traits-of-vicia-villosa-under-hydroponic-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Effect of Salinity on Carbon Isotope Discrimination in Chamomile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ghanavati">Mehdi Ghanavati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Effects of salinity level and duration on carbon isotope discrimination (Δ) of Matricaria chamomilla and Matricaria aurea were evaluated. Four ecotypes of M. chamomilla and four ecotypes of M. aurea were grown at different NaCl concentrations (control, 6, 12 and 18 dS/m) in sand culture condition. Carbon isotope discrimination (Δ) varied significantly (p<0.001) among ecotypes. The amount of carbon isotope discrimination (Δ) increased in first salinity level (6 dS/m), but in other levels (12 and 18 dS/m) it did not increase. Stages of salinity treatments (two stages: first from seedling stage until the end of the experiment and second stage of stress exertion began at stem elongation and seedlings emergence from rosette stage to harvest) had not a significant difference. Study of two spices of chamomile showed the M. aurea had a higher amount of carbon isotope discrimination (Δ) (22.9%) than M. chamomilla (22.48%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20isotope%20discrimination" title=" carbon isotope discrimination"> carbon isotope discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=Matricaria%20chamomilla" title=" Matricaria chamomilla"> Matricaria chamomilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Matricaria%20aurea" title=" Matricaria aurea"> Matricaria aurea</a> </p> <a href="https://publications.waset.org/abstracts/23979/effect-of-salinity-on-carbon-isotope-discrimination-in-chamomile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Exploitation of Variability for Salinity Tolerance in Maize Hybrids (Zea Mays L.) at Early Growth Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qayyum">Abdul Qayyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Saeed"> Hafiz Muhammad Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamoona%20Hanif"> Mamoona Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Etrat%20Noor"> Etrat Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Malik"> Waqas Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoaib%20Liaqat"> Shoaib Liaqat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germplasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrids" title=" hybrids"> hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a> </p> <a href="https://publications.waset.org/abstracts/20822/exploitation-of-variability-for-salinity-tolerance-in-maize-hybrids-zea-mays-l-at-early-growth-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">717</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> Soil Salinity Mapping using Electromagnetic Induction Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Bouksila">Fethi Bouksila</a>, <a href="https://publications.waset.org/abstracts/search?q=Nessrine%20Zemni"> Nessrine Zemni</a>, <a href="https://publications.waset.org/abstracts/search?q=Fairouz%20Slama"> Fairouz Slama</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnus%20Persson"> Magnus Persson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20%20Berndasson"> Ronny Berndasson</a>, <a href="https://publications.waset.org/abstracts/search?q=Akissa%20Bahri"> Akissa Bahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinization <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity%20map" title="soil salinity map">soil salinity map</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20induction" title="electromagnetic induction">electromagnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=EM38" title=" EM38"> EM38</a>, <a href="https://publications.waset.org/abstracts/search?q=oasis" title=" oasis"> oasis</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20watertable" title=" shallow watertable"> shallow watertable</a> </p> <a href="https://publications.waset.org/abstracts/146153/soil-salinity-mapping-using-electromagnetic-induction-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Study of Frequency and Distribution of Skin Ionocytes in Caspian Sea Zander Larvae during Acclimation to Different Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohaddeseh%20Ahmadnezhad">Mohaddeseh Ahmadnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrbano%20Oryan"> Shahrbano Oryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Bahmani"> Mahmoud Bahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadd%20Sayad%20Bourani"> Mohammadd Sayad Bourani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in abundance and size of skin ionocytes were investigated in two larval stage of Caspian sea zander, Sander lucioperca, before and after yolk sac absorption, at 96h after transfer from fresh water (FW; <0.5‰) to 7‰ (estuary) and 12‰ (Caspian sea water=CW) salinity. Survival rate in the stage of after yolk sac absorption were more than larval pre-absorbed yolk sac in condition of salinity (p<0.05). Ionocyte abundance increased significantly in 7 and 12‰ salinity (p<0.05), but not about ionocyte size. The results of this study suggest that development of skin Ionocyte osmoregulatory function and osmoregulation capability of Caspian Sea zander larvae increased with growth of the larvae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caspian%20Sea" title="Caspian Sea">Caspian Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae" title=" larvae"> larvae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sander%20lucioperca" title=" Sander lucioperca"> Sander lucioperca</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20ionocyte" title=" skin ionocyte"> skin ionocyte</a> </p> <a href="https://publications.waset.org/abstracts/39819/study-of-frequency-and-distribution-of-skin-ionocytes-in-caspian-sea-zander-larvae-during-acclimation-to-different-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Soil Salinity from Wastewater Irrigation in Urban Greenery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Nouri">H. Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chavoshi%20Borujeni"> S. Chavoshi Borujeni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anderson"> S. Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Beecham"> S. Beecham</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sutton"> P. Sutton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WorldView3" title="WorldView3">WorldView3</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=EM38" title=" EM38"> EM38</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20sensing" title=" near sensing"> near sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20green%20spaces" title=" urban green spaces"> urban green spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20smart%20cities" title=" green smart cities "> green smart cities </a> </p> <a href="https://publications.waset.org/abstracts/87218/soil-salinity-from-wastewater-irrigation-in-urban-greenery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> The Sensitivity of Electrical Geophysical Methods for Mapping Salt Stores within the Soil Profile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Ali%20Swaid">Fathi Ali Swaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil salinization is one of the most hazardous phenomenons accelerating the land degradation processes. It either occurs naturally or is human-induced. High levels of soil salinity negatively affect crop growth and productivity leading land degradation ultimately. Thus, it is important to monitor and map soil salinity at an early stage to enact effective soil reclamation program that helps lessen or prevent future increase in soil salinity. Geophysical method has outperformed the traditional method for assessing soil salinity offering more informative and professional rapid assessment techniques for monitoring and mapping soil salinity. Soil sampling, EM38 and 2D conductivity imaging have been evaluated for their ability to delineate and map the level of salinity variations at Second Ponds Creek. The three methods have shown that the subsoil in the study area is saline. Salt variations were successfully observed under either method. However, EM38 reading and 2D inversion data show a clear spatial structure comparing to EC1:5 of soil samples in spite of that all soil samples, EM38 and 2D imaging were collected from the same location. Because EM38 readings and 2D imaging data are a weighted average of electrical soil conductance, it is more representative of soil properties than the soil samples method. The mapping of subsurface soil at the study area has been successful and the resistivity imaging has proven to be an advantage. The soil salinity analysis (EC1:5) correspond well to the true resistivity bringing together a good result of soil salinity. Soil salinity clearly indicated by previous investigation EM38 have been confirmed by the interpretation of the true resistivity at study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20conductivity%20imaging" title="2D conductivity imaging">2D conductivity imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=EM38%20readings" title=" EM38 readings"> EM38 readings</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20salinization" title=" soil salinization"> soil salinization</a>, <a href="https://publications.waset.org/abstracts/search?q=true%20resistivity" title=" true resistivity"> true resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20salinity" title=" urban salinity"> urban salinity</a> </p> <a href="https://publications.waset.org/abstracts/38023/the-sensitivity-of-electrical-geophysical-methods-for-mapping-salt-stores-within-the-soil-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Sensitivity Assessment of Spectral Salinity Indices over Desert Sabkha of Western UAE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubab%20Ammad">Rubab Ammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelgadir%20Abuelgasim"> Abdelgadir Abuelgasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> UAE typically lies in one of the aridest regions of the world and is thus home to geologic features common to such climatic conditions including vast open deserts, sand dunes, saline soils, inland Sabkha and coastal Sabkha. Sabkha are characteristic salt flats formed in arid environment due to deposition and precipitation of salt and silt over sand surface because of low laying water table and rates of evaporation exceeding rates of precipitation. The study area, which comprises of western UAE, is heavily concentrated with inland Sabkha. Remote sensing is conventionally used to study the soil salinity of agriculturally degraded lands but not so broadly for Sabkha. The focus of this study was to identify these highly saline Sabkha areas on remotely sensed data, using salinity indices. The existing salinity indices in the literature have been designed for agricultural soils and they have not frequently used the spectral response of short-wave infra-red (SWIR1 and SWIR2) parts of electromagnetic spectrum. Using Landsat 8 OLI data and field ground truthing, this study formulated indices utilizing NIR-SWIR parts of spectrum and compared the results with existing salinity indices. Most indices depict reasonably good relationship between salinity and spectral index up until a certain value of salinity after which the reflectance reaches a saturation point. This saturation point varies with index. However, the study findings suggest a role of incorporating near infra-red and short-wave infra-red in salinity index with a potential of showing a positive relationship between salinity and reflectance up to a higher salinity value, compared to rest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabkha" title="Sabkha">Sabkha</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20index" title=" salinity index"> salinity index</a>, <a href="https://publications.waset.org/abstracts/search?q=saline%20soils" title=" saline soils"> saline soils</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat%208" title=" Landsat 8"> Landsat 8</a>, <a href="https://publications.waset.org/abstracts/search?q=SWIR1" title=" SWIR1"> SWIR1</a>, <a href="https://publications.waset.org/abstracts/search?q=SWIR2" title=" SWIR2"> SWIR2</a>, <a href="https://publications.waset.org/abstracts/search?q=UAE%20desert" title=" UAE desert"> UAE desert</a> </p> <a href="https://publications.waset.org/abstracts/77468/sensitivity-assessment-of-spectral-salinity-indices-over-desert-sabkha-of-western-uae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> Evaluation of Genetic Diversity for Salt Stress in Maize Hybrids (Zea Mays L.) at Seedling Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdu%20Qayyum">Abdu Qayyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Saeed"> Hafiz Muhammad Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamoona%20Hanif"> Mamoona Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Etrat%20Noor"> Etrat Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Malik"> Waqas Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoaib%20Liaqat"> Shoaib Liaqat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is extremely serious problem that has a drastic effect on maize crop, environment and causes economic losses of country. An advance technique to overcome salinity is to develop salt tolerant geno types which require screening of huge germ plasm to start a breeding program. Therefore, present study was undertaken to screen out 25 maize hybrids of different origin for salinity tolerance at seedling stage under three levels of salt stress 250 and 300 mM NaCl including one control. The existence of variation for tolerance to enhanced NaCl salinity levels at seedling stage in maize proved that hybrids had differing ability to grow under saline environment and potential variability within specie. Almost all the twenty five maize hybrids behaved varyingly in response to different salinity levels. However, the maize hybrids H6, H13, H21, H23 and H24 expressed better performance under salt stress in terms of all six characters and proved to be as highly tolerant while H22, H17 H20, H18, H4, H9, and H8 were identified as moderately tolerant. Hybrids H14, H5, H11 and H3 H12, H2, were expressed as most sensitive to salinity suggesting that screening is an effective tool to exploit genetic variation among maize hybrids and salt tolerance in maize can be enhanced through selection and breeding procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrids" title=" hybrids"> hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a> </p> <a href="https://publications.waset.org/abstracts/20925/evaluation-of-genetic-diversity-for-salt-stress-in-maize-hybrids-zea-mays-l-at-seedling-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">721</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Wheat (Triticum Aestivum) Yield Improved with Irrigation Scheduling under Salinity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taramani%20%20Yadav">Taramani Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Gajender%20Kumar"> Gajender Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.K.%20Yadav"> R.K. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=H.S.%20Jat"> H.S. Jat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irrigation" title="Irrigation">Irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Salinity" title=" Salinity"> Salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=Wheat" title=" Wheat"> Wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=Yield" title=" Yield"> Yield</a> </p> <a href="https://publications.waset.org/abstracts/123895/wheat-triticum-aestivum-yield-improved-with-irrigation-scheduling-under-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Contribution of Remote Sensing and GIS to the Study of the Impact of the Salinity of Sebkhas on the Quality of Groundwater: Case of Sebkhet Halk El Menjel (Sousse)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gannouni%20Sonia">Gannouni Sonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammami%20Asma"> Hammami Asma</a>, <a href="https://publications.waset.org/abstracts/search?q=Saidi%20Salwa"> Saidi Salwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebai%20Noamen"> Rebai Noamen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water resources in Tunisia have experienced quantitative and qualitative degradation, especially when talking about wetlands and Sbekhas. Indeed, the objective of this work is to study the spatio-temporal evolution of salinity for 29 years (from 1987 to 2016). A study of the connection between surface water and groundwater is necessary to know the degree of influence of the Sebkha brines on the water table. The evolution of surface salinity is determined by remote sensing based on Landsat TM and OLI/TIRS satellite images of the years 1987, 2007, 2010, and 2016. The processing of these images allowed us to determine the NDVI(Normalized Difference Vegetation Index), the salinity index, and the surface temperature around Sebkha. In addition, through a geographic information system(GIS), we could establish a map of the distribution of salinity in the subsurface of the water table of Chott Mariem and Hergla/SidiBouAli/Kondar. The results of image processing and the calculation of the index and surface temperature show an increase in salinity downstream of in addition to the sebkha and the development of vegetation cover upstream and the western part of the sebkha. This richness may be due both to contamination by seawater infiltration from the barrier beach of Hergla as well as the passage of groundwater to the sebkha. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20monitoring" title="spatio-temporal monitoring">spatio-temporal monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20images" title=" satellite images"> satellite images</a>, <a href="https://publications.waset.org/abstracts/search?q=NDVI" title=" NDVI"> NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=sebkha" title=" sebkha"> sebkha</a> </p> <a href="https://publications.waset.org/abstracts/150699/contribution-of-remote-sensing-and-gis-to-the-study-of-the-impact-of-the-salinity-of-sebkhas-on-the-quality-of-groundwater-case-of-sebkhet-halk-el-menjel-sousse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Foliar Feeding of Methyl Jasmonate Induces Resistance in Normal and Salinity Stressed Tomato Plants, at Different Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Manan">Abdul Manan</a>, <a href="https://publications.waset.org/abstracts/search?q=Choudhary%20Muhammad%20Ayyub"> Choudhary Muhammad Ayyub</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Ahmad"> Rashid Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Adnan%20Bukhari"> Muhammad Adnan Bukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A project was designed to investigate the effect of foliar application of methyl jasmonate (MeJA) on physiological, biochemical and ionic attributes of salinity stressed and normal tomato plants at different stages. Salinity stress at every stage markedly reduced the net photosynthetic rate, stomatal conductance, transpiration rate, water relations parameters, protein contents, total free aminoacids and potassium (K+) contents. While, antioxidant enzymes (peroxidase (POX) and catalase (CAT)), sodium (Na+) contents and proline contents were increased substantially. Foliar application of MeJA ameliorated the drastic effects of salinity regime by recovery of physiological and biochemical attributes by enhanced production of antioxidant enzymes and osmoprotectants. The efficacy of MeJA at very initial stage (15 days after sowing (15 DAS)).proved effective for attenuating the deleterious effects of salinity stress than other stages (15 days after transplanting (15 DAT) and 30 days after transplanting (30 DAT)). To the best of our knowledge, different times of foliar feeding of MeJA was observed first time for amelioration of salinity stress in tomato plants that would be of pivotal significance for scientist to better understand the dynamics of physiological and biochemical processes in tomato. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methyl%20jasmonate" title="methyl jasmonate">methyl jasmonate</a>, <a href="https://publications.waset.org/abstracts/search?q=osmoregulation" title=" osmoregulation"> osmoregulation</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20stress" title=" salinity stress"> salinity stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20tolerance" title=" stress tolerance"> stress tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a> </p> <a href="https://publications.waset.org/abstracts/54170/foliar-feeding-of-methyl-jasmonate-induces-resistance-in-normal-and-salinity-stressed-tomato-plants-at-different-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> The Effect of Salinity and Bentonite on the Hydrous Behaviors and Sodium Content of the Broad Bean Vicia faba var. Semilla violeta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Nouri">T. Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20A.%20Reguieg"> Y. H. A. Reguieg</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Latigui"> A. Latigui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ouaini"> A. Ouaini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is considered as the most important abiotic factor. It limits growth and productivity of plants and degrades agricultural soils and ecosystem in arid and semi arid area. The study was conducted on Vicia faba L.’Semilla violeta’. Sowing was realized in plastic pots containing sandy substrates of bentonite 0, 3, 5, 7, and 10% associated with abiotic stresses of salinity corresponding to doses of NaCl, MgCl2 and MgSO4 20, 40, and 60 mmol/l respectively. The purpose of this work is to study the combined effect of salinity and of bentonite on a plant commonly cultivated in Algeria the broad bean Vicia faba has through the chemical and hydrous parameter. The results show that the combined action of strong concentration salt (40 and 60 mmol/l) and of bentonite a reduction of the relative content water reveals, against an increase in the content of hydrous deficit and of sodium. The growth of broad bean is significant in the substrate amended to 5 % of bentonite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Vicia%20faba%20L" title=" Vicia faba L"> Vicia faba L</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20content" title=" sodium content"> sodium content</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrous%20parameters" title=" hydrous parameters"> hydrous parameters</a> </p> <a href="https://publications.waset.org/abstracts/31285/the-effect-of-salinity-and-bentonite-on-the-hydrous-behaviors-and-sodium-content-of-the-broad-bean-vicia-faba-var-semilla-violeta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Comparison of Potato Varieties under Different Water Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Assalmi">Ali Assalmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to compare the yield of two varieties of potato seeds under different water conditions. In the first part of the study, we conducted a literature review to gather academic research published on the two varieties. Based on the literature review, we optimized the water conditions for one variety and tested the other variety under high salinity water conditions. Our findings indicate that the optimized water conditions resulted in a very good yield for one variety of potato seeds. However, under high salinity water conditions, the other variety produced a higher yield in water that was not used due to the high salinity. Overall, our results suggest that the yield of potato seeds can vary significantly based on the water conditions and variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potatoes" title="potatoes">potatoes</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20varieties" title=" seed varieties"> seed varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20optimization" title=" water optimization"> water optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20salinity" title=" high salinity"> high salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20comparison" title=" yield comparison"> yield comparison</a> </p> <a href="https://publications.waset.org/abstracts/172580/comparison-of-potato-varieties-under-different-water-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Mapping QTLs Associated with Salinity Tolerance in Maize at Seedling Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Muhebbullah%20Ibne%20Hoque">Mohammad Muhebbullah Ibne Hoque</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Jun"> Zheng Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Guoying"> Wang Guoying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity stress is one of the most important abiotic factors contributing to crop growth and yield loss. Exploring the genetic basis is necessary to develop maize varieties with salinity tolerance. In order to discover the inherent basis for salinity tolerance traits in maize, 121 polymorphic SSR markers were used to analyze 163 F2 individuals derived from a single cross of inbred line B73 (a salt susceptible inbred line) and CZ-7 (a salt tolerant inbred line). A linkage map was constructed and the map covered 1195.2 cM of maize genome with an average distance of 9.88 cM between marker loci. Ten salt tolerance traits at seedling stage were evaluated for QTL analysis in maize seedlings. A total of 41 QTLs associated with seedling shoot and root traits were detected, with 16 and 25 QTLs under non-salinity and salinity condition, respectively. And only 4 major stable QTLs were detected in two environments. The detected QTLs were distributed on chromosomes 1, 2, 4, 5, 6, 7, 8, 9, and chromosome 10. Phenotypic variability for the identified QTLs for all the traits was in the range from 6.27 to 21.97%. Fourteen QTLs with more than 10% contributions were observed. Our results and the markers associated with the major QTL detected in this study have the potential application for genetic improvement of salt tolerance in maize through marker-assisted selection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt%20tolerance" title="salt tolerance">salt tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling%20stage" title=" seedling stage"> seedling stage</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20shoot%20traits" title=" root shoot traits"> root shoot traits</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20trait%20loci" title=" quantitative trait loci"> quantitative trait loci</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20sequence%20repeat" title=" simple sequence repeat"> simple sequence repeat</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a> </p> <a href="https://publications.waset.org/abstracts/14120/mapping-qtls-associated-with-salinity-tolerance-in-maize-at-seedling-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Amelioration of Salinity Stress in Spinach (Spinace oleracae) by Exogenous Application of Triacontanol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameer%20Khan">Ameer Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Iffat%20Jamal"> Iffat Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ambreen%20Azam"> Ambreen Azam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted in the Department of Botany, University of Sargodha to observe the amelioration of salinity stress in spinach (Spinacia oleracea) by exogenous application of Triacontanol. Two spinach cultivars (Spinacea oleracea and Rumax dentatus) were obtained from the Agriculture Research institute, Faisalabad. This experiment was conducted in pots. Each pot was filled with 9kg mixture of (sand + soil). Different salinity levels (0mM, 60mM, and 120mM) were created with NaCl according to the saturation percentage of soil after two weeks of seed germination. After the two weeks of salinity treatment, different levels of Triacontanol (0µM, 10µM, 20µM) were applied as foliar spray. Triacontanol was applied along with Tween 80 as surfactant. After the two weeks of Triacontanol application different growth, physiological and biochemical parameters were collected from the experimental study. Both treatments of Triacontanol (10µM, 20µM) were effective to ameliorate the effect of salinity, but 20µM Triacontanol was more effective to increase the shoot length, shoot, root fresh and dry weight. Chlorophyll contents were (chl a, chl b, total chl). Different biochemical parameters were also collected from experimental study. Saline growth medium increased the accumulation of protein and decreased the total free amino acids, and total soluble sugar under salt stress. Application of Triacontanol increased the protein contents. Overall, Application of triacontanol mitigated the effect of salinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=triacontanol" title=" triacontanol"> triacontanol</a>, <a href="https://publications.waset.org/abstracts/search?q=spinach" title=" spinach"> spinach</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical" title=" biochemical"> biochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological" title=" physiological"> physiological</a> </p> <a href="https://publications.waset.org/abstracts/37065/amelioration-of-salinity-stress-in-spinach-spinace-oleracae-by-exogenous-application-of-triacontanol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> A Study of Some Water Relations and Soil Salinity Using Geotextile Mat under Sprinkler System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Molhem">Al-Molhem</a>, <a href="https://publications.waset.org/abstracts/search?q=Y."> Y.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aimed to study the influence of a geotextile material under sprinkler irrigation on the availability of soil moisture content and salinity of 40 cm top soil profile. Field experiment was carried out to measure soil moisture content, soil salinity and water application efficiency under sprinkler irrigation system. The results indicated that, the mats placed at 20 cm depth leads to increasing of the availability of soil moisture content in the root zone. The results further showed increases in water application efficiency because of using the geotextile material. In addition, soil salinity in the root zone decreased because of increasing soil moisture content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geotextile" title="geotextile">geotextile</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=sprinkler%20irrigation" title=" sprinkler irrigation"> sprinkler irrigation</a> </p> <a href="https://publications.waset.org/abstracts/28484/a-study-of-some-water-relations-and-soil-salinity-using-geotextile-mat-under-sprinkler-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Salinity Effects on Germination of Malaysian Rice Varieties and Weedy Rice Biotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamal%20Uddin">M. Kamal Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohd%20Dandan"> H. Mohd Dandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ame%20H.%20Alidin"> Ame H. Alidin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Germination and seedling growth of plant species are reduced in saline due to an external osmotic potential. An experiment was conducted at the laboratory, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, to compare the salt effect on seed germination and growth of weedy rice and cultivated rice. Seeds (10 in each) were placed in petri dishes. Five salinity levels 0 (distilled water), 4, 8, 12 and 16 dSm-1 (NaCl) were applied. The number of germinated seeds was recorded daily. The final germination percentage, germination index (GI), seedling vigour index (SVI) mean germination time (MGT), shoot and root dry weight were estimated. At highest salinity (16 dSm-1) germination percentage was higher (100%) in weedy rice awn and weedy rice compact. Lowest germination percentage was in MR219 and TQR-8 (50-60%). Mean germination time (MGT) was found higher in all weedy rice biotypes compared to cultivated rice. At highest salinity (16dSm-1) weedy rice open produced the highest MGT (9.92) followed by weedy rice compact (9.73) while lowest MGT was in MR219 (9.48). At highest salinity (16dSm-1) germination index was higher in weedy rice awn (11.71) and compact type (9.62). Lowest germination index was in MR219 (5.90) and TQR-8 (8.94). At the highest salinity (16 dSm−1), seedling vigor index was highest in weedy rice awn (6.06) followed by weedy rice compact (5.26); while lowest was in MR219 (2.11) followed by MR269 (3.82).On the basis of Germination index, seedling vigor index and growth related results it could be concluded that weedy rice awn, compact and open biotypes were more salt tolerant compared to other cultivated rice MR219, MR269, and TQR-8. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germination" title="germination">germination</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20and%20weedy%20rice" title="rice and weedy rice">rice and weedy rice</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a> </p> <a href="https://publications.waset.org/abstracts/21509/salinity-effects-on-germination-of-malaysian-rice-varieties-and-weedy-rice-biotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Impacts Of Salinity on Co2 Turnover in Some Gefara Soils of Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Elyaagubi">Fathi Elyaagubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinization is a major threat to the productivity of agricultural land. The Gefara Plain located in the northwest of Libya; comprises about 80% of the total agricultural activity. The high water requirements for the populations and agriculture are depleting the groundwater aquifer, resulting in intrusion of seawater in the first few kilometers along the coast. Due to increasing salinity in the groundwater used for irrigation, the soils of the Gefara Plain are becoming increasingly saline. This research paper investigated the sensitivity of these soils to increased salinity using Co2 evolution as an integrating measure of soil function. Soil was collected from four sites located in the Gefara Plain, Almaya, Janzur, Gargaresh and Tajura. Soil collected from Tajura had the highest background salinity, and Janzur had the highest organic matter content. All of the soils had relatively low organic matter content, ranging between 0.49-%1.25. The cumulative rate of 14CO2 of added 14C-labelled Lolium shoots (Lolium perenne L.) to soils was decreased under effects of water containing different concentrations of NaCl at 20, 50, 70, 90, 150, and 200 mM compared to the control at any time of incubation in four sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity" title="soil salinity">soil salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=gefara%20plain" title=" gefara plain"> gefara plain</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title=" organic matter"> organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=14C-labelled%20lolium%20shoots" title=" 14C-labelled lolium shoots"> 14C-labelled lolium shoots</a> </p> <a href="https://publications.waset.org/abstracts/8205/impacts-of-salinity-on-co2-turnover-in-some-gefara-soils-of-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Study of the Effect of Humic Acids on Soil Salinity Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20El%20Hasini">S. El Hasini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Azzouzi"> M. El Azzouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Nobili"> M. De Nobili</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Azim"> K. Azim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zouahri"> A. Zouahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil salinization is one of the most severe environmental hazards which threaten sustainable agriculture in arid and semi-arid regions, including Morocco. In this regard the application of organic matter to saline soil has confirmed its effectiveness. The present study was aimed to examine the effect of humic acid which represent, among others, the important component of organic matter that contributes to reduce soil salinity. In fact, different composts taken from Agadir (Morocco), with different C/N ratio, were tested. After extraction and purification of humic acid, the interaction with Na2CO3 was carried out. The reduction of salinity is calculated as a value expressed in mg Na2CO3 equivalent/g HA. The results showed that humic acid had generally a significant effect on salinity. In that respect, the hypothesis proposed that carboxylic groups of humic acid create bonds with excess sodium in the soil to form a coherent complex which descends by leaching operation. The comparison between composts was based on C/N ratio, it showed that the compost with the lower ratio C/N had the most important effect on salinity reduction, whereas the compost with higher C/N ratio was less effective. The study is attended also to evaluate the quality of each compost by determining the humification index, we noticed that the compost which have the lowest C/N (20) ratio was relatively less stable, where a greater predominance of the humified substances, when the compost with C/N ratio is 35 exhibited higher stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=humic%20acid" title=" humic acid"> humic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter" title=" organic matter"> organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/42742/study-of-the-effect-of-humic-acids-on-soil-salinity-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Desalination Performance of a Passive Solar-Driven Membrane Distiller: Effect of Middle Layer Material and Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glebert%20C.%20Dadol">Glebert C. Dadol</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Mae%20L.%20Ucab"> Pamela Mae L. Ucab</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20Flor%20Y.%20Lobarbio"> Camila Flor Y. Lobarbio</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Peter%20B.%20Tan"> Noel Peter B. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is a global problem and membrane-based desalination technologies are one of the promising solutions to this problem. In this study, a passive solar-driven membrane distiller was fabricated and tested for its desalination performance. The distiller was composed of a TiNOX plate solar absorber, cellulose-based upper and lower hydrophilic layers, a hydrophobic middle layer, and aluminum heatsinks. The effect of the middle layer material and thickness on the desalination performance was investigated in terms of distillate productivity and salinity. The materials used for the middle layer were a screen mesh (2 mm, 4 mm, 6 mm thickness) to generate an air gap, a PTFE membrane (0.3 mm thickness)), and a combination of the screen mesh and the PTFE membrane (2.3 mm total thickness). Salt water (35 g/L NaCl) was desalinated using the distiller at a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate productivity of 1.08 L/m2-h was achieved using a 2-mm screen mesh (air gap) but it also resulted in a high distillate salinity of 25.20 g/L. Increasing the thickness of the air gap lowered the distillate salinity but also decreased the distillate productivity. The lowest salinity of 1.07 g/L was achieved using a 6-mm air gap but the productivity was reduced to 0.08 L/m2-h. The use of the hydrophobic PTFE membrane increased the productivity (0.44 L/m2-h) compared to a 6-mm air gap but produced a distillate with high salinity (16.68 g/L). When using a combination of the screen mesh and the PTFE membrane, the productivity was 0.13 L/m2-h and a distillate salinity of 1.61 g/L. The distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. The use of a combination of the air gap and PTFE membrane slightly increased the productivity with comparable distillate salinity. Modifications and optimizations to the distiller can be done to improve further its performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalination" title="desalination">desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20distillation" title=" membrane distillation"> membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20solar-driven%20membrane%20distiller" title=" passive solar-driven membrane distiller"> passive solar-driven membrane distiller</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20distillation" title=" solar distillation"> solar distillation</a> </p> <a href="https://publications.waset.org/abstracts/154079/desalination-performance-of-a-passive-solar-driven-membrane-distiller-effect-of-middle-layer-material-and-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salinity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10