CINXE.COM

Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model

<!DOCTYPE html> <!--[if IE 8]> <html class="ie ie8"> <![endif]--> <!--[if IE 9]> <html class="ie ie9"> <![endif]--> <!--[if gt IE 9]><!--> <html> <!--<![endif]--> <head> <meta charset="utf-8" /> <title>Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model</title> <!-- favicon --> <link rel="shortcut icon" type="image/ico" href="./data/ijsom/coversheet/favicon.ico" /> <!-- mobile settings --> <meta name="viewport" content="width=device-width, maximum-scale=1, initial-scale=1, user-scalable=0" /> <!--[if IE]><meta http-equiv='X-UA-Compatible' content='IE=edge,chrome=1'><![endif]--> <!-- user defined metatags --> <meta name="keywords" content="Keywords: Multivariate Sales Forecasting,Deep Learning,Recurrent Neural Networks (RNN),Supply chains,Gated Recurrent Unit (GRU)" /> <meta name="description" content="Market forecasting is an integral part of supply chain management. Machine learning models have turned a new page in predictive analysis and helped organizations achieve improved accuracy. This paper focuses on creating a Gated Recurrent Unit (GRU) model to predict sales for multiple stores as a multivariate time series. GRUs are a variation of Recurrent Neural Networks (RNNs) used to sequence modelling tasks. The dataset used to create the model contains the unit sales of 3,049 SKUs sold in 10 stores. The sales data from the 3049 SKUs were grouped into the 7 departments to use as input to the model. A Vector Autoregression (VAR) and LightGBM models were used to compare the GRU model predictions. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to compare the 2 models. The mean MAPE values for forecasts of the GRU, VAR, and LightGBM models were 13.77%, 14.87%, and 14.24% respectively, while MAE values were 68 Units, 72 Units, and 69 Units Respectively. The study reveals that the GRU model provides more accuracy for multivariate sales forecasting due to its ability to learn hidden patterns automatically and handle time mechanisms such as trends and seasonality." /> <meta name="title" content="Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model" /> <meta name="googlebot" content="NOODP" /> <meta name="citation_title" content="Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model" /> <meta name="citation_author" content="Jayasekara, W.A. Roshan S." /> <meta name="citation_author_institution" content="Department of Transport and Logistics Management, Faculty of Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka." /> <meta name="citation_author" content="Sugathadasa, P. T. Ranil S." /> <meta name="citation_author_institution" content="Center for Supply Chain, Operations and Logistics Optimization, University of Moratuwa, Katubedda 10400, Sri Lanka" /> <meta name="citation_author" content="Herath, Oshadhi" /> <meta name="citation_author_institution" content="Department of Transport and Logistics Management, Faculty of Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka." /> <meta name="citation_author" content="Perera, Niles" /> <meta name="citation_author_institution" content="Center for Supply Chain, Operations and Logistics Optimization, University of Moratuwa, Katubedda 10400, Sri Lanka" /> <meta name="citation_abstract" content="Market forecasting is an integral part of supply chain management. Machine learning models have turned a new page in predictive analysis and helped organizations achieve improved accuracy. This paper focuses on creating a Gated Recurrent Unit (GRU) model to predict sales for multiple stores as a multivariate time series. GRUs are a variation of Recurrent Neural Networks (RNNs) used to sequence modelling tasks. The dataset used to create the model contains the unit sales of 3,049 SKUs sold in 10 stores. The sales data from the 3049 SKUs were grouped into the 7 departments to use as input to the model. A Vector Autoregression (VAR) and LightGBM models were used to compare the GRU model predictions. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to compare the 2 models. The mean MAPE values for forecasts of the GRU, VAR, and LightGBM models were 13.77%, 14.87%, and 14.24% respectively, while MAE values were 68 Units, 72 Units, and 69 Units Respectively. The study reveals that the GRU model provides more accuracy for multivariate sales forecasting due to its ability to learn hidden patterns automatically and handle time mechanisms such as trends and seasonality." /> <meta name="citation_id" content="2944" /> <meta name="citation_publication_date" content="2024/11/01" /> <meta name="citation_date" content="2024-11-01" /> <meta name="citation_journal_title" content="International Journal of Supply and Operations Management" /> <meta name="citation_issn" content="23831359" /> <meta name="citation_volume" content="11" /> <meta name="citation_issue" content="4" /> <meta name="citation_firstpage" content="390" /> <meta name="citation_lastpage" content="416" /> <meta name="citation_publisher" content="Kharazmi University" /> <meta name="citation_doi" content="10.22034/ijsom.2024.109038.2141" /> <meta name="DC.Identifier" content="10.22034/ijsom.2024.109038.2141" /> <meta name="citation_abstract_html_url" content="http://www.ijsom.com/article_2944.html" /> <meta name="citation_pdf_url" content="http://www.ijsom.com/article_2944_832003315c4ab2e3180f011f686c4090.pdf" /> <meta name="DC.Title" content="Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model" /> <meta name="DC.Source" content="International Journal of Supply and Operations Management" /> <meta name="DC.Date" content="01/11/2024" /> <meta name="DC.Date.issued" content="2024-11-01" /> <meta name="DC.Format" content="application/pdf" /> <meta name="DC.Contributor" content="Jayasekara, W.A. Roshan S." /> <meta name="DC.Contributor" content="Sugathadasa, P. T. Ranil S." /> <meta name="DC.Contributor" content="Herath, Oshadhi" /> <meta name="DC.Contributor" content="Perera, Niles" /> <meta name="og:title" content="Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model" /> <meta name="og:description" content="Market forecasting is an integral part of supply chain management. Machine learning models have turned a new page in predictive analysis and helped organizations achieve improved accuracy. This paper focuses on creating a Gated Recurrent Unit (GRU) model to predict sales for multiple stores as a multivariate time series. GRUs are a variation of Recurrent Neural Networks (RNNs) used to sequence modelling tasks. The dataset used to create the model contains the unit sales of 3,049 SKUs sold in 10 stores. The sales data from the 3049 SKUs were grouped into the 7 departments to use as input to the model. A Vector Autoregression (VAR) and LightGBM models were used to compare the GRU model predictions. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to compare the 2 models. The mean MAPE values for forecasts of the GRU, VAR, and LightGBM models were 13.77%, 14.87%, and 14.24% respectively, while MAE values were 68 Units, 72 Units, and 69 Units Respectively. The study reveals that the GRU model provides more accuracy for multivariate sales forecasting due to its ability to learn hidden patterns automatically and handle time mechanisms such as trends and seasonality." /> <meta name="og:url" content="http://www.ijsom.com/article_2944.html" /> <!-- WEB FONTS : use %7C instead of | (pipe) --> <link href="./themes/base/front/assets/css/social-icon-font.css" rel="stylesheet" type="text/css" /> <!-- CORE CSS --> <link href="./themes/base/front/assets/plugins/bootstrap/css/bootstrap.min.css?v=0.02" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/header.css?v=0.05" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/footer.css" rel="stylesheet" type="text/css" /> <link href="./inc/css/essentials.css?v=0.2" rel="stylesheet" type="text/css" /> <link href="./inc/css/cookieconsent.min.css" rel="stylesheet" type="text/css" /> <link href="./inc/css/print.css" rel="stylesheet" type="text/css" media="print"/> <!-- RTL CSS --> <link href="./themes/base/front/assets/plugins/bootstrap/css/bootstrap-ltr.min.css" rel="stylesheet" type="text/css" /> <link href=" ./themes/base/front/assets/css/gfonts-OpenSans.css" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/accordian.css" rel="stylesheet" type="text/css" /> <link href="./themes/base/front/assets/css/academicons.min.css" rel="stylesheet" type="text/css" /> <!-- user defined metatags--> <meta name="google-site-verification" content="UlbWpwabckk_wTgRmzoJCVPEYKnomtCLcftujpXdou4" /> <link href="./data/ijsom/coversheet/stl_front.css?v=0.87" rel="stylesheet" type="text/css" /> <link href="./data/ijsom/coversheet/stl.css" rel="stylesheet" type="text/css" /> <!-- Feed--> <link rel="alternate" type="application/rss+xml" title="RSS feed" href="ju.rss" /> <script type="text/javascript" src="./themes/base/front/assets/plugins/jquery/jquery.min.js?v=0.5"></script> <script type="text/javascript" src="./inc/js/common.js?v=0.1"></script> <script type="text/javascript" src="./inc/js/jquery/cookieconsent.min.js"></script> <!-- Extra Style Scripts --> <!-- Extra Script Scripts --> <script src="inc/js/article.js?v=0.31" type="text/javascript" ></script> </head> <body class="ltr len"> <div class="container" id="header"> <div class="row"> <div class="col-xs-12 text-center"> <img src="./data/ijsom/coversheet/head_en.jpg" class="img-responsive text-center" style="display:-webkit-inline-box; width: 100%;" > </div> </div> </div> <div class="container"> <div class="row"> <div class="col-xs-12 col-lg-12 col-md-12 text-center"> <nav class="navbar navbar-default noborder nomargin noradius" role="navigation"> <div class="container-fluid nopadding" > <div class="navbar-header" style="background: #FFFFFF;"> <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <!-- <a class="navbar-brand" href="#">Brand</a> --> </div> <!-- Collect the nav links, forms, and other content for toggling --> <div class="collapse navbar-collapse nopadding" id="bs-example-navbar-collapse-1"> <ul class="nav navbar-nav"> <li><a href="././"> Home</a></li> <li class="dropdown"> <a href="" class="dropdown-toggle" data-toggle="dropdown">Browse <b class="caret"></b></a> <ul class="dropdown-menu"> <li><a href="./?_action=current">Current Issue</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=issue">By Issue</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=author">By Author</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=subject">By Subject</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./author.index">Author Index</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./keyword.index">Keyword Index</a></li> </ul> </li> <li class="dropdown"> <a href="" class="dropdown-toggle" data-toggle="dropdown">Journal Info <b class="caret"></b></a> <ul class="dropdown-menu"> <li><a href="./journal/about">About Journal</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/aim_scope">Aims and Scope</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/editorial.board">Editorial Board</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/process?ethics">Publication Ethics</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/indexing">Indexing and Abstracting</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/links">Related Links</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/faq">FAQ</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/process">Peer Review Process</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/metrics">Journal Metrics</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./news">News</a></li> </ul> </li> <li><a href="./journal/authors.note"> Guide for Authors</a></li> <li><a href="./author"> Submit Manuscript</a></li> <li><a href="./reviewer?_action=info"> Reviewers</a></li> <li><a href="./journal/contact.us"> Contact Us</a></li> </ul> <ul class="nav navbar-nav navbar-right nomargin"> <li><a href="./contacts">Login</a></li> <li><a href="./contacts?_action=signup">Register</a></li> </ul> </div> <!-- /.navbar-collapse --> </div> <!-- /.container-fluid --> </nav> </div> </div> </div> <!-- MAIN SECTION --> <div class="container" > <div id="dv_main_cnt"> <section class="no-cover-box"> <div class="row"> <!-- CENTER --> <div class="col-lg-9 col-md-9 col-sm-8" id="dv_artcl"> <!-- Current Issue --> <div> <h1 class="margin-bottom-20 size-18 ltr"><span class="article_title bold"> Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model</span></h1> <div> <div class="margin-bottom-3"> </div> <p class="margin-bottom-3">Document Type : Research Paper</p> <p class="padding-0" style="margin:12px -2px 0 -2px"><strong>Authors</strong></p> <ul class="list-inline list-inline-seprator margin-bottom-6 ltr"> <li class="padding-3"> <a href="./?_action=article&amp;au=124989&amp;_au=W.A.+Roshan+S.++Jayasekara">W.A. Roshan S. Jayasekara</a> <sup><a href="#aff1" >1</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&amp;au=124990&amp;_au=P.+T.+Ranil+S.++Sugathadasa">P. T. Ranil S. Sugathadasa</a> <sup><a href="#aff2" >2</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&amp;au=124991&amp;_au=Oshadhi++Herath">Oshadhi Herath</a> <sup><a href="#aff1" >1</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&amp;au=121473&amp;_au=Niles++Perera">Niles Perera</a> <sup><a href="mailto:hniles@uom.lk" data-toggle="tooltip" data-placement="bottom" title="Email to Corresponding Author"><i class="fa fa-envelope-o" ></i></a></sup> <sup class="ltr"><a class=" text-green" href="https://www.orcid.org/0000-0001-6329-5967" data-toggle="tooltip" data-placement="bottom" data-html="true" title="ORCID: 0000-0001-6329-5967" target="_blank"><i class="ai ai-orcid size-13" ></i></a></sup> <sup><a href="#aff2" >2</a></sup> </li> </ul> <p class="margin-bottom-3 ltr" id="aff1"> <sup>1</sup> Department of Transport and Logistics Management, Faculty of Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka. </p> <p class="margin-bottom-3 ltr" id="aff2"> <sup>2</sup> Center for Supply Chain, Operations and Logistics Optimization, University of Moratuwa, Katubedda 10400, Sri Lanka </p> <div class="margin-bottom-3 ltr" id="ar_doi" title="DOI"><i class="ai ai-doi size-25 text-orange"></i> <span dir="ltr"><a href="https://dx.doi.org/10.22034/ijsom.2024.109038.2141">10.22034/ijsom.2024.109038.2141</a></span></div> <p style="margin:12px -2px 0 -2px"><strong>Abstract</strong></p> <div class="padding_abstract justify ltr">Market forecasting is an integral part of supply chain management. Machine learning models have turned a new page in predictive analysis and helped organizations achieve improved accuracy. This paper focuses on creating a Gated Recurrent Unit (GRU) model to predict sales for multiple stores as a multivariate time series. GRUs are a variation of Recurrent Neural Networks (RNNs) used to sequence modelling tasks. The dataset used to create the model contains the unit sales of 3,049 SKUs sold in 10 stores. The sales data from the 3049 SKUs were grouped into the 7 departments to use as input to the model. A Vector Autoregression (VAR) and LightGBM models were used to compare the GRU model predictions. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to compare the 2 models. The mean MAPE values for forecasts of the GRU, VAR, and LightGBM models were 13.77%, 14.87%, and 14.24% respectively, while MAE values were 68 Units, 72 Units, and 69 Units Respectively. The study reveals that the GRU model provides more accuracy for multivariate sales forecasting due to its ability to learn hidden patterns automatically and handle time mechanisms such as trends and seasonality.</div> <p class="padding-0" style="margin:12px -2px 0 -2px"><strong>Keywords</strong></p> <ul class="block list-inline list-inline-seprator margin-bottom-6 ltr"> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106545&amp;_kw=Keywords%3A+Multivariate+Sales+Forecasting" >Keywords: Multivariate Sales Forecasting</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106486&amp;_kw=Deep+Learning" >Deep Learning</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106546&amp;_kw=Recurrent+Neural+Networks+%28RNN%29" >Recurrent Neural Networks (RNN)</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=105093&amp;_kw=Supply+Chains" >Supply Chains</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&amp;kw=106547&amp;_kw=Gated+Recurrent+Unit+%28GRU%29" >Gated Recurrent Unit (GRU)</a> </li> </ul> </div> <hr> <div class="page_break"></div> <div class="panel"> <div class="panel-heading card-header"> <h4 class="panel-title "> <a data-toggle="collapse" data-parent="#accordions" href="#collapsesRef"><i class="fa fa-plus"></i> References</a> </h4> </div> <div id="collapsesRef" class="panel-collapse collapse"> <div class="panel-body justify"> <div class="padding-3 margin-top-3 ltr justify">References </div> <div class="padding-3 margin-top-3 ltr justify">Azubuike, I., &amp; Kosemoni, O. (2017). A Comparison of Univariate and Multivariate Time Series Approaches to Modeling Currency Exchange Rate. <em>British Journal of Mathematics &amp; Computer Science</em>, <em>21</em>(4), 1&ndash;17. https://doi.org/10.9734/bjmcs/2017/30733 </div> <div class="padding-3 margin-top-3 ltr justify">Ahaggach, H., Abrouk, L., &amp; Lebon, E. (2024). Systematic Mapping Study of Sales Forecasting: Methods, Trends, and Future Directions. <em>Forecasting, 6</em>(3), 502-532. https://doi.org/10.3390/FORECAST6030028 </div> <div class="padding-3 margin-top-3 ltr justify">Arachchige, A., Sugathadasa, R., Herath, O., &amp; Thibbotuwawa, A. (2021). Artificial Neural Network Based </div> <div class="padding-3 margin-top-3 ltr justify">Demand Forecasting Integrated With Federal Funds Rate. Applied Computer Science, 17(4), 34&ndash;44. </div> <div class="padding-3 margin-top-3 ltr justify">https://doi.org/10.23743/acs-2021-27 </div> <div class="padding-3 margin-top-3 ltr justify">Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., &amp; Seaman, B. (2019). Sales Demand Forecast in E-commerce using a Long Short-Term Memory Neural Network Methodology. <em>Springer International Publishing</em>. http://arxiv.org/abs/1901.04028 </div> <div class="padding-3 margin-top-3 ltr justify">Chang, Y.-Y., Sun, F.-Y., Wu, Y.-H., &amp; Lin, S.-D. (2018). A Memory-Network Based Solution for Multivariate Time-Series Forecasting. <em>ArXiv</em>. http://arxiv.org/abs/1809.02105 </div> <div class="padding-3 margin-top-3 ltr justify">Chen, Z., Ma, M., Li, T., Wang, H., &amp; Li, C. (2023). Long sequence time-series forecasting with deep learning: A survey<em>. Information Fusion, 97</em>, 101819. https://doi.org/10.1016/J.INFFUS.2023.101819 </div> <div class="padding-3 margin-top-3 ltr justify">Cochran, J. J., Cox, L. A., Keskinocak, P., Kharoufeh, J. P., Smith, J. C., Wang, S., &amp; Chaovalitwongse, W. A. (2011). Evaluating and Comparing Forecasting Models. In <em>Wiley Encyclopedia of Operations Research and Management Science</em>. John Wiley &amp; Sons, Inc. https://doi.org/10.1002/9780470400531.eorms0307 </div> <div class="padding-3 margin-top-3 ltr justify">Crone, S. F., Hibon, M., &amp; Nikolopoulos, K. (2011). Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. <em>International Journal of Forecasting</em>, <em>27</em>(3), 635&ndash;660. https://doi.org/10.1016/j.ijforecast.2011.04.001 </div> <div class="padding-3 margin-top-3 ltr justify">Davydenko, A., &amp; Fildes, R. (2013). Measuring Forecasting Accuracy: The Case Of Judgmental Adjustments To Sku-Level Demand Forecasts. <em>International Journal of Forecasting</em>, <em>29</em>(3), 510&ndash;522. https://doi.org/10.1016/j.ijforecast.2012.09.002 </div> <div class="padding-3 margin-top-3 ltr justify">Eglite, L., &amp; Birzniece, I. (2022). Retail Sales Forecasting Using Deep Learning: Systematic Literature Review. <em>Complex Systems Informatics and Modeling Quarterly</em>, <em>2022</em>(30). https://doi.org/10.7250/csimq.2022-30.03 </div> <div class="padding-3 margin-top-3 ltr justify">Forslund, H., &amp; Jonsson, P. (2007). The impact of forecast information quality on supply chain performance. <em>International Journal of Operations and Production Management</em>, <em>27</em>(1), 90&ndash;107. https://doi.org/10.1108/01443570710714556 </div> <div class="padding-3 margin-top-3 ltr justify">Gilbert, K. (2005). An ARIMA supply chain model. In <em>Management Science</em> (Vol. 51, Issue 2, pp. 305&ndash;310). https://doi.org/10.1287/mnsc.1040.0308 </div> <div class="padding-3 margin-top-3 ltr justify">He, Q. Q., Wu, C., &amp; Si, Y. W. (2022). LSTM with particle Swam optimization for sales forecasting. <em>Electronic Commerce Research and Applications</em>, <em>51</em>. https://doi.org/10.1016/j.elerap.2022.101118 </div> <div class="padding-3 margin-top-3 ltr justify">Helmini, S., Jihan, N., Jayasinghe, M., &amp; Perera, S. (2019). <em>Sales forecasting using multivariate long short term memory network models</em>. https://doi.org/10.7287/peerj.preprints.27712v1 </div> <div class="padding-3 margin-top-3 ltr justify">Hewage, H. C., &amp; Perera, H. N. (2021). Comparing Statistical and Machine Learning Methods for Sales Forecasting during the Post-promotional Period. <em>2021 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2021</em>. https://doi.org/10.1109/IEEM50564.2021.9672954 </div> <div class="padding-3 margin-top-3 ltr justify">Hewage, H. C., Perera, H. N., &amp; De Baets, S. (2022). Forecast adjustments during post-promotional periods. <em>European Journal of Operational Research</em>, <em>300</em>(2). https://doi.org/10.1016/j.ejor.2021.07.057 </div> <div class="padding-3 margin-top-3 ltr justify">Hewamalage, H., Bergmeir, C., &amp; Bandara, K. (2020). Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. <em>International Journal of Forecasting</em>. https://doi.org/10.1016/j.ijforecast.2020.06.008 </div> <div class="padding-3 margin-top-3 ltr justify">Hyndman, R. J. (2020). A brief history of forecasting competitions. <em>International Journal of Forecasting</em>, <em>36</em>(1), 7&ndash;14. https://doi.org/10.1016/j.ijforecast.2019.03.015 </div> <div class="padding-3 margin-top-3 ltr justify">Kolassa, S. (2016). Evaluating predictive count data distributions in retail sales forecasting. <em>International Journal of Forecasting</em>, <em>32</em>(3), 788&ndash;803. https://doi.org/10.1016/j.ijforecast.2015.12.004 </div> <div class="padding-3 margin-top-3 ltr justify">Lai, K. K. (2006). An Integrated Data Preparation Scheme for Neural Network Data Analysis. <em>IEEE Transactions on Knowledge and Data Engineering</em>, <em>18</em>(2), 217&ndash;230. https://doi.org/10.1109/TKDE.2006.22 </div> <div class="padding-3 margin-top-3 ltr justify">Li, Z., Han, J., &amp; Song, Y. (2020). On the forecasting of high鈥恌requency financial time series based on ARIMA model improved by deep learning. <em>Journal of Forecasting</em>, <em>39</em>(7), 1081&ndash;1097. https://doi.org/10.1002/for.2677 </div> <div class="padding-3 margin-top-3 ltr justify">Lipton, Z. C., Berkowitz, J., &amp; Elkan, C. (2015). <em>A Critical Review of Recurrent Neural Networks for Sequence Learning</em>. http://arxiv.org/abs/1506.00019 </div> <div class="padding-3 margin-top-3 ltr justify">Makridakis, S., Spiliotis, E., &amp; Assimakopoulos, V. (2020). The M4 Competition: 100,000 time series and 61 forecasting methods. <em>International Journal of Forecasting</em>, <em>36</em>, 54&ndash;74. https://doi.org/10.1016/j.ijforecast.2019.04.014 </div> <div class="padding-3 margin-top-3 ltr justify">Obaidur Rahman, M., Sabir Hossain, M., Shafiul Alam Forhad, M., Kamal Hossen, M., &amp; Junaid, T.-S. (2019). Predicting Prices of Stock Market using Gated Recurrent Units (GRUs) Neural Networks. In <em>IJCSNS International Journal of Computer Science and Network Security</em> (Vol. 19, Issue 1). https://www.researchgate.net/publication/331385031 </div> <div class="padding-3 margin-top-3 ltr justify">Predi膰, B., Jovanovic, L., Simic, V., Bacanin, N., Zivkovic, M., Spalevic, P., Budimirovic, N., &amp; Dobrojevic, M. (2024). Cloud-load forecasting via decomposition-aided attention recurrent neural network tuned by modified particle swarm optimization. <em>Complex and Intelligent Systems, 10</em>(2), 2249&ndash;2269. https://doi.org/10.1007/S40747-023-01265-3/FIGURES/11 </div> <div class="padding-3 margin-top-3 ltr justify">Perera, H. N., Hurley, J., Fahimnia, B., &amp; Reisi, M. (2019). The human factor in supply chain forecasting: A systematic review. <em>European Journal of Operational Research</em>, <em>274</em>(2), 574&ndash;600. https://doi.org/10.1016/j.ejor.2018.10.028 </div> <div class="padding-3 margin-top-3 ltr justify">Qin, Z., Yang, S., &amp; Zhong, Y. (2024). Hierarchically Gated Recurrent Neural Network for Sequence Modeling. <em>Retrieved August 19</em>, from https://github.com/OpenNLPLab/HGRN </div> <div class="padding-3 margin-top-3 ltr justify">&Scaron;estanovi膰, T., &amp; Arneri膰, J. (2021). Neural network structure identification in inflation forecasting. <em>Journal of Forecasting</em>, <em>40</em>(1), 62&ndash;79. https://doi.org/10.1002/for.2698 </div> <div class="padding-3 margin-top-3 ltr justify">Wang, P., Gurmani, S. H., Tao, Z., Liu, J., &amp; Chen, H. (2024). Interval time series forecasting: A systematic literature review. <em>Journal of Forecasting, 43</em>(2), 249&ndash;285. https://doi.org/10.1002/FOR.3024 </div> <div class="padding-3 margin-top-3 ltr justify">Yang, K., &amp; Shahabi, C. (2005). On the stationarity of multivariate time series for correlation-based data analysis. <em>Proceedings - IEEE International Conference on Data Mining, ICDM</em>, 805&ndash;808. https://doi.org/10.1109/ICDM.2005.109 </div> <div class="padding-3 margin-top-3 ltr justify">Zhang, G., Eddy Patuwo, B., &amp; Y. Hu, M. (1998). Forecasting with artificial neural networks: The state of the art. <em>International Journal of Forecasting</em>, <em>14</em>(1), 35&ndash;62. https://doi.org/10.1016/S0169-2070(97)00044-7</div> </div> </div> </div> </div> </div> <!-- /CENTER --> <!-- LEFT --> <div class="col-lg-3 col-md-3 col-sm-4"> <div class="panel panel-default my_panel-default margin-bottom-10"> <div class="panel-body ar_info_pnl" id="ar_info_pnl_cover"> <div id="pnl_cover"> <div class="row" > <div class="col-xs-6 col-md-6 nomargin-bottom"> <a href="javascript:loadModal('International Journal of Supply and Operations Management', './data/ijsom/coversheet/cover_en.jpg')"> <img src="data/ijsom/coversheet/cover_en.jpg" alt="International Journal of Supply and Operations Management" style="width: 100%;"> </a> </div> <div class="col-xs-6 col-md-6 nomargin-bottom"> <h6><a href="./issue_542_546.html">Volume 11, Issue 4</a><br/>November 2024<div id="sp_ar_pages">Pages <span dir="ltr">390-416</span></div></h6> </div> </div> </div> </div> </div> <!-- Download Files --> <div class="panel panel-default my_panel-default margin-bottom-10 panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_fl"><i class="fa fa-files-o"></i> Files</a></h3> </div> <div id="ar_info_pnl_fl" class="panel-collapse collapse in"> <div class="panel-body ar_info_pnl padding-6"> <ul class="list-group list-group-bordered list-group-noicon nomargin"> <li class="list-group-item"><a href="./?_action=xml&amp;article=2944" target="_blank" class="tag_a pdf_link"><i class="fa fa-file-code-o text-orange" ></i> XML</a></li> <li class="list-group-item"><a href="./article_2944_832003315c4ab2e3180f011f686c4090.pdf" target="_blank" class="tag_a pdf_link"><i class="fa fa-file-pdf-o text-red" ></i> PDF 3.1 MB</a></li> <!-- Suplement Files --> </ul> </div> </div> </div> <div class="panel panel-default my_panel-default margin-bottom-10"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_share"><i class="fa fa-share-square-o" aria-hidden="true"></i> Share</a></h3> </div> <div id="ar_info_pnl_share" class="panel-collapse collapse"> <div class="panel-body ar_info_pnl padding-10 text-center"> <a id="share_facebook" href="https://www.facebook.com/sharer.php?u=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-facebook" data-toggle="tooltip" data-placement="top" title="Facebook"> <i class="icon-facebook"></i> <i class="icon-facebook"></i> </a> <a id="share_linkedin" href="https://www.linkedin.com/shareArticle?mini=true&amp;url=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-linkedin" data-toggle="tooltip" data-placement="top" title="Linkedin"> <i class="icon-linkedin"></i> <i class="icon-linkedin"></i> </a> <a id="share_mendeley" href="https://www.mendeley.com/import/?url=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-youtube" data-toggle="tooltip" data-placement="top" title="Mendeley"> <i class="icon-mendeley"></i> <i class="icon-mendeley"></i> </a> <a id="share_refworks" href="https://www.refworks.com/express/ExpressImport.asp?url=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-disqus" data-toggle="tooltip" data-placement="top" title="Refworks"> <i class="icon-refworks"><span class="path1"></span><span class="path2"></span><span class="path3"></span><span class="path4"></span><span class="path5"></span><span class="path6"></span><span class="path7"></span><span class="path8"></span><span class="path9"></span><span class="path10"></span></i> <i class="icon-refworks"><span class="path1"></span><span class="path2"></span><span class="path3"></span><span class="path4"></span><span class="path5"></span><span class="path6"></span><span class="path7"></span><span class="path8"></span><span class="path9"></span><span class="path10"></span></i> </a> <a id="share_instagram" href="https://www.instagram.com/?url=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-instagram" data-toggle="tooltip" data-placement="top" title="Instagram"> <i class="icon-instagram"></i> <i class="icon-instagram"></i> </a> <a id="share_twitter" href="https://twitter.com/share?url=http://www.ijsom.com/article_2944.html&amp;text=Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model" target="_blank" class="social-icon social-icon-sm social-twitter" data-toggle="tooltip" data-placement="top" title="Twitter"> <i class="icon-twitter"></i> <i class="icon-twitter"></i> </a> <a id="share_email" href="javascript:act('email')" class="social-icon social-icon-sm social-email3 " data-toggle="tooltip" data-placement="top" title="Email"> <i class="icon-email3"></i> <i class="icon-email3"></i> </a> <a id="share_print" href="javascript:printDiv('dv_artcl')" class="social-icon social-icon-sm social-print" data-toggle="tooltip" data-placement="top" title="Print"> <i class="icon-print"></i> <i class="icon-print"></i> </a> <a id="share_stumble" href="https://mix.com/mixit?su=submit&url=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-stumbleupon" data-toggle="tooltip" data-placement="top" title="StumbleUpon"> <i class="icon-stumbleupon"></i> <i class="icon-stumbleupon"></i> </a> <a id="share_acedemia" href="https://www.academia.edu/" target="_blank" class="social-icon social-icon-sm social-academia" data-toggle="tooltip" data-placement="top" title="Academia"> <i class="ai ai-academia"></i> <i class="ai ai-academia"></i> </a> <a id="share_sems" href="https://www.semanticscholar.org/" target="_blank" class="social-icon social-icon-sm social-forrst" data-toggle="tooltip" data-placement="top" title="Semantic scholar"> <i class="ai ai-semantic-scholar"></i> <i class="ai ai-semantic-scholar"></i> </a> <a id="share_reddit" href="https://www.reddit.com/submit?url=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-dwolla" data-toggle="tooltip" data-placement="top" title="Reddit"> <i class="icon-reddit"></i> <i class="icon-reddit"></i> </a> <a id="share_rg" href="https://www.researchgate.net/" target="_blank" class="social-icon social-icon-sm social-researchgate" data-toggle="tooltip" data-placement="top" title="Research Gate"> <i class="ai ai-researchgate"></i> <i class="ai ai-researchgate"></i> </a> <a id="share_blogger" href="https://www.blogger.com/blog-this.g?u=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-blogger" data-toggle="tooltip" data-placement="top" title="Blogger"> <i class="icon-blogger"></i> <i class="icon-blogger"></i> </a> <a id="share_pinterest" href="https://pinterest.com/pin/create/bookmarklet/?media=&url=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-pinterest" data-toggle="tooltip" data-placement="top" title="Pinterest"> <i class="icon-pinterest"></i> <i class="icon-pinterest"></i> </a> <a id="share_digg" href="https://www.digg.com/submit?http://www.ijsom.com/article_2944.html&title=Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model" target="_blank" class="social-icon social-icon-sm social-digg" data-toggle="tooltip" data-placement="top" title="Digg"> <i class="icon-digg"></i> <i class="icon-digg"></i> </a> <a id="share_delicious" href="https://del.icio.us/post?url=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-delicious" data-toggle="tooltip" data-placement="top" title="Delicious"> <i class="icon-delicious"></i> <i class="icon-delicious"></i> </a> <a id="share_skype" href="https://web.skype.com/share?url=http://www.ijsom.com/article_2944.html" target="_blank" class="social-icon social-icon-sm social-skype" data-toggle="tooltip" data-placement="top" title="Skype"> <i class="icon-skype"></i> <i class="icon-skype"></i> </a> </div> </div> </div> <!-- Cite This Article --> <div class="panel panel-default my_panel-default margin-bottom-10 panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_cite"><i class=" fa fa-external-link"></i> How to cite</a></h3> </div> <div id="ar_info_pnl_cite" class="panel-collapse collapse "> <div class="panel-body ar_info_pnl"> <ul class="list-group list-group-bordered list-group-noicon" style="display:block !important;max-height:9999px"> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=ris&rc=2944">RIS</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=enw&rc=2944">EndNote</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=ris&rc=2944">Mendeley</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=bibtex&rc=2944">BibTeX</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-apa">APA</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-mla">MLA</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-harvard">HARVARD</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-vancouver">VANCOUVER</a></li> </ul> </div> </div> </div> <!-- Article Statastic --> <div class="panel panel-default my_panel-default panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_st"><i class="fa fa-bar-chart" aria-hidden="true"></i> Statistics</a></h3> </div> <div id="ar_info_pnl_st" class="panel-collapse collapse in"> <div class="panel-body ar_info_pnl"> <ul class="list-group list-group-bordered list-group-noicon" style="display:block !important;max-height:9999px"> <li class="list-group-item"><a class="tag_a">Article View: <i>279</i></a></li> <li class="list-group-item"><a class="tag_a">PDF Download: <i>199</i></a></li> </ul> </div> </div> </div> </div> <!-- /LEFT --> </div> </section> <div id="cite-apa" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">APA</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>Jayasekara, W., Sugathadasa, P., Herath, O., & Perera, N. (2024). Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model. <em>International Journal of Supply and Operations Management</em>, 11(4), 390-416. doi: 10.22034/ijsom.2024.109038.2141</p> </div> </div> </div> </div> <div id="cite-mla" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">MLA</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>W.A. Roshan S. Jayasekara; P. T. Ranil S. Sugathadasa; Oshadhi Herath; Niles Perera. "Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model". <em>International Journal of Supply and Operations Management</em>, 11, 4, 2024, 390-416. doi: 10.22034/ijsom.2024.109038.2141</p> </div> </div> </div> </div> <div id="cite-harvard" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">HARVARD</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>Jayasekara, W., Sugathadasa, P., Herath, O., Perera, N. (2024). 'Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model', <em>International Journal of Supply and Operations Management</em>, 11(4), pp. 390-416. doi: 10.22034/ijsom.2024.109038.2141</p> </div> </div> </div> </div> <div id="cite-vancouver" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">VANCOUVER</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>Jayasekara, W., Sugathadasa, P., Herath, O., Perera, N. Multivariate Sales Forecasting Using Gated Recurrent Unit Network Model. <em>International Journal of Supply and Operations Management</em>, 2024; 11(4): 390-416. doi: 10.22034/ijsom.2024.109038.2141</p> </div> </div> </div> </div> </div> </div> <!-- /MAIN CONTENT --> <!-- Subscribe --> <section class="alternate padding-xxs"> </section> <!-- /Subscribe --> <!-- FOOTER --> <div class="container"> <footer id="footer"> <div class="scrollup" id="scroll" href="#"><span></span></div> <div class="row"> <div class="col-md-2"> <!-- Links --> <h4 class="">Explore Journal</h4> <ul class="footer-links list-unstyled"> <li id="fli_home"><a href="./">Home</a></li> <li id="fli_about"><a href="./journal/about">About Journal</a></li> <li id="fli_Edb"><a href="./journal/editorial.board">Editorial Board</a></li> <li id="fli_submit"><a href="./author">Submit Manuscript</a></li> <li id="fli_contactus"><a href="./journal/contact.us">Contact Us</a></li> <li id="fli_glossary"><a href="./journal/glossary">Glossary</a></li> <li id="fli_order_hrdj"><a href="./journal/subscription.form">Hard Copy Subscription</a></li> <li id="fli_sitemap"><a href="./sitemap.xml?usr">Sitemap</a></li> </ul> <!-- /Links --> </div> <div class="col-md-3"> <!-- Latest News --> <h4 class="">Latest News</h4> <ul class="footer-posts list-unstyled"> <li> <a href="./news?newsCode=173">SD of ISC: Sustainable Development of Intelligent Supply Chains based on Trends and Future Directions: Application of Novel Solution Techniques</a> <small class="ltr">2023-03-05</small> </li> </ul> <!-- /Latest News --> </div> <div class="col-md-3"> <!-- Footer Note --> <div><p><a title="Linkedin" href="http://www.linkedin.com/company/ijsom?trk=eml-cp_mktg-btn-welcome-20120607%2F"><img src="images/linkedin.jpg" alt="linkedin" /></a></p></div> <!-- /Footer Note --> </div> <div class="col-md-4"> <!-- Newsletter Form --> <h4 class="">Newsletter Subscription</h4> <p>Subscribe to the journal newsletter and receive the latest news and updates</p> <form class="validate" action="" method="post" data-success="Subscription saved successfully." data-toastr-position="bottom-right"> <input type="hidden" name="_token" value="0c30c9886f2696a1e94517aca9a0fae10f7c4a4b8ab1e598"/> <div class="input-group"> <span class="input-group-addon"><i class="fa fa-envelope"></i></span> <input type="email" id="email" name="email" required="required" class="form-control required sbs_email" placeholder="Enter your Email" oninvalid="this.setCustomValidity('Enter a valid email address.')" oninput="this.setCustomValidity('')"> <span class="input-group-btn"> <button class="btn btn-primary mybtn" type="submit">Subscribe</button> </span> </div> </form> <!-- /Newsletter Form --> <!-- Social Icons --> <div class="margin-top-20"> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Facebook"> <i class="fa fa-facebook-square" aria-hidden="true"></i> </a> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Twitter"> <i class="fa fa-twitter-square" aria-hidden="true"></i> </a> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Linkedin"> <i class="fa fa-linkedin-square" aria-hidden="true"></i> </a> <a class="noborder" href="./ju.rss" class="social-icon social-icon-border social-rss pull-left block" data-toggle="tooltip" data-placement="top" title="Rss"><i class="fa fa-rss-square" aria-hidden="true"></i></a> </div> </div> </div> <div class="copyright" style="position: relative"> <ul class="nomargin list-inline mobile-block"> <li>&copy; Journal Management System. <span id='sp_crt'>Powered by <a target='_blank' href='https://www.sinaweb.net/'>Sinaweb</a></span></li> </ul> </div> </footer> </div> <!-- /FOOTER --> </div> <!-- /wrapper --> <!-- SCROLL TO TOP --> <a href="#" id="toTop_old"></a> <!-- PRELOADER --> <div id="preloader"> <div class="inner"> <span class="loader"></span> </div> </div><!-- /PRELOADER --> <!-- JAVASCRIPT FILES --> <script type="text/javascript">var plugin_path = './themes/base/front/assets/plugins/';</script> <script type="text/javascript" src="./themes/base/front/assets/js/scripts.js?v=0.02"></script> <!-- user defined scripts--> <!-- Extra Script Scripts --> <script type="text/javascript"> $('ul.nav li.dropdown').hover(function() { if (window.matchMedia('(max-width: 767px)').matches) return; $(this).find('.dropdown-menu').stop(true, true).delay(200).fadeIn(500); }, function() { if (window.matchMedia('(max-width: 767px)').matches) return; $(this).find('.dropdown-menu').stop(true, true).delay(200).fadeOut(500); }); var btn = $('#toTop_old'); $(window).scroll(function() { if ($(window).scrollTop() > 300) { btn.addClass('show'); } else { btn.removeClass('show'); } }); btn.on('click', function(e) { e.preventDefault(); $('html, body').animate({scrollTop:0}, '300'); }); window.cookieconsent.initialise({ "palette": { "popup": { "background": "#222" }, "button": { "background": "#f1d600" } }, "content": { "message": "This website uses cookies to ensure you get the best experience on our website.", "dismiss": "Got it!", "link": "" } }); </script> </body> </html><div id="actn_modal" class="modal fade" tabindex="-1"> <div id="" class="modal-dialog modal-dialog madal-aw"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close pull-right" data-dismiss="modal" aria-hidden="true" href="#lost">&times;</button> <h5 class="modal-title"></h5> </div> <div class="modal-body"></div> <div class="modal-footer"></div> </div> </div> </div>

Pages: 1 2 3 4 5 6 7 8 9 10