CINXE.COM
Perturbation (astronomy) - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Perturbation (astronomy) - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"9e09aa30-5892-4c95-8359-7518b875e5b0","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Perturbation_(astronomy)","wgTitle":"Perturbation (astronomy)","wgCurRevisionId":1272320791,"wgRevisionId":1272320791,"wgArticleId":1490148,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 errors: URL","Articles with short description","Short description is different from Wikidata","Orbital perturbations","Dynamical systems","Dynamics of the Solar System","Celestial mechanics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Perturbation_(astronomy)","wgRelevantArticleId":1490148,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q803623","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Moon_perturbation_diagram.svg/1200px-Moon_perturbation_diagram.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="621"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Moon_perturbation_diagram.svg/800px-Moon_perturbation_diagram.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="414"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Moon_perturbation_diagram.svg/640px-Moon_perturbation_diagram.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="331"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Perturbation (astronomy) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Perturbation_(astronomy)"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Perturbation_(astronomy)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Perturbation_(astronomy)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Perturbation_astronomy rootpage-Perturbation_astronomy skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Perturbation+%28astronomy%29" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Perturbation+%28astronomy%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Perturbation+%28astronomy%29" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Perturbation+%28astronomy%29" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <ul id="toc-Introduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematical_analysis" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Mathematical_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Mathematical analysis</span> </div> </a> <button aria-controls="toc-Mathematical_analysis-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mathematical analysis subsection</span> </button> <ul id="toc-Mathematical_analysis-sublist" class="vector-toc-list"> <li id="toc-General_perturbations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General_perturbations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>General perturbations</span> </div> </a> <ul id="toc-General_perturbations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Special_perturbations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Special_perturbations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Special perturbations</span> </div> </a> <ul id="toc-Special_perturbations-sublist" class="vector-toc-list"> <li id="toc-Cowell's_formulation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Cowell's_formulation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Cowell's formulation</span> </div> </a> <ul id="toc-Cowell's_formulation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Encke's_method" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Encke's_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.2</span> <span>Encke's method</span> </div> </a> <ul id="toc-Encke's_method-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Periodic_nature" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Periodic_nature"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Periodic nature</span> </div> </a> <ul id="toc-Periodic_nature-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Perturbation (astronomy)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 36 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-36" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">36 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D8%B6%D8%B7%D8%B1%D8%A7%D8%A8_(%D8%B9%D9%84%D9%85_%D8%A7%D9%84%D9%81%D9%84%D9%83)" title="اضطراب (علم الفلك) – Arabic" lang="ar" hreflang="ar" data-title="اضطراب (علم الفلك)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Pertorbaci%C3%B3_(astronomia)" title="Pertorbació (astronomia) – Catalan" lang="ca" hreflang="ca" data-title="Pertorbació (astronomia)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9F%C4%83%D0%BB%D1%85%D0%B0%D0%BD%D1%83_(%D0%B0%D1%81%D1%82%D1%80%D0%BE%D0%BD%D0%BE%D0%BC%D0%B8)" title="Пăлхану (астрономи) – Chuvash" lang="cv" hreflang="cv" data-title="Пăлхану (астрономи)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Perturbace_(astronomie)" title="Perturbace (astronomie) – Czech" lang="cs" hreflang="cs" data-title="Perturbace (astronomie)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Perturbation" title="Perturbation – Danish" lang="da" hreflang="da" data-title="Perturbation" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Bahnst%C3%B6rung" title="Bahnstörung – German" lang="de" hreflang="de" data-title="Bahnstörung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/H%C3%A4iritus" title="Häiritus – Estonian" lang="et" hreflang="et" data-title="Häiritus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%AC%CF%81%CE%B5%CE%BB%CE%BE%CE%B7" title="Πάρελξη – Greek" lang="el" hreflang="el" data-title="Πάρελξη" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Perturbaci%C3%B3n_(astronom%C3%ADa)" title="Perturbación (astronomía) – Spanish" lang="es" hreflang="es" data-title="Perturbación (astronomía)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Perturbo_(astronomio)" title="Perturbo (astronomio) – Esperanto" lang="eo" hreflang="eo" data-title="Perturbo (astronomio)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%BE%D8%B1%DB%8C%D8%B4%DB%8C%D8%AF%DA%AF%DB%8C_(%D8%A7%D8%AE%D8%AA%D8%B1%D8%B4%D9%86%D8%A7%D8%B3%DB%8C)" title="پریشیدگی (اخترشناسی) – Persian" lang="fa" hreflang="fa" data-title="پریشیدگی (اخترشناسی)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Perturbation_(astronomie)" title="Perturbation (astronomie) – French" lang="fr" hreflang="fr" data-title="Perturbation (astronomie)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Corra%C3%ADl_(r%C3%A9alteola%C3%ADocht)" title="Corraíl (réalteolaíocht) – Irish" lang="ga" hreflang="ga" data-title="Corraíl (réalteolaíocht)" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%84%AD%EB%8F%99_(%EC%B2%9C%EB%AC%B8%ED%95%99)" title="섭동 (천문학) – Korean" lang="ko" hreflang="ko" data-title="섭동 (천문학)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Perturbacija_(astronomija)" title="Perturbacija (astronomija) – Croatian" lang="hr" hreflang="hr" data-title="Perturbacija (astronomija)" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Perturbasi_(astronomi)" title="Perturbasi (astronomi) – Indonesian" lang="id" hreflang="id" data-title="Perturbasi (astronomi)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Perturbazione_(astronomia)" title="Perturbazione (astronomia) – Italian" lang="it" hreflang="it" data-title="Perturbazione (astronomia)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%A8%D7%98%D7%95%D7%A8%D7%91%D7%A6%D7%99%D7%94_(%D7%90%D7%A1%D7%98%D7%A8%D7%95%D7%A0%D7%95%D7%9E%D7%99%D7%94)" title="פרטורבציה (אסטרונומיה) – Hebrew" lang="he" hreflang="he" data-title="פרטורבציה (אסטרונומיה)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Perturb%C4%81cija" title="Perturbācija – Latvian" lang="lv" hreflang="lv" data-title="Perturbācija" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Trikdymas" title="Trikdymas – Lithuanian" lang="lt" hreflang="lt" data-title="Trikdymas" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Perturb%C3%A1ci%C3%B3_(csillag%C3%A1szat)" title="Perturbáció (csillagászat) – Hungarian" lang="hu" hreflang="hu" data-title="Perturbáció (csillagászat)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D1%82%D1%80%D0%BE%D1%98%D1%83%D0%B2%D0%B0%D1%9A%D0%B5_(%D0%B0%D1%81%D1%82%D1%80%D0%BE%D0%BD%D0%BE%D0%BC%D0%B8%D1%98%D0%B0)" title="Растројување (астрономија) – Macedonian" lang="mk" hreflang="mk" data-title="Растројување (астрономија)" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Perturbatie_(astronomie)" title="Perturbatie (astronomie) – Dutch" lang="nl" hreflang="nl" data-title="Perturbatie (astronomie)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%91%82%E5%8B%95_(%E5%A4%A9%E6%96%87%E5%AD%A6)" title="摂動 (天文学) – Japanese" lang="ja" hreflang="ja" data-title="摂動 (天文学)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Perturbasjon" title="Perturbasjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Perturbasjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Perturbasjon_i_astronomi" title="Perturbasjon i astronomi – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Perturbasjon i astronomi" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Perturbacja" title="Perturbacja – Polish" lang="pl" hreflang="pl" data-title="Perturbacja" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Perturba%C3%A7%C3%A3o" title="Perturbação – Portuguese" lang="pt" hreflang="pt" data-title="Perturbação" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%B7%D0%BC%D1%83%D1%89%D0%B5%D0%BD%D0%B8%D0%B5_(%D0%B0%D1%81%D1%82%D1%80%D0%BE%D0%BD%D0%BE%D0%BC%D0%B8%D1%8F)" title="Возмущение (астрономия) – Russian" lang="ru" hreflang="ru" data-title="Возмущение (астрономия)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Perturb%C3%A1cia_(astron%C3%B3mia)" title="Perturbácia (astronómia) – Slovak" lang="sk" hreflang="sk" data-title="Perturbácia (astronómia)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Perturbacija" title="Perturbacija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Perturbacija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Perturbation_(astronomi)" title="Perturbation (astronomi) – Swedish" lang="sv" hreflang="sv" data-title="Perturbation (astronomi)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Tedirginlik_(astronomi)" title="Tedirginlik (astronomi) – Turkish" lang="tr" hreflang="tr" data-title="Tedirginlik (astronomi)" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D1%82%D1%83%D1%80%D0%B1%D0%B0%D1%86%D1%96%D1%8F" title="Пертурбація – Ukrainian" lang="uk" hreflang="uk" data-title="Пертурбація" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Nhi%E1%BB%85u_lo%E1%BA%A1n_(thi%C3%AAn_v%C4%83n_h%E1%BB%8Dc)" title="Nhiễu loạn (thiên văn học) – Vietnamese" lang="vi" hreflang="vi" data-title="Nhiễu loạn (thiên văn học)" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%94%9D%E5%8B%95" title="攝動 – Chinese" lang="zh" hreflang="zh" data-title="攝動" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q803623#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Perturbation_(astronomy)" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Perturbation_(astronomy)" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Perturbation_(astronomy)"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Perturbation_(astronomy)&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Perturbation_(astronomy)"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Perturbation_(astronomy)&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Perturbation_(astronomy)" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Perturbation_(astronomy)" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Perturbation_(astronomy)&oldid=1272320791" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Perturbation_(astronomy)&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Perturbation_%28astronomy%29&id=1272320791&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPerturbation_%28astronomy%29"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPerturbation_%28astronomy%29"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Perturbation_%28astronomy%29&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Perturbation_(astronomy)&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q803623" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Classical approach to the many-body problem of astronomy</div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Moon_perturbation_diagram.svg" class="mw-file-description"><img alt="Vector diagram of the Sun's perturbations on the Moon. When the gravitational force of the Sun common to both the Earth and the Moon is subtracted, what is left is the perturbations." src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Moon_perturbation_diagram.svg/300px-Moon_perturbation_diagram.svg.png" decoding="async" width="300" height="155" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Moon_perturbation_diagram.svg/450px-Moon_perturbation_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Moon_perturbation_diagram.svg/600px-Moon_perturbation_diagram.svg.png 2x" data-file-width="790" data-file-height="409" /></a><figcaption>The perturbing forces of the <a href="/wiki/Sun" title="Sun">Sun</a> on the <a href="/wiki/Moon" title="Moon">Moon</a> at two places in its <a href="/wiki/Orbit" title="Orbit">orbit</a>. The blue arrows represent the <a href="/wiki/Euclidean_vector" title="Euclidean vector">direction and magnitude</a> of the gravitational force on the <a href="/wiki/Earth" title="Earth">Earth</a>. Applying this to both the Earth's and the Moon's position does not disturb the positions relative to each other. When it is subtracted from the force on the Moon (black arrows), what is left is the perturbing force (red arrows) on the Moon relative to the Earth. Because the perturbing force is different in direction and magnitude on opposite sides of the orbit, it produces a change in the shape of the orbit.</figcaption></figure> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">Part of a series on</td></tr><tr><th class="sidebar-title-with-pretitle">Astrodynamics</th></tr><tr><td class="sidebar-image" style="padding-bottom:0.85em;"><span typeof="mw:File"><a href="/wiki/File:Orbit_mechanics_icon.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/60px-Orbit_mechanics_icon.svg.png" decoding="async" width="60" height="60" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/90px-Orbit_mechanics_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Orbit_mechanics_icon.svg/120px-Orbit_mechanics_icon.svg.png 2x" data-file-width="48" data-file-height="48" /></a></span></td></tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Orbital_mechanics" title="Orbital mechanics"><span style="font-size:110%;">Orbital mechanics</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/Orbital_elements" title="Orbital elements">Orbital elements</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Apsis" title="Apsis">Apsis</a></li> <li><a href="/wiki/Argument_of_periapsis" title="Argument of periapsis">Argument of periapsis</a></li> <li><a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">Eccentricity</a></li> <li><a href="/wiki/Orbital_inclination" title="Orbital inclination">Inclination</a></li> <li><a href="/wiki/Mean_anomaly" title="Mean anomaly">Mean anomaly</a></li> <li><a href="/wiki/Orbital_node" title="Orbital node">Orbital nodes</a></li> <li><a href="/wiki/Semi-major_and_semi-minor_axes" title="Semi-major and semi-minor axes">Semi-major axis</a></li> <li><a href="/wiki/True_anomaly" title="True anomaly">True anomaly</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Types of <a href="/wiki/Two-body_problem" title="Two-body problem">two-body orbits</a> by <br />eccentricity</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Circular_orbit" title="Circular orbit">Circular orbit</a></li> <li><a href="/wiki/Elliptic_orbit" title="Elliptic orbit">Elliptic orbit</a></li></ul> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Transfer_orbit" title="Transfer orbit">Transfer orbit</a> <div class="hlist" style="font-size:90%"><ul><li>(<a href="/wiki/Hohmann_transfer_orbit" title="Hohmann transfer orbit">Hohmann transfer orbit</a></li><li><a href="/wiki/Bi-elliptic_transfer" title="Bi-elliptic transfer">Bi-elliptic transfer orbit</a>)</li></ul></div></div> <ul><li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Parabolic orbit</a></li> <li><a href="/wiki/Hyperbolic_trajectory" title="Hyperbolic trajectory">Hyperbolic orbit</a></li> <li><a href="/wiki/Radial_trajectory" title="Radial trajectory">Radial orbit</a></li> <li><a href="/wiki/Orbital_decay" title="Orbital decay">Decaying orbit</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Equations</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Dynamical_friction" title="Dynamical friction">Dynamical friction</a></li> <li><a href="/wiki/Escape_velocity" title="Escape velocity">Escape velocity</a></li> <li><a href="/wiki/Kepler%27s_equation" title="Kepler's equation">Kepler's equation</a></li> <li><a href="/wiki/Kepler%27s_laws_of_planetary_motion" title="Kepler's laws of planetary motion">Kepler's laws of planetary motion</a></li> <li><a href="/wiki/Orbital_period" title="Orbital period">Orbital period</a></li> <li><a href="/wiki/Orbital_speed" title="Orbital speed">Orbital velocity</a></li> <li><a href="/wiki/Surface_gravity" title="Surface gravity">Surface gravity</a></li> <li><a href="/wiki/Specific_orbital_energy" title="Specific orbital energy">Specific orbital energy</a></li> <li><a href="/wiki/Vis-viva_equation" title="Vis-viva equation">Vis-viva equation</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Celestial_mechanics" title="Celestial mechanics"><span style="font-size:110%;">Celestial mechanics</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Gravitational influences</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Barycenter" class="mw-redirect" title="Barycenter">Barycenter</a></li> <li><a href="/wiki/Hill_sphere" title="Hill sphere">Hill sphere</a></li> <li><a class="mw-selflink selflink">Perturbations</a></li> <li><a href="/wiki/Sphere_of_influence_(astrodynamics)" title="Sphere of influence (astrodynamics)">Sphere of influence</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)"><a href="/wiki/N-body_problem" title="N-body problem">N-body orbits</a></div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Lagrange_point" title="Lagrange point">Lagrangian points</a> <div class="hlist" style="font-size:90%"><ul><li>(<a href="/wiki/Halo_orbit" title="Halo orbit">Halo orbits</a>)</li></ul></div></div> <ul><li><a href="/wiki/Lissajous_orbit" title="Lissajous orbit">Lissajous orbits</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov orbits</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0.55em;"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Aerospace_engineering" title="Aerospace engineering"><span style="font-size:110%;">Engineering and efficiency</span></a></div></th></tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Preflight engineering</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Mass_ratio" title="Mass ratio">Mass ratio</a></li> <li><a href="/wiki/Payload_fraction" title="Payload fraction">Payload fraction</a></li> <li><a href="/wiki/Propellant_mass_fraction" title="Propellant mass fraction">Propellant mass fraction</a></li> <li><a href="/wiki/Tsiolkovsky_rocket_equation" title="Tsiolkovsky rocket equation">Tsiolkovsky rocket equation</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Efficiency measures</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Gravity_assist" title="Gravity assist">Gravity assist</a></li> <li><a href="/wiki/Oberth_effect" title="Oberth effect">Oberth effect</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content hlist"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="color: var(--color-base)">Propulsive maneuvers</div><div class="sidebar-list-content mw-collapsible-content plainlist" style="padding-top:0;"> <ul><li><a href="/wiki/Orbital_maneuver" title="Orbital maneuver">Orbital maneuver</a></li> <li><a href="/wiki/Orbit_insertion" title="Orbit insertion">Orbit insertion</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Astrodynamics" title="Template:Astrodynamics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Astrodynamics" title="Template talk:Astrodynamics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Astrodynamics" title="Special:EditPage/Template:Astrodynamics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Astronomy" title="Astronomy">astronomy</a>, <b>perturbation</b> is the complex motion of a <a href="/wiki/Astronomical_object" title="Astronomical object">massive body</a> subjected to forces other than the <a href="/wiki/Gravity" title="Gravity">gravitational</a> attraction of a single other <a href="/wiki/Mass" title="Mass">massive</a> <a href="/wiki/Physical_body" class="mw-redirect" title="Physical body">body</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The other forces can include a third (fourth, fifth, etc.) body, <a href="/wiki/Drag_(physics)" title="Drag (physics)">resistance</a>, as from an <a href="/wiki/Atmosphere" title="Atmosphere">atmosphere</a>, and the off-center attraction of an <a href="/wiki/Oblate_spheroid" class="mw-redirect" title="Oblate spheroid">oblate</a> or otherwise misshapen body.<sup id="cite_ref-moulton_2-0" class="reference"><a href="#cite_note-moulton-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=1" title="Edit section: Introduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The study of perturbations began with the first attempts to predict planetary motions in the sky. In ancient times the causes were unknown. <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a>, at the time he formulated his laws of <a href="/wiki/Newton%27s_laws_of_motion" title="Newton's laws of motion">motion</a> and of <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">gravitation</a>, applied them to the first analysis of perturbations,<sup id="cite_ref-moulton_2-1" class="reference"><a href="#cite_note-moulton-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> recognizing the complex difficulties of their calculation.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> Many of the great mathematicians since then have given attention to the various problems involved; throughout the 18th and 19th centuries there was demand for accurate tables of the position of the <a href="/wiki/Moon" title="Moon">Moon</a> and <a href="/wiki/Planet" title="Planet">planets</a> for <a href="/wiki/Marine_navigation" title="Marine navigation">marine navigation</a>. </p><p>The complex motions of gravitational perturbations can be broken down. The hypothetical motion that the body follows under the gravitational effect of one other body only is a <a href="/wiki/Conic_section" title="Conic section">conic section</a>, and can be described in <a href="/wiki/Geometry" title="Geometry">geometrical</a> terms. This is called a <a href="/wiki/Two-body_problem" title="Two-body problem">two-body problem</a>, or an unperturbed <a href="/wiki/Kepler_orbit" title="Kepler orbit">Keplerian orbit</a>. The differences between that and the actual motion of the body are perturbations due to the additional gravitational effects of the remaining body or bodies. If there is only one other significant body then the perturbed motion is a <a href="/wiki/Three-body_problem" title="Three-body problem">three-body problem</a>; if there are multiple other bodies it is an <a href="/wiki/N-body_problem" title="N-body problem"><span class="texhtml mvar" style="font-style:italic;">n</span>‑body problem</a>. A general analytical solution (a mathematical expression to predict the positions and motions at any future time) exists for the two-body problem; when more than two bodies are considered analytic solutions exist only for special cases. Even the two-body problem becomes insoluble if one of the bodies is irregular in shape.<sup id="cite_ref-roy_7-0" class="reference"><a href="#cite_note-roy-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Mercury_perturbation_comparison.png" class="mw-file-description"><img alt="Plot of Mercury's position in its orbit, with and without perturbations from various planets. The perturbations cause Mercury to move in looping paths around its unperturbed position." src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f1/Mercury_perturbation_comparison.png/300px-Mercury_perturbation_comparison.png" decoding="async" width="300" height="318" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f1/Mercury_perturbation_comparison.png/450px-Mercury_perturbation_comparison.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f1/Mercury_perturbation_comparison.png/600px-Mercury_perturbation_comparison.png 2x" data-file-width="670" data-file-height="711" /></a><figcaption><a href="/wiki/Mercury_(planet)" title="Mercury (planet)">Mercury</a>'s orbital longitude and latitude, as perturbed by <a href="/wiki/Venus" title="Venus">Venus</a>, <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a>, and all of the planets of the <a href="/wiki/Solar_System" title="Solar System">Solar System</a>, at intervals of 2.5 days. Mercury would remain centered on the crosshairs if there were no perturbations.</figcaption></figure> <p>Most systems that involve multiple gravitational attractions present one primary body which is dominant in its effects (for example, a <a href="/wiki/Star" title="Star">star</a>, in the case of the star and its planet, or a planet, in the case of the planet and its satellite). The gravitational effects of the other bodies can be treated as perturbations of the hypothetical unperturbed motion of the planet or <a href="/wiki/Satellite" title="Satellite">satellite</a> around its primary body. </p> <div class="mw-heading mw-heading2"><h2 id="Mathematical_analysis">Mathematical analysis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=2" title="Edit section: Mathematical analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="General_perturbations">General perturbations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=3" title="Edit section: General perturbations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In methods of <b>general perturbations</b>, general differential equations, either of motion or of change in the <a href="/wiki/Orbital_elements" title="Orbital elements">orbital elements</a>, are solved analytically, usually by <a href="/wiki/Series_expansion" title="Series expansion">series expansions</a>. The result is usually expressed in terms of algebraic and trigonometric functions of the orbital elements of the body in question and the perturbing bodies. This can be applied generally to many different sets of conditions, and is not specific to any particular set of gravitating objects.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Historically, general perturbations were investigated first. The classical methods are known as <i>variation of the elements</i>, <i><a href="/wiki/Variation_of_parameters" title="Variation of parameters">variation of parameters</a></i> or <i>variation of the constants of integration</i>. In these methods, it is considered that the body is always moving in a <a href="/wiki/Conic_section" title="Conic section">conic section</a>, however the conic section is constantly changing due to the perturbations. If all perturbations were to cease at any particular instant, the body would continue in this (now unchanging) conic section indefinitely; this conic is known as the <a href="/wiki/Osculating_orbit" title="Osculating orbit">osculating orbit</a> and its <a href="/wiki/Orbital_elements" title="Orbital elements">orbital elements</a> at any particular time are what are sought by the methods of general perturbations.<sup id="cite_ref-moulton_2-2" class="reference"><a href="#cite_note-moulton-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>General perturbations takes advantage of the fact that in many problems of <a href="/wiki/Celestial_mechanics" title="Celestial mechanics">celestial mechanics</a>, the two-body orbit changes rather slowly due to the perturbations; the two-body orbit is a good first approximation. General perturbations is applicable only if the perturbing forces are about one order of magnitude smaller, or less, than the gravitational force of the primary body.<sup id="cite_ref-roy_7-1" class="reference"><a href="#cite_note-roy-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> In the <a href="/wiki/Solar_System" title="Solar System">Solar System</a>, this is usually the case; <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a>, the second largest body, has a mass of about <span style="font-size:85%;"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"> 1000 </span></span>⁠</span></span> that of the <a href="/wiki/Sun" title="Sun">Sun</a>. </p><p>General perturbation methods are preferred for some types of problems, as the source of certain observed motions are readily found. This is not necessarily so for special perturbations; the motions would be predicted with similar accuracy, but no information on the configurations of the perturbing bodies (for instance, an <a href="/wiki/Orbital_resonance" title="Orbital resonance">orbital resonance</a>) which caused them would be available.<sup id="cite_ref-roy_7-2" class="reference"><a href="#cite_note-roy-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Special_perturbations">Special perturbations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=4" title="Edit section: Special perturbations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In methods of <b>special perturbations</b>, numerical datasets, representing values for the positions, velocities and accelerative forces on the bodies of interest, are made the basis of <a href="/wiki/Numerical_integration" title="Numerical integration">numerical integration</a> of the differential <a href="/wiki/Equations_of_motion" title="Equations of motion">equations of motion</a>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> In effect, the positions and velocities are perturbed directly, and no attempt is made to calculate the curves of the orbits or the <a href="/wiki/Orbital_elements" title="Orbital elements">orbital elements</a>.<sup id="cite_ref-moulton_2-3" class="reference"><a href="#cite_note-moulton-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Special perturbations can be applied to any problem in <a href="/wiki/Celestial_mechanics" title="Celestial mechanics">celestial mechanics</a>, as it is not limited to cases where the perturbing forces are small.<sup id="cite_ref-roy_7-3" class="reference"><a href="#cite_note-roy-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Once applied only to comets and minor planets, special perturbation methods are now the basis of the most accurate machine-generated <a href="/wiki/Fundamental_ephemeris" title="Fundamental ephemeris">planetary ephemerides</a> of the great astronomical almanacs.<sup id="cite_ref-moulton_2-4" class="reference"><a href="#cite_note-moulton-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> Special perturbations are also used for <a href="/wiki/Orbit_Modeling" class="mw-redirect" title="Orbit Modeling">modeling</a> an orbit with computers. </p> <div class="mw-heading mw-heading4"><h4 id="Cowell's_formulation"><span id="Cowell.27s_formulation"></span>Cowell's formulation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=5" title="Edit section: Cowell's formulation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Cowells_method.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Cowells_method.svg/220px-Cowells_method.svg.png" decoding="async" width="220" height="178" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Cowells_method.svg/330px-Cowells_method.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Cowells_method.svg/440px-Cowells_method.svg.png 2x" data-file-width="499" data-file-height="403" /></a><figcaption>Cowell's method. Forces from all perturbing bodies (black and gray) are summed to form the total force on body <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ i\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>i</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ i\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b51a09bf7a6814763f959f43a8610a6163737a1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.964ex; height:2.176ex;" alt="{\displaystyle \ i\ }"></span> (red), and this is numerically integrated starting from the initial position (the <i>epoch of osculation</i>).</figcaption></figure> <p>Cowell's formulation (so named for <a href="/wiki/Philip_Herbert_Cowell" title="Philip Herbert Cowell">Philip H. Cowell</a>, who, with A.C.D. Cromellin, used a similar method to predict the return of Halley's comet) is perhaps the simplest of the special perturbation methods.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> In a system of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ n\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>n</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ n\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deef0540a8fa31051600df38dcae5f1f69c614ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.556ex; height:1.676ex;" alt="{\displaystyle \ n\ }"></span> mutually interacting bodies, this method mathematically solves for the <a href="/wiki/Newton%27s_law_of_universal_gravitation" title="Newton's law of universal gravitation">Newtonian</a> forces on body <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ i\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>i</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ i\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b51a09bf7a6814763f959f43a8610a6163737a1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.964ex; height:2.176ex;" alt="{\displaystyle \ i\ }"></span> by summing the individual interactions from the other <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> bodies: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\ddot {r}} _{i}=\sum _{\underset {j\neq i}{j=1}}^{n}\ G\ m_{j}{\frac {\ (\mathbf {r} _{j}-\mathbf {r} _{i})\ }{\ \|\mathbf {r} _{j}-\mathbf {r} _{i}\|^{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">¨<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>j</mi> <mo>≠<!-- ≠ --></mo> <mi>i</mi> </mrow> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mtext> </mtext> <mi>G</mi> <mtext> </mtext> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext> </mtext> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mtext> </mtext> </mrow> <mrow> <mtext> </mtext> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\ddot {r}} _{i}=\sum _{\underset {j\neq i}{j=1}}^{n}\ G\ m_{j}{\frac {\ (\mathbf {r} _{j}-\mathbf {r} _{i})\ }{\ \|\mathbf {r} _{j}-\mathbf {r} _{i}\|^{3}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/463320d5ca507e9715f5db71bbd814466e69d80a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:26.465ex; height:8.843ex;" alt="{\displaystyle \mathbf {\ddot {r}} _{i}=\sum _{\underset {j\neq i}{j=1}}^{n}\ G\ m_{j}{\frac {\ (\mathbf {r} _{j}-\mathbf {r} _{i})\ }{\ \|\mathbf {r} _{j}-\mathbf {r} _{i}\|^{3}}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mathbf {\ddot {r}} _{i}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">¨<!-- ¨ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mathbf {\ddot {r}} _{i}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30429e3ca908d4eaa2cbbed2eace496cbfe8d7db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.298ex; height:2.676ex;" alt="{\displaystyle \ \mathbf {\ddot {r}} _{i}\ }"></span> is the <a href="/wiki/Acceleration" title="Acceleration">acceleration</a> vector of body <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> is the <a href="/wiki/Gravitational_constant" title="Gravitational constant">gravitational constant</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ m_{j}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ m_{j}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fc317e20e37342b647f25183d6a5e22cd8ab88f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.111ex; height:2.343ex;" alt="{\displaystyle \ m_{j}\ }"></span> is the <a href="/wiki/Mass" title="Mass">mass</a> of body <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mathbf {r} _{i}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mathbf {r} _{i}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f7f6c558dbafb1dc29f79274d5c3e6f17c57171" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.063ex; height:2.009ex;" alt="{\displaystyle \ \mathbf {r} _{i}\ }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mathbf {r} _{j}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mathbf {r} _{j}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7759de56f46902224542bf03a9d7194f0f8c622" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.173ex; height:2.343ex;" alt="{\displaystyle \ \mathbf {r} _{j}\ }"></span> are the <a href="/wiki/Position_vector" class="mw-redirect" title="Position vector">position vectors</a> of objects <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ i\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>i</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ i\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b51a09bf7a6814763f959f43a8610a6163737a1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.964ex; height:2.176ex;" alt="{\displaystyle \ i\ }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ j\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>j</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ j\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4302bd902bff8c4a5eb8b2a94ac31c7cc1f1b7a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.119ex; height:2.509ex;" alt="{\displaystyle \ j\ }"></span> respectively, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ r_{ij}\equiv \|\mathbf {r} _{j}-\mathbf {r} _{i}\|\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>≡<!-- ≡ --></mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ r_{ij}\equiv \|\mathbf {r} _{j}-\mathbf {r} _{i}\|\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85dd6f6ad7659549cf29e9d76fd68d97a2749165" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.864ex; height:3.009ex;" alt="{\displaystyle \ r_{ij}\equiv \|\mathbf {r} _{j}-\mathbf {r} _{i}\|\ }"></span> is the distance from object <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> to object <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ j\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>j</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ j\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4302bd902bff8c4a5eb8b2a94ac31c7cc1f1b7a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.119ex; height:2.509ex;" alt="{\displaystyle \ j\ }"></span>, all <a href="/wiki/Euclidean_vector#Physics" title="Euclidean vector">vectors</a> being referred to the <a href="/wiki/Center_of_mass#Astronomy" title="Center of mass">barycenter</a> of the system. This equation is resolved into components in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>x</mi> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/841c48888d26701e0cb14d9fcc012d090fcc7bd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.138ex; height:2.009ex;" alt="{\displaystyle \ x\ ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ y\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>y</mi> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ y\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/616572e59914370b25a2e95ee7670034b1a0c49a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.964ex; height:2.009ex;" alt="{\displaystyle \ y\ ,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ z\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>z</mi> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ z\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2989a6c038895462c32b0eb5bd767895dcef158c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.896ex; height:2.009ex;" alt="{\displaystyle \ z\ ,}"></span> and these are integrated numerically to form the new velocity and position vectors. This process is repeated as many times as necessary. The advantage of Cowell's method is ease of application and programming. A disadvantage is that when perturbations become large in magnitude (as when an object makes a close approach to another) the errors of the method also become large.<sup id="cite_ref-danby_12-0" class="reference"><a href="#cite_note-danby-12"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> However, for many problems in <a href="/wiki/Celestial_mechanics" title="Celestial mechanics">celestial mechanics</a>, this is never the case. Another disadvantage is that in systems with a dominant central body, such as the <a href="/wiki/Sun" title="Sun">Sun</a>, it is necessary to carry many <a href="/wiki/Significant_figures" title="Significant figures">significant digits</a> in the <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a> because of the large difference in the forces of the central body and the perturbing bodies, although with <a href="/wiki/Double-precision_floating-point_format" title="Double-precision floating-point format">high precision numbers</a> built into modern <a href="/wiki/Computer" title="Computer">computers</a> this is not as much of a limitation as it once was.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Encke's_method"><span id="Encke.27s_method"></span>Encke's method</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=6" title="Edit section: Encke's method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Enckes_method-vector.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Enckes_method-vector.svg/220px-Enckes_method-vector.svg.png" decoding="async" width="220" height="212" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Enckes_method-vector.svg/330px-Enckes_method-vector.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Enckes_method-vector.svg/440px-Enckes_method-vector.svg.png 2x" data-file-width="412" data-file-height="397" /></a><figcaption>Encke's method. Greatly exaggerated here, the small difference δ<b>r</b> (blue) between the osculating, unperturbed orbit (black) and the perturbed orbit (red), is numerically integrated starting from the initial position (the <i>epoch of osculation</i>).</figcaption></figure> <p>Encke's method begins with the <a href="/wiki/Osculating_orbit" title="Osculating orbit">osculating orbit</a> as a reference and integrates numerically to solve for the variation from the reference as a function of time.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> Its advantages are that perturbations are generally small in magnitude, so the integration can proceed in larger steps (with resulting lesser errors), and the method is much less affected by extreme perturbations. Its disadvantage is complexity; it cannot be used indefinitely without occasionally updating the osculating orbit and continuing from there, a process known as <i>rectification</i>.<sup id="cite_ref-danby_12-1" class="reference"><a href="#cite_note-danby-12"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> Encke's method is similar to the general perturbation method of variation of the elements, except the rectification is performed at discrete intervals rather than continuously.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p><p>Letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\rho }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\rho }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa514c733a0add8e7c3af8bf4f930fa918d16ff8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.423ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\rho }}}"></span> be the <a href="/wiki/Position_vector" class="mw-redirect" title="Position vector">radius vector</a> of the <a href="/wiki/Osculating_orbit" title="Osculating orbit">osculating orbit</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> the radius vector of the perturbed orbit, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/316af5a88d44e3de8269a3bfc89367414edeb9a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.151ex; height:2.343ex;" alt="{\displaystyle \delta \mathbf {r} }"></span> the variation from the osculating orbit, </p> <style data-mw-deduplicate="TemplateStyles:r1266403038">.mw-parser-output table.numblk{border-collapse:collapse;border:none;margin-top:0;margin-right:0;margin-bottom:0}.mw-parser-output table.numblk>tbody>tr>td{vertical-align:middle;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2){width:99%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table{border-collapse:collapse;margin:0;border:none;width:100%}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:first-child,.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:last-child{padding:0 0.4ex}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td:nth-child(2){width:100%;padding:0}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{padding:0}.mw-parser-output table.numblk>tbody>tr>td:last-child{font-weight:bold}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child{font-weight:unset}.mw-parser-output table.numblk>tbody>tr>td:last-child::before{content:"("}.mw-parser-output table.numblk>tbody>tr>td:last-child::after{content:")"}.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::before,.mw-parser-output table.numblk.numblk-raw-n>tbody>tr>td:last-child::after{content:none}.mw-parser-output table.numblk>tbody>tr>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:first-child>td{border:thin solid}.mw-parser-output table.numblk>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:none;border-right:none;border-bottom:none}.mw-parser-output table.numblk.numblk-border>tbody>tr>td:nth-child(2)>table>tbody>tr:last-child>td{border-left:thin solid;border-right:thin solid;border-bottom:thin solid}.mw-parser-output table.numblk:target{color:var(--color-base,#202122);background-color:#cfe8fd}@media screen{html.skin-theme-clientpref-night .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output table.numblk:target{color:var(--color-base,#eaecf0);background-color:#301702}}</style><table role="presentation" class="numblk" style="margin-left: 1.6em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {r} =\mathbf {r} -{\boldsymbol {\rho }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \mathbf {r} =\mathbf {r} -{\boldsymbol {\rho }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ecd699ce9e42501368456787fac3d5339cc14bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.614ex; height:2.676ex;" alt="{\displaystyle \delta \mathbf {r} =\mathbf {r} -{\boldsymbol {\rho }}}"></span>, and the <a href="/wiki/Equations_of_motion" title="Equations of motion">equation of motion</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/316af5a88d44e3de8269a3bfc89367414edeb9a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.151ex; height:2.343ex;" alt="{\displaystyle \delta \mathbf {r} }"></span> is simply</td> <td></td> <td class="nowrap"><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1266403038"><table role="presentation" class="numblk" style="margin-left: 1.6em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta ddot{\mathbf {r} }=\mathbf {\ddot {r}} -{\boldsymbol {\ddot {\rho }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mi>d</mi> <mi>d</mi> <mi>o</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">¨<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> <mo mathvariant="bold">¨<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta ddot{\mathbf {r} }=\mathbf {\ddot {r}} -{\boldsymbol {\ddot {\rho }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46b63efd21f1eba8cf4b5315766ce23b94d97d31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.427ex; height:2.676ex;" alt="{\displaystyle \delta ddot{\mathbf {r} }=\mathbf {\ddot {r}} -{\boldsymbol {\ddot {\rho }}}}"></span>.</td> <td></td> <td class="nowrap"><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span></td></tr></tbody></table> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\ddot {r}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">¨<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\ddot {r}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56c1bbddb24650234037137265f21502f7e5d6bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.337ex; height:2.343ex;" alt="{\displaystyle \mathbf {\ddot {r}} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\ddot {\rho }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> <mo mathvariant="bold">¨<!-- ¨ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\ddot {\rho }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbd9a2d7935f2a610459425f7efb77e168aac231" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.602ex; height:2.676ex;" alt="{\displaystyle {\boldsymbol {\ddot {\rho }}}}"></span> are just the equations of motion of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\rho }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\rho }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/988a152862242c46b08273b3233a0a4a05f45e8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.069ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\rho }},}"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1266403038"><table role="presentation" class="numblk" style="margin-left: 1.6em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\ddot {r}} =\mathbf {a} _{\text{per}}-{\mu \over r^{3}}\mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold">¨<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>per</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>μ<!-- μ --></mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\ddot {r}} =\mathbf {a} _{\text{per}}-{\mu \over r^{3}}\mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e09f96643581dab205c6f7932e11e99a29ee0cbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.137ex; height:5.176ex;" alt="{\displaystyle \mathbf {\ddot {r}} =\mathbf {a} _{\text{per}}-{\mu \over r^{3}}\mathbf {r} }"></span> for the perturbed orbit and </td> <td></td> <td class="nowrap"><span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1266403038"><table role="presentation" class="numblk" style="margin-left: 1.6em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\ddot {\rho }}}=-{\mu \over \rho ^{3}}{\boldsymbol {\rho }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> <mo mathvariant="bold">¨<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>μ<!-- μ --></mi> <msup> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\ddot {\rho }}}=-{\mu \over \rho ^{3}}{\boldsymbol {\rho }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff42f3ff8675ada86dfe87cea4849766d78db34f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.024ex; height:5.509ex;" alt="{\displaystyle {\boldsymbol {\ddot {\rho }}}=-{\mu \over \rho ^{3}}{\boldsymbol {\rho }}}"></span> for the unperturbed orbit,</td> <td></td> <td class="nowrap"><span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">4</span></td></tr></tbody></table> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =G(M+m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =G(M+m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66c8be7268e7b0bad1396c02f9422ac13bc49701" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.459ex; height:2.843ex;" alt="{\displaystyle \mu =G(M+m)}"></span> is the <a href="/wiki/Standard_gravitational_parameter" title="Standard gravitational parameter">gravitational parameter</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> the <a href="/wiki/Mass" title="Mass">masses</a> of the central body and the perturbed body, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} _{\text{per}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>per</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} _{\text{per}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29cceb69329673a671cdc35cc70323b9561ea041" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.82ex; height:2.343ex;" alt="{\displaystyle \mathbf {a} _{\text{per}}}"></span> is the perturbing <a href="/wiki/Acceleration" title="Acceleration">acceleration</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> are the magnitudes of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\rho }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\rho }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa514c733a0add8e7c3af8bf4f930fa918d16ff8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.423ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\rho }}}"></span>. </p><p>Substituting from equations (<b><a href="#math_3">3</a></b>) and (<b><a href="#math_4">4</a></b>) into equation (<b><a href="#math_2">2</a></b>), </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1266403038"><table role="presentation" class="numblk" style="margin-left: 1.6em;"><tbody><tr><td class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta {\ddot {\mathbf {r} }}=\mathbf {a} _{\text{per}}+\mu \left({{\boldsymbol {\rho }} \over \rho ^{3}}-{\mathbf {r} \over r^{3}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>¨<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>per</mtext> </mrow> </msub> <mo>+</mo> <mi>μ<!-- μ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> </mrow> <msup> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta {\ddot {\mathbf {r} }}=\mathbf {a} _{\text{per}}+\mu \left({{\boldsymbol {\rho }} \over \rho ^{3}}-{\mathbf {r} \over r^{3}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3b21a21d403ee2d3326ee8472167efe2e4ca5aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.086ex; height:6.176ex;" alt="{\displaystyle \delta {\ddot {\mathbf {r} }}=\mathbf {a} _{\text{per}}+\mu \left({{\boldsymbol {\rho }} \over \rho ^{3}}-{\mathbf {r} \over r^{3}}\right),}"></span> </td> <td></td> <td class="nowrap"><span id="math_5" class="reference nourlexpansion" style="font-weight:bold;">5</span></td></tr></tbody></table> <p>which, in theory, could be integrated twice to find <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/316af5a88d44e3de8269a3bfc89367414edeb9a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.151ex; height:2.343ex;" alt="{\displaystyle \delta \mathbf {r} }"></span>. Since the osculating orbit is easily calculated by two-body methods, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\rho }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\rho }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa514c733a0add8e7c3af8bf4f930fa918d16ff8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.423ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\rho }}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/316af5a88d44e3de8269a3bfc89367414edeb9a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.151ex; height:2.343ex;" alt="{\displaystyle \delta \mathbf {r} }"></span> are accounted for and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> can be solved. In practice, the quantity in the brackets, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{\boldsymbol {\rho }} \over \rho ^{3}}-{\mathbf {r} \over r^{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> </mrow> <msup> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{\boldsymbol {\rho }} \over \rho ^{3}}-{\mathbf {r} \over r^{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/622c14268fe6098f88d10691e64d24f917b82889" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:8.872ex; height:5.509ex;" alt="{\displaystyle {{\boldsymbol {\rho }} \over \rho ^{3}}-{\mathbf {r} \over r^{3}}}"></span>, is the difference of two nearly equal vectors, and further manipulation is necessary to avoid the need for extra <a href="/wiki/Significant_figures" title="Significant figures">significant digits</a>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Encke's method was more widely used before the advent of modern <a href="/wiki/Computer" title="Computer">computers</a>, when much orbit computation was performed on <a href="/wiki/Calculating_machine" class="mw-redirect" title="Calculating machine">mechanical calculating machines</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Periodic_nature">Periodic nature</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=7" title="Edit section: Periodic nature"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Eccentricity_rocky_planets.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/Eccentricity_rocky_planets.jpg/300px-Eccentricity_rocky_planets.jpg" decoding="async" width="300" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/98/Eccentricity_rocky_planets.jpg/450px-Eccentricity_rocky_planets.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/98/Eccentricity_rocky_planets.jpg/600px-Eccentricity_rocky_planets.jpg 2x" data-file-width="650" data-file-height="339" /></a><figcaption><a rel="nofollow" class="external text" href="http://www.orbitsimulator.com/gravity/articles/what.html">Gravity Simulator</a> plot of the changing <a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">orbital eccentricity</a> of <a href="/wiki/Mercury_(planet)" title="Mercury (planet)">Mercury</a>, <a href="/wiki/Venus" title="Venus">Venus</a>, <a href="/wiki/Earth" title="Earth">Earth</a>, and <a href="/wiki/Mars" title="Mars">Mars</a> over the next 50,000 years. The zero-point on this plot is the year 2007.</figcaption></figure> <p>In the Solar System, many of the disturbances of one planet by another are periodic, consisting of small impulses each time a planet passes another in its orbit. This causes the bodies to follow motions that are periodic or quasi-periodic – such as the Moon in its strongly perturbed <a href="/wiki/Orbit_of_the_Moon" title="Orbit of the Moon">orbit</a>, which is the subject of <a href="/wiki/Lunar_theory" title="Lunar theory">lunar theory</a>. This periodic nature led to the <a href="/wiki/Discovery_of_Neptune" title="Discovery of Neptune">discovery of Neptune</a> in 1846 as a result of its perturbations of the orbit of <a href="/wiki/Uranus" title="Uranus">Uranus</a>. </p><p>On-going mutual perturbations of the planets cause long-term quasi-periodic variations in their <a href="/wiki/Orbital_element" class="mw-redirect" title="Orbital element">orbital elements</a>, most apparent when two planets' orbital periods are nearly in sync. For instance, five orbits of <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a> (59.31 years) is nearly equal to two of <a href="/wiki/Saturn" title="Saturn">Saturn</a> (58.91 years). This causes large perturbations of both, with a period of 918 years, the time required for the small difference in their positions at <a href="/wiki/Conjunction_(astronomy_and_astrology)" class="mw-redirect" title="Conjunction (astronomy and astrology)">conjunction</a> to make one complete circle, first discovered by <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Laplace</a>.<sup id="cite_ref-moulton_2-5" class="reference"><a href="#cite_note-moulton-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Venus" title="Venus">Venus</a> currently has the orbit with the least <a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">eccentricity</a>, i.e. it is the closest to <a href="/wiki/Circle" title="Circle">circular</a>, of all the planetary orbits. In 25,000 years' time, <a href="/wiki/Earth" title="Earth">Earth</a> will have a more circular (less eccentric) orbit than Venus. It has been shown that long-term periodic disturbances within the <a href="/wiki/Solar_System" title="Solar System">Solar System</a> can become chaotic over very long time scales; under some circumstances one or more <a href="/wiki/Planet" title="Planet">planets</a> can cross the orbit of another, leading to collisions.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>c<span class="cite-bracket">]</span></a></sup> </p><p>The orbits of many of the minor bodies of the Solar System, such as <a href="/wiki/Comet" title="Comet">comets</a>, are often heavily perturbed, particularly by the gravitational fields of the <a href="/wiki/Gas_giant" title="Gas giant">gas giants</a>. While many of these perturbations are periodic, others are not, and these in particular may represent aspects of <a href="/wiki/Chaotic_motion" class="mw-redirect" title="Chaotic motion">chaotic motion</a>. For example, in April 1996, <a href="/wiki/Jupiter" title="Jupiter">Jupiter</a>'s gravitational influence caused the <a href="/wiki/Orbital_period" title="Orbital period">period</a> of <a href="/wiki/Comet_Hale%E2%80%93Bopp" title="Comet Hale–Bopp">Comet Hale–Bopp</a>'s orbit to decrease from 4,206 to 2,380 years, a change that will not revert on any periodic basis.<sup id="cite_ref-perturb_19-0" class="reference"><a href="#cite_note-perturb-19"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=8" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 18em;"> <ul><li><a href="/wiki/Formation_and_evolution_of_the_Solar_System" title="Formation and evolution of the Solar System">Formation and evolution of the Solar System</a></li> <li><a href="/wiki/Frozen_orbit" title="Frozen orbit">Frozen orbit</a></li> <li><a href="/wiki/Molniya_orbit" title="Molniya orbit">Molniya orbit</a></li> <li><a href="/wiki/Nereid_(moon)" title="Nereid (moon)">Nereid</a> one of the outer moons of Neptune with a high <a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">orbital eccentricity</a> of ~0.75 and is frequently perturbed</li> <li><a href="/wiki/Osculating_orbit" title="Osculating orbit">Osculating orbit</a></li> <li><a href="/wiki/Orbit_modeling" title="Orbit modeling">Orbit modeling</a></li> <li><a href="/wiki/Orbital_resonance" title="Orbital resonance">Orbital resonance</a></li> <li><a href="/wiki/Perturbation_theory" title="Perturbation theory">Perturbation theory</a></li> <li><a href="/wiki/Proper_orbital_elements" title="Proper orbital elements">Proper orbital elements</a></li> <li><a href="/wiki/Stability_of_the_Solar_System" title="Stability of the Solar System">Stability of the Solar System</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=9" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt>Footnotes</dt></dl> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"> Newton (1684) wrote:<br />"By reason of the deviation of the Sun from the center of gravity, the centripetal force does not always tend to that immobile center, and hence the planets neither move exactly in ellipses nor revolve twice in the same orbit. Each time a planet revolves it traces a fresh orbit, as in the motion of the Moon, and each orbit depends on the combined motions of all the planets, not to mention the action of all these on each other. But to consider simultaneously all these causes of motion and to define these motions by exact laws admitting of easy calculation exceeds, if I am not mistaken, the force of any human mind."<sup id="cite_ref-GE_Smith_3Lecs_nr1_3-0" class="reference"><a href="#cite_note-GE_Smith_3Lecs_nr1-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"> See, for instance, the Wikipedia article on the <a href="/wiki/Jet_Propulsion_Laboratory_Development_Ephemeris" title="Jet Propulsion Laboratory Development Ephemeris">Jet Propulsion Laboratory Development Ephemeris</a>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"> See references for the Wikipedia article <a href="/wiki/Stability_of_the_Solar_System" title="Stability of the Solar System">Stability of the Solar System</a>.</span> </li> </ol></div></div> <dl><dt>Citations</dt></dl> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFBateMuellerWhite1971">Bate, Mueller & White (1971)</a>, ch. 9, p. 385</span> </li> <li id="cite_note-moulton-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-moulton_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-moulton_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-moulton_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-moulton_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-moulton_2-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-moulton_2-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFMoulton1914">Moulton (1914)</a>, ch. IX</span> </li> <li id="cite_note-GE_Smith_3Lecs_nr1-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-GE_Smith_3Lecs_nr1_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GE_Smith_3Lecs_nr1_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> Newton quoted by Prof G.E. Smith (Tufts University), in<br /> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSmith" class="citation web cs1">Smith, G.E. [stanford.edu/dept/cisst/SmithPowerpointTalk1.ppt "Closing the loop: Testing Newtonian gravity, then and now"] <span class="cs1-format">(<a href="/wiki/PowerPoint" class="mw-redirect" title="PowerPoint">PowerPoint</a>)</span> (symposium talk). Three lectures on the role of theory in science. Stanford University.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Closing+the+loop%3A+Testing+Newtonian+gravity%2C+then+and+now&rft.place=Stanford+University&rft.series=Three+lectures+on+the+role+of+theory+in+science&rft.aulast=Smith&rft.aufirst=G.E.&rft_id=stanford.edu%2Fdept%2Fcisst%2FSmithPowerpointTalk1.ppt&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: </span><span class="cs1-visible-error citation-comment">Check <code class="cs1-code">|url=</code> value (<a href="/wiki/Help:CS1_errors#bad_url" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEgerton" class="citation web cs1">Egerton, R.F. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20050310192531/http://physics.pdx.edu/~egertonr/ph311-12/newton.htm">"Newton"</a> (course notes). Physics 311-12. Portland, OR: <a href="/wiki/Portland_State_University" title="Portland State University">Portland State University</a>. Archived from <a rel="nofollow" class="external text" href="http://physics.pdx.edu/~egertonr/ph311-12/newton.htm">the original</a> on 2005-03-10 – via physics.pdx.edu.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Newton&rft.place=Portland%2C+OR&rft.series=Physics+311-12&rft.pub=Portland+State+University&rft.aulast=Egerton&rft.aufirst=R.F.&rft_id=http%3A%2F%2Fphysics.pdx.edu%2F~egertonr%2Fph311-12%2Fnewton.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"> After quoting the same passage from Newton<sup id="cite_ref-GE_Smith_3Lecs_nr1_3-1" class="reference"><a href="#cite_note-GE_Smith_3Lecs_nr1-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Prof R.F. Egerton (Portland State University) concludes: "Here, Newton identifies the "many body problem" which remains unsolved analytically."<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-roy-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-roy_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-roy_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-roy_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-roy_7-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFRoy1988">Roy (1988)</a>, ch. 6–7</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a href="#CITEREFBateMuellerWhite1971">Bate, Mueller & White (1971)</a>, p. 387; p. 410 §9.4.3</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="#CITEREFBateMuellerWhite1971">Bate, Mueller & White (1971)</a>, pp. 387–409</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCowellCrommelin1910" class="citation journal cs1">Cowell, P.H.; Crommelin, A.C.D. (1910). "Investigation of the motion of Halley's comet from 1759 to 1910". <i>Greenwich Observations in Astronomy</i>. <b>71</b>. Bellevue, for His Majesty's Stationery Office: Neill & Co.: O1. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1911GOAMM..71O...1C">1911GOAMM..71O...1C</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Greenwich+Observations+in+Astronomy&rft.atitle=Investigation+of+the+motion+of+Halley%27s+comet+from+1759+to+1910&rft.volume=71&rft.pages=O1&rft.date=1910&rft_id=info%3Abibcode%2F1911GOAMM..71O...1C&rft.aulast=Cowell&rft.aufirst=P.H.&rft.au=Crommelin%2C+A.C.D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></span> </li> <li id="cite_note-danby-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-danby_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-danby_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDanby1988" class="citation book cs1">Danby, J.M.A. (1988). <i>Fundamentals of Celestial Mechanics</i> (2nd ed.). Willmann-Bell, Inc. chapter 11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-943396-20-4" title="Special:BookSources/0-943396-20-4"><bdi>0-943396-20-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Celestial+Mechanics&rft.pages=chapter-11&rft.edition=2nd&rft.pub=Willmann-Bell%2C+Inc.&rft.date=1988&rft.isbn=0-943396-20-4&rft.aulast=Danby&rft.aufirst=J.M.A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerget1948" class="citation book cs1">Herget, Paul (1948). <i>The Computation of Orbits</i>. self-published. p. 91 ff.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Computation+of+Orbits&rft.pages=91-ff&rft.pub=self-published&rft.date=1948&rft.aulast=Herget&rft.aufirst=Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEncke1857" class="citation book cs1"><a href="/wiki/Johann_Franz_Encke" title="Johann Franz Encke">Encke, J.F.</a> (1857). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=t5VCAQAAMAAJ"><i>Über die allgemeinen Störungen der Planeten</i></a>. <a href="/wiki/Berliner_Astronomisches_Jahrbuch" title="Berliner Astronomisches Jahrbuch">Berliner Astronomisches Jahrbuch</a> für 1857 (published 1854). pp. <span class="nowrap">319–</span>397.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%C3%9Cber+die+allgemeinen+St%C3%B6rungen+der+Planeten&rft.series=Berliner+Astronomisches+Jahrbuch+f%C3%BCr+1857&rft.pages=%3Cspan+class%3D%22nowrap%22%3E319-%3C%2Fspan%3E397&rft.date=1857&rft.aulast=Encke&rft.aufirst=J.F.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dt5VCAQAAMAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><a href="#CITEREFBattin1999">Battin (1999)</a>, §10.2</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a href="#CITEREFBateMuellerWhite1971">Bate, Mueller & White (1971)</a>, §9.3</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoy1988">Roy (1988)</a>, §7.4</span> </li> <li id="cite_note-perturb-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-perturb_19-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYeomans1997" class="citation web cs1">Yeomans, Don (10 April 1997). <a rel="nofollow" class="external text" href="https://www2.jpl.nasa.gov/comet/ephemjpl8.html">"Comet Hale–Bopp orbit and ephemeris information"</a>. Pasadena, CA: NASA <a href="/wiki/Jet_Propulsion_Laboratory" title="Jet Propulsion Laboratory">Jet Propulsion Laboratory</a><span class="reference-accessdate">. Retrieved <span class="nowrap">23 October</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Comet+Hale%E2%80%93Bopp+orbit+and+ephemeris+information&rft.place=Pasadena%2C+CA&rft.pub=NASA+Jet+Propulsion+Laboratory&rft.date=1997-04-10&rft.aulast=Yeomans&rft.aufirst=Don&rft_id=http%3A%2F%2Fwww2.jpl.nasa.gov%2Fcomet%2Fephemjpl8.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></span> </li> </ol></div></div> <dl><dt>Bibliography</dt></dl> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 25em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBateMuellerWhite1971" class="citation book cs1"><a href="/wiki/Roger_R._Bate" title="Roger R. Bate">Bate, Roger R.</a>; Mueller, Donald D.; <a href="/wiki/Jerry_White_(Navigators)" title="Jerry White (Navigators)">White, Jerry E.</a> (1971). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/fundamentalsofas00bate"><i>Fundamentals of Astrodynamics</i></a></span>. New York, NY: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-60061-0" title="Special:BookSources/0-486-60061-0"><bdi>0-486-60061-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Astrodynamics&rft.place=New+York%2C+NY&rft.pub=Dover+Publications&rft.date=1971&rft.isbn=0-486-60061-0&rft.aulast=Bate&rft.aufirst=Roger+R.&rft.au=Mueller%2C+Donald+D.&rft.au=White%2C+Jerry+E.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffundamentalsofas00bate&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBattin1999" class="citation book cs1">Battin, Richard H. (1999). <i>An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition</i>. American Institute of Aeronautics and Astronautics, Inc. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-56347-342-9" title="Special:BookSources/1-56347-342-9"><bdi>1-56347-342-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+the+Mathematics+and+Methods+of+Astrodynamics%2C+Revised+Edition&rft.pub=American+Institute+of+Aeronautics+and+Astronautics%2C+Inc.&rft.date=1999&rft.isbn=1-56347-342-9&rft.aulast=Battin&rft.aufirst=Richard+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoulton1914" class="citation book cs1"><a href="/wiki/Forest_Ray_Moulton" title="Forest Ray Moulton">Moulton, F.R.</a> (1914). <a rel="nofollow" class="external text" href="https://archive.org/details/anintroductiont04moulgoog"><i>An Introduction to Celestial Mechanics</i></a> (2nd, revised ed.). Macmillan.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Celestial+Mechanics&rft.edition=2nd%2C+revised&rft.pub=Macmillan&rft.date=1914&rft.aulast=Moulton&rft.aufirst=F.R.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fanintroductiont04moulgoog&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoy1988" class="citation book cs1"><a href="/wiki/Archie_Roy" title="Archie Roy">Roy, A.E.</a> (1988). <i>Orbital Motion</i> (3rd ed.). Institute of Physics Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-85274-229-0" title="Special:BookSources/0-85274-229-0"><bdi>0-85274-229-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Orbital+Motion&rft.edition=3rd&rft.pub=Institute+of+Physics+Publishing&rft.date=1988&rft.isbn=0-85274-229-0&rft.aulast=Roy&rft.aufirst=A.E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APerturbation+%28astronomy%29" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=10" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>P.E. El'Yasberg: <a rel="nofollow" class="external text" href="https://archive.org/details/nasa_techdoc_19670020827">Introduction to the Theory of Flight of Artificial Earth Satellites</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Perturbation_(astronomy)&action=edit&section=11" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.solexorb.it/SolexOld/MarsDist.html">Solex</a> (by Aldo Vitagliano) predictions for the position/orbit/close approaches of Mars</li> <li><a rel="nofollow" class="external text" href="https://books.google.com/books?id=snK4AAAAIAAJ">Gravitation</a> Sir George Biddell Airy's 1884 book on gravitational motion and perturbations, using little or no math.(at <a rel="nofollow" class="external text" href="https://books.google.com/books">Google books</a>)</li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Gravitational_orbits256" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Orbits" title="Template:Orbits"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Orbits" title="Template talk:Orbits"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Orbits" title="Special:EditPage/Template:Orbits"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Gravitational_orbits256" style="font-size:114%;margin:0 4em">Gravitational <a href="/wiki/Orbit" title="Orbit">orbits</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_orbits" title="List of orbits">Types</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Box_orbit" title="Box orbit">Box</a></li> <li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Capture</a></li> <li><a href="/wiki/Circular_orbit" title="Circular orbit">Circular</a></li> <li><a href="/wiki/Elliptic_orbit" title="Elliptic orbit">Elliptical</a> / <a href="/wiki/Highly_elliptical_orbit" title="Highly elliptical orbit">Highly elliptical</a></li> <li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Escape</a></li> <li><a href="/wiki/Horseshoe_orbit" title="Horseshoe orbit">Horseshoe</a></li> <li><a href="/wiki/Hyperbolic_trajectory" title="Hyperbolic trajectory">Hyperbolic trajectory</a></li> <li><a href="/wiki/Inclined_orbit" title="Inclined orbit">Inclined</a> / <a href="/wiki/Non-inclined_orbit" class="mw-redirect" title="Non-inclined orbit">Non-inclined</a></li> <li><a href="/wiki/Kepler_orbit" title="Kepler orbit">Kepler</a></li> <li><a href="/wiki/Lagrange_point" title="Lagrange point">Lagrange point</a></li> <li><a href="/wiki/Osculating_orbit" title="Osculating orbit">Osculating</a></li> <li><a href="/wiki/Parabolic_trajectory" title="Parabolic trajectory">Parabolic trajectory</a></li> <li><a href="/wiki/Parking_orbit" title="Parking orbit">Parking</a></li> <li><a href="/wiki/Retrograde_and_prograde_motion" title="Retrograde and prograde motion">Prograde / Retrograde</a></li> <li><a href="/wiki/Synchronous_orbit" title="Synchronous orbit">Synchronous</a> <ul><li><a href="/wiki/Semi-synchronous_orbit" title="Semi-synchronous orbit">semi</a></li> <li><a href="/wiki/Subsynchronous_orbit" title="Subsynchronous orbit">sub</a></li></ul></li> <li><a href="/wiki/Hohmann_transfer_orbit" title="Hohmann transfer orbit">Transfer orbit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em"><a href="/wiki/Geocentric_orbit" title="Geocentric orbit">Geocentric</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Geosynchronous_orbit" title="Geosynchronous orbit">Geosynchronous</a> <ul><li><a href="/wiki/Geostationary_orbit" title="Geostationary orbit">Geostationary</a></li> <li><a href="/wiki/Geostationary_transfer_orbit" title="Geostationary transfer orbit">Geostationary transfer</a></li></ul></li> <li><a href="/wiki/Graveyard_orbit" title="Graveyard orbit">Graveyard</a></li> <li><a href="/wiki/High_Earth_orbit" title="High Earth orbit">High Earth</a></li> <li><a href="/wiki/Low_Earth_orbit" title="Low Earth orbit">Low Earth</a></li> <li><a href="/wiki/Medium_Earth_orbit" title="Medium Earth orbit">Medium Earth</a></li> <li><a href="/wiki/Molniya_orbit" title="Molniya orbit">Molniya</a></li> <li><a href="/wiki/Near-equatorial_orbit" title="Near-equatorial orbit">Near-equatorial</a></li> <li><a href="/wiki/Orbit_of_the_Moon" title="Orbit of the Moon">Orbit of the Moon</a></li> <li><a href="/wiki/Polar_orbit" title="Polar orbit">Polar</a></li> <li><a href="/wiki/Sun-synchronous_orbit" title="Sun-synchronous orbit">Sun-synchronous</a></li> <li><a href="/wiki/Transatmospheric_orbit" title="Transatmospheric orbit">Transatmospheric</a></li> <li><a href="/wiki/Tundra_orbit" title="Tundra orbit">Tundra</a></li> <li><a href="/wiki/Very_low_Earth_orbit" title="Very low Earth orbit">Very low Earth</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em">About<br />other points</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li>Mars <ul><li><a href="/wiki/Areocentric_orbit" title="Areocentric orbit">Areocentric</a></li> <li><a href="/wiki/Areosynchronous_orbit" title="Areosynchronous orbit">Areosynchronous</a></li> <li><a href="/wiki/Areostationary_orbit" title="Areostationary orbit">Areostationary</a></li></ul></li> <li>Lagrange points <ul><li><a href="/wiki/Distant_retrograde_orbit" title="Distant retrograde orbit">Distant retrograde</a></li> <li><a href="/wiki/Halo_orbit" title="Halo orbit">Halo</a></li> <li><a href="/wiki/Lissajous_orbit" title="Lissajous orbit">Lissajous</a></li> <li><a href="/wiki/Libration_point_orbit" title="Libration point orbit">Libration</a></li></ul></li> <li><a href="/wiki/Lunar_orbit" title="Lunar orbit">Lunar</a></li> <li>Sun <ul><li><a href="/wiki/Heliocentric_orbit" title="Heliocentric orbit">Heliocentric</a> <ul><li><a href="/wiki/Earth%27s_orbit" title="Earth's orbit">Earth's orbit</a></li></ul></li> <li><a href="/wiki/Mars_cycler" title="Mars cycler">Mars cycler</a></li> <li><a href="/wiki/Sun-synchronous_orbit" title="Sun-synchronous orbit">Heliosynchronous</a></li></ul></li> <li>Other <ul><li><a href="/wiki/Lunar_cycler" title="Lunar cycler">Lunar cycler</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Orbital_elements" title="Orbital elements">Parameters</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:6em"><div class="hlist"><ul><li>Shape</li><li>Size</li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><span class="texhtml mvar" style="font-style:italic;">e</span>  <a href="/wiki/Orbital_eccentricity" title="Orbital eccentricity">Eccentricity</a></li> <li><span class="texhtml mvar" style="font-style:italic;">a</span>  <a href="/wiki/Semi-major_and_semi-minor_axes" title="Semi-major and semi-minor axes">Semi-major axis</a></li> <li><span class="texhtml mvar" style="font-style:italic;">b</span>  <a href="/wiki/Semi-major_and_semi-minor_axes" title="Semi-major and semi-minor axes">Semi-minor axis</a></li> <li><span class="texhtml mvar" style="font-style:italic;">Q</span>, <span class="texhtml mvar" style="font-style:italic;">q</span>  <a href="/wiki/Apsis" title="Apsis">Apsides</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em">Orientation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><span class="texhtml mvar" style="font-style:italic;">i</span>  <a href="/wiki/Orbital_inclination" title="Orbital inclination">Inclination</a></li> <li><span class="texhtml mvar" style="font-style:italic;">Ω</span>  <a href="/wiki/Longitude_of_the_ascending_node" title="Longitude of the ascending node">Longitude of the ascending node</a></li> <li><span class="texhtml mvar" style="font-style:italic;">ω</span>  <a href="/wiki/Argument_of_periapsis" title="Argument of periapsis">Argument of periapsis</a></li> <li><span class="texhtml mvar" style="font-style:italic;">ϖ</span>  <a href="/wiki/Longitude_of_the_periapsis" class="mw-redirect" title="Longitude of the periapsis">Longitude of the periapsis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em">Position</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><span class="texhtml mvar" style="font-style:italic;">M</span>  <a href="/wiki/Mean_anomaly" title="Mean anomaly">Mean anomaly</a></li> <li><span class="texhtml mvar" style="font-style:italic;">ν</span>, <span class="texhtml mvar" style="font-style:italic;">θ</span>, <span class="texhtml mvar" style="font-style:italic;">f</span>  <a href="/wiki/True_anomaly" title="True anomaly">True anomaly</a></li> <li><span class="texhtml mvar" style="font-style:italic;">E</span>  <a href="/wiki/Eccentric_anomaly" title="Eccentric anomaly">Eccentric anomaly</a></li> <li><span class="texhtml mvar" style="font-style:italic;">L</span>  <a href="/wiki/Mean_longitude" title="Mean longitude">Mean longitude</a></li> <li><span class="texhtml mvar" style="font-style:italic;">l</span>  <a href="/wiki/True_longitude" title="True longitude">True longitude</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:6em">Variation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><span class="texhtml mvar" style="font-style:italic;">T</span>  <a href="/wiki/Orbital_period" title="Orbital period">Orbital period</a></li> <li><span class="texhtml mvar" style="font-style:italic;">n</span>  <a href="/wiki/Mean_motion" title="Mean motion">Mean motion</a></li> <li><span class="texhtml mvar" style="font-style:italic;">v</span>  <a href="/wiki/Orbital_speed" title="Orbital speed">Orbital speed</a></li> <li><span class="texhtml"><i>t</i><sub>0</sub></span>  <a href="/wiki/Epoch_(astronomy)" title="Epoch (astronomy)">Epoch</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Orbital_maneuver" title="Orbital maneuver">Maneuvers</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bi-elliptic_transfer" title="Bi-elliptic transfer">Bi-elliptic transfer</a></li> <li><a href="/wiki/Collision_avoidance_(spacecraft)" title="Collision avoidance (spacecraft)">Collision avoidance (spacecraft)</a></li> <li><a href="/wiki/Delta-v" title="Delta-v">Delta-v</a></li> <li><a href="/wiki/Delta-v_budget" title="Delta-v budget">Delta-v budget</a></li> <li><a href="/wiki/Gravity_assist" title="Gravity assist">Gravity assist</a></li> <li><a href="/wiki/Gravity_turn" title="Gravity turn">Gravity turn</a></li> <li><a href="/wiki/Hohmann_transfer_orbit" title="Hohmann transfer orbit">Hohmann transfer</a></li> <li><a href="/wiki/Orbital_inclination_change" title="Orbital inclination change">Inclination change</a></li> <li><a href="/wiki/Low-energy_transfer" title="Low-energy transfer">Low-energy transfer</a></li> <li><a href="/wiki/Oberth_effect" title="Oberth effect">Oberth effect</a></li> <li><a href="/wiki/Orbit_phasing" title="Orbit phasing">Phasing</a></li> <li><a href="/wiki/Tsiolkovsky_rocket_equation" title="Tsiolkovsky rocket equation">Rocket equation</a></li> <li><a href="/wiki/Space_rendezvous" title="Space rendezvous">Rendezvous</a></li> <li><a href="/wiki/Trans-lunar_injection" title="Trans-lunar injection">Trans-lunar injection</a></li> <li><a href="/wiki/Transposition,_docking,_and_extraction" title="Transposition, docking, and extraction">Transposition, docking, and extraction</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Orbital_mechanics" title="Orbital mechanics">Orbital<br />mechanics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Astronomical_coordinate_systems" title="Astronomical coordinate systems">Astronomical coordinate systems</a></li> <li><a href="/wiki/Characteristic_energy" title="Characteristic energy">Characteristic energy</a></li> <li><a href="/wiki/Escape_velocity" title="Escape velocity">Escape velocity</a></li> <li><a href="/wiki/Ephemeris" title="Ephemeris">Ephemeris</a></li> <li><a href="/wiki/Equatorial_coordinate_system" title="Equatorial coordinate system">Equatorial coordinate system</a></li> <li><a href="/wiki/Ground_track" class="mw-redirect" title="Ground track">Ground track</a></li> <li><a href="/wiki/Hill_sphere" title="Hill sphere">Hill sphere</a></li> <li><a href="/wiki/Interplanetary_Transport_Network" title="Interplanetary Transport Network">Interplanetary Transport Network</a></li> <li><a href="/wiki/Kepler%27s_laws_of_planetary_motion" title="Kepler's laws of planetary motion">Kepler's laws of planetary motion</a></li> <li><a href="/wiki/Kozai_mechanism" title="Kozai mechanism">Kozai mechanism</a></li> <li><a href="/wiki/Lagrange_point" title="Lagrange point">Lagrangian point</a></li> <li><a href="/wiki/N-body_problem" title="N-body problem"><i>n</i>-body problem</a></li> <li><a href="/wiki/Orbit_equation" title="Orbit equation">Orbit equation</a></li> <li><a href="/wiki/Orbital_state_vectors" title="Orbital state vectors">Orbital state vectors</a></li> <li><a class="mw-selflink selflink">Perturbation</a></li> <li><a href="/wiki/Retrograde_and_prograde_motion" title="Retrograde and prograde motion">Retrograde and prograde motion</a></li> <li><a href="/wiki/Specific_orbital_energy" title="Specific orbital energy">Specific orbital energy</a></li> <li><a href="/wiki/Specific_angular_momentum" title="Specific angular momentum">Specific angular momentum</a></li> <li><a href="/wiki/Two-line_element_set" title="Two-line element set">Two-line elements</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_orbits" title="List of orbits">List of orbits</a></li></ul> </div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/19px-Crab_Nebula.jpg" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/29px-Crab_Nebula.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/38px-Crab_Nebula.jpg 2x" data-file-width="3864" data-file-height="3864" /></span></span> </span><a href="/wiki/Portal:Astronomy" title="Portal:Astronomy">Astronomy</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:He1523a.jpg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/16px-He1523a.jpg" decoding="async" width="16" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/25px-He1523a.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/He1523a.jpg/33px-He1523a.jpg 2x" data-file-width="180" data-file-height="207" /></a></span> </span><a href="/wiki/Portal:Stars" title="Portal:Stars">Stars</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/19px-RocketSunIcon.svg.png" decoding="async" width="19" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/29px-RocketSunIcon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d6/RocketSunIcon.svg/38px-RocketSunIcon.svg.png 2x" data-file-width="128" data-file-height="128" /></span></span> </span><a href="/wiki/Portal:Spaceflight" title="Portal:Spaceflight">Spaceflight</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/21px-Earth-moon.jpg" decoding="async" width="21" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/32px-Earth-moon.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Earth-moon.jpg/42px-Earth-moon.jpg 2x" data-file-width="3000" data-file-height="2400" /></span></span> </span><a href="/wiki/Portal:Outer_space" title="Portal:Outer space">Outer space</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/15px-Solar_system.jpg" decoding="async" width="15" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/23px-Solar_system.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/30px-Solar_system.jpg 2x" data-file-width="4500" data-file-height="5600" /></span></span> </span><a href="/wiki/Portal:Solar_System" title="Portal:Solar System">Solar System</a></li></ul></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐b766959bd‐zwgj6 Cached time: 20250214040520 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.546 seconds Real time usage: 0.764 seconds Preprocessor visited node count: 2601/1000000 Post‐expand include size: 85897/2097152 bytes Template argument size: 7177/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 87701/5000000 bytes Lua time usage: 0.272/10.000 seconds Lua memory usage: 7363299/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 541.837 1 -total 28.50% 154.403 2 Template:Reflist 19.04% 103.160 1 Template:Astrodynamics 18.50% 100.228 1 Template:Sidebar_with_collapsible_lists 15.07% 81.670 1 Template:Short_description 14.56% 78.898 3 Template:Cite_web 9.24% 50.039 3 Template:Navbox 8.16% 44.217 1 Template:Orbits 7.68% 41.632 5 Template:Longitem 7.40% 40.085 5 Template:NumBlk --> <!-- Saved in parser cache with key enwiki:pcache:1490148:|#|:idhash:canonical and timestamp 20250214040520 and revision id 1272320791. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Perturbation_(astronomy)&oldid=1272320791">https://en.wikipedia.org/w/index.php?title=Perturbation_(astronomy)&oldid=1272320791</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Orbital_perturbations" title="Category:Orbital perturbations">Orbital perturbations</a></li><li><a href="/wiki/Category:Dynamical_systems" title="Category:Dynamical systems">Dynamical systems</a></li><li><a href="/wiki/Category:Dynamics_of_the_Solar_System" title="Category:Dynamics of the Solar System">Dynamics of the Solar System</a></li><li><a href="/wiki/Category:Celestial_mechanics" title="Category:Celestial mechanics">Celestial mechanics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_errors:_URL" title="Category:CS1 errors: URL">CS1 errors: URL</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 January 2025, at 02:14<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Perturbation_(astronomy)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Perturbation (astronomy)</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>36 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6c87d47487-4k8z4","wgBackendResponseTime":136,"wgPageParseReport":{"limitreport":{"cputime":"0.546","walltime":"0.764","ppvisitednodes":{"value":2601,"limit":1000000},"postexpandincludesize":{"value":85897,"limit":2097152},"templateargumentsize":{"value":7177,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":87701,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 541.837 1 -total"," 28.50% 154.403 2 Template:Reflist"," 19.04% 103.160 1 Template:Astrodynamics"," 18.50% 100.228 1 Template:Sidebar_with_collapsible_lists"," 15.07% 81.670 1 Template:Short_description"," 14.56% 78.898 3 Template:Cite_web"," 9.24% 50.039 3 Template:Navbox"," 8.16% 44.217 1 Template:Orbits"," 7.68% 41.632 5 Template:Longitem"," 7.40% 40.085 5 Template:NumBlk"]},"scribunto":{"limitreport-timeusage":{"value":"0.272","limit":"10.000"},"limitreport-memusage":{"value":7363299,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBateMuellerWhite1971\"] = 1,\n [\"CITEREFBattin1999\"] = 1,\n [\"CITEREFCowellCrommelin1910\"] = 1,\n [\"CITEREFDanby1988\"] = 1,\n [\"CITEREFEgerton\"] = 1,\n [\"CITEREFEncke1857\"] = 1,\n [\"CITEREFHerget1948\"] = 1,\n [\"CITEREFMoulton1914\"] = 1,\n [\"CITEREFRoy1988\"] = 1,\n [\"CITEREFSmith\"] = 1,\n [\"CITEREFYeomans1997\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Astrodynamics\"] = 1,\n [\"Cite book\"] = 7,\n [\"Cite journal\"] = 1,\n [\"Cite web\"] = 3,\n [\"Div col begin\"] = 1,\n [\"Div col end\"] = 1,\n [\"Efn\"] = 3,\n [\"EquationNote\"] = 3,\n [\"EquationRef\"] = 5,\n [\"Harvp\"] = 8,\n [\"Mvar\"] = 1,\n [\"Notelist\"] = 1,\n [\"NumBlk\"] = 5,\n [\"Orbits\"] = 1,\n [\"Portal bar\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Refn\"] = 1,\n [\"Sfrac\"] = 1,\n [\"Short description\"] = 1,\n [\"Small\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-b766959bd-zwgj6","timestamp":"20250214040520","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Perturbation (astronomy)","url":"https:\/\/en.wikipedia.org\/wiki\/Perturbation_(astronomy)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q803623","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q803623","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-02-10T15:35:34Z","dateModified":"2025-01-28T02:14:29Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/ae\/Moon_perturbation_diagram.svg","headline":"complex motion of a massive astronomical body"}</script> </body> </html>