CINXE.COM
Search results for: modified Newton’s method
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: modified Newton’s method</title> <meta name="description" content="Search results for: modified Newton’s method"> <meta name="keywords" content="modified Newton’s method"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="modified Newton’s method" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="modified Newton’s method"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20636</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: modified Newton’s method</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20636</span> Modification of Newton Method in Two Points Block Differentiation Formula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairil%20Iskandar%20Othman">Khairil Iskandar Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadhirah%20Kamal"> Nadhirah Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Bibi%20Ibrahim"> Zarina Bibi Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Block methods for solving stiff systems of ordinary differential equations (ODEs) are based on backward differential formulas (BDF) with PE(CE)2 and Newton method. In this paper, we introduce Modified Newton as a new strategy to get more efficient result. The derivation of BBDF using modified block Newton method is presented. This new block method with predictor-corrector gives more accurate result when compared to the existing BBDF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20Newton" title="modified Newton">modified Newton</a>, <a href="https://publications.waset.org/abstracts/search?q=stiff" title=" stiff"> stiff</a>, <a href="https://publications.waset.org/abstracts/search?q=BBDF" title=" BBDF"> BBDF</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobian%20matrix" title=" Jacobian matrix"> Jacobian matrix</a> </p> <a href="https://publications.waset.org/abstracts/54758/modification-of-newton-method-in-two-points-block-differentiation-formula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20635</span> Modification of Newton Method in Two Point Block Backward Differentiation Formulas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairil%20I.%20Othman">Khairil I. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20N.%20Kamal"> Nur N. Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20B.%20Ibrahim"> Zarina B. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present modified Newton method as a new strategy for improving the efficiency of Two Point Block Backward Differentiation Formulas (BBDF) when solving stiff systems of ordinary differential equations (ODEs). These methods are constructed to produce two approximate solutions simultaneously at each iteration The detailed implementation of the predictor corrector BBDF with PE(CE)2 with modified Newton are discussed. The proposed modification of BBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing Block Backward Differentiation Formula. Numerical results show the advantage of using the new strategy for solving stiff ODEs in improving the accuracy of the solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=newton%20method" title="newton method">newton method</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20point" title=" two point"> two point</a>, <a href="https://publications.waset.org/abstracts/search?q=block" title=" block"> block</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a> </p> <a href="https://publications.waset.org/abstracts/47730/modification-of-newton-method-in-two-point-block-backward-differentiation-formulas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20634</span> Modified Newton's Iterative Method for Solving System of Nonlinear Equations in Two Variables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mahesar">Sara Mahesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleem%20M.%20Chandio"> Saleem M. Chandio</a>, <a href="https://publications.waset.org/abstracts/search?q=Hira%20Soomro"> Hira Soomro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20Newton%E2%80%99s%20method" title="conventional Newton’s method">conventional Newton’s method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method" title=" modified Newton’s method"> modified Newton’s method</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20of%20convergence" title=" order of convergence"> order of convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20of%20nonlinear%20equations" title=" system of nonlinear equations"> system of nonlinear equations</a> </p> <a href="https://publications.waset.org/abstracts/87602/modified-newtons-iterative-method-for-solving-system-of-nonlinear-equations-in-two-variables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20633</span> Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Retno%20Sari%20Saputro">Dewi Retno Sari Saputro</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnami%20Widyaningsih"> Purnami Widyaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendrika%20Handayani"> Hendrika Handayani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title="parameter estimation">parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel%20distribution" title=" Gumbel distribution"> Gumbel distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood" title=" maximum likelihood"> maximum likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=broyden%20fletcher%20goldfarb%20shanno%20%28BFGS%29quasi%20newton" title=" broyden fletcher goldfarb shanno (BFGS)quasi newton "> broyden fletcher goldfarb shanno (BFGS)quasi newton </a> </p> <a href="https://publications.waset.org/abstracts/73714/parameter-estimation-of-gumbel-distribution-with-maximum-likelihood-based-on-broyden-fletcher-goldfarb-shanno-quasi-newton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20632</span> Evaluation of Quasi-Newton Strategy for Algorithmic Acceleration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Martini">T. Martini</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Mart%C3%ADnez"> J. M. Martínez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An algorithmic acceleration strategy based on quasi-Newton (or secant) methods is displayed for address the practical problem of accelerating the convergence of the Newton-Lagrange method in the case of convergence to critical multipliers. Since the Newton-Lagrange iteration converges locally at a linear rate, it is natural to conjecture that quasi-Newton methods based on the so called secant equation and some minimal variation principle, could converge superlinearly, thus restoring the convergence properties of Newton's method. This strategy can also be applied to accelerate the convergence of algorithms applied to fixed-points problems. Computational experience is reported illustrating the efficiency of this strategy to solve fixed-point problems with linear convergence rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithmic%20acceleration" title="algorithmic acceleration">algorithmic acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-point%20problems" title=" fixed-point problems"> fixed-point problems</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20programming" title=" nonlinear programming"> nonlinear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-newton%20method" title=" quasi-newton method"> quasi-newton method</a> </p> <a href="https://publications.waset.org/abstracts/35723/evaluation-of-quasi-newton-strategy-for-algorithmic-acceleration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20631</span> Image Reconstruction Method Based on L0 Norm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang">Jianhong Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Xiang"> Hao Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Linyu%20Wang"> Linyu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoothed%20L0" title="smoothed L0">smoothed L0</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title=" compressed sensing"> compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20reconstruction" title=" sparse reconstruction"> sparse reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/155598/image-reconstruction-method-based-on-l0-norm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20630</span> Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Laadhari">Aymen Laadhari</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A1bor%20Sz%C3%A9kely"> Gábor Székely</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit" title=" implicit"> implicit</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set" title=" level set"> level set</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20method" title=" Newton method"> Newton method</a> </p> <a href="https://publications.waset.org/abstracts/60543/implicit-eulerian-fluid-structure-interaction-method-for-the-modeling-of-highly-deformable-elastic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20629</span> The Implementation of Secton Method for Finding the Root of Interpolation Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Rokhman">Nur Rokhman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Secton%20method" title="Secton method">Secton method</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20function" title=" non linear function"> non linear function</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/1837/the-implementation-of-secton-method-for-finding-the-root-of-interpolation-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20628</span> Descent Algorithms for Optimization Algorithms Using q-Derivative</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetanjali%20Panda">Geetanjali Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Suvrakanti%20Chakraborty"> Suvrakanti Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Descent%20algorithm" title="Descent algorithm">Descent algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20search%20method" title=" line search method"> line search method</a>, <a href="https://publications.waset.org/abstracts/search?q=q%20calculus" title=" q calculus"> q calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=Quasi%20Newton%20method" title=" Quasi Newton method"> Quasi Newton method</a> </p> <a href="https://publications.waset.org/abstracts/62700/descent-algorithms-for-optimization-algorithms-using-q-derivative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20627</span> MapReduce Logistic Regression Algorithms with RHadoop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byung%20Ho%20Jung">Byung Ho Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hoon%20Lim"> Dong Hoon Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=RHadoop" title=" RHadoop"> RHadoop</a> </p> <a href="https://publications.waset.org/abstracts/41569/mapreduce-logistic-regression-algorithms-with-rhadoop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20626</span> Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taweechai%20Nuntawisuttiwong">Taweechai Nuntawisuttiwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Dejdumrong"> Natasha Dejdumrong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20interpolation" title="Lagrange interpolation">Lagrange interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20complexity" title=" linear complexity"> linear complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=monomial%20matrix" title=" monomial matrix"> monomial matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20interpolation" title=" Newton interpolation"> Newton interpolation</a> </p> <a href="https://publications.waset.org/abstracts/110424/fast-and-efficient-algorithms-for-evaluating-uniform-and-nonuniform-lagrange-and-newton-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20625</span> Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Oke">M. O. Oke</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Workneh"> T. S. Workneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying behaviour of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80oC) and ten sweet potato varieties sliced to 5 mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27-6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sweet%20potato%20slice" title="sweet potato slice">sweet potato slice</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20models" title=" drying models"> drying models</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20ratio" title=" moisture ratio"> moisture ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20diffusivity" title=" moisture diffusivity"> moisture diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a> </p> <a href="https://publications.waset.org/abstracts/16844/convective-hot-air-drying-of-different-varieties-of-blanched-sweet-potato-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20624</span> Pharmaceutical Applications of Newton's Second Law and Disc Inertia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Jensen">Nicholas Jensen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the effort to create new drugs to treat rare conditions cost-effectively intensifies, there is a need to ensure maximum efficiency in the manufacturing process. This includes the creation of ultracompact treatment forms, which can best be achieved via applications of fundamental laws of physics. This paper reports an experiment exploring the relationship between the forms of Newton's 2ⁿᵈ Law appropriate to linear motion and to transversal architraves. The moment of inertia of three discs was determined by experiments and compared with previous data derived from a theoretical relationship. The method used was to attach the discs to a moment arm. Comparing the results with those obtained from previous experiments, it is found to be consistent with the first law of thermodynamics. It was further found that Newton's 2ⁿᵈ law violates the second law of thermodynamics. The purpose of this experiment was to explore the relationship between the forms of Newton's 2nd Law appropriate to linear motion and to apply torque to a twisting force, which is determined by position vector r and force vector F. Substituting equation alpha in place of beta; angular acceleration is a linear acceleration divided by radius r of the moment arm. The nevrological analogy of Newton's 2nd Law states that these findings can contribute to a fuller understanding of thermodynamics in relation to viscosity. Implications for the pharmaceutical industry will be seen to be fruitful from these findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20physics" title="Newtonian physics">Newtonian physics</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia" title=" inertia"> inertia</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20applications" title=" pharmaceutical applications"> pharmaceutical applications</a> </p> <a href="https://publications.waset.org/abstracts/126921/pharmaceutical-applications-of-newtons-second-law-and-disc-inertia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20623</span> Parameter Estimation for the Mixture of Generalized Gamma Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wikanda%20Phaphan">Wikanda Phaphan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixture generalized gamma distribution is a combination of two distributions: generalized gamma distribution and length biased generalized gamma distribution. These two distributions were presented by Suksaengrakcharoen and Bodhisuwan in 2014. The findings showed that probability density function (pdf) had fairly complexities, so it made problems in estimating parameters. The problem occurred in parameter estimation was that we were unable to calculate estimators in the form of critical expression. Thus, we will use numerical estimation to find the estimators. In this study, we presented a new method of the parameter estimation by using the expectation – maximization algorithm (EM), the conjugate gradient method, and the quasi-Newton method. The data was generated by acceptance-rejection method which is used for estimating α, β, λ and p. λ is the scale parameter, p is the weight parameter, α and β are the shape parameters. We will use Monte Carlo technique to find the estimator's performance. Determining the size of sample equals 10, 30, 100; the simulations were repeated 20 times in each case. We evaluated the effectiveness of the estimators which was introduced by considering values of the mean squared errors and the bias. The findings revealed that the EM-algorithm had proximity to the actual values determined. Also, the maximum likelihood estimators via the conjugate gradient and the quasi-Newton method are less precision than the maximum likelihood estimators via the EM-algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title="conjugate gradient method">conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-Newton%20method" title=" quasi-Newton method"> quasi-Newton method</a>, <a href="https://publications.waset.org/abstracts/search?q=EM-algorithm" title=" EM-algorithm"> EM-algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20gamma%20distribution" title=" generalized gamma distribution"> generalized gamma distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=length%20biased%20generalized%20gamma%20distribution" title=" length biased generalized gamma distribution"> length biased generalized gamma distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20method" title=" maximum likelihood method"> maximum likelihood method</a> </p> <a href="https://publications.waset.org/abstracts/81404/parameter-estimation-for-the-mixture-of-generalized-gamma-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20622</span> Some Results for F-Minimal Hypersurfaces in Manifolds with Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdelmalek">M. Abdelmalek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study the hypersurfaces of constant weighted mean curvature embedded in weighted manifolds. We give a condition about these hypersurfaces to be minimal. This condition is given by the ellipticity of the weighted Newton transformations. We especially prove that two compact hypersurfaces of constant weighted mean curvature embedded in space forms and with the intersection in at least a point of the boundary must be transverse. The method is based on the calculus of the matrix of the second fundamental form in a boundary point and then the matrix associated with the Newton transformations. By equality, we find the weighted elementary symmetric function on the boundary of the hypersurface. We give in the end some examples and applications. Especially in Euclidean space, we use the above result to prove the Alexandrov spherical caps conjecture for the weighted case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weighted%20mean%20curvature" title="weighted mean curvature">weighted mean curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20manifolds" title=" weighted manifolds"> weighted manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipticity" title=" ellipticity"> ellipticity</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20transformations" title=" Newton transformations"> Newton transformations</a> </p> <a href="https://publications.waset.org/abstracts/160174/some-results-for-f-minimal-hypersurfaces-in-manifolds-with-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20621</span> An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Laadhari">Aymen Laadhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set" title=" level set"> level set</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton" title=" Newton"> Newton</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a> </p> <a href="https://publications.waset.org/abstracts/59571/an-implicit-methodology-for-the-numerical-modeling-of-locally-inextensible-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20620</span> Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Olayiwola">M. O. Olayiwola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burger-fisher" title="burger-fisher">burger-fisher</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20variational%20iteration%20method" title=" modified variational iteration method"> modified variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrange%20multiplier" title=" lagrange multiplier"> lagrange multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%E2%80%99s%20series" title=" Taylor’s series"> Taylor’s series</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a> </p> <a href="https://publications.waset.org/abstracts/3943/numerical-solutions-of-generalized-burger-fisher-equation-by-modified-variational-iteration-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20619</span> Load Flow Analysis of 5-IEEE Bus Test System Using Matlab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Abaal">H. Abaal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Skouri"> R. Skouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A power flow analysis is a steady-state study of power grid. The goal of power flow analysis is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions. In this paper, the load flow analysis program by Newton Raphson polar coordinates Method is developed. The effectiveness of the developed program is evaluated through a simple 5-IEEE test system bus by simulations using MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20flow%20analysis" title="power flow analysis">power flow analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20Raphson%20polar%20coordinates%20method" title=" Newton Raphson polar coordinates method"> Newton Raphson polar coordinates method</a> </p> <a href="https://publications.waset.org/abstracts/22344/load-flow-analysis-of-5-ieee-bus-test-system-using-matlab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20618</span> Modified Approximation Methods for Finding an Optimal Solution for the Transportation Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Guruprasad">N. Guruprasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a modification of approximation method for transportation problems. The initial basic feasible solution can be computed using either Russel's or Vogel's approximation methods. Russell’s approximation method provides another excellent criterion that is still quick to implement on a computer (not manually) In most cases Russel's method yields a better initial solution, though it takes longer than Vogel's method (finding the next entering variable in Russel's method is in O(n1*n2), and in O(n1+n2) for Vogel's method). However, Russel's method normally has a lesser total running time because less pivots are required to reach the optimum for all but small problem sizes (n1+n2=~20). With this motivation behind we have incorporated a variation of the same – what we have proposed it has TMC (Total Modified Cost) to obtain fast and efficient solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computation" title="computation">computation</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20cost" title=" modified cost"> modified cost</a>, <a href="https://publications.waset.org/abstracts/search?q=Russell%E2%80%99s%20approximation%20method" title=" Russell’s approximation method"> Russell’s approximation method</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=Vogel%E2%80%99s%20approximation%20method" title=" Vogel’s approximation method"> Vogel’s approximation method</a> </p> <a href="https://publications.waset.org/abstracts/19162/modified-approximation-methods-for-finding-an-optimal-solution-for-the-transportation-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20617</span> An Analytical Method for Bending Rectangular Plates with All Edges Clamped Supported</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Liu"> Heng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decoupling method and the modified Naiver method are combined for accurate bending analysis of rectangular thick plates with all edges clamped supported. The basic governing equations for Mindlin plates are first decoupled into independent partial differential equations which can be solved separately. Using modified Navier method, the analytic solution of rectangular thick plate with all edges clamped supported is then derived. The solution method used in this paper leave out the complicated derivation for calculating coefficients and obtain the solution to problems directly. Numerical comparisons show the correctness and accuracy of the results at last. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindlin%20plates" title="Mindlin plates">Mindlin plates</a>, <a href="https://publications.waset.org/abstracts/search?q=decoupling%20method" title=" decoupling method"> decoupling method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Navier%20method" title=" modified Navier method"> modified Navier method</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20rectangular%20plates" title=" bending rectangular plates"> bending rectangular plates</a> </p> <a href="https://publications.waset.org/abstracts/22011/an-analytical-method-for-bending-rectangular-plates-with-all-edges-clamped-supported" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20616</span> Buckling Analysis of 2D Frames Using the Modified Newmark Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Amin%20Vakili">Seyed Amin Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Sadat%20Vakili"> Sahar Sadat Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ehsan%20Vakili"> Seyed Ehsan Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Abdoli%20Yazdi"> Nader Abdoli Yazdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to present the Modified Newmark Method of buckling analysis frame considering the effect of the axial load. The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. In this method, stiffness matrix of the structure is considered to be constant. The most important advantage of such a method is that it obtains both upper and lower critical loads. The advanced of the present method is fast convergence, ability to use computer simulations, and ability to model structures with semi-rigid support conditions using linear and rotational spring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling" title="buckling">buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=frame" title=" frame"> frame</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20newmark%20method" title=" modified newmark method"> modified newmark method</a> </p> <a href="https://publications.waset.org/abstracts/42638/buckling-analysis-of-2d-frames-using-the-modified-newmark-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20615</span> A Variant of Newton's Method with Free Second-Order Derivative</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Hee%20Geum">Young Hee Geum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present the iterative method and determine the control parameters to converge cubically for solving nonlinear equations. In addition, we derive the asymptotic error constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20error%20constant" title="asymptotic error constant">asymptotic error constant</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20root" title=" multiple root"> multiple root</a>, <a href="https://publications.waset.org/abstracts/search?q=root-finding" title=" root-finding"> root-finding</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20of%20convergent" title=" order of convergent"> order of convergent</a> </p> <a href="https://publications.waset.org/abstracts/10054/a-variant-of-newtons-method-with-free-second-order-derivative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20614</span> Performance Assessment of PV Based Grid Connected Solar Plant with Varying Load Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kusum%20Tharani">Kusum Tharani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Dahiya"> Ratna Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the power flow of a grid connected 100-kW Photovoltaic(PV) array connected to a 25-kV grid via a DC-DC boost converter and a three-phase three-level Voltage Source Converter (VSC). Maximum Power Point Tracking (MPPT) is implemented in the boost converter bymeans of a Simulink model using the 'Perturb & Observe' technique. First, related papers and technological reports were extensively studied and analyzed. Accordingly, the system is tested under various loading conditions. Power flow analysis is done using the Newton-Raphson method in Matlab environment. Finally, the system is subject to Single Line to Ground Fault and Three Phase short circuit. The results are simulated under the grid-connected operating model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grid%20connected%20PV%20Array" title="grid connected PV Array">grid connected PV Array</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton-Raphson%20Method" title=" Newton-Raphson Method"> Newton-Raphson Method</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20flow%20analysis" title=" power flow analysis"> power flow analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20phase%20fault" title=" three phase fault"> three phase fault</a> </p> <a href="https://publications.waset.org/abstracts/19879/performance-assessment-of-pv-based-grid-connected-solar-plant-with-varying-load-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20613</span> Construction Technology of Modified Vacuum Pre-Loading Method for Slurry Dredged Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20H.%20Mahfouz">Ali H. Mahfouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Ming-Jun"> Gao Ming-Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Sharif"> Mohamad Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Slurry dredged soil at coastal area has a high water content, poor permeability, and low surface intensity. Hence, it is infeasible to use vacuum preloading method to treat this type of soil foundation. For the special case of super soft ground, a floating bridge is first constructed on muddy soil and used as a service road and platform for implementing the modified vacuum preloading method. The modified technique of vacuum preloading and its construction process for the super soft soil foundation improvement is then studied. Application of modified vacuum preloading method shows that the technology and its construction process are highly suitable for improving the super soft soil foundation in coastal areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20soft%20foundation" title="super soft foundation">super soft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=dredger%20fill" title=" dredger fill"> dredger fill</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20preloading" title=" vacuum preloading"> vacuum preloading</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation%20treatment" title=" foundation treatment"> foundation treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20technology" title=" construction technology"> construction technology</a> </p> <a href="https://publications.waset.org/abstracts/46474/construction-technology-of-modified-vacuum-pre-loading-method-for-slurry-dredged-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20612</span> Stability of Composite Struts Using the Modified Newmark Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Amin%20Vakili">Seyed Amin Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Sadat%20Vakili"> Sahar Sadat Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ehsan%20Vakili"> Seyed Ehsan Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Abdoli%20Yazdi"> Nader Abdoli Yazdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to examine the behavior of elastic stability of reinforced and composite concrete struts with axial loads. The objective of this study is to verify the ability of the Modified Newmark Method to include geometric non-linearity in addition to non-linearity due to cracking, and also to show the advantage of the established method to reconsider an ignored minor parameter in mathematical modeling, such as the effect of the cracking by extra geometric bending moment Ny on cross-section properties. The purpose of this investigation is not to present some new results for the instability of reinforced or composite concrete columns. Therefore, no kinds of non-linearity involved in the problem are considered here. Only as mentioned, it is a part of the verification of the new established method to solve two kinds of non-linearity P- δ effect and cracking together simultaneously. However, the Modified Newmark Method can be used to solve non-linearity of materials and time-dependent behavior of concrete. However, since it is out of the scope of this article, it is not considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability" title="stability">stability</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling" title=" buckling"> buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20newmark%20method" title=" modified newmark method"> modified newmark method</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced" title=" reinforced"> reinforced</a> </p> <a href="https://publications.waset.org/abstracts/42634/stability-of-composite-struts-using-the-modified-newmark-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20611</span> Application of a Modified Crank-Nicolson Method in Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kobamelo%20Mashaba">Kobamelo Mashaba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The molten slag has a high substantial temperatures range between 1723-1923, carrying a huge amount of useful energy for reducing energy consumption and CO₂ emissions under the heat recovery process. Therefore in this study, we investigated the performance of the modified crank Nicolson method for a delayed partial differential equation on the heat recovery of molten slag in the metallurgical mining environment. It was proved that the proposed method converges quickly compared to the classic method with the existence of a unique solution. It was inferred from numerical result that the proposed methodology is more viable and profitable for the mining industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delayed%20partial%20differential%20equation" title="delayed partial differential equation">delayed partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Crank-Nicolson%20Method" title=" modified Crank-Nicolson Method"> modified Crank-Nicolson Method</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20slag" title=" molten slag"> molten slag</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery" title=" heat recovery"> heat recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20equation" title=" parabolic equation"> parabolic equation</a> </p> <a href="https://publications.waset.org/abstracts/152073/application-of-a-modified-crank-nicolson-method-in-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20610</span> A TFETI Domain Decompositon Solver for von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Cermak">Martin Cermak</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Sysala"> Stanislav Sysala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present the efficient parallel implementation of elastoplastic problems based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. This approach allow us to use parallel solution and compute this nonlinear problem on the supercomputers and decrease the solution time and compute problems with millions of DOFs. In our approach we consider an associated elastoplastic model with the von Mises plastic criterion and the combination of linear isotropic-kinematic hardening law. This model is discretized by the implicit Euler method in time and by the finite element method in space. We consider the system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI. The implementation of this problem is realized in our in-house MatSol packages developed in MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotropic-kinematic%20hardening" title="isotropic-kinematic hardening">isotropic-kinematic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=TFETI" title=" TFETI"> TFETI</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20decomposition" title=" domain decomposition"> domain decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20solution" title=" parallel solution"> parallel solution</a> </p> <a href="https://publications.waset.org/abstracts/20197/a-tfeti-domain-decompositon-solver-for-von-mises-elastoplasticity-model-with-combination-of-linear-isotropic-kinematic-hardening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20609</span> Implementation of Fuzzy Version of Block Backward Differentiation Formulas for Solving Fuzzy Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20B.%20Ibrahim">Z. B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ismail"> N. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Othman"> K. I. Othman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy Differential Equations (FDEs) play an important role in modelling many real life phenomena. The FDEs are used to model the behaviour of the problems that are subjected to uncertainty, vague or imprecise information that constantly arise in mathematical models in various branches of science and engineering. These uncertainties have to be taken into account in order to obtain a more realistic model and many of these models are often difficult and sometimes impossible to obtain the analytic solutions. Thus, many authors have attempted to extend or modified the existing numerical methods developed for solving Ordinary Differential Equations (ODEs) into fuzzy version in order to suit for solving the FDEs. Therefore, in this paper, we proposed the development of a fuzzy version of three-point block method based on Block Backward Differentiation Formulas (FBBDF) for the numerical solution of first order FDEs. The three-point block FBBDF method are implemented in uniform step size produces three new approximations simultaneously at each integration step using the same back values. Newton iteration of the FBBDF is formulated and the implementation is based on the predictor and corrector formulas in the PECE mode. For greater efficiency of the block method, the coefficients of the FBBDF are stored at the start of the program. The proposed FBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing fuzzy version of the Modified Simpson and Euler methods in terms of the accuracy of the approximated solutions. The numerical results show that the FBBDF method performs better in terms of accuracy when compared to the Euler method when solving the FDEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block" title="block">block</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20differentiation%20formulas" title=" backward differentiation formulas"> backward differentiation formulas</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order" title=" first order"> first order</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20differential%20equations" title=" fuzzy differential equations"> fuzzy differential equations</a> </p> <a href="https://publications.waset.org/abstracts/47384/implementation-of-fuzzy-version-of-block-backward-differentiation-formulas-for-solving-fuzzy-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20608</span> Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Fundi%20Murithi">Daniel Fundi Murithi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expectation-maximization%20algorithm" title="expectation-maximization algorithm">expectation-maximization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton-Raphson%20method" title=" Newton-Raphson method"> Newton-Raphson method</a>, <a href="https://publications.waset.org/abstracts/search?q=two-parameter%20Rayleigh%20distribution" title=" two-parameter Rayleigh distribution"> two-parameter Rayleigh distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20type-II%20censoring" title=" progressive type-II censoring"> progressive type-II censoring</a> </p> <a href="https://publications.waset.org/abstracts/122112/maximum-likelihood-estimation-methods-on-a-two-parameter-rayleigh-distribution-under-progressive-type-ii-censoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20607</span> Collocation Method Using Quartic B-Splines for Solving the Modified RLW Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Soliman">A. A. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Modified Regularized Long Wave (MRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collocation%20method" title="collocation method">collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=MRLW%20equation" title=" MRLW equation"> MRLW equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Quartic%20B-splines" title=" Quartic B-splines"> Quartic B-splines</a>, <a href="https://publications.waset.org/abstracts/search?q=solitons" title=" solitons"> solitons</a> </p> <a href="https://publications.waset.org/abstracts/7664/collocation-method-using-quartic-b-splines-for-solving-the-modified-rlw-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=687">687</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=688">688</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=modified%20Newton%E2%80%99s%20method&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>