CINXE.COM

Cálculo de variaciones - Wikipedia, la enciclopedia libre

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="es" dir="ltr"> <head> <meta charset="UTF-8"> <title>Cálculo de variaciones - Wikipedia, la enciclopedia libre</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )eswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","enero","febrero","marzo","abril","mayo","junio","julio","agosto","septiembre","octubre","noviembre","diciembre"],"wgRequestId":"c22604c8-d66b-47e6-ab68-60aad6a69be6","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Cálculo_de_variaciones","wgTitle":"Cálculo de variaciones","wgCurRevisionId":163752507,"wgRevisionId":163752507,"wgArticleId":172797,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia:Artículos con identificadores LCCN","Cálculo","Cálculo de variaciones"],"wgPageViewLanguage":"es","wgPageContentLanguage":"es","wgPageContentModel":"wikitext","wgRelevantPageName":"Cálculo_de_variaciones","wgRelevantArticleId":172797,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false, "wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"es","pageLanguageDir":"ltr","pageVariantFallbacks":"es"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q216861","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.imagenesinfobox":"ready","ext.globalCssJs.user.styles": "ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.a-commons-directo","ext.gadget.ReferenceTooltips","ext.gadget.refToolbar","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming", "ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=es&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=ext.gadget.imagenesinfobox&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <noscript><link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=noscript&amp;only=styles&amp;skin=vector-2022"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Cálculo de variaciones - Wikipedia, la enciclopedia libre"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//es.m.wikipedia.org/wiki/C%C3%A1lculo_de_variaciones"> <link rel="alternate" type="application/x-wiki" title="Editar" href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (es)"> <link rel="EditURI" type="application/rsd+xml" href="//es.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://es.wikipedia.org/wiki/C%C3%A1lculo_de_variaciones"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.es"> <link rel="alternate" type="application/atom+xml" title="Canal Atom de Wikipedia" href="/w/index.php?title=Especial:CambiosRecientes&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Cálculo_de_variaciones rootpage-Cálculo_de_variaciones skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Ir al contenido</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menú principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menú principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menú principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">ocultar</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navegación </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Portada" title="Visitar la página principal [z]" accesskey="z"><span>Portada</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Portal:Comunidad" title="Acerca del proyecto, lo que puedes hacer, dónde encontrar información"><span>Portal de la comunidad</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Actualidad" title="Encuentra información de contexto sobre acontecimientos actuales"><span>Actualidad</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Especial:CambiosRecientes" title="Lista de cambios recientes en la wiki [r]" accesskey="r"><span>Cambios recientes</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasNuevas"><span>Páginas nuevas</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Especial:Aleatoria" title="Cargar una página al azar [x]" accesskey="x"><span>Página aleatoria</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Ayuda:Contenidos" title="El lugar para aprender"><span>Ayuda</span></a></li><li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/Wikipedia:Informes_de_error"><span>Notificar un error</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:Portada" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="La enciclopedia libre" src="/static/images/mobile/copyright/wikipedia-tagline-es.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Especial:Buscar" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Buscar en este wiki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Buscar</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Buscar en Wikipedia" aria-label="Buscar en Wikipedia" autocapitalize="sentences" title="Buscar en este wiki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Buscar"> </div> <button class="cdx-button cdx-search-input__end-button">Buscar</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Herramientas personales"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apariencia" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apariencia</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_es.wikipedia.org&amp;uselang=es" class=""><span>Donaciones</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Crear_una_cuenta&amp;returnto=C%C3%A1lculo+de+variaciones" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio" class=""><span>Crear una cuenta</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Entrar&amp;returnto=C%C3%A1lculo+de+variaciones" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o" class=""><span>Acceder</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Más opciones" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas personales" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Herramientas personales</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menú de usuario" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_es.wikipedia.org&amp;uselang=es"><span>Donaciones</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Crear_una_cuenta&amp;returnto=C%C3%A1lculo+de+variaciones" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Crear una cuenta</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Entrar&amp;returnto=C%C3%A1lculo+de+variaciones" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Acceder</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Páginas para editores desconectados <a href="/wiki/Ayuda:Introducci%C3%B3n" aria-label="Obtenga más información sobre editar"><span>más información</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Especial:MisContribuciones" title="Una lista de modificaciones hechas desde esta dirección IP [y]" accesskey="y"><span>Contribuciones</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Especial:MiDiscusi%C3%B3n" title="Discusión sobre ediciones hechas desde esta dirección IP [n]" accesskey="n"><span>Discusión</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contenidos" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contenidos</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">ocultar</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inicio</div> </a> </li> <li id="toc-Historia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Historia"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Historia</span> </div> </a> <button aria-controls="toc-Historia-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar subsección Historia</span> </button> <ul id="toc-Historia-sublist" class="vector-toc-list"> <li id="toc-Problema_Isoperimétrico" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Problema_Isoperimétrico"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Problema Isoperimétrico</span> </div> </a> <ul id="toc-Problema_Isoperimétrico-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Braquistócrona" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Braquistócrona"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Braquistócrona</span> </div> </a> <ul id="toc-Braquistócrona-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Extremos" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Extremos"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Extremos</span> </div> </a> <ul id="toc-Extremos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formulación_general" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formulación_general"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Formulación general</span> </div> </a> <button aria-controls="toc-Formulación_general-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar subsección Formulación general</span> </button> <ul id="toc-Formulación_general-sublist" class="vector-toc-list"> <li id="toc-Espacios_funcionales" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Espacios_funcionales"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Espacios funcionales</span> </div> </a> <ul id="toc-Espacios_funcionales-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Extremos_relativos_débiles_y_fuertes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Extremos_relativos_débiles_y_fuertes"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Extremos relativos débiles y fuertes</span> </div> </a> <ul id="toc-Extremos_relativos_débiles_y_fuertes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Véase_también" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Véase_también"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Véase también</span> </div> </a> <ul id="toc-Véase_también-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referencias" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referencias"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Referencias</span> </div> </a> <ul id="toc-Referencias-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografía" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografía"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Bibliografía</span> </div> </a> <ul id="toc-Bibliografía-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Enlaces_externos" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Enlaces_externos"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Enlaces externos</span> </div> </a> <ul id="toc-Enlaces_externos-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contenidos" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Cambiar a la tabla de contenidos" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Cambiar a la tabla de contenidos</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Cálculo de variaciones</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ir a un artículo en otro idioma. Disponible en 45 idiomas" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-45" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">45 idiomas</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D8%B3%D8%A7%D8%A8_%D8%A7%D9%84%D9%85%D8%AA%D8%BA%D9%8A%D8%B1%D8%A7%D8%AA" title="حساب المتغيرات (árabe)" lang="ar" hreflang="ar" data-title="حساب المتغيرات" data-language-autonym="العربية" data-language-local-name="árabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/C%C3%A1lculu_de_variaciones" title="Cálculu de variaciones (asturiano)" lang="ast" hreflang="ast" data-title="Cálculu de variaciones" data-language-autonym="Asturianu" data-language-local-name="asturiano" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%92%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D0%B0%D0%BB%D1%8B_%D0%B8%D2%AB%D3%99%D0%BF%D0%BB%D3%99%D0%BC%D3%99" title="Вариациалы иҫәпләмә (baskir)" lang="ba" hreflang="ba" data-title="Вариациалы иҫәпләмә" data-language-autonym="Башҡортса" data-language-local-name="baskir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D0%B0%D1%80%D1%8B%D1%8F%D1%86%D1%8B%D0%B9%D0%BD%D0%B0%D0%B5_%D0%B7%D0%BB%D1%96%D1%87%D1%8D%D0%BD%D0%BD%D0%B5" title="Варыяцыйнае злічэнне (bielorruso)" lang="be" hreflang="be" data-title="Варыяцыйнае злічэнне" data-language-autonym="Беларуская" data-language-local-name="bielorruso" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%92%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%BE_%D1%81%D0%BC%D1%8F%D1%82%D0%B0%D0%BD%D0%B5" title="Вариационно смятане (búlgaro)" lang="bg" hreflang="bg" data-title="Вариационно смятане" data-language-autonym="Български" data-language-local-name="búlgaro" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/C%C3%A0lcul_de_variacions" title="Càlcul de variacions (catalán)" lang="ca" hreflang="ca" data-title="Càlcul de variacions" data-language-autonym="Català" data-language-local-name="catalán" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Varia%C4%8Dn%C3%AD_po%C4%8Det" title="Variační počet (checo)" lang="cs" hreflang="cs" data-title="Variační počet" data-language-autonym="Čeština" data-language-local-name="checo" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%92%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D0%BB%D0%BB%D0%B5_%D1%88%D1%83%D1%82%D0%BB%D0%B0%D0%B2" title="Вариацилле шутлав (chuvasio)" lang="cv" hreflang="cv" data-title="Вариацилле шутлав" data-language-autonym="Чӑвашла" data-language-local-name="chuvasio" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Variationsrechnung" title="Variationsrechnung (alemán)" lang="de" hreflang="de" data-title="Variationsrechnung" data-language-autonym="Deutsch" data-language-local-name="alemán" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9B%CE%BF%CE%B3%CE%B9%CF%83%CE%BC%CF%8C%CF%82_%CF%84%CF%89%CE%BD_%CE%BC%CE%B5%CF%84%CE%B1%CE%B2%CE%BF%CE%BB%CF%8E%CE%BD" title="Λογισμός των μεταβολών (griego)" lang="el" hreflang="el" data-title="Λογισμός των μεταβολών" data-language-autonym="Ελληνικά" data-language-local-name="griego" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Calculus_of_variations" title="Calculus of variations (inglés)" lang="en" hreflang="en" data-title="Calculus of variations" data-language-autonym="English" data-language-local-name="inglés" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Variada_kalkulo" title="Variada kalkulo (esperanto)" lang="eo" hreflang="eo" data-title="Variada kalkulo" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Variatsioonarvutus" title="Variatsioonarvutus (estonio)" lang="et" hreflang="et" data-title="Variatsioonarvutus" data-language-autonym="Eesti" data-language-local-name="estonio" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Bariazioen_kalkulu" title="Bariazioen kalkulu (euskera)" lang="eu" hreflang="eu" data-title="Bariazioen kalkulu" data-language-autonym="Euskara" data-language-local-name="euskera" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AD%D8%B3%D8%A7%D8%A8_%D8%AA%D8%BA%DB%8C%DB%8C%D8%B1%D8%A7%D8%AA" title="حساب تغییرات (persa)" lang="fa" hreflang="fa" data-title="حساب تغییرات" data-language-autonym="فارسی" data-language-local-name="persa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Variaatiolaskenta" title="Variaatiolaskenta (finés)" lang="fi" hreflang="fi" data-title="Variaatiolaskenta" data-language-autonym="Suomi" data-language-local-name="finés" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Calcul_des_variations" title="Calcul des variations (francés)" lang="fr" hreflang="fr" data-title="Calcul des variations" data-language-autonym="Français" data-language-local-name="francés" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/C%C3%A1lculo_de_variaci%C3%B3ns" title="Cálculo de variacións (gallego)" lang="gl" hreflang="gl" data-title="Cálculo de variacións" data-language-autonym="Galego" data-language-local-name="gallego" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%A9%D7%91%D7%95%D7%9F_%D7%95%D7%A8%D7%99%D7%90%D7%A6%D7%99%D7%95%D7%AA" title="חשבון וריאציות (hebreo)" lang="he" hreflang="he" data-title="חשבון וריאציות" data-language-autonym="עברית" data-language-local-name="hebreo" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BF%E0%A4%9A%E0%A4%B0%E0%A4%A3-%E0%A4%95%E0%A4%B2%E0%A4%A8" title="विचरण-कलन (hindi)" lang="hi" hreflang="hi" data-title="विचरण-कलन" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Vari%C3%A1ci%C3%B3sz%C3%A1m%C3%ADt%C3%A1s" title="Variációszámítás (húngaro)" lang="hu" hreflang="hu" data-title="Variációszámítás" data-language-autonym="Magyar" data-language-local-name="húngaro" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Calcolo_delle_variazioni" title="Calcolo delle variazioni (italiano)" lang="it" hreflang="it" data-title="Calcolo delle variazioni" data-language-autonym="Italiano" data-language-local-name="italiano" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%A4%89%E5%88%86%E6%B3%95" title="変分法 (japonés)" lang="ja" hreflang="ja" data-title="変分法" data-language-autonym="日本語" data-language-local-name="japonés" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%92%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D1%8F%D0%BB%D1%8B%D2%9B_%D0%B5%D1%81%D0%B5%D0%BF%D1%82%D0%B5%D1%83" title="Вариациялық есептеу (kazajo)" lang="kk" hreflang="kk" data-title="Вариациялық есептеу" data-language-autonym="Қазақша" data-language-local-name="kazajo" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B3%80%EB%B6%84%EB%B2%95" title="변분법 (coreano)" lang="ko" hreflang="ko" data-title="변분법" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Kalkulu_tal-varjazzjonijiet" title="Kalkulu tal-varjazzjonijiet (maltés)" lang="mt" hreflang="mt" data-title="Kalkulu tal-varjazzjonijiet" data-language-autonym="Malti" data-language-local-name="maltés" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Variatierekening" title="Variatierekening (neerlandés)" lang="nl" hreflang="nl" data-title="Variatierekening" data-language-autonym="Nederlands" data-language-local-name="neerlandés" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Variasjonsrekning" title="Variasjonsrekning (noruego nynorsk)" lang="nn" hreflang="nn" data-title="Variasjonsrekning" data-language-autonym="Norsk nynorsk" data-language-local-name="noruego nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Variasjonsregning" title="Variasjonsregning (noruego bokmal)" lang="nb" hreflang="nb" data-title="Variasjonsregning" data-language-autonym="Norsk bokmål" data-language-local-name="noruego bokmal" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rachunek_wariacyjny" title="Rachunek wariacyjny (polaco)" lang="pl" hreflang="pl" data-title="Rachunek wariacyjny" data-language-autonym="Polski" data-language-local-name="polaco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/C%C3%A0lcol_dle_variassion" title="Càlcol dle variassion (Piedmontese)" lang="pms" hreflang="pms" data-title="Càlcol dle variassion" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/C%C3%A1lculo_variacional" title="Cálculo variacional (portugués)" lang="pt" hreflang="pt" data-title="Cálculo variacional" data-language-autonym="Português" data-language-local-name="portugués" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Calcul_varia%C8%9Bional" title="Calcul variațional (rumano)" lang="ro" hreflang="ro" data-title="Calcul variațional" data-language-autonym="Română" data-language-local-name="rumano" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%BE%D0%B5_%D0%B8%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5" title="Вариационное исчисление (ruso)" lang="ru" hreflang="ru" data-title="Вариационное исчисление" data-language-autonym="Русский" data-language-local-name="ruso" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Calculus_of_variations" title="Calculus of variations (Simple English)" lang="en-simple" hreflang="en-simple" data-title="Calculus of variations" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Varia%C4%8Dn%C3%BD_po%C4%8Det" title="Variačný počet (eslovaco)" lang="sk" hreflang="sk" data-title="Variačný počet" data-language-autonym="Slovenčina" data-language-local-name="eslovaco" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Variacijski_ra%C4%8Dun" title="Variacijski račun (esloveno)" lang="sl" hreflang="sl" data-title="Variacijski račun" data-language-autonym="Slovenščina" data-language-local-name="esloveno" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Analiza_e_variacionit" title="Analiza e variacionit (albanés)" lang="sq" hreflang="sq" data-title="Analiza e variacionit" data-language-autonym="Shqip" data-language-local-name="albanés" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Varijacijski_ra%C4%8Dun" title="Varijacijski račun (serbio)" lang="sr" hreflang="sr" data-title="Varijacijski račun" data-language-autonym="Српски / srpski" data-language-local-name="serbio" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Variationskalkyl" title="Variationskalkyl (sueco)" lang="sv" hreflang="sv" data-title="Variationskalkyl" data-language-autonym="Svenska" data-language-local-name="sueco" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B0%D1%80%D1%96%D0%B0%D1%86%D1%96%D0%B9%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F" title="Варіаційне числення (ucraniano)" lang="uk" hreflang="uk" data-title="Варіаційне числення" data-language-autonym="Українська" data-language-local-name="ucraniano" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C3%A9p_t%C3%ADnh_bi%E1%BA%BFn_ph%C3%A2n" title="Phép tính biến phân (vietnamita)" lang="vi" hreflang="vi" data-title="Phép tính biến phân" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%8F%98%E5%88%86%E6%B3%95" title="变分法 (chino wu)" lang="wuu" hreflang="wuu" data-title="变分法" data-language-autonym="吴语" data-language-local-name="chino wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8F%98%E5%88%86%E6%B3%95" title="变分法 (chino)" lang="zh" hreflang="zh" data-title="变分法" data-language-autonym="中文" data-language-local-name="chino" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%AE%8A%E5%88%86%E6%B3%95" title="變分法 (cantonés)" lang="yue" hreflang="yue" data-title="變分法" data-language-autonym="粵語" data-language-local-name="cantonés" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q216861#sitelinks-wikipedia" title="Editar enlaces interlingüísticos" class="wbc-editpage">Editar enlaces</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espacios de nombres"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/C%C3%A1lculo_de_variaciones" title="Ver la página de contenido [c]" accesskey="c"><span>Artículo</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discusi%C3%B3n:C%C3%A1lculo_de_variaciones" rel="discussion" title="Discusión acerca de la página [t]" accesskey="t"><span>Discusión</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambiar variante de idioma" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">español</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vistas"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/C%C3%A1lculo_de_variaciones"><span>Leer</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=history" title="Versiones anteriores de esta página [h]" accesskey="h"><span>Ver historial</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Herramientas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Herramientas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">ocultar</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Más opciones" > <div class="vector-menu-heading"> Acciones </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/C%C3%A1lculo_de_variaciones"><span>Leer</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=history"><span>Ver historial</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Especial:LoQueEnlazaAqu%C3%AD/C%C3%A1lculo_de_variaciones" title="Lista de todas las páginas de la wiki que enlazan aquí [j]" accesskey="j"><span>Lo que enlaza aquí</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Especial:CambiosEnEnlazadas/C%C3%A1lculo_de_variaciones" rel="nofollow" title="Cambios recientes en las páginas que enlazan con esta [k]" accesskey="k"><span>Cambios en enlazadas</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=es" title="Subir archivos [u]" accesskey="u"><span>Subir archivo</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasEspeciales" title="Lista de todas las páginas especiales [q]" accesskey="q"><span>Páginas especiales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;oldid=163752507" title="Enlace permanente a esta versión de la página"><span>Enlace permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=info" title="Más información sobre esta página"><span>Información de la página</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Especial:Citar&amp;page=C%C3%A1lculo_de_variaciones&amp;id=163752507&amp;wpFormIdentifier=titleform" title="Información sobre cómo citar esta página"><span>Citar esta página</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Especial:Acortador_de_URL&amp;url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FC%25C3%25A1lculo_de_variaciones"><span>Obtener URL acortado</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Especial:QrCode&amp;url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FC%25C3%25A1lculo_de_variaciones"><span>Descargar código QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimir/exportar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Especial:Libro&amp;bookcmd=book_creator&amp;referer=C%C3%A1lculo+de+variaciones"><span>Crear un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Especial:DownloadAsPdf&amp;page=C%C3%A1lculo_de_variaciones&amp;action=show-download-screen"><span>Descargar como PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;printable=yes" title="Versión imprimible de esta página [p]" accesskey="p"><span>Versión para imprimir</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> En otros proyectos </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Calculus_of_variations" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q216861" title="Enlace al elemento conectado del repositorio de datos [g]" accesskey="g"><span>Elemento de Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apariencia</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">ocultar</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">De Wikipedia, la enciclopedia libre</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="es" dir="ltr"><p>El <b>cálculo de variaciones</b> o <b>cálculo variacional</b> es un <a href="/wiki/Problema_matem%C3%A1tico" title="Problema matemático">problema matemático</a> consistente en buscar <a href="/wiki/Extremos_de_una_funci%C3%B3n" title="Extremos de una función">máximos y mínimos</a> (o más generalmente extremos relativos) de <a href="/wiki/Funcional_(matem%C3%A1tica)" title="Funcional (matemática)">funcionales</a> continuos definidos sobre algún <a href="/wiki/Espacio_funcional" title="Espacio funcional">espacio funcional</a>. Constituyen una generalización del cálculo elemental de máximos y mínimos de <a href="/wiki/Funci%C3%B3n_real" title="Función real">funciones reales</a> de una variable. </p><p>Este <a href="/wiki/Problema_de_optimizaci%C3%B3n" title="Problema de optimización">problema de optimización</a> (de dimensiones infinitas) con aplicaciones en <a href="/wiki/F%C3%ADsica_te%C3%B3rica" title="Física teórica">física teórica</a> y <a href="/wiki/F%C3%ADsica_matem%C3%A1tica" title="Física matemática">física matemática</a> se convirtió en un campo especializado a mediados del siglo&#160;<span style="font-variant:small-caps;text-transform:lowercase">XVIII</span>, particularmente por <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> y <a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a>.<sup id="cite_ref-1" class="reference separada"><a href="#cite_note-1"><span class="corchete-llamada">[</span>1<span class="corchete-llamada">]</span></a></sup>&#8203; El cálculo de variaciones, sus temas relacionados y sus aplicaciones son objeto de la enseñanza actual,<sup id="cite_ref-2" class="reference separada"><a href="#cite_note-2"><span class="corchete-llamada">[</span>2<span class="corchete-llamada">]</span></a></sup>&#8203; Desarrollo posterior<sup id="cite_ref-3" class="reference separada"><a href="#cite_note-3"><span class="corchete-llamada">[</span>3<span class="corchete-llamada">]</span></a></sup>&#8203; e investigación.<sup id="cite_ref-4" class="reference separada"><a href="#cite_note-4"><span class="corchete-llamada">[</span>4<span class="corchete-llamada">]</span></a></sup>&#8203; La pregunta <i>¿Cómo se pueden seguir desarrollando los métodos del cálculo de variaciones?</i> es el 23º problema de la <a href="/w/index.php?title=Lista_de_problemas_de_Hilbert&amp;action=edit&amp;redlink=1" class="new" title="Lista de problemas de Hilbert (aún no redactado)">lista de problemas de Hilbert</a>. Los matemáticos <a href="/wiki/Ennio_De_Giorgi" class="mw-redirect" title="Ennio De Giorgi">Ennio De Giorgi</a> y <a href="/w/index.php?title=Charles_Morrey&amp;action=edit&amp;redlink=1" class="new" title="Charles Morrey (aún no redactado)">Charles Morrey</a>, entre otros, realizaron otras contribuciones. Sus investigaciones condujeron a la solución del decimonoveno &#160;problema de Hilbert con el reto <i>¿Son analíticas todas las soluciones de los problemas variacionales regulares?</i>. Los <a href="/wiki/Teorema_de_Noether" title="Teorema de Noether">teoremas</a> desarrollados por la matemática alemana <a href="/wiki/Emmy_Noether" title="Emmy Noether">Emmy Noether</a>, relacionados con el cálculo de variaciones,<sup id="cite_ref-5" class="reference separada"><a href="#cite_note-5"><span class="corchete-llamada">[</span>5<span class="corchete-llamada">]</span></a></sup>&#8203;<sup id="cite_ref-6" class="reference separada"><a href="#cite_note-6"><span class="corchete-llamada">[</span>6<span class="corchete-llamada">]</span></a></sup>&#8203; desempeñan un papel importante en la física moderna (<a href="/w/index.php?title=Simetr%C3%ADa_(F%C3%ADsica)&amp;action=edit&amp;redlink=1" class="new" title="Simetría (Física) (aún no redactado)">Simetría</a>). La matemática estadounidense <a href="/wiki/Karen_Uhlenbeck" title="Karen Uhlenbeck">Karen Uhlenbeck</a> fue galardonada con el <a href="/wiki/Premio_Abel" title="Premio Abel">Premio Abel</a> en 2019.<sup id="cite_ref-7" class="reference separada"><a href="#cite_note-7"><span class="corchete-llamada">[</span>7<span class="corchete-llamada">]</span></a></sup>&#8203; Uhlenbeck ha trabajado intensamente en el cálculo de variaciones. <sup id="cite_ref-8" class="reference separada"><a href="#cite_note-8"><span class="corchete-llamada">[</span>8<span class="corchete-llamada">]</span></a></sup>&#8203; </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Historia">Historia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=1" title="Editar sección: Historia"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El cálculo de variaciones se desarrolló a partir del problema de la <a href="/wiki/Curva_braquist%C3%B3crona" title="Curva braquistócrona">curva braquistócrona</a>, planteado inicialmente por <a href="/wiki/Johann_Bernoulli" title="Johann Bernoulli">Johann Bernoulli</a> (1696). Inmediatamente este problema captó la atención de <a href="/wiki/Jakob_Bernoulli" class="mw-redirect" title="Jakob Bernoulli">Jakob Bernoulli</a> y el <a href="/wiki/Guillaume_de_l%27H%C3%B4pital" title="Guillaume de l&#39;Hôpital">Marqués de L'Hôpital</a>, aunque fue <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> el primero que elaboró una teoría del cálculo variacional. Las contribuciones de Euler se iniciaron en 1733 con su <i>Elementa Calculi Variationum</i> ('Elementos del cálculo de variaciones') que da nombre a la disciplina. </p><p><a href="/wiki/Joseph_Louis_Lagrange" class="mw-redirect" title="Joseph Louis Lagrange">Lagrange</a> contribuyó extensamente a la teoría y <a href="/wiki/Adrien-Marie_Legendre" title="Adrien-Marie Legendre">Legendre</a> (1786) asentó un método, no enteramente satisfactorio para distinguir entre máximos y mínimos. <a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> y <a href="/wiki/Gottfried_Leibniz" title="Gottfried Leibniz">Gottfried Leibniz</a> también prestaron atención a este asunto.<sup id="cite_ref-brunt_9-0" class="reference separada"><a href="#cite_note-brunt-9"><span class="corchete-llamada">[</span>9<span class="corchete-llamada">]</span></a></sup>&#8203; Otros trabajos destacados fueron los de <a href="/w/index.php?title=Vincenzo_Brunacci&amp;action=edit&amp;redlink=1" class="new" title="Vincenzo Brunacci (aún no redactado)">Vincenzo Brunacci</a> (1810), <a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a> (1829), <a href="/wiki/Sim%C3%A9on_Poisson" class="mw-redirect" title="Siméon Poisson">Siméon Poisson</a> (1831), <a href="/wiki/Mija%C3%ADl_Ostrogradski" title="Mijaíl Ostrogradski">Mijaíl Ostrogradski</a> (1834) y <a href="/wiki/Carl_Gustav_Jakob_Jacobi" title="Carl Gustav Jakob Jacobi">Carl Jacobi</a> (1837). Un trabajo general particularmente importante es el de <a href="/w/index.php?title=Sarrus&amp;action=edit&amp;redlink=1" class="new" title="Sarrus (aún no redactado)">Sarrus</a> (1842) que fue resumido por <a href="/wiki/Cauchy" class="mw-redirect" title="Cauchy">Cauchy</a> (1844). Otros trabajos destacados posteriores son los de <a href="/w/index.php?title=Strauch&amp;action=edit&amp;redlink=1" class="new" title="Strauch (aún no redactado)">Strauch</a> (1849), <a href="/w/index.php?title=Jellett&amp;action=edit&amp;redlink=1" class="new" title="Jellett (aún no redactado)">Jellett</a> (1850), <a href="/wiki/Otto_Hesse" class="mw-redirect" title="Otto Hesse">Otto Hesse</a> (1857), <a href="/wiki/Alfred_Clebsch" title="Alfred Clebsch">Alfred Clebsch</a> (1858) y <a href="/w/index.php?title=Carll&amp;action=edit&amp;redlink=1" class="new" title="Carll (aún no redactado)">Carll</a> (1885), aunque quizá el más importante de los trabajos durante el siglo&#160;<span style="font-variant:small-caps;text-transform:lowercase">XIX</span> es el de <a href="/wiki/Weierstrass" class="mw-redirect" title="Weierstrass">Weierstrass</a>. Este importante trabajo fue una referencia estándar y es el primero que trata el cálculo de variaciones sobre una base firme y rigurosa. Los <a href="/wiki/Problemas_de_Hilbert" title="Problemas de Hilbert">problema 20 y 23 de Hilbert</a> planteados en 1900 estimularon algunos desarrollos posteriores.<sup id="cite_ref-brunt_9-1" class="reference separada"><a href="#cite_note-brunt-9"><span class="corchete-llamada">[</span>9<span class="corchete-llamada">]</span></a></sup>&#8203; Durante el siglo&#160;<span style="font-variant:small-caps;text-transform:lowercase">XX</span>, <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a>, <a href="/wiki/Emmy_Noether" title="Emmy Noether">Emmy Noether</a>, <a href="/w/index.php?title=Leonida_Tonelli&amp;action=edit&amp;redlink=1" class="new" title="Leonida Tonelli (aún no redactado)">Leonida Tonelli</a>, <a href="/wiki/Henri_Lebesgue" class="mw-redirect" title="Henri Lebesgue">Henri Lebesgue</a> y <a href="/wiki/Jacques_Hadamard" title="Jacques Hadamard">Jacques Hadamard</a>, entre otros, hicieron contribuciones notables.<sup id="cite_ref-brunt_9-2" class="reference separada"><a href="#cite_note-brunt-9"><span class="corchete-llamada">[</span>9<span class="corchete-llamada">]</span></a></sup>&#8203; <a href="/wiki/Marston_Morse" title="Marston Morse">Marston Morse</a> aplicó el cálculo de variaciones a lo que actualmente se conoce como <a href="/wiki/Teor%C3%ADa_de_Morse" title="Teoría de Morse">teoría de Morse</a>.<sup id="cite_ref-ferguson_10-0" class="reference separada"><a href="#cite_note-ferguson-10"><span class="corchete-llamada">[</span>10<span class="corchete-llamada">]</span></a></sup>&#8203; <a href="/wiki/Lev_Semenovich_Pontryagin" class="mw-redirect" title="Lev Semenovich Pontryagin">Lev Semenovich Pontryagin</a>, <a href="/w/index.php?title=R._Tyrrell_Rockafellar&amp;action=edit&amp;redlink=1" class="new" title="R. Tyrrell Rockafellar (aún no redactado)">Ralph Rockafellar</a> y Clarke desarrollaron nuevas herramientas matemáticas dentro de la teoría del control óptimo, generalizando el cálculo de variaciones.<sup id="cite_ref-ferguson_10-1" class="reference separada"><a href="#cite_note-ferguson-10"><span class="corchete-llamada">[</span>10<span class="corchete-llamada">]</span></a></sup>&#8203; </p> <div class="mw-heading mw-heading3"><h3 id="Problema_Isoperimétrico"><span id="Problema_Isoperim.C3.A9trico"></span>Problema Isoperimétrico</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=2" title="Editar sección: Problema Isoperimétrico"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="noprint AP rellink"><span style="font-size:88%">Artículo principal:</span>&#32;<i><a href="/wiki/Isoperimetr%C3%ADa" title="Isoperimetría"> Isoperimetría</a></i></div> <p>¿Cuál es el área máxima <i>A</i> que puede rodearse con una curva de longitud <i>L</i> dada? Si no existen restricciones adicionales, la solución es: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\frac {L^{2}}{4\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\frac {L^{2}}{4\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6c23d4e806cda78da19ca27890bd4228de6f29d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.315ex; height:5.676ex;" alt="{\displaystyle A={\frac {L^{2}}{4\pi }}}"></span> </p> </blockquote> <p>Que es el valor que se obtiene para un círculo de radio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=L/2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=L/2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55261c78426504109e223e19e431fc5253030e1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.102ex; height:2.843ex;" alt="{\displaystyle R=L/2\pi }"></span>. </p><p>Si se imponen restricciones adicionales la solución es diferente. Un ejemplo es si suponemos que <i>L</i> se considera sobre una función <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> y los extremos de las curva están sobre los puntos <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a,0),B=(b,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a,0),B=(b,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71274de17dbb4f75571e809604cafd96bdfd8c1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.977ex; height:2.843ex;" alt="{\displaystyle A=(a,0),B=(b,0)}"></span> donde la distancia entre ellos está dada. Es decir <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB=L\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mo>=</mo> <mi>L</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB=L\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/369c425dcbc66cf656bc9b3da5a06da0c7ac4c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.576ex; height:2.176ex;" alt="{\displaystyle AB=L\,}"></span>. El problema de hallar una curva que maximice el área entre ella y el eje x sería, hallar una función <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> de modo que: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \max _{f:[a,b]\to \mathbb {R} }I[f]=\int _{a}^{b}f(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo>:</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </munder> <mi>I</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \max _{f:[a,b]\to \mathbb {R} }I[f]=\int _{a}^{b}f(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0edbd94617f1172835c275c10031436e1282bc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.12ex; height:6.509ex;" alt="{\displaystyle \max _{f:[a,b]\to \mathbb {R} }I[f]=\int _{a}^{b}f(x)dx}"></span> </p> </blockquote> <p>con las restricciones: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}G[f]=\int _{a}^{b}{\sqrt {1+(f'(x))^{2}}}dx=L&amp;{\mbox{longitud de arco}}\\f(a)=f(b)=0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>G</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>L</mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>longitud de arco</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}G[f]=\int _{a}^{b}{\sqrt {1+(f'(x))^{2}}}dx=L&amp;{\mbox{longitud de arco}}\\f(a)=f(b)=0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07e76281535e5edddf09b356822c5ee9cbed6131" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:52.871ex; height:6.509ex;" alt="{\displaystyle {\begin{cases}G[f]=\int _{a}^{b}{\sqrt {1+(f&#039;(x))^{2}}}dx=L&amp;{\mbox{longitud de arco}}\\f(a)=f(b)=0\end{cases}}}"></span> </p> </blockquote> <div class="mw-heading mw-heading3"><h3 id="Braquistócrona"><span id="Braquist.C3.B3crona"></span>Braquistócrona</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=3" title="Editar sección: Braquistócrona"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El problema de la curva <a href="/wiki/Braquist%C3%B3crona" class="mw-redirect" title="Braquistócrona">braquistócrona</a> se remonta a <a href="/wiki/Jakob_Bernoulli" class="mw-redirect" title="Jakob Bernoulli">J. Bernoulli</a> (1696). Se refiere a encontrar una curva en el plano cartesiano que vaya del punto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=(x_{0},y_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=(x_{0},y_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a29b6070ac1b7ca23c822ac47b0b1bf4593ab526" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.265ex; height:2.843ex;" alt="{\displaystyle P=(x_{0},y_{0})}"></span> al origen de modo que un punto material que se desliza sin fricción sobre ella tarda el menor tiempo posible en ir de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> al origen. Usando principios de <a href="/wiki/Mec%C3%A1nica_cl%C3%A1sica" title="Mecánica clásica">mecánica clásica</a> el problema puede formularse como, </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \min _{f}T[f]=\int _{0}^{x_{0}}{\frac {\sqrt {1+(f'(x))^{2}}}{\sqrt {2g(y_{0}-y)}}}\ dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </munder> <mi>T</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <msqrt> <mn>2</mn> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \min _{f}T[f]=\int _{0}^{x_{0}}{\frac {\sqrt {1+(f'(x))^{2}}}{\sqrt {2g(y_{0}-y)}}}\ dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b1d04f1f08b5584f4af926fb849bb2030ff36f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.721ex; height:7.509ex;" alt="{\displaystyle \min _{f}T[f]=\int _{0}^{x_{0}}{\frac {\sqrt {1+(f&#039;(x))^{2}}}{\sqrt {2g(y_{0}-y)}}}\ dx}"></span> </p> </blockquote> <p>donde <i>g</i> es la gravedad y las restricciones son, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d308c32c9894b88115262081194321ae7d9bbf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.511ex; height:2.843ex;" alt="{\displaystyle f(0)=0}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{0})=y_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{0})=y_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1661f200e31065bfb7291ec00a2e829cfe18f97d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.764ex; height:2.843ex;" alt="{\displaystyle f(x_{0})=y_{0}}"></span>. Hay que notar que en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span> existe una <a href="/wiki/Singularidad_matem%C3%A1tica" title="Singularidad matemática">singularidad</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Extremos">Extremos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=4" title="Editar sección: Extremos"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El cálculo de variaciones está relacionado con los máximos o mínimos (colectivamente denominados <b>extremos</b>) de los funcionales. Un funcional mapea <a href="/wiki/Funci%C3%B3n_(matem%C3%A1ticas)" class="mw-redirect" title="Función (matemáticas)">funciones</a> con <a href="/wiki/Escalar" class="mw-disambig" title="Escalar">escalares</a>, por lo que los funcionales se conocen como "funciones de funciones." Los funcionales poseen extremos con respecto a los elementos <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> de un dado espacio de función definido sobre un determinado <a href="/wiki/Dominio_de_una_funci%C3%B3n" title="Dominio de una función">dominio</a>. Se dice que un funcional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J[y]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">[</mo> <mi>y</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J[y]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56de74c2aef9dcd4fdf1f824e419586cf97bb580" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.921ex; height:2.843ex;" alt="{\displaystyle J[y]}"></span> posee un extremo en la función <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta J=J[y]-J[f]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>J</mi> <mo>=</mo> <mi>J</mi> <mo stretchy="false">[</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mi>J</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta J=J[y]-J[f]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/908a610680f68b49d2d74f7909915ae0a941badf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.31ex; height:2.843ex;" alt="{\displaystyle \Delta J=J[y]-J[f]}"></span> posee el mismo signo para todo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> en un entorno arbitrariamente pequeño de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecb3ed2e17fa8f336dcc0fd4b3eddbfb02a50ef3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.925ex; height:2.509ex;" alt="{\displaystyle f.}"></span><sup id="cite_ref-12" class="reference separada"><a href="#cite_note-12"><span class="corchete-llamada">[</span>12<span class="corchete-llamada">]</span></a></sup>&#8203; La función <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> es denominada una función <b>extrema</b>.<sup id="cite_ref-13" class="reference separada"><a href="#cite_note-13"><span class="corchete-llamada">[</span>13<span class="corchete-llamada">]</span></a></sup>&#8203; El extremo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J[f]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J[f]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de95b8fa7148a0649ae7783e6d6d0fb67ab5e18f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.044ex; height:2.843ex;" alt="{\displaystyle J[f]}"></span> es denominado un máximo local si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta J\leq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>J</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta J\leq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6764234039da204d7edc28e9175229ff344f342" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.668ex; height:2.343ex;" alt="{\displaystyle \Delta J\leq 0}"></span> en todo punto de un entorno arbitrariamente pequeño de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e9687ea22c0f310582e97ee5f6c6a5fca28203d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.925ex; height:2.509ex;" alt="{\displaystyle f,}"></span> y un mínimo local si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta J\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>J</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta J\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74ffd5b08bc3b6a6ae0327a5a4fd50bc5fbfd557" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.668ex; height:2.343ex;" alt="{\displaystyle \Delta J\geq 0}"></span> allí.Un espacio de un espacio de funciones contínuas, los extremos de los funcionales correspondientes son denominados <b>extremo fuerte</b> o <b>extremo débil</b>, dependiendo de si las primeras derivadas de las funciones contínuas son respectivamente contínuas o no.<sup id="cite_ref-GelfandFominPP12to13_14-0" class="reference separada"><a href="#cite_note-GelfandFominPP12to13-14"><span class="corchete-llamada">[</span>14<span class="corchete-llamada">]</span></a></sup>&#8203; </p><p>Tanto los extremos fuertes como los débiles de las funcionales son para un espacio de funciones continuas, pero los extremos fuertes tienen el requisito adicional de que las primeras derivadas de las funciones en el espacio sean continuas. Por lo tanto un extremo fuerte es también un extremo débil, pero la relación inversa no puede ser válida. Encontrar extremos fuertes es más difícil que encontrar extremos débiles.<sup id="cite_ref-GelfandFominP13_15-0" class="reference separada"><a href="#cite_note-GelfandFominP13-15"><span class="corchete-llamada">[</span>15<span class="corchete-llamada">]</span></a></sup>&#8203; Un ejemplo de la condición necesaria que se utiliza para encontrar un extremo debil es la <a href="/w/index.php?title=Ecuaci%C3%B3n_de_Euler%E2%80%93Lagrange&amp;action=edit&amp;redlink=1" class="new" title="Ecuación de Euler–Lagrange (aún no redactado)">ecuación de Euler–Lagrange</a>.<sup id="cite_ref-GelfandFominPP14to15_16-0" class="reference separada"><a href="#cite_note-GelfandFominPP14to15-16"><span class="corchete-llamada">[</span>16<span class="corchete-llamada">]</span></a></sup>&#8203;<sup id="cite_ref-17" class="reference separada"><a href="#cite_note-17"><span class="corchete-llamada">[</span>17<span class="corchete-llamada">]</span></a></sup>&#8203; </p> <div class="mw-heading mw-heading2"><h2 id="Formulación_general"><span id="Formulaci.C3.B3n_general"></span>Formulación general</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=5" title="Editar sección: Formulación general"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uno de los problemas típicos en <a href="/wiki/C%C3%A1lculo_diferencial" title="Cálculo diferencial">cálculo diferencial</a> es el de encontrar el valor de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab34739435d9d9d99cddf4041740b107343b1398" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.717ex; height:1.676ex;" alt="{\displaystyle x\,}"></span> para el cual la función <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78b2b66021c2cac2b5654495678c63ff142952e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.805ex; height:2.843ex;" alt="{\displaystyle f(x)\,}"></span> alcanza un valor extremo (máximo o mínimo). En el cálculo de variaciones el problema es encontrar una <a href="/wiki/Funci%C3%B3n_(matem%C3%A1ticas)" class="mw-redirect" title="Función (matemáticas)">función</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> para la cual un <a href="/wiki/Funcional" class="mw-redirect" title="Funcional">funcional</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J[f]\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J[f]\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26ea0bf8b1b1e72b887230a17788d39eb3ba7fd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.431ex; height:2.843ex;" alt="{\displaystyle J[f]\,}"></span> alcance un valor extremo. El funcional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J[f]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J[f]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de95b8fa7148a0649ae7783e6d6d0fb67ab5e18f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.044ex; height:2.843ex;" alt="{\displaystyle J[f]}"></span> está compuesto por una integral que depende de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, de la función <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> y algunas de sus derivadas. </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span style="float: right; width: 10%; text-align: right;">(<cite id="Equation_1a" style="font-style: normal;"><a href="#Eqnref_1a">1a</a></cite>)</span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \max _{f}/\min _{f}\left\{J[f]=\int _{a}^{b}{\mathcal {L}}(x,f(x),f'(x),f''(x),\dots ,f^{(n)}(x))\,dx\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </munder> <mrow> <mo>{</mo> <mrow> <mi>J</mi> <mo stretchy="false">[</mo> <mi>f</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \max _{f}/\min _{f}\left\{J[f]=\int _{a}^{b}{\mathcal {L}}(x,f(x),f'(x),f''(x),\dots ,f^{(n)}(x))\,dx\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a330b81f983e2c49ac59d11ed02cc6768b6eca8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:63.013ex; height:6.509ex;" alt="{\displaystyle \max _{f}/\min _{f}\left\{J[f]=\int _{a}^{b}{\mathcal {L}}(x,f(x),f&#039;(x),f&#039;&#039;(x),\dots ,f^{(n)}(x))\,dx\right\}}"></span> </p> </blockquote> <p>Donde la función <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> pertenece a algún espacio de funciones (<a href="/wiki/Espacio_de_Banach" title="Espacio de Banach">espacio de Banach</a>, <a href="/wiki/Espacio_de_Hilbert" title="Espacio de Hilbert">espacio de Hilbert</a>), y tanto ella como sus derivadas pueden tener restricciones. Esta fórmula integral puede ser más complicada permitiendo a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> ser un vector, y por lo tanto incluyendo derivadas parciales para <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span style="float: right; width: 10%; text-align: right;">(<cite id="Equation_1b" style="font-style: normal;"><a href="#Eqnref_1b">1b</a></cite>)</span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \max _{\mathbf {f} }/\min _{\mathbf {f} }\left\{J[\mathbf {f} ]=\int _{{\mathcal {D}}\subset \mathbb {R} ^{n}}{\mathcal {L}}(\mathbf {x} ,\mathbf {f} (\mathbf {x} ),D\mathbf {f} (\mathbf {x} ),\dots ,D^{n}\mathbf {f} (\mathbf {x} ))\,d^{n}\mathbf {x} \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <munder> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> </mrow> </munder> <mrow> <mo>{</mo> <mrow> <mi>J</mi> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">D</mi> </mrow> </mrow> <mo>&#x2282;<!-- ⊂ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">f</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \max _{\mathbf {f} }/\min _{\mathbf {f} }\left\{J[\mathbf {f} ]=\int _{{\mathcal {D}}\subset \mathbb {R} ^{n}}{\mathcal {L}}(\mathbf {x} ,\mathbf {f} (\mathbf {x} ),D\mathbf {f} (\mathbf {x} ),\dots ,D^{n}\mathbf {f} (\mathbf {x} ))\,d^{n}\mathbf {x} \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7653ed90cdff2c9c5c416f6600426cfb095d0451" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:61.729ex; height:6.176ex;" alt="{\displaystyle \max _{\mathbf {f} }/\min _{\mathbf {f} }\left\{J[\mathbf {f} ]=\int _{{\mathcal {D}}\subset \mathbb {R} ^{n}}{\mathcal {L}}(\mathbf {x} ,\mathbf {f} (\mathbf {x} ),D\mathbf {f} (\mathbf {x} ),\dots ,D^{n}\mathbf {f} (\mathbf {x} ))\,d^{n}\mathbf {x} \right\}}"></span> </p> </blockquote> <div class="mw-heading mw-heading3"><h3 id="Espacios_funcionales">Espacios funcionales</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=6" title="Editar sección: Espacios funcionales"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La fundamentación rigurosa del cálculo de variaciones requiere considerar variedades diferenciales lineales de <a href="/wiki/Dimensi%C3%B3n_infinita" title="Dimensión infinita">dimensión infinita</a>. De hecho el punto de partida del cálculo de variaciones es un teorema de análisis funcional que prueba que es posible considerar una curva en un espacio funcional (e.g. trayectoria en el <a href="/wiki/Espacio_f%C3%A1sico" title="Espacio fásico">espacio fásico</a>) simplemente como una función con una variable adicional, concretamente:<sup id="cite_ref-18" class="reference separada"><a href="#cite_note-18"><span class="corchete-llamada">[</span>18<span class="corchete-llamada">]</span></a></sup>&#8203; </p> <table style="margin-right:4em; min-width:50%; max-width:77%"> <tbody><tr> <td><blockquote style="padding-right:2em; padding-left:1.5em; padding-bottom:0.5em; padding-top:0.5em; border:1px solid; font-family:Georgia,serif; border-color: #49768C; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122);"> <p>La categoría formada por <a href="/wiki/Espacio_vectorial_conveniente" title="Espacio vectorial conveniente">espacios vectoriales convenientes</a> y <a href="/wiki/Funci%C3%B3n_suave" class="mw-redirect" title="Función suave">funciones suaves</a> entre ellos es cerrada por el producto cartesiano, de tal manera que se tiene la siguiente biyección natural:<i></i> </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(E\times F,G)\approx C^{\infty }(E,C^{\infty }(F,G))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>&#x00D7;<!-- × --></mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>&#x2248;<!-- ≈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(E\times F,G)\approx C^{\infty }(E,C^{\infty }(F,G))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/def4c066e45297643b34a39502b370ecb0897a9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.174ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(E\times F,G)\approx C^{\infty }(E,C^{\infty }(F,G))}"></span></dd></dl> </blockquote> <p>donde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle E,F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>E</mi> <mo>,</mo> <mi>F</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle E,F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f100a740364690189ed4db7a5d278c02c174881" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.944ex; height:1.843ex;" alt="{\displaystyle \scriptstyle E,F}"></span> son espacios vectoriales convenientes y la biyección anterior es un difeomorfismo. </p> </blockquote> </td></tr></tbody></table> <p>El teorema anterior puede aplicarse por ejemplo al <a href="/wiki/Principio_de_m%C3%ADnima_acci%C3%B3n" title="Principio de mínima acción">principio de mínima acción</a> donde trata de encontrarse la trayectoria posible en el espacio de fases que hace mínima la integral de acción. Dicha trayectoria es una curva suave en el espacio de trayectorias <i>E</i>, considerando ahora: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=C^{\infty }(\mathbb {R} ,\mathbb {R} ^{n}),\quad F=G=\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>F</mi> <mo>=</mo> <mi>G</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=C^{\infty }(\mathbb {R} ,\mathbb {R} ^{n}),\quad F=G=\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24aa9e48438f01e29a650bd2bb8b67c56281f9c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.764ex; height:2.843ex;" alt="{\displaystyle E=C^{\infty }(\mathbb {R} ,\mathbb {R} ^{n}),\quad F=G=\mathbb {R} }"></span> </p> </blockquote> <p>Se tiene que el problema de minimización puede reducirse a minimizar una cierta función real <i>f</i> de variable real: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{q_{0}}(\varepsilon ):=S[q_{0}+\varepsilon \delta q],\qquad S:\mathbb {C} ^{\infty }(\mathbb {R} ^{n})\to \mathbb {R} ,\ S[q]:=\int _{t_{1}}^{t_{2}}{\mathcal {L}}(q(t),{\dot {q}}(t),t)\ dt,\ q(t)\in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>S</mi> <mo stretchy="false">[</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>&#x03B5;<!-- ε --></mi> <mi>&#x03B4;<!-- δ --></mi> <mi>q</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mspace width="2em" /> <mi>S</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>S</mi> <mo stretchy="false">[</mo> <mi>q</mi> <mo stretchy="false">]</mo> <mo>:=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>q</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>d</mi> <mi>t</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mi>q</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{q_{0}}(\varepsilon ):=S[q_{0}+\varepsilon \delta q],\qquad S:\mathbb {C} ^{\infty }(\mathbb {R} ^{n})\to \mathbb {R} ,\ S[q]:=\int _{t_{1}}^{t_{2}}{\mathcal {L}}(q(t),{\dot {q}}(t),t)\ dt,\ q(t)\in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/849760f0cfd3f0afa338b070d6fad2f405858011" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:84.67ex; height:6.509ex;" alt="{\displaystyle f_{q_{0}}(\varepsilon ):=S[q_{0}+\varepsilon \delta q],\qquad S:\mathbb {C} ^{\infty }(\mathbb {R} ^{n})\to \mathbb {R} ,\ S[q]:=\int _{t_{1}}^{t_{2}}{\mathcal {L}}(q(t),{\dot {q}}(t),t)\ dt,\ q(t)\in \mathbb {R} ^{n}}"></span> </p> </blockquote> <div class="mw-heading mw-heading3"><h3 id="Extremos_relativos_débiles_y_fuertes"><span id="Extremos_relativos_d.C3.A9biles_y_fuertes"></span>Extremos relativos débiles y fuertes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=7" title="Editar sección: Extremos relativos débiles y fuertes"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un problema variacional requiere que el funcional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle J(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>J</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle J(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc5774343635f21b135989a7293f6cfa59f4a35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.224ex; height:2.176ex;" alt="{\displaystyle \scriptstyle J(f)}"></span> esté definido sobre un <a href="/wiki/Espacio_de_Banach" title="Espacio de Banach">espacio de Banach</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle (V,\|\cdot \|_{V})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle (V,\|\cdot \|_{V})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0acea78c75183c72778ae5939a475906d20bb93d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.292ex; height:2.343ex;" alt="{\displaystyle \scriptstyle (V,\|\cdot \|_{V})}"></span> adecuado. La <a href="/wiki/Norma_vectorial" title="Norma vectorial">norma vectorial</a> de dicho espacio es lo que permite definir rigurosamente si una solución es un mínimo o un máximo relativo. Por ejemplo una función <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle f_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle f_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4885ad35ba3bb0582fffe651fd23170c13179d21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.637ex; height:2.009ex;" alt="{\displaystyle \scriptstyle f_{0}}"></span> es un <b>mínimo relativo</b> si existe un cierto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \delta &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>&#x03B4;<!-- δ --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \delta &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7307c8f50fe1fbd19076bd7b3292a93b81046e83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.842ex; height:1.843ex;" alt="{\displaystyle \scriptstyle \delta &gt;0}"></span> tal que, para toda función <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>f</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bb782e08eca6897b057d996121da1dbbc94a6f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:0.904ex; height:2.009ex;" alt="{\displaystyle \scriptstyle f}"></span> se cumpla que: </p> <blockquote style="padding: 5px 10px; background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align: left; margin-left:30px; margin-bottom: 0.4em; margin-top:0.2em; min-width:50%;"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f-f_{0}\|&lt;\delta \quad \Rightarrow \quad J(f_{0})\leq J(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&lt;</mo> <mi>&#x03B4;<!-- δ --></mi> <mspace width="1em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="1em" /> <mi>J</mi> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>J</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f-f_{0}\|&lt;\delta \quad \Rightarrow \quad J(f_{0})\leq J(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94e87b4239f5987cdb93b183f7b7ea2f10d62aba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.176ex; height:2.843ex;" alt="{\displaystyle \|f-f_{0}\|&lt;\delta \quad \Rightarrow \quad J(f_{0})\leq J(f)}"></span> </p> </blockquote> <p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Véase_también"><span id="V.C3.A9ase_tambi.C3.A9n"></span>Véase también</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=8" title="Editar sección: Véase también"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Charles_Augustin_de_Coulomb" class="mw-redirect" title="Charles Augustin de Coulomb">Charles Augustin de Coulomb</a></li> <li><a href="/wiki/Ecuaciones_de_Euler-Lagrange" title="Ecuaciones de Euler-Lagrange">Ecuaciones de Euler-Lagrange</a></li> <li><a href="/wiki/Derivada_funcional" title="Derivada funcional">Derivada funcional</a></li> <li><a href="/wiki/Mec%C3%A1nica_de_suelos" title="Mecánica de suelos">Mecánica de suelos</a></li> <li><a href="/wiki/Teor%C3%ADa_de_Mohr-Coulomb" title="Teoría de Mohr-Coulomb">Teoría de Mohr-Coulomb</a></li> <li><a href="/wiki/Torsi%C3%B3n_mec%C3%A1nica" title="Torsión mecánica">Torsión mecánica</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Referencias">Referencias</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=9" title="Editar sección: Referencias"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="listaref" style="list-style-type: decimal;"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><span id="CITAREFJeremy_Gray2021" class="citation libro">Jeremy Gray (2021). <i>Cambios y variaciones: una historia de las ecuaciones diferenciales hasta 1900</i>. Springer International Publishing. <small><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Especial:FuentesDeLibros/978-3-030-70574-9" title="Especial:FuentesDeLibros/978-3-030-70574-9">978-3-030-70574-9</a></small>. <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-3-030-70575-6">10.1007/978-3-030-70575-6</a></small>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.au=Jeremy+Gray&amp;rft.aulast=Jeremy+Gray&amp;rft.btitle=Cambios+y+variaciones%3A+una+historia+de+las+ecuaciones+diferenciales+hasta+1900&amp;rft.date=2021&amp;rft.genre=book&amp;rft.isbn=978-3-030-70574-9&amp;rft.pub=Springer+International+Publishing&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-70575-6&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><span class="citation libro"><i>Mathematics for Physicists 2</i>. Berlin/Heidelberg: Springer. 2007. <small><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Especial:FuentesDeLibros/978-3-540-72251-9" title="Especial:FuentesDeLibros/978-3-540-72251-9">978-3-540-72251-9</a></small>. <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-3-540-72252-6">10.1007/978-3-540-72252-6</a></small>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.btitle=Mathematics+for+Physicists+2&amp;rft.date=2007&amp;rft.genre=book&amp;rft.isbn=978-3-540-72251-9&amp;rft.place=Berlin%2FHeidelberg&amp;rft.pub=Springer&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-540-72252-6&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><span id="CITAREFHubert_Goldschmidt,_Shlomo_Sternberg1973" class="citation publicación">Hubert Goldschmidt, Shlomo Sternberg (1973). <a rel="nofollow" class="external text" href="https://aif.centre-mersenne.org/item/AIF_1973__23_1_203_0/">«El formalismo de Hamilton-Cartan en el cálculo de variaciones»</a>. <i>Annales de l'institut Fourier</i> <b>23</b> (1): 203-267. <small><a href="/wiki/ISSN" class="mw-redirect" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="//portal.issn.org/resource/issn/0373-0956">0373-0956</a></small>. <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.5802%2Faif.451">10.5802/aif.451</a></small><span class="reference-accessdate">. Consultado el 21 de octubre de 2022</span>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.atitle=El+formalismo+de+Hamilton-Cartan+en+el+c%C3%A1lculo+de+variaciones&amp;rft.au=Hubert+Goldschmidt%2C+Shlomo+Sternberg&amp;rft.aulast=Hubert+Goldschmidt%2C+Shlomo+Sternberg&amp;rft.date=1973&amp;rft.genre=article&amp;rft.issn=0373-0956&amp;rft.issue=1&amp;rft.jtitle=Annales+de+l%27institut+Fourier&amp;rft.pages=203-267&amp;rft.volume=23&amp;rft_id=https%3A%2F%2Faif.centre-mersenne.org%2Fitem%2FAIF_1973&#95;_23_1_203_0%2F&amp;rft_id=info%3Adoi%2F10.5802%2Faif.451&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><span id="CITAREFVladimir_I._Pupyshev,_H._E._Montgomery2015-09-01" class="citation publicación">Vladimir I. Pupyshev, H. E. Montgomery (1 de septiembre de 2015). «Algunos problemas en aplicaciones del método variacional lineal». <i>European Journal of Physics</i> <b>36</b> (5): 055043. <small><a href="/wiki/ISSN" class="mw-redirect" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="//portal.issn.org/resource/issn/0143-0807">0143-0807</a></small>. <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F0143-0807%2F36%2F5%2F055043">10.1088/0143-0807/36/5/055043</a></small>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.atitle=Algunos+problemas+en+aplicaciones+del+m%C3%A9todo+variacional+lineal&amp;rft.au=Vladimir+I.+Pupyshev%2C+H.+E.+Montgomery&amp;rft.aulast=Vladimir+I.+Pupyshev%2C+H.+E.+Montgomery&amp;rft.date=2015-09-01&amp;rft.genre=article&amp;rft.issn=0143-0807&amp;rft.issue=5&amp;rft.jtitle=European+Journal+of+Physics&amp;rft.pages=055043&amp;rft.volume=36&amp;rft_id=info%3Adoi%2F10.1088%2F0143-0807%2F36%2F5%2F055043&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><span id="CITAREFE._Noether,_M._A._Tavel1971-01" class="citation publicación">E. Noether, M. A. Tavel (1971-01). «Problemas de variación invariante». <i>Teoría del transporte y física estadística</i> <b>1</b> (3): 186-207. <small><a href="/wiki/ISSN" class="mw-redirect" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="//portal.issn.org/resource/issn/0041-1450">0041-1450</a></small>. <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1080%2F00411457108231446">10.1080/00411457108231446</a></small>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.atitle=Problemas+de+variaci%C3%B3n+invariante&amp;rft.au=E.+Noether%2C+M.+A.+Tavel&amp;rft.aulast=E.+Noether%2C+M.+A.+Tavel&amp;rft.date=1971-01&amp;rft.genre=article&amp;rft.issn=0041-1450&amp;rft.issue=3&amp;rft.jtitle=Teor%C3%ADa+del+transporte+y+f%C3%ADsica+estad%C3%ADstica&amp;rft.pages=186-207&amp;rft.volume=1&amp;rft_id=info%3Adoi%2F10.1080%2F00411457108231446&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><span id="CITAREFPhilippe_Blanchard,_Erwin_Brüning1982" class="citation libro">Philippe Blanchard, Erwin Brüning (1982). <i>Problemas variacionales clásicos -Métodos directos del cálculo de variaciones</i>. Viena: Springer Vienna. pp.&#160;74-124. <small><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Especial:FuentesDeLibros/978-3-7091-2261-7" title="Especial:FuentesDeLibros/978-3-7091-2261-7">978-3-7091-2261-7</a></small>. <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-3-7091-2260-0_6">10.1007/978-3-7091-2260-0_6</a></small>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.au=Philippe+Blanchard%2C+Erwin+Br%C3%BCning&amp;rft.aulast=Philippe+Blanchard%2C+Erwin+Br%C3%BCning&amp;rft.btitle=Problemas+variacionales+cl%C3%A1sicos+-M%C3%A9todos+directos+del+c%C3%A1lculo+de+variaciones&amp;rft.date=1982&amp;rft.genre=book&amp;rft.isbn=978-3-7091-2261-7&amp;rft.pages=74-124&amp;rft.place=Viena&amp;rft.pub=Springer+Vienna&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-7091-2260-0_6&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text"><span class="citation web"><a rel="nofollow" class="external text" href="https://abelprize.no/abel-prize-laureates/2019">«El Premio Abel. 2019: Karen Keskulla Uhlenbeck»</a><span class="reference-accessdate">. Consultado el 18 de octubre de 2022</span>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.btitle=El+Premio+Abel.+2019%3A+Karen+Keskulla+Uhlenbeck&amp;rft.genre=book&amp;rft_id=https%3A%2F%2Fabelprize.no%2Fabel-prize-laureates%2F2019&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text"><span id="CITAREFSimon_Donaldson2019-03-01" class="citation publicación">Simon Donaldson (1 de marzo de 2019). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/notices/201903/rnoti-p303.pdf">«Karen Uhlenbeck y el cálculo de variaciones»</a>. <i>Notices of the American Mathematical Society</i> <b>66</b> (03): 1. <small><a href="/wiki/ISSN" class="mw-redirect" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="//portal.issn.org/resource/issn/0002-9920">0002-9920</a></small>. <small><a href="/wiki/Digital_object_identifier" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1090%2Fnoti1806">10.1090/noti1806</a></small><span class="reference-accessdate">. Consultado el 18 de octubre de 2022</span>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.atitle=Karen+Uhlenbeck+y+el+c%C3%A1lculo+de+variaciones&amp;rft.au=Simon+Donaldson&amp;rft.aulast=Simon+Donaldson&amp;rft.date=2019-03-01&amp;rft.genre=article&amp;rft.issn=0002-9920&amp;rft.issue=03&amp;rft.jtitle=Notices+of+the+American+Mathematical+Society&amp;rft.pages=1&amp;rft.volume=66&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fnotices%2F201903%2Frnoti-p303.pdf&amp;rft_id=info%3Adoi%2F10.1090%2Fnoti1806&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-brunt-9"><span class="mw-cite-backlink">↑ <a href="#cite_ref-brunt_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-brunt_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-brunt_9-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><span id="CITAREFvan_Brunt2004" class="citation libro">van Brunt, Bruce (2004). <a rel="nofollow" class="external text" href="https://archive.org/details/springer_10.1007-b97436"><i>The Calculus of Variations</i></a>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <small><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Especial:FuentesDeLibros/0-387-40247-0" title="Especial:FuentesDeLibros/0-387-40247-0">0-387-40247-0</a></small>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.au=van+Brunt%2C+Bruce&amp;rft.aufirst=Bruce&amp;rft.aulast=van+Brunt&amp;rft.btitle=The+Calculus+of+Variations&amp;rft.date=2004&amp;rft.genre=book&amp;rft.isbn=0-387-40247-0&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fspringer_10.1007-b97436&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-ferguson-10"><span class="mw-cite-backlink">↑ <a href="#cite_ref-ferguson_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ferguson_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><span class="citation cita-Journal" id="CITAREFFerguson2004">Ferguson,&#32;James&#32;(2004).&#32;«Brief Survey of the History of the Calculus of Variations and its Applications».&#32;<i></i><span class="noprint"><a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<a rel="nofollow" class="external text" href="http://arxiv.org/abs/arXiv:math/0402357">arXiv:math/0402357</a></span><i></i>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Brief+Survey+of+the+History+of+the+Calculus+of+Variations+and+its+Applications&amp;rft.jtitle=%27%27%3Cspan+class%3D%22noprint%22%3E%5B%5BarXiv%5D%5D%3A%5Bhttp%3A%2F%2Farxiv.org%2Fabs%2FarXiv%3Amath%2F0402357+arXiv%3Amath%2F0402357%5D%3C%2Fspan%3E%27%27&amp;rft.aulast=Ferguson&amp;rft.aufirst=James&amp;rft.au=Ferguson%2C%26%2332%3BJames&amp;rft.date=2004&amp;rfr_id=info:sid/es.wikipedia.org:C%C3%A1lculo_de_variaciones"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-CourHilb1953P169-11"><span class="mw-cite-backlink"><a href="#cite_ref-CourHilb1953P169_11-0">↑</a></span> <span class="reference-text"><span id="CITAREFCourantHilbert1953" class="citation libro"><a href="/wiki/Richard_Courant" title="Richard Courant">Courant, R</a>; <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, D</a> (1953). <i>Methods of Mathematical Physics</i> <b>I</b> (First English edición). New York: Interscience Publishers, Inc. p.&#160;169. <small><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/Especial:FuentesDeLibros/978-0471504474" title="Especial:FuentesDeLibros/978-0471504474">978-0471504474</a></small>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AC%C3%A1lculo+de+variaciones&amp;rft.au=Courant%2C+R&amp;rft.au=Hilbert%2C+D&amp;rft.aufirst=R&amp;rft.aulast=Courant&amp;rft.btitle=Methods+of+Mathematical+Physics&amp;rft.date=1953&amp;rft.edition=First+English&amp;rft.genre=book&amp;rft.isbn=978-0471504474&amp;rft.pages=169&amp;rft.place=New+York&amp;rft.pub=Interscience+Publishers%2C+Inc.&amp;rft.volume=I&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text">El entorno de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> es la porción de un dado espacio de función donde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |y-f|&lt;h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |y-f|&lt;h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/018fe7b2454de3a49f437290c7dc9e747a38494e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.006ex; height:2.843ex;" alt="{\displaystyle |y-f|&lt;h}"></span> sobre todo el dominio de las funciones, con <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> un número positivo qu especifica el tamaño del entorno.<sup id="cite_ref-CourHilb1953P169_11-0" class="reference separada"><a href="#cite_note-CourHilb1953P169-11"><span class="corchete-llamada">[</span>11<span class="corchete-llamada">]</span></a></sup>&#8203;</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">↑</a></span> <span class="reference-text">Notar la diferencia entre los términos extremo y extrema. Una extrema es una función que hace a un funcional un extremo.</span> </li> <li id="cite_note-GelfandFominPP12to13-14"><span class="mw-cite-backlink"><a href="#cite_ref-GelfandFominPP12to13_14-0">↑</a></span> <span class="reference-text"><a href="#CITAREFGelfandFomin2000">Gelfand y Fomin, 2000</a>, pp.&#160;12–13</span> </li> <li id="cite_note-GelfandFominP13-15"><span class="mw-cite-backlink"><a href="#cite_ref-GelfandFominP13_15-0">↑</a></span> <span class="reference-text"><a href="#CITAREF_GelfandFomin_2000">Gelfand y Fomin, 2000</a>, p.&#160;13</span> </li> <li id="cite_note-GelfandFominPP14to15-16"><span class="mw-cite-backlink"><a href="#cite_ref-GelfandFominPP14to15_16-0">↑</a></span> <span class="reference-text"><a href="#CITAREF_GelfandFomin_2000">Gelfand y Fomin, 2000</a>, pp.&#160;14–15</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><a href="#cite_ref-17">↑</a></span> <span class="reference-text"> Para una condición suficiente, ver sección "Variaciones y condición suficiente para un mínimo.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><a href="#cite_ref-18">↑</a></span> <span class="reference-text">A. Kriegl y P. Michor, 1989, p. 3</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografía"><span id="Bibliograf.C3.ADa"></span>Bibliografía</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=10" title="Editar sección: Bibliografía"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>A. Kriegl y P. W. Michor: <a rel="nofollow" class="external text" href="http://www.mat.univie.ac.at/~michor/aspects.pdf">"Aspects of the theory of inifinite dimensional manifolds"</a>, <i>Differential Geometry and its Applications</i>, <b>1</b>, 1991, pp. 159-176.</li> <li><a href="/w/index.php?title=Leonida_Tonelli&amp;action=edit&amp;redlink=1" class="new" title="Leonida Tonelli (aún no redactado)">Leonida Tonelli</a>: <a rel="nofollow" class="external text" href="http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath&amp;idno=ACQ6956">Fondamenti di calcolo delle variazioni</a>, N. Zanichelli, 1921-23</li> <li>Todhunter, I. <a rel="nofollow" class="external text" href="http://www.archive.org/details/histroyofthecalc033379mbp">A history of the calculus of variations</a>, Chelsea, 1861</li> <li>Carll, L. B. <a rel="nofollow" class="external text" href="http://www.archive.org/details/treatiseonthecal032865mbp">A Treatise On The Calculus Of Variations</a> John Wiley &amp; sons, 1881</li> <li>Hancock, H. <a rel="nofollow" class="external text" href="http://www.archive.org/details/151181775">Lectures on the calculus of variations (the Weierstrassian theory)</a> Cincinnati University Press, 1904</li> <li>Bolza, O <a rel="nofollow" class="external text" href="http://name.umdl.umich.edu/ACM2513.0001.001">Lectures on the calculus of variations</a>, Chicago University Press, 1904</li> <li>Byerly, W. E. <a rel="nofollow" class="external text" href="http://name.umdl.umich.edu/ACQ6938.0001.001">Introduction to the calculus of variations</a> <a href="/wiki/Harvard_University_Press" title="Harvard University Press">Harvard University Press</a>, 1917</li> <li>Weinstock, R. <a rel="nofollow" class="external text" href="http://www.archive.org/details/calculusofvariat033563mbp">Calculus Of Variations With Applications To Physics And Engineering</a>, McGrawHill, 1952</li> <li>Hadamard J. e Fréchet, M. <a rel="nofollow" class="external text" href="http://www.archive.org/details/leconssurlecalcu00hadarich">Leçons sur le calcul des variations</a> (francese) Hermann, 1910</li> <li>Fomin, S.V. and Gelfand, I.M.: Calculus of Variations, Dover Publ., 2000</li> <li>Lebedev, L.P. and Cloud, M.J.: The Calculus of Variations and Functional Analysis with Optimal Control and Applications in Mechanics, World Scientific, 2003, pages 1&#160;– 98</li> <li>Charles Fox: An Introduction to the Calculus of Variations, Dover Publ., 1987</li> <li><a href="/w/index.php?title=Giuseppe_Buttazzo&amp;action=edit&amp;redlink=1" class="new" title="Giuseppe Buttazzo (aún no redactado)">Giuseppe Buttazzo</a>, <a href="/w/index.php?title=Gianni_Dal_Maso&amp;action=edit&amp;redlink=1" class="new" title="Gianni Dal Maso (aún no redactado)">Gianni Dal Maso</a>, <a href="/wiki/Ennio_De_Giorgi" class="mw-redirect" title="Ennio De Giorgi">Ennio De Giorgi</a>. <a rel="nofollow" class="external text" href="http://www.treccani.it/enciclopedia/calcolo-delle-variazioni_(8Enciclopedia-Novecento)/">Variazioni, calcolo delle</a>, <i>Enciclopedia del Novecento</i>, II Supplemento (1998), <a href="/w/index.php?title=Istituto_dell%27Enciclopedia_italiana_Treccani&amp;action=edit&amp;redlink=1" class="new" title="Istituto dell&#39;Enciclopedia italiana Treccani (aún no redactado)">Istituto dell'Enciclopedia italiana Treccani</a></li> <li><a href="/w/index.php?title=Gianni_Dal_Maso&amp;action=edit&amp;redlink=1" class="new" title="Gianni Dal Maso (aún no redactado)">Gianni Dal Maso</a>, <a rel="nofollow" class="external text" href="http://www.treccani.it/enciclopedia/calcolo-delle-variazioni_%28Enciclopedia-della-Scienza-e-della-Tecnica%29/">Variazioni, calcolo delle</a>, <i>Enciclopedia della Scienza e della Tecnica</i>, (2007), <a href="/w/index.php?title=Istituto_dell%27Enciclopedia_italiana_Treccani&amp;action=edit&amp;redlink=1" class="new" title="Istituto dell&#39;Enciclopedia italiana Treccani (aún no redactado)">Istituto dell'Enciclopedia italiana Treccani</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Enlaces_externos">Enlaces externos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;action=edit&amp;section=11" title="Editar sección: Enlaces externos"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20150518131909/http://www.112rm.com/dgsce/planes/sismimur/sis_3_4_2.html">Cambios acumulados de esfuerzos de Coulomb</a>.</li></ul> <p><br /> </p> <style data-mw-deduplicate="TemplateStyles:r161257576">.mw-parser-output .mw-authority-control{margin-top:1.5em}.mw-parser-output .mw-authority-control .navbox table{margin:0}.mw-parser-output .mw-authority-control .navbox hr:last-child{display:none}.mw-parser-output .mw-authority-control .navbox+.mw-mf-linked-projects{display:none}.mw-parser-output .mw-authority-control .mw-mf-linked-projects{display:flex;padding:0.5em;border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral,#eaecf0);color:var(--color-base,#202122)}.mw-parser-output .mw-authority-control .mw-mf-linked-projects ul li{margin-bottom:0}.mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .mw-authority-control .navbox-list{border-color:#f8f9fa}.mw-parser-output .mw-authority-control .navbox th{background-color:#eeeeff}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d);background-color:var(--background-color-neutral,#27292d);color:var(--color-base,#eaecf0)}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral,#27292d)!important;color:var(--color-base,#eaecf0)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}}</style><div class="mw-authority-control"><div role="navigation" class="navbox" aria-label="Navbox" style="width: inherit;padding:3px"><table class="hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width: 12%; text-align:center;"><a href="/wiki/Control_de_autoridades" title="Control de autoridades">Control de autoridades</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><b>Proyectos Wikimedia</b></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q216861" class="extiw" title="wikidata:Q216861">Q216861</a></span></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikimedia_Commons" title="Commonscat"><img alt="Commonscat" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/15px-Commons-logo.svg.png" decoding="async" width="15" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/23px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Multimedia:</span> <span class="uid"><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Calculus_of_variations">Calculus of variations</a></span> / <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Special:MediaSearch?type=image&amp;search=%22Q216861%22">Q216861</a></span></span></li></ul> <hr /> <ul><li><b>Identificadores</b></li> <li><span style="white-space:nowrap;"><a href="/wiki/Library_of_Congress_Control_Number" title="Library of Congress Control Number">LCCN</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85018809">sh85018809</a></span></li> <li><span style="white-space:nowrap;"><a href="/wiki/Biblioteca_Nacional_de_la_Dieta" title="Biblioteca Nacional de la Dieta">NDL</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00563089">00563089</a></span></li> <li><span style="white-space:nowrap;"><a href="/wiki/Biblioteca_Nacional_de_la_Rep%C3%BAblica_Checa" title="Biblioteca Nacional de la República Checa">NKC</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph126994">ph126994</a></span></li> <li><span style="white-space:nowrap;"><a href="/wiki/Biblioteca_Nacional_de_Israel" title="Biblioteca Nacional de Israel">NLI</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007293785905171">987007293785905171</a></span></li> <li><b>Diccionarios y enciclopedias</b></li> <li><span style="white-space:nowrap;"><a href="/wiki/Enciclopedia_Brit%C3%A1nica" title="Enciclopedia Británica">Britannica</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="https://www.britannica.com/topic/calculus-of-variations-mathematics">url</a></span></li></ul> </div></td></tr></tbody></table></div><div class="mw-mf-linked-projects hlist"> <ul><li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q216861" class="extiw" title="wikidata:Q216861">Q216861</a></span></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikimedia_Commons" title="Commonscat"><img alt="Commonscat" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/15px-Commons-logo.svg.png" decoding="async" width="15" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/23px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Multimedia:</span> <span class="uid"><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Calculus_of_variations">Calculus of variations</a></span> / <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Special:MediaSearch?type=image&amp;search=%22Q216861%22">Q216861</a></span></span></li></ul> </div></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7556f8b5dd‐pxnl8 Cached time: 20241124181146 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.298 seconds Real time usage: 0.457 seconds Preprocessor visited node count: 2107/1000000 Post‐expand include size: 34983/2097152 bytes Template argument size: 3419/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 24963/5000000 bytes Lua time usage: 0.132/10.000 seconds Lua memory usage: 4094803/52428800 bytes Number of Wikibase entities loaded: 7/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 282.096 1 -total 53.14% 149.911 1 Plantilla:Control_de_autoridades 33.76% 95.235 1 Plantilla:Listaref 13.65% 38.499 4 Plantilla:Cite_book 7.70% 21.720 1 Plantilla:Cite_arXiv 5.79% 16.347 1 Plantilla:Obra_citada/núcleo 3.70% 10.443 4 Plantilla:Cite_journal 2.93% 8.275 1 Plantilla:AP 2.05% 5.789 10 Plantilla:Ecuación 1.79% 5.044 1 Plantilla:Cite_web --> <!-- Saved in parser cache with key eswiki:pcache:idhash:172797-0!canonical and timestamp 20241124181215 and revision id 163752507. Rendering was triggered because: edit-page --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Obtenido de «<a dir="ltr" href="https://es.wikipedia.org/w/index.php?title=Cálculo_de_variaciones&amp;oldid=163752507">https://es.wikipedia.org/w/index.php?title=Cálculo_de_variaciones&amp;oldid=163752507</a>»</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Especial:Categor%C3%ADas" title="Especial:Categorías">Categorías</a>: <ul><li><a href="/wiki/Categor%C3%ADa:C%C3%A1lculo" title="Categoría:Cálculo">Cálculo</a></li><li><a href="/wiki/Categor%C3%ADa:C%C3%A1lculo_de_variaciones" title="Categoría:Cálculo de variaciones">Cálculo de variaciones</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categoría oculta: <ul><li><a href="/wiki/Categor%C3%ADa:Wikipedia:Art%C3%ADculos_con_identificadores_LCCN" title="Categoría:Wikipedia:Artículos con identificadores LCCN">Wikipedia:Artículos con identificadores LCCN</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Esta página se editó por última vez el 24 nov 2024 a las 18:11.</li> <li id="footer-info-copyright">El texto está disponible bajo la <a href="/wiki/Wikipedia:Texto_de_la_Licencia_Creative_Commons_Atribuci%C3%B3n-CompartirIgual_4.0_Internacional" title="Wikipedia:Texto de la Licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional">Licencia Creative Commons Atribución-CompartirIgual 4.0</a>; pueden aplicarse cláusulas adicionales. Al usar este sitio aceptas nuestros <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/es">términos de uso</a> y nuestra <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/es">política de privacidad</a>.<br />Wikipedia&#174; es una marca registrada de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/es/">Fundación Wikimedia</a>, una organización sin ánimo de lucro.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/es">Política de privacidad</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Acerca_de">Acerca de Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Limitaci%C3%B3n_general_de_responsabilidad">Limitación de responsabilidad</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Código de conducta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Desarrolladores</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/es.wikipedia.org">Estadísticas</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement/es">Declaración de cookies</a></li> <li id="footer-places-mobileview"><a href="//es.m.wikipedia.org/w/index.php?title=C%C3%A1lculo_de_variaciones&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versión para móviles</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-phpnv","wgBackendResponseTime":163,"wgPageParseReport":{"limitreport":{"cputime":"0.298","walltime":"0.457","ppvisitednodes":{"value":2107,"limit":1000000},"postexpandincludesize":{"value":34983,"limit":2097152},"templateargumentsize":{"value":3419,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":24963,"limit":5000000},"entityaccesscount":{"value":7,"limit":400},"timingprofile":["100.00% 282.096 1 -total"," 53.14% 149.911 1 Plantilla:Control_de_autoridades"," 33.76% 95.235 1 Plantilla:Listaref"," 13.65% 38.499 4 Plantilla:Cite_book"," 7.70% 21.720 1 Plantilla:Cite_arXiv"," 5.79% 16.347 1 Plantilla:Obra_citada/núcleo"," 3.70% 10.443 4 Plantilla:Cite_journal"," 2.93% 8.275 1 Plantilla:AP"," 2.05% 5.789 10 Plantilla:Ecuación"," 1.79% 5.044 1 Plantilla:Cite_web"]},"scribunto":{"limitreport-timeusage":{"value":"0.132","limit":"10.000"},"limitreport-memusage":{"value":4094803,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.codfw.main-7556f8b5dd-pxnl8","timestamp":"20241124181146","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"C\u00e1lculo de variaciones","url":"https:\/\/es.wikipedia.org\/wiki\/C%C3%A1lculo_de_variaciones","sameAs":"http:\/\/www.wikidata.org\/entity\/Q216861","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q216861","author":{"@type":"Organization","name":"Colaboradores de los proyectos Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-08-09T11:17:51Z","dateModified":"2024-11-24T18:11:46Z"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10