CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–32 of 32 results for author: <span class="mathjax">Manna, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Manna%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Manna, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Manna%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Manna, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18969">arXiv:2411.18969</a> <span> [<a href="https://arxiv.org/pdf/2411.18969">pdf</a>, <a href="https://arxiv.org/format/2411.18969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Towards a new generation of solid total-energy detectors for neutron-capture time-of-flight experiments with intense neutron beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Balibrea-Correa%2C+J">J. Balibrea-Correa</a>, <a href="/search/physics?searchtype=author&query=Babiano-Suarez%2C+V">V. Babiano-Suarez</a>, <a href="/search/physics?searchtype=author&query=Lerendegui-Marco%2C+J">J. Lerendegui-Marco</a>, <a href="/search/physics?searchtype=author&query=Domingo-Pardo%2C+C">C. Domingo-Pardo</a>, <a href="/search/physics?searchtype=author&query=Ladarescu%2C+I">I. Ladarescu</a>, <a href="/search/physics?searchtype=author&query=Tarife%C3%B1o-Saldivia%2C+A">A. Tarife帽o-Saldivia</a>, <a href="/search/physics?searchtype=author&query=de+la+Fuente-Rosales%2C+G">G. de la Fuente-Rosales</a>, <a href="/search/physics?searchtype=author&query=Gameiro%2C+B">B. Gameiro</a>, <a href="/search/physics?searchtype=author&query=Zaitseva%2C+N">N. Zaitseva</a>, <a href="/search/physics?searchtype=author&query=Alcayne%2C+V">V. Alcayne</a>, <a href="/search/physics?searchtype=author&query=Cano-Ott%2C+D">D. Cano-Ott</a>, <a href="/search/physics?searchtype=author&query=Gonz%C3%A1lez-Romero%2C+E">E. Gonz谩lez-Romero</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+T">T. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Mendoza%2C+E">E. Mendoza</a>, <a href="/search/physics?searchtype=author&query=de+Rada%2C+A+P">A. P茅rez de Rada</a>, <a href="/search/physics?searchtype=author&query=del+Olmo%2C+J+P">J. Plaza del Olmo</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez-Caballero%2C+A">A. S谩nchez-Caballero</a>, <a href="/search/physics?searchtype=author&query=Casanovas%2C+A">A. Casanovas</a>, <a href="/search/physics?searchtype=author&query=Calvi%C3%B1o%2C+F">F. Calvi帽o</a>, <a href="/search/physics?searchtype=author&query=Valenta%2C+S">S. Valenta</a>, <a href="/search/physics?searchtype=author&query=Aberle%2C+O">O. Aberle</a>, <a href="/search/physics?searchtype=author&query=Altieri%2C+S">S. Altieri</a>, <a href="/search/physics?searchtype=author&query=Amaducci%2C+S">S. Amaducci</a>, <a href="/search/physics?searchtype=author&query=Andrzejewski%2C+J">J. Andrzejewski</a>, <a href="/search/physics?searchtype=author&query=Bacak%2C+M">M. Bacak</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18969v1-abstract-short" style="display: inline;"> Challenging neutron-capture cross-section measurements of small cross sections and samples with a very limited number of atoms require high-flux time-of-flight facilities. In turn, such facilities need innovative detection setups that are fast, have low sensitivity to neutrons, can quickly recover from the so-called $纬$-flash, and offer the highest possible detection sensitivity. In this paper, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18969v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18969v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18969v1-abstract-full" style="display: none;"> Challenging neutron-capture cross-section measurements of small cross sections and samples with a very limited number of atoms require high-flux time-of-flight facilities. In turn, such facilities need innovative detection setups that are fast, have low sensitivity to neutrons, can quickly recover from the so-called $纬$-flash, and offer the highest possible detection sensitivity. In this paper, we present several steps toward such advanced systems. Specifically, we describe the performance of a high-sensitivity experimental setup at CERN n\_TOF EAR2. It consists of nine sTED detector modules in a compact cylindrical configuration, two conventional used large-volume C$_{6}$D$_{6}$ detectors, and one LaCl$_{3}$(Ce) detector. The performance of these detection systems is compared using $^{93}$Nb($n$,$纬$) data. We also developed a detailed \textsc{Geant4} Monte Carlo model of the experimental EAR2 setup, which allows for a better understanding of the detector features, including their efficiency determination. This Monte Carlo model has been used for further optimization, thus leading to a new conceptual design of a $纬$ detector array, STAR, based on a deuterated-stilbene crystal array. Finally, the suitability of deuterated-stilbene crystals for the future STAR array is investigaged experimentally utilizing a small stilbene-d12 prototype. The results suggest a similar or superior performance of STAR with respect to other setups based on liquid-scintillators, and allow for additional features such as neutron-gamma discrimination and a higher level of customization capability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18969v1-abstract-full').style.display = 'none'; document.getElementById('2411.18969v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06630">arXiv:2411.06630</a> <span> [<a href="https://arxiv.org/pdf/2411.06630">pdf</a>, <a href="https://arxiv.org/format/2411.06630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Opportunities and Challenges of Solid-State Quantum Nonlinear Optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kala%2C+A">Abhinav Kala</a>, <a href="/search/physics?searchtype=author&query=Sharp%2C+D">David Sharp</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+M">Minho Choi</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&query=Deshmukh%2C+P">Prathmesh Deshmukh</a>, <a href="/search/physics?searchtype=author&query=Veetil%2C+V+K">Vijin Kizhake Veetil</a>, <a href="/search/physics?searchtype=author&query=Menon%2C+V">Vinod Menon</a>, <a href="/search/physics?searchtype=author&query=Pelton%2C+M">Matthew Pelton</a>, <a href="/search/physics?searchtype=author&query=Waks%2C+E">Edo Waks</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06630v1-abstract-short" style="display: inline;"> Nonlinear interactions between single quantum particles are at the heart of any quantum information system, including analog quantum simulation and fault-tolerant quantum computing. This remains a particularly difficult problem for photonic qubits, as photons do not interact with each other. While engineering light-matter interaction can effectively create photon-photon interaction, the required p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06630v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06630v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06630v1-abstract-full" style="display: none;"> Nonlinear interactions between single quantum particles are at the heart of any quantum information system, including analog quantum simulation and fault-tolerant quantum computing. This remains a particularly difficult problem for photonic qubits, as photons do not interact with each other. While engineering light-matter interaction can effectively create photon-photon interaction, the required photon number to observe any nonlinearity is very high, where any quantum mechanical signature disappears. However, with emerging low-dimensional materials, and engineered photonic resonators, the photon number can be potentially reduced to reach the quantum nonlinear optical regime. In this review paper, we discuss different mechanisms exploited in solid-state platforms to attain quantum nonlinear optics. We review emerging materials and optical resonator architecture with different dimensionalities. We also present new research directions and open problems in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06630v1-abstract-full').style.display = 'none'; document.getElementById('2411.06630v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12907">arXiv:2409.12907</a> <span> [<a href="https://arxiv.org/pdf/2409.12907">pdf</a>, <a href="https://arxiv.org/format/2409.12907">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Confirmation of interstellar phosphine towards asymptotic giant branch star IRC+10216 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12907v1-abstract-short" style="display: inline;"> Phosphorus (P) is an important element for the chemical evolution of galaxies and many kinds of biochemical reactions. Phosphorus is one of the crucial chemical compounds in the formation of life on our planet. In an interstellar medium, phosphine (PH$_{3}$) is a crucial biomolecule that plays a major role in understanding the chemistry of phosphorus-bearing molecules, particularly phosphorus nitr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12907v1-abstract-full').style.display = 'inline'; document.getElementById('2409.12907v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12907v1-abstract-full" style="display: none;"> Phosphorus (P) is an important element for the chemical evolution of galaxies and many kinds of biochemical reactions. Phosphorus is one of the crucial chemical compounds in the formation of life on our planet. In an interstellar medium, phosphine (PH$_{3}$) is a crucial biomolecule that plays a major role in understanding the chemistry of phosphorus-bearing molecules, particularly phosphorus nitride (PN) and phosphorus monoxide (PO), in the gas phase or interstellar grains. We present the first confirmed detection of phosphine (PH$_{3}$) in the asymptotic giant branch (AGB) carbon-rich star IRC+10216 using the Atacama Large Millimeter/Submillimeter Array (ALMA) band 6. We detect the $J$ = 1$_{0}$$-$0$_{0}$ rotational transition line of PH$_{3}$ with a signal-to-noise ratio (SNR) of $\geq$3.5$蟽$. This is the first confirmed detection of phosphine (PH$_{3}$) in the ISM. Based on LTE spectral modelling, the column density of PH$_{3}$ is (3.15$\pm$0.20)$\times$10$^{15}$ cm$^{-2}$ at an excitation temperature of 52$\pm$5 K. The fractional abundance of PH$_{3}$ with respect to H$_{2}$ is (8.29$\pm$1.37)$\times$10$^{-8}$. We also discuss the possible formation pathways of PH$_{3}$ and we claim that PH$_{3}$ may be created via the hydrogenation of PH$_{2}$ on the grain surface of IRC+10216. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12907v1-abstract-full').style.display = 'none'; document.getElementById('2409.12907v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Journal of Astrophysics and Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02874">arXiv:2409.02874</a> <span> [<a href="https://arxiv.org/pdf/2409.02874">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Million-Q Free Space Meta-Optical Resonator at Visible Wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fang%2C+J">Jie Fang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Rui Chen</a>, <a href="/search/physics?searchtype=author&query=Sharp%2C+D">David Sharp</a>, <a href="/search/physics?searchtype=author&query=Renzi%2C+E+M">Enrico M. Renzi</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&query=Kala%2C+A">Abhinav Kala</a>, <a href="/search/physics?searchtype=author&query=Mann%2C+S+A">Sander A. Mann</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+K">Kan Yao</a>, <a href="/search/physics?searchtype=author&query=Munley%2C+C">Christopher Munley</a>, <a href="/search/physics?searchtype=author&query=Rarick%2C+H">Hannah Rarick</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+A">Andrew Tang</a>, <a href="/search/physics?searchtype=author&query=Pumulo%2C+S">Sinabu Pumulo</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Yuebing Zheng</a>, <a href="/search/physics?searchtype=author&query=Menon%2C+V+M">Vinod M. Menon</a>, <a href="/search/physics?searchtype=author&query=Alu%2C+A">Andrea Alu</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02874v1-abstract-short" style="display: inline;"> High-quality (Q)-factor optical resonators with extreme temporal coherence are of both technological and fundamental importance in optical metrology, continuous-wave lasing, and semiconductor quantum optics. Despite extensive efforts in designing high-Q resonators across different spectral regimes, the experimental realization of very large Q-factors at visible wavelengths remains challenging due… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02874v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02874v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02874v1-abstract-full" style="display: none;"> High-quality (Q)-factor optical resonators with extreme temporal coherence are of both technological and fundamental importance in optical metrology, continuous-wave lasing, and semiconductor quantum optics. Despite extensive efforts in designing high-Q resonators across different spectral regimes, the experimental realization of very large Q-factors at visible wavelengths remains challenging due to the small feature size that is sensitive to fabrication imperfections, and thus is typically implemented in integrated photonics. In the pursuit of free-space optics with the benefits of large space-bandwidth product and massive parallel operations, here we design and fabricate a visible-wavelength etch-free metasurface with minimized fabrication defects and experimentally demonstrate a million-scale ultrahigh-Q resonance. A new laser-scanning momentum-space-resolved spectroscopy technique with extremely high spectral and angular resolution is developed to characterize the record-high Q-factor as well as the dispersion of the million-Q resonance in free space. By integrating monolayer WSe2 into our ultrahigh-Q meta-resonator, we further demonstrate laser-like highly unidirectional and narrow-linewidth exciton emission, albeit without any operating power density threshold. Under continuous-wave laser pumping, we observe pump-power-dependent linewidth narrowing at room temperature, indicating the potential of our meta-optics platform in controlling coherent quantum light-sources. Our result also holds great promise for applications like optical sensing, spectral filtering, and few-photon nonlinear optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02874v1-abstract-full').style.display = 'none'; document.getElementById('2409.02874v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21572">arXiv:2407.21572</a> <span> [<a href="https://arxiv.org/pdf/2407.21572">pdf</a>, <a href="https://arxiv.org/format/2407.21572">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae1864">10.1093/mnras/stae1864 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of antifreeze molecule ethylene glycol in the hot molecular core G358.93$-$0.03 MM1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a>, <a href="/search/physics?searchtype=author&query=Viti%2C+S">Serena Viti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21572v2-abstract-short" style="display: inline;"> The identification of complex prebiotic molecules using millimeter and submillimeter telescopes allows us to understand how the basic building blocks of life are formed in the universe. In the interstellar medium (ISM), ethylene glycol ((CH$_{2}$OH)$_{2}$) is the simplest sugar alcohol molecule, and it is the reduced alcohol of the simplest sugar-like molecule, glycolaldehyde (CH$_{2}$OHCHO). We p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21572v2-abstract-full').style.display = 'inline'; document.getElementById('2407.21572v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21572v2-abstract-full" style="display: none;"> The identification of complex prebiotic molecules using millimeter and submillimeter telescopes allows us to understand how the basic building blocks of life are formed in the universe. In the interstellar medium (ISM), ethylene glycol ((CH$_{2}$OH)$_{2}$) is the simplest sugar alcohol molecule, and it is the reduced alcohol of the simplest sugar-like molecule, glycolaldehyde (CH$_{2}$OHCHO). We present the first detection of the rotational emission lines of $aGg^{\prime}$ conformer of ethylene glycol ((CH$_{2}$OH)$_{2}$) towards the hot molecular core G358.93$-$0.03 MM1 using the Atacama Large Millimeter/Submillimeter Array (ALMA). The estimated column density of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ towards the G358.93$-$0.03 MM1 is (4.5$\pm$0.1)$\times$10$^{16}$ cm$^{-2}$ with an excitation temperature of 155$\pm$35 K. The abundance of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ with respect to H$_{2}$ is (1.4$\pm$0.5)$\times$10$^{-8}$. Similarly, the abundances of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ with respect to CH$_{2}$OHCHO and CH$_{3}$OH are 3.1$\pm$0.5 and (6.1$\pm$0.3)$\times$10$^{-3}$. We compare the estimated abundance of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ with the existing three-phase warm-up chemical model abundance of (CH$_{2}$OH)$_{2}$, and we notice the observed abundance and modelled abundance are nearly similar. We discuss the possible formation pathways of $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ towards the hot molecular cores, and we find that $aGg^{\prime}$-(CH$_{2}$OH)$_{2}$ is probably created via the recombination of two CH$_{2}$OH radicals on the grain surface of G358.93$-$0.03 MM1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21572v2-abstract-full').style.display = 'none'; document.getElementById('2407.21572v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Monthly Notices of the Royal Astronomical Society (MNRAS)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS, Volume 533, Issue 1, Pages 1143-1155, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12212">arXiv:2404.12212</a> <span> [<a href="https://arxiv.org/pdf/2404.12212">pdf</a>, <a href="https://arxiv.org/format/2404.12212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S1473550424000107">10.1017/S1473550424000107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection and prebiotic chemistry of possible glycine precursor molecule methylenimine towards the hot molecular core G10.47+0.03 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12212v1-abstract-short" style="display: inline;"> Amino acids are essential for the synthesis of protein. Amino acids contain both amine (R$-$NH$_{2}$) and carboxylic acid (R$-$COOH) functional groups, which help to understand the possible formation mechanism of life in the universe. Among the 20 types of amino acids, glycine (NH$_{2}$CH$_{2}$COOH) is known as the simplest non-essential amino acid. In the last 40 years, all surveys of NH$_{2}$CH… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12212v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12212v1-abstract-full" style="display: none;"> Amino acids are essential for the synthesis of protein. Amino acids contain both amine (R$-$NH$_{2}$) and carboxylic acid (R$-$COOH) functional groups, which help to understand the possible formation mechanism of life in the universe. Among the 20 types of amino acids, glycine (NH$_{2}$CH$_{2}$COOH) is known as the simplest non-essential amino acid. In the last 40 years, all surveys of NH$_{2}$CH$_{2}$COOH in the interstellar medium, especially in the star-formation regions, have failed at the millimeter and sub-millimeter wavelengths. We aimed to identify the possible precursors of NH$_{2}$CH$_{2}$COOH, because it is highly challenging to identify NH$_{2}$CH$_{2}$COOH in the interstellar medium. Many laboratory experiments have suggested that methylenimine (CH$_{2}$NH) plays a key role as a possible precursor of NH$_{2}$CH$_{2}$COOH in the star-formation regions via the Strecker synthesis reaction. After spectral analysis using the local thermodynamic equilibrium (LTE) model, we successfully identified the rotational emission lines of CH$_{2}$NH towards the hot molecular core G10.47+0.03 using the Atacama Compact Array (ACA). The estimated column density of CH$_{2}$NH towards G10.47+0.03 is (3.40$\pm$0.2)$\times$10$^{15}$ cm$^{-2}$ with a rotational temperature of 218.70$\pm$20 K, which is estimated from the rotational diagram. The fractional abundance of CH$_{2}$NH with respect to H$_{2}$ towards G10.47+0.03 is 2.61$\times$10$^{-8}$. We found that the derived abundance of CH$_{2}$NH agree fairly well with the existing two-phase warm-up chemical modelling abundance value of CH$_{2}$NH. We discuss the possible formation pathways of CH$_{2}$NH within the context of hot molecular cores, and we find that CH$_{2}$NH is likely mainly formed via neutral-neutral gas-phase reactions of CH$_{3}$ and NH radicals towards G10.47+0.03. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12212v1-abstract-full').style.display = 'none'; document.getElementById('2404.12212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in International Journal of Astrobiology. arXiv admin note: text overlap with arXiv:2402.16798</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Astrobiology 23 (2024) e14 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02857">arXiv:2404.02857</a> <span> [<a href="https://arxiv.org/pdf/2404.02857">pdf</a>, <a href="https://arxiv.org/format/2404.02857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-4527/ad3b3c">10.1088/1674-4527/ad3b3c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of Complex Nitrogen and Oxygen-bearing Molecules toward the High-mass Protostar IRAS 18089$-$1732 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a>, <a href="/search/physics?searchtype=author&query=Baug%2C+T">Tapas Baug</a>, <a href="/search/physics?searchtype=author&query=Mondal%2C+S">Sougata Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02857v2-abstract-short" style="display: inline;"> The observation of oxygen (O)- and nitrogen (N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium (ISM). In this article, we present the identification of the rotational emission lines of N-bearing molecules ethyl cyanide (C$_{2}$H$_{5}$CN), cyanoacetylene (HC$_{3}$N), and O-bearing molecules methyl formate (CH$_{3}$OCHO) towards high-mass protostar I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02857v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02857v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02857v2-abstract-full" style="display: none;"> The observation of oxygen (O)- and nitrogen (N)-bearing molecules gives an idea about the complex prebiotic chemistry in the interstellar medium (ISM). In this article, we present the identification of the rotational emission lines of N-bearing molecules ethyl cyanide (C$_{2}$H$_{5}$CN), cyanoacetylene (HC$_{3}$N), and O-bearing molecules methyl formate (CH$_{3}$OCHO) towards high-mass protostar IRAS 18089$-$1732 using the Atacama Compact Array (ACA). We also detected the emission lines of both N- and O-bearing molecule formamide (NH$_{2}$CHO) in the envelope of IRAS 18089$-$1732. We have detected the $v$ = 0 and 1 states rotational emission lines of CH$_{3}$OCHO. We also detected the two vibrationally excited states of HC$_{3}$N ($v$7 = 1 and $v$7 = 2). The estimated fractional abundances of C$_{2}$H$_{5}$CN, HC$_{3}$N ($v$7 = 1), HC$_{3}$N ($v$7 = 2), and NH$_{2}$CHO towards the IRAS 18089$-$1732 are (1.40$\pm$0.5)$\times$10$^{-10}$, (7.5$\pm$0.7)$\times$10$^{-11}$, (3.1$\pm$0.4)$\times$10$^{-11}$, and (6.25$\pm$0.82)$\times$10$^{-11}$. Similarly, the estimated fractional abundances of CH$_{3}$OCHO ($v$ = 0) and CH$_{3}$OCHO ($v$ = 1) are (1.90$\pm$0.9)$\times$10$^{-9}$ and (8.90$\pm$0.8)$\times$10$^{-10}$, respectively. We also created the integrated emission maps of the detected molecules, and the observed molecules may have originated from the extended envelope of the protostar. We show that C$_{2}$H$_{5}$CN and HC$_{3}$N are most probably formed via the subsequential hydrogenation of the CH$_{2}$CHCN and the reaction between C$_{2}$H$_{2}$ and CN on the grain surface of IRAS 18089$-$1732. We found that NH$_{2}$CHO is probably produced due to the reaction between NH$_{2}$ and H$_{2}$CO in the gas phase. Similarly, CH$_{3}$OCHO is possibly created via the reaction between radical CH$_{3}$O and radical HCO on the grain surface of IRAS 18089$-$1732. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02857v2-abstract-full').style.display = 'none'; document.getElementById('2404.02857v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Research in Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01432">arXiv:2404.01432</a> <span> [<a href="https://arxiv.org/pdf/2404.01432">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Near-Visible Topological Edge States in a Silicon Nitride Platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sharp%2C+D">David Sharp</a>, <a href="/search/physics?searchtype=author&query=Flower%2C+C">Christopher Flower</a>, <a href="/search/physics?searchtype=author&query=Mehrabad%2C+M+J">Mahmoud Jalali Mehrabad</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&query=Rarick%2C+H">Hannah Rarick</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Rui Chen</a>, <a href="/search/physics?searchtype=author&query=Hafezi%2C+M">Mohammad Hafezi</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01432v1-abstract-short" style="display: inline;"> Demonstrations of topological photonics have so far largely been confined to infrared wavelengths where imaging technology and access to low-dimensional quantum materials are both limited. Here, we designed and fabricated silicon nitride ring-resonator arrays to demonstrate photonic topological edge states at ~780 nm. We observed edge states corresponding to the integer quantum Hall Hamiltonian wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01432v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01432v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01432v1-abstract-full" style="display: none;"> Demonstrations of topological photonics have so far largely been confined to infrared wavelengths where imaging technology and access to low-dimensional quantum materials are both limited. Here, we designed and fabricated silicon nitride ring-resonator arrays to demonstrate photonic topological edge states at ~780 nm. We observed edge states corresponding to the integer quantum Hall Hamiltonian with topological protection against fabrication disorder. This demonstration extends the concept of topological edge states to the near-visible regime and paves the way for nonlinear and non-Hermitian topological photonics with the rich library of near-visible quantum emitters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01432v1-abstract-full').style.display = 'none'; document.getElementById('2404.01432v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00905">arXiv:2404.00905</a> <span> [<a href="https://arxiv.org/pdf/2404.00905">pdf</a>, <a href="https://arxiv.org/format/2404.00905">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0211557">10.1063/5.0211557 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Continuously tunable uniaxial strain control of van der Waals heterostructure devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhaoyu Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+X">Xuetao Ma</a>, <a href="/search/physics?searchtype=author&query=Cenker%2C+J">John Cenker</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+J">Jiaqi Cai</a>, <a href="/search/physics?searchtype=author&query=Fei%2C+Z">Zaiyao Fei</a>, <a href="/search/physics?searchtype=author&query=Malinowski%2C+P">Paul Malinowski</a>, <a href="/search/physics?searchtype=author&query=Mutch%2C+J">Joshua Mutch</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yuzhou Zhao</a>, <a href="/search/physics?searchtype=author&query=Hwangbo%2C+K">Kyle Hwangbo</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Z">Zhong Lin</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jihui Yang</a>, <a href="/search/physics?searchtype=author&query=Cobden%2C+D">David Cobden</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/physics?searchtype=author&query=Yankowitz%2C+M">Matthew Yankowitz</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+J">Jiun-Haw Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00905v2-abstract-short" style="display: inline;"> Uniaxial strain has been widely used as a powerful tool for investigating and controlling the properties of quantum materials. However, existing strain techniques have so far mostly been limited to use with bulk crystals. Although recent progress has been made in extending the application of strain to two-dimensional van der Waals (vdW) heterostructures, these techniques have been limited to optic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00905v2-abstract-full').style.display = 'inline'; document.getElementById('2404.00905v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00905v2-abstract-full" style="display: none;"> Uniaxial strain has been widely used as a powerful tool for investigating and controlling the properties of quantum materials. However, existing strain techniques have so far mostly been limited to use with bulk crystals. Although recent progress has been made in extending the application of strain to two-dimensional van der Waals (vdW) heterostructures, these techniques have been limited to optical characterization and extremely simple electrical device geometries. Here, we report a piezoelectric-based \textit{in situ} uniaxial strain technique enabling simultaneous electrical transport and optical spectroscopy characterization of dual-gated vdW heterostructure devices. Critically, our technique remains compatible with vdW heterostructure devices of arbitrary complexity fabricated on conventional silicon/silicon dioxide wafer substrates. We demonstrate a large and continuously tunable strain of up to $-0.15\%$ at millikelvin temperatures, with larger strain values also likely achievable. We quantify the strain transmission from the silicon wafer to the vdW heterostructure, and further demonstrate the ability of strain to modify the electronic properties of twisted bilayer graphene. Our technique provides a highly versatile new method for exploring the effect of uniaxial strain on both the electrical and optical properties of vdW heterostructures, and can be easily extended to include additional characterization techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00905v2-abstract-full').style.display = 'none'; document.getElementById('2404.00905v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, to appear in Journal of Applied Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Phys. 135, 204306 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.01365">arXiv:2311.01365</a> <span> [<a href="https://arxiv.org/pdf/2311.01365">pdf</a>, <a href="https://arxiv.org/format/2311.01365">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Correa%2C+J+B">J. Balibrea Correa</a>, <a href="/search/physics?searchtype=author&query=Lerendegui-Marco%2C+J">J. Lerendegui-Marco</a>, <a href="/search/physics?searchtype=author&query=Babiano-Suarez%2C+V">V. Babiano-Suarez</a>, <a href="/search/physics?searchtype=author&query=Domingo-Pardo%2C+C">C. Domingo-Pardo</a>, <a href="/search/physics?searchtype=author&query=Ladarescu%2C+I">I. Ladarescu</a>, <a href="/search/physics?searchtype=author&query=Tarife%C3%B1o-Saldivia%2C+A">A. Tarife帽o-Saldivia</a>, <a href="/search/physics?searchtype=author&query=Alcayne%2C+V">V. Alcayne</a>, <a href="/search/physics?searchtype=author&query=Cano-Ott%2C+D">D. Cano-Ott</a>, <a href="/search/physics?searchtype=author&query=Gonz%C3%A1lez-Romero%2C+E">E. Gonz谩lez-Romero</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez%2C+T">T. Mart铆nez</a>, <a href="/search/physics?searchtype=author&query=Mendoza%2C+E">E. Mendoza</a>, <a href="/search/physics?searchtype=author&query=de+Rada%2C+A+P">A. P茅rez de Rada</a>, <a href="/search/physics?searchtype=author&query=del+Olmo%2C+J+P">J. Plaza del Olmo</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez-Caballero%2C+A">A. S谩nchez-Caballero</a>, <a href="/search/physics?searchtype=author&query=Casanovas%2C+A">A. Casanovas</a>, <a href="/search/physics?searchtype=author&query=Calvi%C3%B1o%2C+F">F. Calvi帽o</a>, <a href="/search/physics?searchtype=author&query=Valenta%2C+S">S. Valenta</a>, <a href="/search/physics?searchtype=author&query=Aberle%2C+O">O. Aberle</a>, <a href="/search/physics?searchtype=author&query=Altieri%2C+S">S. Altieri</a>, <a href="/search/physics?searchtype=author&query=Amaducci%2C+S">S. Amaducci</a>, <a href="/search/physics?searchtype=author&query=Andrzejewski%2C+J">J. Andrzejewski</a>, <a href="/search/physics?searchtype=author&query=Bacak%2C+M">M. Bacak</a>, <a href="/search/physics?searchtype=author&query=Beltrami%2C+C">C. Beltrami</a>, <a href="/search/physics?searchtype=author&query=Bennett%2C+S">S. Bennett</a>, <a href="/search/physics?searchtype=author&query=Bernardes%2C+A+P">A. P. Bernardes</a> , et al. (109 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.01365v1-abstract-short" style="display: inline;"> One of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01365v1-abstract-full').style.display = 'inline'; document.getElementById('2311.01365v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.01365v1-abstract-full" style="display: none;"> One of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN n\_TOF facility, the detectors of choice are the C$_{6}$D$_{6}$ liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN n\_TOF 20~m fligth path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from $^{197}$Au($n$,$纬$), including the saturated 4.9~eV resonance which is an important component of normalization for neutron cross section measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.01365v1-abstract-full').style.display = 'none'; document.getElementById('2311.01365v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14454">arXiv:2308.14454</a> <span> [<a href="https://arxiv.org/pdf/2308.14454">pdf</a>, <a href="https://arxiv.org/format/2308.14454">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2185">10.1093/mnras/stad2185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of the simplest sugar-like molecule glycolaldehyde towards the hot molecular core G358.93-0.03 MM1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a>, <a href="/search/physics?searchtype=author&query=Viti%2C+S">Serena Viti</a>, <a href="/search/physics?searchtype=author&query=Sinha%2C+S">Sekhar Sinha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14454v1-abstract-short" style="display: inline;"> Glycolaldehyde (CH$_{2}$OHCHO) is the simplest monosaccharide sugar in the interstellar medium, and it is directly involved in the origin of life via the 'RNA world' hypothesis. We present the first detection of glycolaldehyde (CH$_{2}$OHCHO) towards the hot molecular core G358.93-0.03 MM1 using the Atacama Large Millimeter/Submillimeter Array (ALMA). The calculated column density of CH$_{2}$OHCHO… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14454v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14454v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14454v1-abstract-full" style="display: none;"> Glycolaldehyde (CH$_{2}$OHCHO) is the simplest monosaccharide sugar in the interstellar medium, and it is directly involved in the origin of life via the 'RNA world' hypothesis. We present the first detection of glycolaldehyde (CH$_{2}$OHCHO) towards the hot molecular core G358.93-0.03 MM1 using the Atacama Large Millimeter/Submillimeter Array (ALMA). The calculated column density of CH$_{2}$OHCHO towards G358.93-0.03 MM1 is (1.52$\pm$0.9)$\times$10$^{16}$ cm$^{-2}$ with an excitation temperature of 300$\pm$68.5 K. The derived fractional abundance of CH$_{2}$OHCHO with respect to H$_{2}$ is (4.90$\pm$2.92)$\times$10$^{-9}$, which is consistent with that estimated by existing two-phase warm-up chemical models. We discuss the possible formation pathways of CH$_{2}$OHCHO within the context of hot molecular cores and hot corinos and find that CH$_{2}$OHCHO is likely formed via the reactions of radical HCO and radical CH$_{2}$OH on the grain surface of G358.93-0.03 MM1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14454v1-abstract-full').style.display = 'none'; document.getElementById('2308.14454v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, published in Monthly Notices of the Royal Astronomical Society (MNRAS)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS, 525, 2229-2240 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12103">arXiv:2307.12103</a> <span> [<a href="https://arxiv.org/pdf/2307.12103">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Non-volatile Phase-only Transmissive Spatial Light Modulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fang%2C+Z">Zhuoran Fang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Rui Chen</a>, <a href="/search/physics?searchtype=author&query=Fr%C3%B6ch%2C+J+E">Johannes E. Fr枚ch</a>, <a href="/search/physics?searchtype=author&query=Tanguy%2C+Q+A+A">Quentin A. A. Tanguy</a>, <a href="/search/physics?searchtype=author&query=Khan%2C+A+I">Asir Intisar Khan</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xiangjin Wu</a>, <a href="/search/physics?searchtype=author&query=Tara%2C+V">Virat Tara</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&query=Sharp%2C+D">David Sharp</a>, <a href="/search/physics?searchtype=author&query=Munley%2C+C">Christopher Munley</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+F">Forrest Miller</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yang Zhao</a>, <a href="/search/physics?searchtype=author&query=Geiger%2C+S+J">Sarah J. Geiger</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hringer%2C+K+F">Karl F. B枚hringer</a>, <a href="/search/physics?searchtype=author&query=Reynolds%2C+M">Matthew Reynolds</a>, <a href="/search/physics?searchtype=author&query=Pop%2C+E">Eric Pop</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12103v1-abstract-short" style="display: inline;"> Free-space modulation of light is crucial for many applications, from light detection and ranging to virtual or augmented reality. Traditional means of modulating free-space light involves spatial light modulators based on liquid crystals and microelectromechanical systems, which are bulky, have large pixel areas (~10 micron x 10 micron), and require high driving voltage. Recent progress in meta-o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12103v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12103v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12103v1-abstract-full" style="display: none;"> Free-space modulation of light is crucial for many applications, from light detection and ranging to virtual or augmented reality. Traditional means of modulating free-space light involves spatial light modulators based on liquid crystals and microelectromechanical systems, which are bulky, have large pixel areas (~10 micron x 10 micron), and require high driving voltage. Recent progress in meta-optics has shown promise to circumvent some of the limitations. By integrating active materials with sub-wavelength pixels in a meta-optic, the power consumption can be dramatically reduced while achieving a faster speed. However, these reconfiguration methods are volatile and hence require constant application of control signals, leading to phase jitter and crosstalk. Additionally, to control a large number of pixels, it is essential to implement a memory within each pixel to have a tractable number of control signals. Here, we develop a device with nonvolatile, electrically programmable, phase-only modulation of free-space infrared radiation in transmission using the low-loss phase-change material (PCM) Sb2Se3. By coupling an ultra-thin PCM layer to a high quality (Q)-factor (Q~406) diatomic metasurface, we demonstrate a phase-only modulation of ~0.25pi (~0.2pi) in simulation (experiment), ten times larger than a bare PCM layer of the same thickness. The device shows excellent endurance over 1,000 switching cycles. We then advance the device geometry, to enable independent control of 17 meta-molecules, achieving ten deterministic resonance levels with a 2pi phase shift. By independently controlling the phase delay of pixels, we further show tunable far-field beam shaping. Our work paves the way to realizing non-volatile transmissive phase-only spatial light modulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12103v1-abstract-full').style.display = 'none'; document.getElementById('2307.12103v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04865">arXiv:2307.04865</a> <span> [<a href="https://arxiv.org/pdf/2307.04865">pdf</a>, <a href="https://arxiv.org/format/2307.04865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Social inequalities that matter for contact patterns, vaccination, and the spread of epidemics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Adriana Manna</a>, <a href="/search/physics?searchtype=author&query=Koltai%2C+J">J煤lia Koltai</a>, <a href="/search/physics?searchtype=author&query=Karsai%2C+M">M谩rton Karsai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04865v1-abstract-short" style="display: inline;"> Individuals socio-demographic and economic characteristics crucially shape the spread of an epidemic by largely determining the exposure level to the virus and the severity of the disease for those who got infected. While the complex interplay between individual characteristics and epidemic dynamics is widely recognized, traditional mathematical models often overlook these factors. In this study,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04865v1-abstract-full').style.display = 'inline'; document.getElementById('2307.04865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04865v1-abstract-full" style="display: none;"> Individuals socio-demographic and economic characteristics crucially shape the spread of an epidemic by largely determining the exposure level to the virus and the severity of the disease for those who got infected. While the complex interplay between individual characteristics and epidemic dynamics is widely recognized, traditional mathematical models often overlook these factors. In this study, we examine two important aspects of human behavior relevant to epidemics: contact patterns and vaccination uptake. Using data collected during the Covid-19 pandemic in Hungary, we first identify the dimensions along which individuals exhibit the greatest variation in their contact patterns and vaccination attitudes. We find that generally privileged groups of the population have higher number of contact and a higher vaccination uptake with respect to disadvantaged groups. Subsequently, we propose a data-driven epidemiological model that incorporates these behavioral differences. Finally, we apply our model to analyze the fourth wave of Covid-19 in Hungary, providing valuable insights into real-world scenarios. By bridging the gap between individual characteristics and epidemic spread, our research contributes to a more comprehensive understanding of disease dynamics and informs effective public health strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04865v1-abstract-full').style.display = 'none'; document.getElementById('2307.04865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17250">arXiv:2306.17250</a> <span> [<a href="https://arxiv.org/pdf/2306.17250">pdf</a>, <a href="https://arxiv.org/format/2306.17250">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> </div> <p class="title is-5 mathjax"> Generalized contact matrices for epidemic modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Adriana Manna</a>, <a href="/search/physics?searchtype=author&query=Dall%27Amico%2C+L">Lorenzo Dall'Amico</a>, <a href="/search/physics?searchtype=author&query=Tizzoni%2C+M">Michele Tizzoni</a>, <a href="/search/physics?searchtype=author&query=Karsai%2C+M">Marton Karsai</a>, <a href="/search/physics?searchtype=author&query=Perra%2C+N">Nicola Perra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17250v1-abstract-short" style="display: inline;"> Contact matrices have become a key ingredient of modern epidemic models. They account for the stratification of contacts for the age of individuals and, in some cases, the context of their interactions. However, age and context are not the only factors shaping contact structures and affecting the spreading of infectious diseases. Socio-economic status (SES) variables such as wealth, ethnicity, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17250v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17250v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17250v1-abstract-full" style="display: none;"> Contact matrices have become a key ingredient of modern epidemic models. They account for the stratification of contacts for the age of individuals and, in some cases, the context of their interactions. However, age and context are not the only factors shaping contact structures and affecting the spreading of infectious diseases. Socio-economic status (SES) variables such as wealth, ethnicity, and education play a major role as well. Here, we introduce generalized contact matrices capable of stratifying contacts across any number of dimensions including any SES variable. We derive an analytical expression for the basic reproductive number of an infectious disease unfolding on a population characterized by such generalized contact matrices. Our results, on both synthetic and real data, show that disregarding higher levels of stratification might lead to the under-estimation of the reproductive number and to a mis-estimation of the global epidemic dynamics. Furthermore, including generalized contact matrices allows for more expressive epidemic models able to capture heterogeneities in behaviours such as different levels of adoption of non-pharmaceutical interventions across different groups. Overall, our work contributes to the literature attempting to bring socio-economic, as well as other dimensions, to the forefront of epidemic modeling. Tackling this issue is crucial for developing more precise descriptions of epidemics, and thus to design better strategies to contain them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17250v1-abstract-full').style.display = 'none'; document.getElementById('2306.17250v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06053">arXiv:2302.06053</a> <span> [<a href="https://arxiv.org/pdf/2302.06053">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTICA.499059">10.1364/OPTICA.499059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exciton Assisted Deeply Subwavelength Nano-Photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ling%2C+H">Haonan Ling</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+J">Jialiang Shen</a>, <a href="/search/physics?searchtype=author&query=Tung%2C+H">Ho-Ting Tung</a>, <a href="/search/physics?searchtype=author&query=Sharp%2C+D">David Sharp</a>, <a href="/search/physics?searchtype=author&query=Fr%C3%B6ch%2C+J">Johannes Fr枚ch</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+S">Siyuan Dai</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a>, <a href="/search/physics?searchtype=author&query=Davoyan%2C+A+R">Artur R. Davoyan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06053v1-abstract-short" style="display: inline;"> The wave nature of light sets a fundamental diffraction limit that challenges confinement and control of light in nanoscale structures with dimensions significantly smaller than the wavelength. Here, we demonstrate van der Waals MoS_2 nano-photonic devices with dimensions as small as ~ 位/16 (~60 nm at 1000 nm excitation wavelength). This deep subwavelength light confinement is achieved by exploiti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06053v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06053v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06053v1-abstract-full" style="display: none;"> The wave nature of light sets a fundamental diffraction limit that challenges confinement and control of light in nanoscale structures with dimensions significantly smaller than the wavelength. Here, we demonstrate van der Waals MoS_2 nano-photonic devices with dimensions as small as ~ 位/16 (~60 nm at 1000 nm excitation wavelength). This deep subwavelength light confinement is achieved by exploiting the coupling between MoS_2 excitons and photons. We validate deep subwavelength light control via far- and near-field measurements. Our near-field measurements reveal detailed imaging of excitation, evolution, and guidance of fields in MoS_2 nanodevices, whereas our far-field study examines highly confined integrated photonics. Exciton-driven nano-photonics at a fraction of a wavelength demonstrated here could dramatically reduce the size of integrated photonic devices and opto-electronic circuits with potential applications in optical information science and engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06053v1-abstract-full').style.display = 'none'; document.getElementById('2302.06053v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 32 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.03153">arXiv:2302.03153</a> <span> [<a href="https://arxiv.org/pdf/2302.03153">pdf</a>, <a href="https://arxiv.org/format/2302.03153">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Visible Wavelength Flatband in a Gallium Phosphide Metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Munley%2C+C">Christopher Munley</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&query=Sharp%2C+D">David Sharp</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+M">Minho Choi</a>, <a href="/search/physics?searchtype=author&query=Nguyen%2C+H">Hao Nguyen</a>, <a href="/search/physics?searchtype=author&query=Cossairt%2C+B+M">Brandi M. Cossairt</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Mo Li</a>, <a href="/search/physics?searchtype=author&query=Barnard%2C+A">Arthur Barnard</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.03153v1-abstract-short" style="display: inline;"> Engineering the dispersion of light in a metasurface allows for controlling the light-matter interaction strength between light confined in the metasurface and materials placed within its near-field. Specifically, engineering a flatband dispersion increases the photonic density of states thereby enhancing the light-matter interaction. Here, we experimentally demonstrate a metasurface with a flat d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03153v1-abstract-full').style.display = 'inline'; document.getElementById('2302.03153v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.03153v1-abstract-full" style="display: none;"> Engineering the dispersion of light in a metasurface allows for controlling the light-matter interaction strength between light confined in the metasurface and materials placed within its near-field. Specifically, engineering a flatband dispersion increases the photonic density of states thereby enhancing the light-matter interaction. Here, we experimentally demonstrate a metasurface with a flat dispersion at visible wavelengths. We designed and fabricated a suspended one-dimensional gallium phosphide metasurface and measured the photonic band structure via energy-momentum spectroscopy, observing a photonic band that is flat over $10^o$ of half-angle at $\sim 580$nm. We integrated cadmium selenide nanoplatelets with the metasurface, and measured coupled photoluminescence into the flatband. Our demonstration of a photonic flatband will enable the possibility of integrating emerging quantum emitters to the metasurface with possible applications in nonlinear image processing, and topological photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03153v1-abstract-full').style.display = 'none'; document.getElementById('2302.03153v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.13323">arXiv:2211.13323</a> <span> [<a href="https://arxiv.org/pdf/2211.13323">pdf</a>, <a href="https://arxiv.org/format/2211.13323">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> A detector system for 'absolute' measurements of fission cross sections at n_TOF in the energy range below 200 MeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pirovano%2C+E">E. Pirovano</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">A. Manna</a>, <a href="/search/physics?searchtype=author&query=Aberle%2C+O">O. Aberle</a>, <a href="/search/physics?searchtype=author&query=Amaducci%2C+S">S. Amaducci</a>, <a href="/search/physics?searchtype=author&query=Colonna%2C+N">N. Colonna</a>, <a href="/search/physics?searchtype=author&query=Camprini%2C+P+C">P. Console Camprini</a>, <a href="/search/physics?searchtype=author&query=Cosentino%2C+L">L. Cosentino</a>, <a href="/search/physics?searchtype=author&query=Dietz%2C+M">M. Dietz</a>, <a href="/search/physics?searchtype=author&query=Ducasse%2C+Q">Q. Ducasse</a>, <a href="/search/physics?searchtype=author&query=Finocchiaro%2C+P">P. Finocchiaro</a>, <a href="/search/physics?searchtype=author&query=Massimi%2C+C">C. Massimi</a>, <a href="/search/physics?searchtype=author&query=Mengoni%2C+A">A. Mengoni</a>, <a href="/search/physics?searchtype=author&query=Nolte%2C+R">R. Nolte</a>, <a href="/search/physics?searchtype=author&query=Radeck%2C+D">D. Radeck</a>, <a href="/search/physics?searchtype=author&query=Tassan-Got%2C+L">L. Tassan-Got</a>, <a href="/search/physics?searchtype=author&query=Terranova%2C+N">N. Terranova</a>, <a href="/search/physics?searchtype=author&query=Vannini%2C+G">G. Vannini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.13323v2-abstract-short" style="display: inline;"> A new measurement of the $^{235}$U(n,f) cross section was performed at the neutron time-of-flight facility n_TOF at CERN. The experiment focused on neutron energies from 20 MeV to several hundred MeV, and was normalized to neutron scattering on hydrogen. This is a measurement first of its kind at this facility, in an energy range that was until now not often explored, so the detector development p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13323v2-abstract-full').style.display = 'inline'; document.getElementById('2211.13323v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.13323v2-abstract-full" style="display: none;"> A new measurement of the $^{235}$U(n,f) cross section was performed at the neutron time-of-flight facility n_TOF at CERN. The experiment focused on neutron energies from 20 MeV to several hundred MeV, and was normalized to neutron scattering on hydrogen. This is a measurement first of its kind at this facility, in an energy range that was until now not often explored, so the detector development phase was crucial for its success. Two detectors are presented, a parallel plate fission chamber (PPFC) and a recoil proton telescope (RPT), both dedicated to perform measurements in the incident neutron energy range from 30 MeV to 200 MeV. The experiment was designed to minimize statistical uncertainties in the allocated run time. Several efforts were made to ensure that the systematic effects were understood and under control. The results show that the detectors are suited for measurements at n_TOF above 30 MeV, and indicate the path for possible future lines of development. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13323v2-abstract-full').style.display = 'none'; document.getElementById('2211.13323v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Added acknowledgement to Euratom funding</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12427">arXiv:2211.12427</a> <span> [<a href="https://arxiv.org/pdf/2211.12427">pdf</a>, <a href="https://arxiv.org/format/2211.12427">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/04/P04024">10.1088/1748-0221/18/04/P04024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recoil Proton Telescopes and Parallel Plate Avalanche Counters for the $^{235}$U(n,f) cross section measurement relative to H(n,n)H between 10 and 450 MeV neutron energy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">A. Manna</a>, <a href="/search/physics?searchtype=author&query=Pirovano%2C+E">E. Pirovano</a>, <a href="/search/physics?searchtype=author&query=Aberle%2C+O">O. Aberle</a>, <a href="/search/physics?searchtype=author&query=Amaducci%2C+S">S. Amaducci</a>, <a href="/search/physics?searchtype=author&query=Barbagallo%2C+M">M. Barbagallo</a>, <a href="/search/physics?searchtype=author&query=Castelluccio%2C+D+M">D. M. Castelluccio</a>, <a href="/search/physics?searchtype=author&query=Colonna%2C+N">N. Colonna</a>, <a href="/search/physics?searchtype=author&query=Camprini%2C+P+C">P. Console Camprini</a>, <a href="/search/physics?searchtype=author&query=Cosentino%2C+L">L. Cosentino</a>, <a href="/search/physics?searchtype=author&query=Dietz%2C+M">M. Dietz</a>, <a href="/search/physics?searchtype=author&query=Ducasse%2C+Q">Q. Ducasse</a>, <a href="/search/physics?searchtype=author&query=Finocchiaro%2C+P">P. Finocchiaro</a>, <a href="/search/physics?searchtype=author&query=Naour%2C+C+L">C. Le Naour</a>, <a href="/search/physics?searchtype=author&query=Meo%2C+S+L">S. Lo Meo</a>, <a href="/search/physics?searchtype=author&query=Mastromarco%2C+M">M. Mastromarco</a>, <a href="/search/physics?searchtype=author&query=Massimi%2C+C">C. Massimi</a>, <a href="/search/physics?searchtype=author&query=Mengoni%2C+A">A. Mengoni</a>, <a href="/search/physics?searchtype=author&query=Milazzo%2C+P+M">P. M. Milazzo</a>, <a href="/search/physics?searchtype=author&query=Mingrone%2C+F">F. Mingrone</a>, <a href="/search/physics?searchtype=author&query=Nolte%2C+R">R. Nolte</a>, <a href="/search/physics?searchtype=author&query=Piscopo%2C+M">M. Piscopo</a>, <a href="/search/physics?searchtype=author&query=Radeck%2C+D">D. Radeck</a>, <a href="/search/physics?searchtype=author&query=Spelta%2C+M">M. Spelta</a>, <a href="/search/physics?searchtype=author&query=Tassan-Got%2C+L">L. Tassan-Got</a>, <a href="/search/physics?searchtype=author&query=Terranova%2C+N">N. Terranova</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12427v2-abstract-short" style="display: inline;"> With the aim of measuring the $^{235}$U(n,f) cross section at the n\_TOF facility at CERN over a wide neutron energy range, a detection system consisting of two fission detectors and three detectors for neutron flux determination was realized. The neutron flux detectors are Recoil Proton Telescopes (RPT), based on scintillators and solid state detectors, conceived to detect recoil protons from the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12427v2-abstract-full').style.display = 'inline'; document.getElementById('2211.12427v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12427v2-abstract-full" style="display: none;"> With the aim of measuring the $^{235}$U(n,f) cross section at the n\_TOF facility at CERN over a wide neutron energy range, a detection system consisting of two fission detectors and three detectors for neutron flux determination was realized. The neutron flux detectors are Recoil Proton Telescopes (RPT), based on scintillators and solid state detectors, conceived to detect recoil protons from the neutron-proton elastic scattering reaction. This system, along with a fission chamber and an array of parallel plate avalanche counters for fission event detection, was installed for the measurement at the n\_TOF facility in 2018, at CERN. An overview of the performances of two RPTs - especially developed for this measurement - and of the parallel plate avalanche counters are described in this article. In particular, the characterization in terms of detection efficiency by Monte Carlo simulations and response to neutron beam, the study of the background, dead time correction and characterization of the samples, are reported. The results of the present investigation show that the performances of these detectors are suitable for accurate measurements of fission reaction cross sections in the range from 10 to 450~MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12427v2-abstract-full').style.display = 'none'; document.getElementById('2211.12427v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01608">arXiv:2211.01608</a> <span> [<a href="https://arxiv.org/pdf/2211.01608">pdf</a>, <a href="https://arxiv.org/format/2211.01608">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10509-023-04202-5">10.1007/s10509-023-04202-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of complex nitrogen-bearing molecule ethyl cyanide towards the hot molecular core G10.47+0.03 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01608v3-abstract-short" style="display: inline;"> The studies of the complex organic molecular lines towards the hot molecular cores at millimeter and submillimeter wavelengths provide instructive knowledge about the chemical complexity in the interstellar medium (ISM). We present the detection of the rotational emission lines of the complex nitrogen-bearing molecule ethyl cyanide (C$_{2}$H$_{5}$CN) towards the chemically rich hot molecular core… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01608v3-abstract-full').style.display = 'inline'; document.getElementById('2211.01608v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01608v3-abstract-full" style="display: none;"> The studies of the complex organic molecular lines towards the hot molecular cores at millimeter and submillimeter wavelengths provide instructive knowledge about the chemical complexity in the interstellar medium (ISM). We present the detection of the rotational emission lines of the complex nitrogen-bearing molecule ethyl cyanide (C$_{2}$H$_{5}$CN) towards the chemically rich hot molecular core G10.47+0.03 using the Atacama Large Millimeter/Submillimeter Array (ALMA) band 4 observations. The estimated column density of C$_{2}$H$_{5}$CN towards the G10.47+0.03 is (7.7$\pm$0.5)$\times$10$^{16}$ cm$^{-2}$ with the high rotational temperature of 352.9$\pm$66.8 K. The estimated fractional abundance of C$_{2}$H$_{5}$CN with respect to H$_{2}$ towards the G10.47+0.03 is 5.70$\times$10$^{-9}$. We observe that the estimated fractional abundance of C$_{2}$H$_{5}$CN is similar to the existing three-phase warm-up chemical modelling abundance of C$_{2}$H$_{5}$CN. We also discuss the possible formation mechanism of C$_{2}$H$_{5}$CN towards the hot molecular cores, and we claim the barrierless and exothermic radical-radical reaction between CH$_{2}$ and CH$_{2}$CN is responsible for the production of low abundant of C$_{2}$H$_{5}$CN ($\sim$10$^{-9}$) in the grain surface of G10.47+0.03. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01608v3-abstract-full').style.display = 'none'; document.getElementById('2211.01608v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Astrophysics and Space Science, 13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysics and Space Science, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05070">arXiv:2210.05070</a> <span> [<a href="https://arxiv.org/pdf/2210.05070">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Realizing tight-binding Hamiltonians using site-controlled coupled cavity arrays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saxena%2C+A">Abhi Saxena</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&query=Trivedi%2C+R">Rahul Trivedi</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05070v1-abstract-short" style="display: inline;"> Analog quantum simulators rely on programmable quantum devices to emulate Hamiltonians describing various physical phenomenon. Photonic coupled cavity arrays are a promising platform for realizing such devices. Using a silicon photonic coupled cavity array made up of 8 high quality-factor resonators and equipped with specially designed thermo-optic island heaters for independent control of cavitie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05070v1-abstract-full').style.display = 'inline'; document.getElementById('2210.05070v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05070v1-abstract-full" style="display: none;"> Analog quantum simulators rely on programmable quantum devices to emulate Hamiltonians describing various physical phenomenon. Photonic coupled cavity arrays are a promising platform for realizing such devices. Using a silicon photonic coupled cavity array made up of 8 high quality-factor resonators and equipped with specially designed thermo-optic island heaters for independent control of cavities, we demonstrate a programmable device implementing tight-binding Hamiltonians with access to the full eigen-energy spectrum. We report a ~50% reduction in the thermal crosstalk between neighboring sites of the cavity array compared to traditional heaters, and then present a control scheme to program the cavity array to a given tight-binding Hamiltonian. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05070v1-abstract-full').style.display = 'none'; document.getElementById('2210.05070v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04443">arXiv:2209.04443</a> <span> [<a href="https://arxiv.org/pdf/2209.04443">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The CERN n TOF NEAR station for astrophysics- and application-related neutron activation measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Patronis%2C+N">N. Patronis</a>, <a href="/search/physics?searchtype=author&query=Mengoni%2C+A">A. Mengoni</a>, <a href="/search/physics?searchtype=author&query=Colonna%2C+N">N. Colonna</a>, <a href="/search/physics?searchtype=author&query=Cecchetto%2C+M">M. Cecchetto</a>, <a href="/search/physics?searchtype=author&query=Domingo-Pardo%2C+C">C. Domingo-Pardo</a>, <a href="/search/physics?searchtype=author&query=Aberle%2C+O">O. Aberle</a>, <a href="/search/physics?searchtype=author&query=Lerendegui-Marco%2C+J">J. Lerendegui-Marco</a>, <a href="/search/physics?searchtype=author&query=Gervino%2C+G">G. Gervino</a>, <a href="/search/physics?searchtype=author&query=Stamati%2C+M+E">M. E. Stamati</a>, <a href="/search/physics?searchtype=author&query=Goula%2C+S">S. Goula</a>, <a href="/search/physics?searchtype=author&query=Bernardes%2C+A+P">A. P. Bernardes</a>, <a href="/search/physics?searchtype=author&query=Mastromarco%2C+M">M. Mastromarco</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">A. Manna</a>, <a href="/search/physics?searchtype=author&query=Vlastou%2C+R">R. Vlastou</a>, <a href="/search/physics?searchtype=author&query=Massimi%2C+C">C. Massimi</a>, <a href="/search/physics?searchtype=author&query=Calviani%2C+M">M. Calviani</a>, <a href="/search/physics?searchtype=author&query=Alcayne%2C+V">V. Alcayne</a>, <a href="/search/physics?searchtype=author&query=Altieri%2C+S">S. Altieri</a>, <a href="/search/physics?searchtype=author&query=Amaducci%2C+S">S. Amaducci</a>, <a href="/search/physics?searchtype=author&query=Andrzejewski%2C+J">J. Andrzejewski</a>, <a href="/search/physics?searchtype=author&query=Babiano-Suarez%2C+V">V. Babiano-Suarez</a>, <a href="/search/physics?searchtype=author&query=Bacak%2C+M">M. Bacak</a>, <a href="/search/physics?searchtype=author&query=Balibrea%2C+J">J. Balibrea</a>, <a href="/search/physics?searchtype=author&query=Beltrami%2C+C">C. Beltrami</a>, <a href="/search/physics?searchtype=author&query=Bennett%2C+S">S. Bennett</a> , et al. (108 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04443v1-abstract-short" style="display: inline;"> A new experimental area, the NEAR station, has recently been built at the CERN n TOF facility, at a short distance from the spallation target (1.5 m). The new area, characterized by a neutron beam of very high flux, has been designed with the purpose of performing activation measurements of interest for astrophysics and various applications. The beam is transported from the spallation target to th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04443v1-abstract-full').style.display = 'inline'; document.getElementById('2209.04443v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04443v1-abstract-full" style="display: none;"> A new experimental area, the NEAR station, has recently been built at the CERN n TOF facility, at a short distance from the spallation target (1.5 m). The new area, characterized by a neutron beam of very high flux, has been designed with the purpose of performing activation measurements of interest for astrophysics and various applications. The beam is transported from the spallation target to the NEAR station through a hole in the shielding wall of the target, inside which a collimator is inserted. The new area is complemented with a 纬-ray spectroscopy laboratory, the GEAR station, equipped with a high efficiency HPGe detector, for the measurement of the activity resulting from irradiation of a sample in the NEAR station. The use of a moderator/filter assembly is envisaged, in order to produce a neutron beam of Maxwellian shape at different thermal energies, necessary for the measurement of Maxwellian Averaged Cross Sections of astrophysical interest. A new fast-cycling activation technique is also being investigated, for measurements of reactions leading to isotopes of very short half life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04443v1-abstract-full').style.display = 'none'; document.getElementById('2209.04443v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13817">arXiv:2208.13817</a> <span> [<a href="https://arxiv.org/pdf/2208.13817">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Multi-functional interface between integrated photonics and free space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tanguy%2C+Q+A+A">Quentin A. A. Tanguy</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arnab Manna</a>, <a href="/search/physics?searchtype=author&query=Mukherjee%2C+S">Saswata Mukherjee</a>, <a href="/search/physics?searchtype=author&query=Sharp%2C+D">David Sharp</a>, <a href="/search/physics?searchtype=author&query=Bayati%2C+E">Elyas Bayati</a>, <a href="/search/physics?searchtype=author&query=Boehringer%2C+K+F">Karl F. Boehringer</a>, <a href="/search/physics?searchtype=author&query=Majumdar%2C+A">Arka Majumdar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13817v1-abstract-short" style="display: inline;"> The combination of photonic integrated circuits and free-space meta-optics has the ability to unclasp technological knots that require advanced light manipulation due their conjoined ability to guide and shape electromagnetic waves. The need for large scale access and component interchangeability is essential for rapid prototyping of optical systems. Such capability represents a functional challen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13817v1-abstract-full').style.display = 'inline'; document.getElementById('2208.13817v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13817v1-abstract-full" style="display: none;"> The combination of photonic integrated circuits and free-space meta-optics has the ability to unclasp technological knots that require advanced light manipulation due their conjoined ability to guide and shape electromagnetic waves. The need for large scale access and component interchangeability is essential for rapid prototyping of optical systems. Such capability represents a functional challenge in terms of fabrication and alignment of compound photonic platform. Here, we report a multi-functional interface that demonstrates the capabilities of a flexible and interchangeable combination of a photonic integrated circuit to a free-space coupling chip with different designs of low-loss meta-optics at a wavelength of 780 nm. We show that robustness and fidelity of the designed optical functions can be achieved without prior precise characterization of the free-space input nor stringent alignment between the photonic integrated chip and the meta-optics chip. A diffraction limited spot of approximately 3 micron for a hyperboloid metalens of numerical aperture 0.15 was achieved despite an input Gaussian elliptical deformation of up to 35% and misalignments of the components of up to 20 micron. A holographic display with a peak signal-to-noise ratio of more than 10 compared to its ground truth is also reported using this platform making this work the first interface to shape photonic integrated modes into free space using different diffractive optical functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13817v1-abstract-full').style.display = 'none'; document.getElementById('2208.13817v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03910">arXiv:2207.03910</a> <span> [<a href="https://arxiv.org/pdf/2207.03910">pdf</a>, <a href="https://arxiv.org/format/2207.03910">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjds/s13688-023-00382-w">10.1140/epjds/s13688-023-00382-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temporal patterns of reciprocity in communication networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chowdhary%2C+S">Sandeep Chowdhary</a>, <a href="/search/physics?searchtype=author&query=Andres%2C+E">Elsa Andres</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+A">Adriana Manna</a>, <a href="/search/physics?searchtype=author&query=Blagojevi%C4%87%2C+L">Luka Blagojevi膰</a>, <a href="/search/physics?searchtype=author&query=Di+Gaetano%2C+L">Leonardo Di Gaetano</a>, <a href="/search/physics?searchtype=author&query=I%C3%B1iguez%2C+G">Gerardo I帽iguez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03910v1-abstract-short" style="display: inline;"> Human communication, the essence of collective social phenomena ranging from small-scale organizations to worldwide online platforms, features intense reciprocal interactions between members in order to achieve stability, cohesion, and cooperation in social networks. While high levels of reciprocity are well known in aggregated communication data, temporal patterns of reciprocal information exchan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2207.03910v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03910v1-abstract-full" style="display: none;"> Human communication, the essence of collective social phenomena ranging from small-scale organizations to worldwide online platforms, features intense reciprocal interactions between members in order to achieve stability, cohesion, and cooperation in social networks. While high levels of reciprocity are well known in aggregated communication data, temporal patterns of reciprocal information exchange have received far less attention. Here we propose measures of reciprocity based on the time ordering of interactions and explore them in data from multiple communication channels, including calls, messaging and social media. By separating each channel into reciprocal and non-reciprocal temporal networks, we find persistent trends that point to the distinct roles of one-on-one exchange versus information broadcast. We implement several null models of communication activity, which identify memory, a higher tendency to repeat interactions with past contacts, as a key source of reciprocity. When adding memory to a model of activity-driven, time-varying networks, we reproduce the levels of reciprocity seen in empirical data. Our work adds to the theoretical understanding of the emergence of reciprocity in human communication systems, hinting at the mechanisms behind the formation of norms in social exchange and large-scale cooperation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03910v1-abstract-full').style.display = 'none'; document.getElementById('2207.03910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures. SI: 7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPJ Data Science 12, 7 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11800">arXiv:2106.11800</a> <span> [<a href="https://arxiv.org/pdf/2106.11800">pdf</a>, <a href="https://arxiv.org/format/2106.11800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.lssr.2022.04.002">10.1016/j.lssr.2022.04.002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of interstellar amino acetonitrile in the hot molecular core G10.47+0.03: Possible glycine survey candidate for the future </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11800v4-abstract-short" style="display: inline;"> Amino acids are the essential keys that contribute to the study of the formation of life. The simplest amino acid, glycine (NH$_{2}$CH$_{2}$COOH), has been searched for a long time in the interstellar medium, but all surveys of glycine have failed. Since the detection of glycine in the interstellar medium was extremely difficult, we aimed to search for the precursor of glycine. After detailed sear… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11800v4-abstract-full').style.display = 'inline'; document.getElementById('2106.11800v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11800v4-abstract-full" style="display: none;"> Amino acids are the essential keys that contribute to the study of the formation of life. The simplest amino acid, glycine (NH$_{2}$CH$_{2}$COOH), has been searched for a long time in the interstellar medium, but all surveys of glycine have failed. Since the detection of glycine in the interstellar medium was extremely difficult, we aimed to search for the precursor of glycine. After detailed searches of the individual prebiotic molecular species, we successfully identified the emission lines of possible glycine precursor molecule amino acetonitrile (NH$_{2}$CH$_{2}$CN) towards the hot molecular core G10.47+0.03 using the Atacama Large Millimeter/Submillimeter Array. We estimated the statistical column density of amino acetonitrile was (9.10$\pm$0.7)$\times$10$^{15}$ cm$^{-2}$ with rotational temperature ($T_{rot}$) 122$\pm$8.8 K. The estimated fractional abundance of amino acetonitrile was 7.01$\times$10$^{-8}$. We found that the estimated fractional abundance of NH$_{2}$CH$_{2}$CN fairly agrees with the theoretical value predicted by the three-phase warm-up model from Garrod (2013). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11800v4-abstract-full').style.display = 'none'; document.getElementById('2106.11800v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Life Sciences in Space Research; 9 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Life Sciences in Space Research, 34, 9-15 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10474">arXiv:2104.10474</a> <span> [<a href="https://arxiv.org/pdf/2104.10474">pdf</a>, <a href="https://arxiv.org/format/2104.10474">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> ALMA detection of hydrogen cyanide (HCN) in the atmosphere of Saturn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10474v5-abstract-short" style="display: inline;"> In the planetary atmosphere, hydrogen cyanide (HCN) is an important nitrogen (N)-bearing molecule that plays a key role in the formation of several biomolecules via chain reactions. The presence of HCN characterizes the stratospheric composition of the solar gas planets and exoplanets. For several years, many observations have failed to identify the rotational and vibrational emission lines of HCN… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10474v5-abstract-full').style.display = 'inline'; document.getElementById('2104.10474v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10474v5-abstract-full" style="display: none;"> In the planetary atmosphere, hydrogen cyanide (HCN) is an important nitrogen (N)-bearing molecule that plays a key role in the formation of several biomolecules via chain reactions. The presence of HCN characterizes the stratospheric composition of the solar gas planets and exoplanets. For several years, many observations have failed to identify the rotational and vibrational emission lines of HCN from the atmosphere of Saturn using ground- and space-based radio telescopes. We present the successful detection of the rotational emission line of HCN from the atmosphere of Saturn using the Atacama Large Millimeter/Submillimeter Array (ALMA) band 7. We detected the J = 4$-$3 transition line of the HCN from the eastern and western limbs of Saturn with $\geq5蟽$ statistical significance. The derived abundances of HCN in the western and eastern limbs are 6.19 ppb and 2.90 ppb, respectively. We claim that HCN is formed in the atmosphere of Saturn via the photolysis of methane (CH$_{4}$) and ammonia (NH$_{3}$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10474v5-abstract-full').style.display = 'none'; document.getElementById('2104.10474v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Journal of Astrophysics and Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.17018">arXiv:2103.17018</a> <span> [<a href="https://arxiv.org/pdf/2103.17018">pdf</a>, <a href="https://arxiv.org/format/2103.17018">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> ALMA detection of acetone, disulfur monoxide, and carbon monoxide in the Jupiter volcanic moon Io </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.17018v2-abstract-short" style="display: inline;"> The extremely thin atmosphere of Jupiter's volcanic moon Io primarily consists of sulfur (S), sodium (Na), and oxygen (O) molecules that are controlled by the combination of the sublimation and volcanic outgasses. We present the first spectroscopic detection of the two rotational emission lines of acetone (CH$_{3}$COCH$_{3}$) and a single emission line of disulfur monoxide (S$_{2}$O), and carbon m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.17018v2-abstract-full').style.display = 'inline'; document.getElementById('2103.17018v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.17018v2-abstract-full" style="display: none;"> The extremely thin atmosphere of Jupiter's volcanic moon Io primarily consists of sulfur (S), sodium (Na), and oxygen (O) molecules that are controlled by the combination of the sublimation and volcanic outgasses. We present the first spectroscopic detection of the two rotational emission lines of acetone (CH$_{3}$COCH$_{3}$) and a single emission line of disulfur monoxide (S$_{2}$O), and carbon monoxide (CO) at frequency $谓$ = 346.539, 346.667, 346.543, and 345.795 GHz respectively using the archival data of high-resolution Atacama Large Millimeter/Submillimeter Array (ALMA) interferometer with band 7 observation. All molecular species are detected with $\ge$5$蟽$ statistical significance. Jupiter's moon Io is the most volcanically active body in the solar system with a very thin and spatially variable atmosphere. The volcanic gas CH$_{3}$COCH$_{3}$, S$_{2}$O, and CO are mainly coming from volcanic plumes. The statistical column density of CH$_{3}$COCH$_{3}$ line is N(CH$_{3}$COCH$_{3}$) = 3.18$\times$10$^{15}$ cm$^{-2}$ but for the cases of S$_{2}$O and CO, the column densities are N(S$_{2}$O) = 2.63$\times$10$^{16}$ cm$^{-2}$ and N(CO) = 5.27$\times$10$^{15}$ cm$^{-2}$ respectively. The carbon monoxide gas is mainly formed by the photolysis of the volcanic gas acetone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.17018v2-abstract-full').style.display = 'none'; document.getElementById('2103.17018v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10374">arXiv:2012.10374</a> <span> [<a href="https://arxiv.org/pdf/2012.10374">pdf</a>, <a href="https://arxiv.org/format/2012.10374">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/s10050-021-00507-7">10.1140/epja/s10050-021-00507-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Babiano-Su%C3%A1rez%2C+V">V. Babiano-Su谩rez</a>, <a href="/search/physics?searchtype=author&query=Lerendegui-Marco%2C+J">J. Lerendegui-Marco</a>, <a href="/search/physics?searchtype=author&query=Balibrea-Correa%2C+J">J. Balibrea-Correa</a>, <a href="/search/physics?searchtype=author&query=Caballero%2C+L">L. Caballero</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+D">D. Calvo</a>, <a href="/search/physics?searchtype=author&query=Ladarescu%2C+I">I. Ladarescu</a>, <a href="/search/physics?searchtype=author&query=Domingo-Pardo%2C+C">C. Domingo-Pardo</a>, <a href="/search/physics?searchtype=author&query=Calvi%C3%B1o%2C+F">F. Calvi帽o</a>, <a href="/search/physics?searchtype=author&query=Casanovas%2C+A">A. Casanovas</a>, <a href="/search/physics?searchtype=author&query=Tarife%C3%B1o-Saldivia%2C+A">A. Tarife帽o-Saldivia</a>, <a href="/search/physics?searchtype=author&query=Alcayne%2C+V">V. Alcayne</a>, <a href="/search/physics?searchtype=author&query=Guerrero%2C+C">C. Guerrero</a>, <a href="/search/physics?searchtype=author&query=Mill%C3%A1n-Callado%2C+M+A">M. A. Mill谩n-Callado</a>, <a href="/search/physics?searchtype=author&query=Gonz%C3%A1lez%2C+M+T+R">M. T. Rodr铆guez Gonz谩lez</a>, <a href="/search/physics?searchtype=author&query=Barbagallo%2C+M">M. Barbagallo</a>, <a href="/search/physics?searchtype=author&query=Aberle%2C+O">O. Aberle</a>, <a href="/search/physics?searchtype=author&query=Amaducci%2C+S">S. Amaducci</a>, <a href="/search/physics?searchtype=author&query=Andrzejewski%2C+J">J. Andrzejewski</a>, <a href="/search/physics?searchtype=author&query=Audouin%2C+L">L. Audouin</a>, <a href="/search/physics?searchtype=author&query=Bacak%2C+M">M. Bacak</a>, <a href="/search/physics?searchtype=author&query=Bennett%2C+S">S. Bennett</a>, <a href="/search/physics?searchtype=author&query=Berthoumieux%2C+E">E. Berthoumieux</a>, <a href="/search/physics?searchtype=author&query=Billowes%2C+J">J. Billowes</a>, <a href="/search/physics?searchtype=author&query=Bosnar%2C+D">D. Bosnar</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a> , et al. (110 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10374v1-abstract-short" style="display: inline;"> i-TED is an innovative detection system which exploits Compton imaging techniques to achieve a superior signal-to-background ratio in ($n,纬$) cross-section measurements using time-of-flight technique. This work presents the first experimental validation of the i-TED apparatus for high-resolution time-of-flight experiments and demonstrates for the first time the concept proposed for background reje… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10374v1-abstract-full').style.display = 'inline'; document.getElementById('2012.10374v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10374v1-abstract-full" style="display: none;"> i-TED is an innovative detection system which exploits Compton imaging techniques to achieve a superior signal-to-background ratio in ($n,纬$) cross-section measurements using time-of-flight technique. This work presents the first experimental validation of the i-TED apparatus for high-resolution time-of-flight experiments and demonstrates for the first time the concept proposed for background rejection. To this aim both $^{197}$Au($n,纬$) and $^{56}$Fe($n, 纬$) reactions were measured at CERN n\_TOF using an i-TED demonstrator based on only three position-sensitive detectors. Two \cds detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of $\sim$3 higher detection sensitivity than state-of-the-art \cds detectors in the $\sim$10~keV neutron energy range of astrophysical interest. This paper explores also the perspectives of further enhancement in performance attainable with the final i-TED array consisting of twenty position-sensitive detectors and new analysis methodologies based on Machine-Learning techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10374v1-abstract-full').style.display = 'none'; document.getElementById('2012.10374v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.06211">arXiv:2010.06211</a> <span> [<a href="https://arxiv.org/pdf/2010.06211">pdf</a>, <a href="https://arxiv.org/format/2010.06211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Detection of simplest amino acid glycine in the atmosphere of Venus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+A">Arijit Manna</a>, <a href="/search/physics?searchtype=author&query=Pal%2C+S">Sabyasachi Pal</a>, <a href="/search/physics?searchtype=author&query=Hazra%2C+M">Mangal Hazra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.06211v2-abstract-short" style="display: inline;"> Amino acids are considered to be prime ingredients in chemistry, leading to life. Glycine is the simplest amino acid and most commonly found in animal proteins. It is a glucogenic and non-essential amino acid that is produced naturally by living bodies and plays a key role in the creation of several other important bio-compounds and proteins. We report the first spectroscopic detection of the rota… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06211v2-abstract-full').style.display = 'inline'; document.getElementById('2010.06211v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.06211v2-abstract-full" style="display: none;"> Amino acids are considered to be prime ingredients in chemistry, leading to life. Glycine is the simplest amino acid and most commonly found in animal proteins. It is a glucogenic and non-essential amino acid that is produced naturally by living bodies and plays a key role in the creation of several other important bio-compounds and proteins. We report the first spectroscopic detection of the rotational absorption lines of the simplest amino acid glycine (NH$_{2}$CH$_{2}$COOH) with confirmer I and II in the atmosphere of Venus using the archival data from the Atacama Large Millimeter/Submillimeter Array (ALMA). We detect the eleven rotational absorption lines of NH$_{2}$CH$_{2}$COOH between the frequency range of $谓$ = 245$-$262 GHz with $\geq$3$蟽$ statistical significance. We calculate the total column density of glycine in the atmosphere of Venus is $N$(NH$_{2}$CH$_{2}$COOH) $\sim$ 5$\times$10$^{14}$ cm$^{-2}$. Using the column density information of glycine, we calculate the abundance of glycine is $\sim$ 1.6$\times$10$^{-9}$ in the atmosphere of Venus. The detection of glycine in the atmosphere of Venus might be one of the keys to an understanding of the formation mechanisms of prebiotic molecules in the atmosphere of Venus. The detection of glycine indicates that the upper atmosphere of Venus may be going through nearly the same biological method as Earth billions of years ago. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06211v2-abstract-full').style.display = 'none'; document.getElementById('2010.06211v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06972">arXiv:1911.06972</a> <span> [<a href="https://arxiv.org/pdf/1911.06972">pdf</a>, <a href="https://arxiv.org/format/1911.06972">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/1668/1/012013">10.1088/1742-6596/1668/1/012013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Review and new concepts for neutron-capture measurements of astrophysical interest </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Domingo-Pardo%2C+C">C. Domingo-Pardo</a>, <a href="/search/physics?searchtype=author&query=Babiano-Suarez%2C+V">V. Babiano-Suarez</a>, <a href="/search/physics?searchtype=author&query=Balibrea-Correa%2C+J">J. Balibrea-Correa</a>, <a href="/search/physics?searchtype=author&query=Caballero%2C+L">L. Caballero</a>, <a href="/search/physics?searchtype=author&query=Ladarescu%2C+I">I. Ladarescu</a>, <a href="/search/physics?searchtype=author&query=Lerendegui-Marco%2C+J">J. Lerendegui-Marco</a>, <a href="/search/physics?searchtype=author&query=Tain%2C+J+L">J. L. Tain</a>, <a href="/search/physics?searchtype=author&query=Calvi%C3%B1o%2C+F">F. Calvi帽o</a>, <a href="/search/physics?searchtype=author&query=Casanovas%2C+A">A. Casanovas</a>, <a href="/search/physics?searchtype=author&query=Segarra%2C+A">A. Segarra</a>, <a href="/search/physics?searchtype=author&query=Tarife%C3%B1o-Saldivia%2C+A+E">A. E. Tarife帽o-Saldivia</a>, <a href="/search/physics?searchtype=author&query=Guerrero%2C+C">C. Guerrero</a>, <a href="/search/physics?searchtype=author&query=Mill%C3%A1n-Callado%2C+M+A">M. A. Mill谩n-Callado</a>, <a href="/search/physics?searchtype=author&query=Quesada%2C+J+M">J. M. Quesada</a>, <a href="/search/physics?searchtype=author&query=Rodr%C3%ADguez-Gonz%C3%A1lez%2C+M+T">M. T. Rodr铆guez-Gonz谩lez</a>, <a href="/search/physics?searchtype=author&query=Aberle%2C+O">O. Aberle</a>, <a href="/search/physics?searchtype=author&query=Alcayne%2C+V">V. Alcayne</a>, <a href="/search/physics?searchtype=author&query=Amaducci%2C+S">S. Amaducci</a>, <a href="/search/physics?searchtype=author&query=Andrzejewski%2C+J">J. Andrzejewski</a>, <a href="/search/physics?searchtype=author&query=Audouin%2C+L">L. Audouin</a>, <a href="/search/physics?searchtype=author&query=Bacak%2C+M">M. Bacak</a>, <a href="/search/physics?searchtype=author&query=Barbagallo%2C+M">M. Barbagallo</a>, <a href="/search/physics?searchtype=author&query=Bennett%2C+S">S. Bennett</a>, <a href="/search/physics?searchtype=author&query=Berthoumieux%2C+E">E. Berthoumieux</a>, <a href="/search/physics?searchtype=author&query=Bosnar%2C+D">D. Bosnar</a> , et al. (106 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06972v1-abstract-short" style="display: inline;"> The idea of slow-neutron capture nucleosynthesis formulated in 1957 triggered a tremendous experimental effort in different laboratories worldwide to measure the relevant nuclear physics input quantities, namely ($n,纬$) cross sections over the stellar temperature range (from few eV up to several hundred keV) for most of the isotopes involved from Fe up to Bi. A brief historical review focused on t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06972v1-abstract-full').style.display = 'inline'; document.getElementById('1911.06972v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06972v1-abstract-full" style="display: none;"> The idea of slow-neutron capture nucleosynthesis formulated in 1957 triggered a tremendous experimental effort in different laboratories worldwide to measure the relevant nuclear physics input quantities, namely ($n,纬$) cross sections over the stellar temperature range (from few eV up to several hundred keV) for most of the isotopes involved from Fe up to Bi. A brief historical review focused on total energy detectors will be presented to illustrate how, advances in instrumentation have led, over the years, to the assessment and discovery of many new aspects of $s$-process nucleosynthesis and to the progressive refinement of theoretical models of stellar evolution. A summary will be presented on current efforts to develop new detection concepts, such as the Total-Energy Detector with $纬$-ray imaging capability (i-TED). The latter is based on the simultaneous combination of Compton imaging with neutron time-of-flight (TOF) techniques, in order to achieve a superior level of sensitivity and selectivity in the measurement of stellar neutron capture rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06972v1-abstract-full').style.display = 'none'; document.getElementById('1911.06972v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nuclear Physics in Astrophysics IX - Conference Proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.01178">arXiv:1708.01178</a> <span> [<a href="https://arxiv.org/pdf/1708.01178">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2017.12.025">10.1016/j.nima.2017.12.025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Barbagallo%2C+M">M. Barbagallo</a>, <a href="/search/physics?searchtype=author&query=Andrzejewski%2C+J">J. Andrzejewski</a>, <a href="/search/physics?searchtype=author&query=Mastromarco%2C+M">M. Mastromarco</a>, <a href="/search/physics?searchtype=author&query=Perkowski%2C+J">J. Perkowski</a>, <a href="/search/physics?searchtype=author&query=Damone%2C+L+A">L. A. Damone</a>, <a href="/search/physics?searchtype=author&query=Gawlik%2C+A">A. Gawlik</a>, <a href="/search/physics?searchtype=author&query=Cosentino%2C+L">L. Cosentino</a>, <a href="/search/physics?searchtype=author&query=Finocchiaro%2C+P">P. Finocchiaro</a>, <a href="/search/physics?searchtype=author&query=Maugeri%2C+E+A">E. A. Maugeri</a>, <a href="/search/physics?searchtype=author&query=Mazzone%2C+A">A. Mazzone</a>, <a href="/search/physics?searchtype=author&query=Dressler%2C+R">R. Dressler</a>, <a href="/search/physics?searchtype=author&query=Heinitz%2C+S">S. Heinitz</a>, <a href="/search/physics?searchtype=author&query=Kivel%2C+N">N. Kivel</a>, <a href="/search/physics?searchtype=author&query=Schumann%2C+D">D. Schumann</a>, <a href="/search/physics?searchtype=author&query=Colonna%2C+N">N. Colonna</a>, <a href="/search/physics?searchtype=author&query=Aberle%2C+O">O. Aberle</a>, <a href="/search/physics?searchtype=author&query=Amaducci%2C+S">S. Amaducci</a>, <a href="/search/physics?searchtype=author&query=Audouin%2C+L">L. Audouin</a>, <a href="/search/physics?searchtype=author&query=Bacak%2C+M">M. Bacak</a>, <a href="/search/physics?searchtype=author&query=Balibrea%2C+J">J. Balibrea</a>, <a href="/search/physics?searchtype=author&query=Be%C4%8Dv%C3%A1%C5%99%2C+F">F. Be膷v谩艡</a>, <a href="/search/physics?searchtype=author&query=Bellia%2C+G">G. Bellia</a>, <a href="/search/physics?searchtype=author&query=Berthoumieux%2C+E">E. Berthoumieux</a>, <a href="/search/physics?searchtype=author&query=Billowes%2C+J">J. Billowes</a>, <a href="/search/physics?searchtype=author&query=Bosnar%2C+D">D. Bosnar</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.01178v1-abstract-short" style="display: inline;"> Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron indiced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-liv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01178v1-abstract-full').style.display = 'inline'; document.getElementById('1708.01178v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.01178v1-abstract-full" style="display: none;"> Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron indiced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n,伪)伪 cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.01178v1-abstract-full').style.display = 'none'; document.getElementById('1708.01178v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-DRAFT-MISC-2017-002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.1491">arXiv:1206.1491</a> <span> [<a href="https://arxiv.org/pdf/1206.1491">pdf</a>, <a href="https://arxiv.org/format/1206.1491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> The growth of wind-waves in finite depth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Montalvo%2C+P">P. Montalvo</a>, <a href="/search/physics?searchtype=author&query=Dorignac%2C+J">J. Dorignac</a>, <a href="/search/physics?searchtype=author&query=Manna%2C+M+A">M. A. Manna</a>, <a href="/search/physics?searchtype=author&query=Kharif%2C+C">C. Kharif</a>, <a href="/search/physics?searchtype=author&query=Branger%2C+H">H. Branger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.1491v1-abstract-short" style="display: inline;"> In order to study the growth of wind waves in finite depth we extend Miles' theory to the finite depth domain. A depth-dependent wave growth rate is derived from the dispersion relation of the wind/water interface. A suitable dimensionless finite depth wave age parameter allows us to plot a family of wave growth curves, each family member characterized by the water depth. Two major results are tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1491v1-abstract-full').style.display = 'inline'; document.getElementById('1206.1491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.1491v1-abstract-full" style="display: none;"> In order to study the growth of wind waves in finite depth we extend Miles' theory to the finite depth domain. A depth-dependent wave growth rate is derived from the dispersion relation of the wind/water interface. A suitable dimensionless finite depth wave age parameter allows us to plot a family of wave growth curves, each family member characterized by the water depth. Two major results are that for small wave age, the wave growth rates are comparable to those of deep water and for large wave age, a finite-depth wave-age-limited growth is reached, with wave growth rates going to zero. The corresponding limiting wave length and limiting phase speed are explicitely calculated in the shallow and in the deep water cases. A qualitative agreement with well-known empirical results is established and shows the robust consistency of the linear theoretical approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.1491v1-abstract-full').style.display = 'none'; document.getElementById('1206.1491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, submitted to the Journal of Fluid Mechanics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0303085">arXiv:physics/0303085</a> <span> [<a href="https://arxiv.org/pdf/physics/0303085">pdf</a>, <a href="https://arxiv.org/ps/physics/0303085">ps</a>, <a href="https://arxiv.org/format/physics/0303085">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Exactly Solvable and Integrable Systems">nlin.SI</span> </div> </div> <p class="title is-5 mathjax"> A singular integrable equation from short capillary-gravity waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Manna%2C+M+A">M. A. Manna</a>, <a href="/search/physics?searchtype=author&query=Neveu%2C+A">A. Neveu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0303085v1-abstract-short" style="display: inline;"> From a columnar approximation of the Euler equations of an incompressible fluid with surface tension, we derive in the short-wave approximation a new integrable classical 1+1 dimensional field theory for the motion of the surface. Together with a Lorentz invariance,this system has the novel feature of solutions which become multiple valued in finite time. </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0303085v1-abstract-full" style="display: none;"> From a columnar approximation of the Euler equations of an incompressible fluid with surface tension, we derive in the short-wave approximation a new integrable classical 1+1 dimensional field theory for the motion of the surface. Together with a Lorentz invariance,this system has the novel feature of solutions which become multiple valued in finite time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0303085v1-abstract-full').style.display = 'none'; document.getElementById('physics/0303085v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>