CINXE.COM
Search results for: GPU computing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: GPU computing</title> <meta name="description" content="Search results for: GPU computing"> <meta name="keywords" content="GPU computing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="GPU computing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="GPU computing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 994</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: GPU computing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> Cloud Computing: Deciding Whether It Is Easier or Harder to Defend Against Cyber Attacks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emhemed%20Shaklawoon">Emhemed Shaklawoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Althomali"> Ibrahim Althomali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose that we identify different defense mechanisms that were used before the introduction of the cloud and compare if their protection mechanisms are still valuable and to what degree. Note that in order to defend against vulnerability, we must know how this vulnerability is abused in an attack. Only then, we will be able to recognize if it is easier or harder to defend against cyber attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy"> privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20attacks" title=" cyber attacks"> cyber attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=defend%20the%20cloud" title=" defend the cloud"> defend the cloud</a> </p> <a href="https://publications.waset.org/abstracts/19135/cloud-computing-deciding-whether-it-is-easier-or-harder-to-defend-against-cyber-attacks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> Accelerating the Uptake of Smart City Applications through Cloud Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Tsarchopoulos">Panagiotis Tsarchopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicos%20Komninos"> Nicos Komninos</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Kakderi"> Christina Kakderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart cities are high on the political agenda around the globe. However, planning smart cities and deploying applications dealing with the complex problems of the urban environment is a very challenging task that is difficult to be undertaken solely by the cities. We argue that the uptake of smart city strategies is facilitated, first, through the development of smart city application repositories allowing re-use of already developed and tested software, and, second, through cloud computing which disengages city authorities from any resource constraints, technical or financial, and has a higher impact and greater effect at the city level The combination of these two solutions allows city governments and municipalities to select and deploy a large number of applications dedicated to different city functions, which collectively could create a multiplier effect with a greater impact on the urban environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20cities" title="smart cities">smart cities</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=migration%20to%20the%20cloud" title=" migration to the cloud"> migration to the cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20repositories" title=" application repositories"> application repositories</a> </p> <a href="https://publications.waset.org/abstracts/61064/accelerating-the-uptake-of-smart-city-applications-through-cloud-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> Quantum Computing with Qudits on a Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksey%20Fedorov">Aleksey Fedorov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building a scalable platform for quantum computing remains one of the most challenging tasks in quantum science and technologies. However, the implementation of most important quantum operations with qubits (quantum analogues of classical bits), such as multiqubit Toffoli gate, requires either a polynomial number of operation or a linear number of operations with the use of ancilla qubits. Therefore, the reduction of the number of operations in the presence of scalability is a crucial goal in quantum information processing. One of the most elegant ideas in this direction is to use qudits (multilevel systems) instead of qubits and rely on additional levels of qudits instead of ancillas. Although some of the already obtained results demonstrate a reduction of the number of operation, they suffer from high complexity and/or of the absence of scalability. We show a strong reduction of the number of operations for the realization of the Toffoli gate by using qudits for a scalable multi-qudit processor. This is done on the basis of a general relation between the dimensionality of qudits and their topology of connections, that we derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=qudits" title=" qudits"> qudits</a>, <a href="https://publications.waset.org/abstracts/search?q=Toffoli%20gates" title=" Toffoli gates"> Toffoli gates</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20decomposition" title=" gate decomposition"> gate decomposition</a> </p> <a href="https://publications.waset.org/abstracts/126171/quantum-computing-with-qudits-on-a-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">841</span> Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Vahed">Mohammad Vahed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Sadeghitohidi"> Ana Sadeghitohidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Vahed"> Majid Vahed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Takahashi"> Hiroki Takahashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a> </p> <a href="https://publications.waset.org/abstracts/52852/analysis-of-genomics-big-data-in-cloud-computing-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">840</span> Data Security and Privacy Challenges in Cloud Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Rashid">Amir Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20security" title="cloud security">cloud security</a>, <a href="https://publications.waset.org/abstracts/search?q=IaaS" title=" IaaS"> IaaS</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20data%20privacy%20and%20integrity" title=" cloud data privacy and integrity"> cloud data privacy and integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20cloud" title=" hybrid cloud"> hybrid cloud</a> </p> <a href="https://publications.waset.org/abstracts/72497/data-security-and-privacy-challenges-in-cloud-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">839</span> A Cloud Computing System Using Virtual Hyperbolic Coordinates for Services Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Telesphore%20Tiendrebeogo">Telesphore Tiendrebeogo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oumarou%20Si%C3%A9"> Oumarou Sié</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing technologies have attracted considerable interest in recent years. Thus, these latters have become more important for many existing database applications. It provides a new mode of use and of offer of IT resources in general. Such resources can be used “on demand” by anybody who has access to the internet. Particularly, the Cloud platform provides an ease to use interface between providers and users, allow providers to develop and provide software and databases for users over locations. Currently, there are many Cloud platform providers support large scale database services. However, most of these only support simple keyword-based queries and can’t response complex query efficiently due to lack of efficient in multi-attribute index techniques. Existing Cloud platform providers seek to improve performance of indexing techniques for complex queries. In this paper, we define a new cloud computing architecture based on a Distributed Hash Table (DHT) and design a prototype system. Next, we perform and evaluate our cloud computing indexing structure based on a hyperbolic tree using virtual coordinates taken in the hyperbolic plane. We show through our experimental results that we compare with others clouds systems to show our solution ensures consistence and scalability for Cloud platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20coordinates" title="virtual coordinates">virtual coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud" title=" cloud"> cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic%20plane" title=" hyperbolic plane"> hyperbolic plane</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency" title=" consistency"> consistency</a> </p> <a href="https://publications.waset.org/abstracts/40855/a-cloud-computing-system-using-virtual-hyperbolic-coordinates-for-services-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">838</span> Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juhi%20Faridi">Juhi Faridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Ajmal%20Kafeel"> Mohd. Ajmal Kafeel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS. Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analog%20circuits" title="analog circuits">analog circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20circuits" title=" digital circuits"> digital circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=memristors" title=" memristors"> memristors</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromorphic%20computing%20systems" title=" neuromorphic computing systems"> neuromorphic computing systems</a> </p> <a href="https://publications.waset.org/abstracts/100057/memristor-a-promising-candidate-for-neural-circuits-in-neuromorphic-computing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">837</span> Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyong%20Oh">Seyong Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hong%20Park"> Jin-Hong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20synapse" title="optoelectronic synapse">optoelectronic synapse</a>, <a href="https://publications.waset.org/abstracts/search?q=IGZO%20%28Indium-Gallium-Zinc%20Oxide%29%20photosynaptic%20device" title=" IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device"> IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20spiking%20process" title=" optoelectronic spiking process"> optoelectronic spiking process</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromorphic%20computing" title=" neuromorphic computing"> neuromorphic computing</a> </p> <a href="https://publications.waset.org/abstracts/93884/indium-gallium-zinc-oxide-photosynaptic-device-with-alkylated-graphene-oxide-for-optoelectronic-spike-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">836</span> Selecting Skyline Mash-Ups under Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Gammoudi">Aymen Gammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Labbaci"> Hamza Labbaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Messai"> Nizar Messai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yacine%20Sam"> Yacine Sam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web Service Composition (Mash-up) has been considered as a new approach used to offer the user a set of Web Services responding to his request. These approaches can return a set of similar Mash-ups in a given context that makes users unable to select the perfect one. Recent approaches focus on computing the skyline over a set of Quality of Service (QoS) attributes. However, these approaches are not sufficient in a dynamic web service environment where the delivered QoS by a Web service is inherently uncertain. In this paper, we treat the problem of computing the skyline over a set of similar Mash-ups under certain dimension values. We generate dimensions for each Mash-up using aggregation operations applied to the QoS attributes. We then tackle the problem of computing the skyline under uncertain dimensions. We present each dimension value of mash-up using a frame of discernment and introduce the d-dominance using the Evidence Theory. Finally, we propose our experimental results that show both the effectiveness of the introduced skyline extensions and the efficiency of the proposed approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=web%20services" title="web services">web services</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20QoS" title=" uncertain QoS"> uncertain QoS</a>, <a href="https://publications.waset.org/abstracts/search?q=mash-ups" title=" mash-ups"> mash-ups</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20%20dimensions" title=" uncertain dimensions"> uncertain dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=skyline" title=" skyline"> skyline</a>, <a href="https://publications.waset.org/abstracts/search?q=evidence%20%20theory" title=" evidence theory"> evidence theory</a>, <a href="https://publications.waset.org/abstracts/search?q=d-dominance" title=" d-dominance"> d-dominance</a> </p> <a href="https://publications.waset.org/abstracts/137195/selecting-skyline-mash-ups-under-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">835</span> A Review Paper on Data Security in Precision Agriculture Using Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tonderai%20Muchenje">Tonderai Muchenje</a>, <a href="https://publications.waset.org/abstracts/search?q=Xolani%20Mkhwanazi"> Xolani Mkhwanazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title="precision agriculture">precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=EIDE" title=" EIDE"> EIDE</a> </p> <a href="https://publications.waset.org/abstracts/153861/a-review-paper-on-data-security-in-precision-agriculture-using-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">834</span> Cloud Monitoring and Performance Optimization Ensuring High Availability and Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inayat%20Ur%20Rehman">Inayat Ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia%20Sakellari"> Georgia Sakellari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20monitoring" title=" cloud monitoring"> cloud monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20optimization" title=" performance optimization"> performance optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20availability" title=" high availability"> high availability</a> </p> <a href="https://publications.waset.org/abstracts/182069/cloud-monitoring-and-performance-optimization-ensuring-high-availability-and-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">833</span> Development of Web-Based Remote Desktop to Provide Adaptive User Interfaces in Cloud Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuen-Tai%20Wang">Shuen-Tai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsi-Ya%20Chang"> Hsi-Ya Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud virtualization technologies are becoming more and more prevalent, cloud users usually encounter the problem of how to access to the virtualized remote desktops easily over the web without requiring the installation of special clients. To resolve this issue, we took advantage of the HTML5 technology and developed web-based remote desktop. It permits users to access the terminal which running in our cloud platform from anywhere. We implemented a sketch of web interface following the cloud computing concept that seeks to enable collaboration and communication among users for high performance computing. Given the development of remote desktop virtualization, it allows to shift the user’s desktop from the traditional PC environment to the cloud platform, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtualization" title="virtualization">virtualization</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20desktop" title=" remote desktop"> remote desktop</a>, <a href="https://publications.waset.org/abstracts/search?q=HTML5" title=" HTML5"> HTML5</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a> </p> <a href="https://publications.waset.org/abstracts/12087/development-of-web-based-remote-desktop-to-provide-adaptive-user-interfaces-in-cloud-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">832</span> Cloud-Based Dynamic Routing with Feedback in Formal Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jawid%20Ahmad%20Baktash">Jawid Ahmad Baktash</a>, <a href="https://publications.waset.org/abstracts/search?q=Mursal%20Dawodi"> Mursal Dawodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomokazu%20Nagata"> Tomokazu Nagata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid growth of Cloud Computing, Formal Methods became a good choice for the refinement of message specification and verification for Dynamic Routing in Cloud Computing. Cloud-based Dynamic Routing is becoming increasingly popular. We propose feedback in Formal Methods for Dynamic Routing and Cloud Computing; the model and topologies show how to send messages from index zero to all others formally. The responsibility of proper verification becomes crucial with Dynamic Routing in the cloud. Formal Methods can play an essential role in the routing and development of Networks, and the testing of distributed systems. Event-B is a formal technique that consists of describing the problem rigorously and introduces solutions or details in the refinement steps. Event-B is a variant of B, designed for developing distributed systems and message passing of the dynamic routing. In Event-B and formal methods, the events consist of guarded actions occurring spontaneously rather than being invoked. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud" title="cloud">cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20routing" title=" dynamic routing"> dynamic routing</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20method" title=" formal method"> formal method</a>, <a href="https://publications.waset.org/abstracts/search?q=Pro-B" title=" Pro-B"> Pro-B</a>, <a href="https://publications.waset.org/abstracts/search?q=event-B" title=" event-B"> event-B</a> </p> <a href="https://publications.waset.org/abstracts/49044/cloud-based-dynamic-routing-with-feedback-in-formal-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">831</span> Performance Evaluation of Fingerprint, Auto-Pin and Password-Based Security Systems in Cloud Computing Environment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Ogala">Emmanuel Ogala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing has been envisioned as the next-generation architecture of Information Technology (IT) enterprise. In contrast to traditional solutions where IT services are under physical, logical and personnel controls, cloud computing moves the application software and databases to the large data centres, where the management of the data and services may not be fully trustworthy. This is due to the fact that the systems are opened to the whole world and as people tries to have access into the system, many people also are there trying day-in day-out on having unauthorized access into the system. This research contributes to the improvement of cloud computing security for better operation. The work is motivated by two problems: first, the observed easy access to cloud computing resources and complexity of attacks to vital cloud computing data system NIC requires that dynamic security mechanism evolves to stay capable of preventing illegitimate access. Second; lack of good methodology for performance test and evaluation of biometric security algorithms for securing records in cloud computing environment. The aim of this research was to evaluate the performance of an integrated security system (ISS) for securing exams records in cloud computing environment. In this research, we designed and implemented an ISS consisting of three security mechanisms of biometric (fingerprint), auto-PIN and password into one stream of access control and used for securing examination records in Kogi State University, Anyigba. Conclusively, the system we built has been able to overcome guessing abilities of hackers who guesses people password or pin. We are certain about this because the added security system (fingerprint) needs the presence of the user of the software before a login access can be granted. This is based on the placement of his finger on the fingerprint biometrics scanner for capturing and verification purpose for user’s authenticity confirmation. The study adopted the conceptual of quantitative design. Object oriented and design methodology was adopted. In the analysis and design, PHP, HTML5, CSS, Visual Studio Java Script, and web 2.0 technologies were used to implement the model of ISS for cloud computing environment. Note; PHP, HTML5, CSS were used in conjunction with visual Studio front end engine design tools and MySQL + Access 7.0 were used for the backend engine and Java Script was used for object arrangement and also validation of user input for security check. Finally, the performance of the developed framework was evaluated by comparing with two other existing security systems (Auto-PIN and password) within the school and the results showed that the developed approach (fingerprint) allows overcoming the two main weaknesses of the existing systems and will work perfectly well if fully implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title="performance evaluation">performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title=" fingerprint"> fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=auto-pin" title=" auto-pin"> auto-pin</a>, <a href="https://publications.waset.org/abstracts/search?q=password-based" title=" password-based"> password-based</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20systems" title=" security systems"> security systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20%20computing%20environment" title=" cloud computing environment"> cloud computing environment</a> </p> <a href="https://publications.waset.org/abstracts/106693/performance-evaluation-of-fingerprint-auto-pin-and-password-based-security-systems-in-cloud-computing-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">830</span> Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tim%20Nedyalkov">Tim Nedyalkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. They are collecting, managing, and retaining large amounts of data in cloud environments makes information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20compliance" title="cloud compliance">cloud compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20security" title=" cloud security"> cloud security</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20governance" title=" data governance"> data governance</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy%20protection" title=" privacy protection"> privacy protection</a> </p> <a href="https://publications.waset.org/abstracts/148053/governance-risk-management-and-compliance-factors-influencing-the-adoption-of-cloud-computing-in-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">829</span> Intrusion Detection in Cloud Computing Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faiza%20Babur%20Khan">Faiza Babur Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohail%20Asghar"> Sohail Asghar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20security" title="cloud security">cloud security</a>, <a href="https://publications.waset.org/abstracts/search?q=threats" title=" threats"> threats</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/68047/intrusion-detection-in-cloud-computing-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">828</span> Problem of Services Selection in Ubiquitous Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Assia%20Arab"> Assia Arab</a>, <a href="https://publications.waset.org/abstracts/search?q=Betitra%20Yakouben"> Betitra Yakouben</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Zermani"> Samia Zermani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ubiquitous computing is nowadays a reality through the networking of a growing number of computing devices. It allows providing users with context aware information and services in a heterogeneous environment, anywhere and anytime. Selection of the best context-aware service, between many available services and providers, is a tedious problem. In this paper, a service selection method based on Constraint Satisfaction Problem (CSP) formalism is proposed. The services are considered as variables and domains; and the user context, preferences and providers characteristics are considered as constraints. The Backtrack algorithm is used to solve the problem to find the best service and provider which matches the user requirements. Even though this algorithm has an exponential complexity, but its use guarantees that the service, that best matches the user requirements, will be found. A comparison of the proposed method with the existing solutions finishes the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title="ubiquitous computing">ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=services%20selection" title=" services selection"> services selection</a>, <a href="https://publications.waset.org/abstracts/search?q=constraint%20satisfaction%20problem" title=" constraint satisfaction problem"> constraint satisfaction problem</a>, <a href="https://publications.waset.org/abstracts/search?q=backtrack%20algorithm" title=" backtrack algorithm"> backtrack algorithm</a> </p> <a href="https://publications.waset.org/abstracts/68523/problem-of-services-selection-in-ubiquitous-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">827</span> Cost-Based Analysis of Cloud and Traditional ERP Systems in Small and Medium Enterprises </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indu%20Saini">Indu Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashu%20Khanna"> Ashu Khanna</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Peddoju"> S. K. Peddoju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing is the new buzz word today attracting high interest among various domains like business enterprises, Particularly in Small and Medium Enterprises. As it is a pay-per-use model, SMEs have high expectations that adapting this model will not only make them flexible, hassle-free but also economic. In view of such expectations, this paper analyses the possibility of adapting cloud computing technologies in SMEs in light of economic concerns. In this paper, two hypotheses are developed to compare the average annual per-user costs of using Enterprise Resource Planning systems in two ways, The traditional approach and the cloud approach. A web based survey is conducted apart from the Interviews with the peers to collect the data across the selected SMEs and t-test is performed to compare both the technologies on the proposed hypothesis. Results achieved are produced and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20and%20medium%20enterprises" title=" small and medium enterprises"> small and medium enterprises</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20resource%20solutions" title=" enterprise resource solutions"> enterprise resource solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=interviews" title=" interviews "> interviews </a> </p> <a href="https://publications.waset.org/abstracts/1660/cost-based-analysis-of-cloud-and-traditional-erp-systems-in-small-and-medium-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">826</span> Cellular Automata Using Fractional Integral Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20F.%20Hassan">Yasser F. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20integral" title="fractional integral">fractional integral</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata" title=" cellular automata"> cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a> </p> <a href="https://publications.waset.org/abstracts/55312/cellular-automata-using-fractional-integral-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">825</span> Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivedha%20Rajaram">Nivedha Rajaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20quantum%20solver" title=" hybrid quantum solver"> hybrid quantum solver</a>, <a href="https://publications.waset.org/abstracts/search?q=DWave%20annealing" title=" DWave annealing"> DWave annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20knowledge%20graph" title=" network knowledge graph"> network knowledge graph</a> </p> <a href="https://publications.waset.org/abstracts/150932/network-connectivity-knowledge-graph-using-dwave-quantum-hybrid-solvers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">824</span> From E-Government to Cloud-Government Challenges of Jordanian Citizens' Acceptance for Public Services</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20Alkhwaldi">Abeer Alkhwaldi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mumtaz%20Kamala"> Mumtaz Kamala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the inception of the third millennium, there is much evidence that cloud technologies have become the strategic trend for many governments not only developed countries (e.g., UK, Japan, and USA), but also developing countries (e.g. Malaysia and the Middle East region), who have launched cloud computing movements for enhanced standardization of IT resources, cost reduction, and more efficient public services. Therefore, cloud-based e-government services considered as one of the high priorities for government agencies in Jordan. Although of their phenomenal evolution, government cloud-services still suffering from the adoption challenges of e-government initiatives (e.g. technological, human-aspects, social, and financial) which need to be considered carefully by governments contemplating its implementation. This paper presents a pilot study to investigate the citizens' perception of the extent in which these challenges affect the acceptance and use of cloud computing in Jordanian public sector. Based on the data analysis collected using online survey some important challenges were identified. The results can help to guide successful acceptance of cloud-based e-government services in Jordan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=challenges" title="challenges">challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=e-government" title=" e-government"> e-government</a>, <a href="https://publications.waset.org/abstracts/search?q=acceptance" title=" acceptance"> acceptance</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan "> Jordan </a> </p> <a href="https://publications.waset.org/abstracts/80157/from-e-government-to-cloud-government-challenges-of-jordanian-citizens-acceptance-for-public-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Data Security in Cloud Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Rashid">Amir Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today is the world of innovation and Cloud Computing is becoming a day to day technology with every passing day offering remarkable services and features on the go with rapid elasticity. This platform took business computing into an innovative dimension where clients interact and operate through service provider web portals. Initially, the trust relationship between client and service provider remained a big question but with the invention of several cryptographic paradigms, it is becoming common in everyday business. This research work proposes a solution for building a cloud storage service with respect to Data Security addressing public cloud infrastructure where the trust relationship matters a lot between client and service provider. For the great satisfaction of client regarding high-end Data Security, this research paper propose a layer of cryptographic primitives combining several architectures in order to achieve the goal. A survey has been conducted to determine the benefits for such an architecture would provide to both clients/service providers and recent developments in cryptography specifically by cloud storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20security%20in%20cloud%20computing" title="data security in cloud computing">data security in cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20storage%20architecture" title=" cloud storage architecture"> cloud storage architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptographic%20developments" title=" cryptographic developments"> cryptographic developments</a>, <a href="https://publications.waset.org/abstracts/search?q=token%20key" title=" token key"> token key</a> </p> <a href="https://publications.waset.org/abstracts/86108/data-security-in-cloud-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Touching Interaction: An NFC-RFID Combination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20%C3%81lvarez">Eduardo Álvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerardo%20Quiroga"> Gerardo Quiroga</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Orozco"> Jorge Orozco</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Chavira"> Gabriel Chavira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> AmI proposes a new way of thinking about computers, which follows the ideas of the Ubiquitous Computing vision of Mark Weiser. In these, there is what is known as a Disappearing Computer Initiative, with users immersed in intelligent environments. Hence, technologies need to be adapted so that they are capable of replacing the traditional inputs to the system by embedding these in every-day artifacts. In this work, we present an approach, which uses Radiofrequency Identification (RFID) and Near Field Communication (NFC) technologies. In the latter, a new form of interaction appears by contact. We compare both technologies by analyzing their requirements and advantages. In addition, we propose using a combination of RFID and NFC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=touching%20interaction" title="touching interaction">touching interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20intelligence" title=" ambient intelligence"> ambient intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC%20and%20RFID" title=" NFC and RFID"> NFC and RFID</a> </p> <a href="https://publications.waset.org/abstracts/40339/touching-interaction-an-nfc-rfid-combination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Factorization of Computations in Bayesian Networks: Interpretation of Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20Smail">Linda Smail</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Azouz"> Zineb Azouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given a Bayesian network relative to a set I of discrete random variables, we are interested in computing the probability distribution P(S) where S is a subset of I. The general idea is to write the expression of P(S) in the form of a product of factors where each factor is easy to compute. More importantly, it will be very useful to give an interpretation of each of the factors in terms of conditional probabilities. This paper considers a semantic interpretation of the factors involved in computing marginal probabilities in Bayesian networks. Establishing such a semantic interpretations is indeed interesting and relevant in the case of large Bayesian networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=D-Separation" title=" D-Separation"> D-Separation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20two%20Bayesian%20networks" title=" level two Bayesian networks"> level two Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=factorization%20of%20computation" title=" factorization of computation"> factorization of computation</a> </p> <a href="https://publications.waset.org/abstracts/18829/factorization-of-computations-in-bayesian-networks-interpretation-of-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Indirect Environmental Benefits from Cloud Computing Information and Communications Technology Integration in Rural Agricultural Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeana%20Cadby">Jeana Cadby</a>, <a href="https://publications.waset.org/abstracts/search?q=Kae%20Miyazawa"> Kae Miyazawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With rapidly expanding worldwide adoption of mobile technologies, Information and Communication Technology (ITC) is a major energy user and a contributor to global carbon emissions, due to infrastructure and operational energy consumption. The agricultural sector is also significantly responsible for contributing to global carbon emissions. However, ICT cloud computing using mobile technology can directly reduce environmental impacts in the agricultural sector through applications and mobile connectivity, such as precision fertilizer and pesticide applications, or access to weather data, for example. While direct impacts are easily calculated, indirect environmental impacts from ICT cloud computing usage have not been thoroughly investigated. For example, while women may be more poorly equipped for adaptation to environmentally sustainable agricultural practices due to resource constraints, this research concludes that indirect environmental benefits can be achieved by improving rural access to mobile technology for women. Women in advanced roles and secure land tenure are more likely to invest in long-term agricultural conservation strategies, which protect against environmental degradation. This study examines how ICT using mobile technology advances the role of women in rural agricultural systems and indirectly reduces environmental impacts from agricultural production, through literature examination from secondary sources. Increasing access for women to ICT mobile technology provides indirect environmental and social benefits in the rural agricultural sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20benefits" title=" environmental benefits"> environmental benefits</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20technology" title=" mobile technology"> mobile technology</a>, <a href="https://publications.waset.org/abstracts/search?q=women" title=" women"> women</a> </p> <a href="https://publications.waset.org/abstracts/84887/indirect-environmental-benefits-from-cloud-computing-information-and-communications-technology-integration-in-rural-agricultural-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> A Variant of a Double Structure-Preserving QR Algorithm for Symmetric and Hamiltonian Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salam">Ahmed Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Haithem%20Benkahla"> Haithem Benkahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, an efficient backward-stable algorithm for computing eigenvalues and vectors of a symmetric and Hamiltonian matrix has been proposed. The method preserves the symmetric and Hamiltonian structures of the original matrix, during the whole process. In this paper, we revisit the method. We derive a way for implementing the reduction of the matrix to the appropriate condensed form. Then, we construct a novel version of the implicit QR-algorithm for computing the eigenvalues and vectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20implicit%20QR%20algorithm" title="block implicit QR algorithm">block implicit QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation%20of%20a%20double%20structure" title=" preservation of a double structure"> preservation of a double structure</a>, <a href="https://publications.waset.org/abstracts/search?q=QR%20algorithm" title=" QR algorithm"> QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20and%20Hamiltonian%20structures" title=" symmetric and Hamiltonian structures"> symmetric and Hamiltonian structures</a> </p> <a href="https://publications.waset.org/abstracts/61018/a-variant-of-a-double-structure-preserving-qr-algorithm-for-symmetric-and-hamiltonian-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> End-to-End Control and Management of Multi-AS Virtual Service Networks Using SDN and Autonomic Computing Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Xue">Yong Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20A.%20Menasc%C3%A9"> Daniel A. Menascé</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automated and end-to-end network resource management and provisioning for virtual service networks in a multiple autonomous systems (a.k.a multi-AS) environment is a challenging and open problem. This paper proposes a novel, scalable and interoperable high-level architecture that incorporates a number of emerging enabling technologies including Software Defined Network (SDN), Network Function Virtualization (NFV), Service Oriented Architecture (SOA), and Autonomic Computing. The proposed architecture can be used to not only automate network resource management and provisioning for virtual service networks across multiple autonomous substrate networks, but also provide an adaptive capability for achieving optimal network resource management and maintaining network-level end-to-end network performance as well. The paper argues that this SDN and autonomic computing based architecture lays a solid foundation that can facilitate the development of the future Internet based on the pluralistic paradigm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20network" title="virtual network">virtual network</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20network" title=" software defined network"> software defined network</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20service%20network" title=" virtual service network"> virtual service network</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20resource%20management" title=" adaptive resource management"> adaptive resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=SOA" title=" SOA"> SOA</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-AS" title=" multi-AS"> multi-AS</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-domain" title=" inter-domain"> inter-domain</a> </p> <a href="https://publications.waset.org/abstracts/14547/end-to-end-control-and-management-of-multi-as-virtual-service-networks-using-sdn-and-autonomic-computing-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> A System Framework for Dynamic Service Deployment in Container-Based Computing Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuen-Tai%20Wang">Shuen-Tai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Lin"> Yu-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsi-Ya%20Chang"> Hsi-Ya Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing and virtualization technology have brought an innovative way for people to develop and use software nowadays. However, conventional virtualization comes at the expense of performance loss for applications. Container-based virtualization could be an option as it potentially reduces overhead and minimizes performance decline of the service platform. In this paper, we introduce a system framework and present an implementation of resource broker for dynamic cloud service deployment on the container-based platform to facilitate the efficient execution and improve the utilization. We target the load-aware service deployment approach for task ranking scenario. This proposed effort can collaborate with resource management system to adaptively deploy services according to the different requests. In particular, our approach relies on composing service immediately onto appropriate container according to user’s requirement in order to conserve the waiting time. Our evaluation shows how efficient of the service deployment is and how to expand its applicability to support the variety of cloud service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=container-based%20virtualization" title=" container-based virtualization"> container-based virtualization</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20broker" title=" resource broker"> resource broker</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20deployment" title=" service deployment"> service deployment</a> </p> <a href="https://publications.waset.org/abstracts/92510/a-system-framework-for-dynamic-service-deployment-in-container-based-computing-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> An Examination of the Factors Affecting the Adoption of Cloud Enterprise Resource Planning Systems in Egyptian Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayar%20A.%20Omar">Mayar A. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Gomaa"> Ismail Gomaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Badawy"> Heba Badawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosam%20Moubarak"> Hosam Moubarak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enterprise resource planning (ERP) is an integrated system that helps companies in managing their resources. There are two types of ERP systems, traditional ERP systems and cloud ERP systems. Cloud ERP systems were introduced after the development of cloud computing technology. This research aims to identify the factors that affect the adoption of cloud ERP in Egyptian companies. Moreover, the aim of our study is to provide guidance to Egyptian companies in the cloud ERP adoption decision and to participate in increasing the number of cloud ERP studies that are conducted in the Middle East and in developing countries. There are many factors influencing the adoption of cloud ERP in Egyptian organizations, which are discussed and explained in the research. Those factors are examined by combining the diffusion of innovation theory (DOI) and technology-organization-environment framework (TOE). Data were collected through a survey that was developed using constructs from the existing studies of cloud computing and cloud ERP technologies and was then modified to fit our research. The analysis of the data was based on structural equation modeling (SEM) using Smart PLS software that was used for the empirical analysis of the research model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20ERP%20systems" title=" cloud ERP systems"> cloud ERP systems</a>, <a href="https://publications.waset.org/abstracts/search?q=DOI" title=" DOI"> DOI</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TOE" title=" TOE"> TOE</a> </p> <a href="https://publications.waset.org/abstracts/142225/an-examination-of-the-factors-affecting-the-adoption-of-cloud-enterprise-resource-planning-systems-in-egyptian-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Sanjel">Arun Sanjel</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20Speegle"> Greg Speegle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=program%20synthesis" title="program synthesis">program synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20computing" title=" distributed computing"> distributed computing</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20testing" title=" unit testing"> unit testing</a>, <a href="https://publications.waset.org/abstracts/search?q=DISC" title=" DISC"> DISC</a> </p> <a href="https://publications.waset.org/abstracts/158356/roop-translating-sequential-code-fragments-to-distributed-code-fragments-using-deep-reinforcement-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=5" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=5">5</a></li> <li class="page-item active"><span class="page-link">6</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GPU%20computing&page=7" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>