CINXE.COM

Search results for: methyl ethyl ketone

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: methyl ethyl ketone</title> <meta name="description" content="Search results for: methyl ethyl ketone"> <meta name="keywords" content="methyl ethyl ketone"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="methyl ethyl ketone" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="methyl ethyl ketone"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 745</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: methyl ethyl ketone</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">745</span> Ketones Emission during Pad Printing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksentijevi%C4%87%20M.%20Sne%C5%BEana"> Aksentijević M. Snežana</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Djogo%20Z.%20Maja"> Djogo Z. Maja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetone" title="acetone">acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone" title=" methyl ethyl ketone"> methyl ethyl ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression%20analysis" title=" multiple linear regression analysis"> multiple linear regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pad%20printing" title=" pad printing"> pad printing</a> </p> <a href="https://publications.waset.org/abstracts/4798/ketones-emission-during-pad-printing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">744</span> Liquid Phase Catalytic Dehydrogenation of Secondary Alcohols to Ketone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=An%C4%B1l%20Din%C3%A7er">Anıl Dinçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilek%20Durano%C4%9Flu"> Dilek Duranoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ketones, which are widely used as solvent and chemical intermediates in chemical process industry, are commercially produced by using catalytic dehydrogenation of secondary alcohols at higher temperature (300-500ºC), and pressure (1-5 bar). Although it is possible to obtain high conversion values (60-87%) via gas phase catalytic dehydrogenation, working high temperature and pressure can result in side reactions and shorten the catalyst life. In order to overcome these challenges, catalytic dehydrogenation in the presence of an appropriate liquid solvent has been started to use. Hence, secondary alcohols can be converted to respective ketones at relatively low temperature (150-200ºC) under atmospheric pressure. In this study, methyl ethyl ketone and acetone was produced via catalytic dehydrogenation of appropriate secondary alcohols (isopropyl alcohol and sec-butyl alcohol) in the presence of liquid solvent at 160-190ºC. Obtained methyl ethyl ketone and acetone were analyzed by using FTIR and GC spectrometer. Effects of temperature, amount of catalyst and solvent on conversion and reaction rate were investigated. Optimum process conditions, which gave high conversion and reaction rate, were determined. According to GC results, 70% of secondary butyl alcohol and 42% of isopropyl alcohol was converted to related ketone (methyl ethyl ketone and acetone, respectively) at optimum process conditions. After distillation, 99.13% methyl ethyl ketone and 99.20% acetone was obtained. Consequently, liquid phase dehydrogenation process, which can compete with commercial gas phase process, was developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dehydrogenation" title="dehydrogenation">dehydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase" title=" liquid phase"> liquid phase</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone" title=" methyl ethyl ketone"> methyl ethyl ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20alcohol" title=" secondary alcohol"> secondary alcohol</a> </p> <a href="https://publications.waset.org/abstracts/54692/liquid-phase-catalytic-dehydrogenation-of-secondary-alcohols-to-ketone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">743</span> Study of Intermolecular Interactions in Binary Mixtures of 1-Butyl-3-Methyl Imidazolium Bis (Trifluoro Methyl Sulfonyl) Imide and 1-Ethyl-3-Methyl Imidazolium Ethyl Sulphate at Different Temperature from 293.18 to 342.15 K</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Lokesh">V. Lokesh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Manjunathan"> M. Manjunathan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sairam"> S. Sairam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saithsh%20Kumar"> K. Saithsh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Anantharaj"> R. Anantharaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The densities of pure and its binary mixtures of 1-Butyl-3-methyl imidazolium bis (trifluoro methyl sulfonyl) imide and 1–Ethyl-3-methyl imidazolium ethyl sulphate at different temperature, over the entire composition range were measured at 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, 33.15, 338.15, 343.15 K. In this study, the liquid-liquid extraction procedure was used. From this experimental data, the excess molar volumes, apparent molar volume, partial molar volumes and the excess partial molar volumes have been calculated for over the whole composition range. Hence, the effect of temperature and composition on all derived thermodynamic properties of this binary mixture will be discussed in terms of intermolecular interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title="ionic liquid">ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20temperature" title=" effect of temperature"> effect of temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20composition" title=" effect of composition"> effect of composition</a> </p> <a href="https://publications.waset.org/abstracts/81348/study-of-intermolecular-interactions-in-binary-mixtures-of-1-butyl-3-methyl-imidazolium-bis-trifluoro-methyl-sulfonyl-imide-and-1-ethyl-3-methyl-imidazolium-ethyl-sulphate-at-different-temperature-from-29318-to-34215-k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">742</span> Effect of Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose Polymer on the Release Profile of Diltiazem Hydrochloride Sustained Release Pellets </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahana%20Sharmin">Shahana Sharmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effect of cellulose polymers Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose was evaluated on the release profile of drug from sustained release pellet. Diltiazem Hydrochloride, an antihypertensive, cardio-protective agent and slow channel blocker were used as a model drug to evaluate its release characteristics from different pellets formulations. Diltiazem Hydrochloride sustained release pellets were prepared by drug loading (drug binder suspension) on neutral pellets followed by different percentages of spraying, i.e. 2%,4%, 6%, 8% and 10% coating suspension using ethyl cellulose and hydroxy-propyl methyl cellulose polymer in a fixed 85:15 ratios respectively. The in vitro dissolution studies of Diltiazem Hydrochloride from these sustained release pellets were carried out in pH 7.2 phosphate buffer for 1, 2, 3, 4, 5, 6, 7, and 8 hrs using USP-I method. Statistically, significant differences were found among the drug release profile from different formulations. Polymer content with the highest concentration of Ethyl cellulose on the pellets shows the highest release retarding rate of the drug. The retarding capacity decreases with the decreased concentration of ethyl cellulose. The release mechanism was explored and explained with zero order, first order, Higuchi and Korsmeyer’s equations. Finally, the study showed that the profile and kinetics of drug release were functions of polymer type, polymer concentration & the physico-chemical properties of the drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diltiazem%20hydrochloride" title="diltiazem hydrochloride">diltiazem hydrochloride</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20cellulose" title=" ethyl cellulose"> ethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxy%20propyl%20methyl%20cellulose" title=" hydroxy propyl methyl cellulose"> hydroxy propyl methyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20kinetics" title=" release kinetics"> release kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustained%20release%20pellets" title=" sustained release pellets"> sustained release pellets</a> </p> <a href="https://publications.waset.org/abstracts/21180/effect-of-ethyl-cellulose-and-hydroxy-propyl-methyl-cellulose-polymer-on-the-release-profile-of-diltiazem-hydrochloride-sustained-release-pellets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">741</span> Effect of Asymmetric Amphiphilic Dicationic Ionic Liquids as Oil Spill Dispersants in Red Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghda%20El-Nagara">Raghda El-Nagara</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20I.%20Nessim"> Maher I. Nessim</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20E.%20Elshafee"> Carmen E. Elshafee</a>, <a href="https://publications.waset.org/abstracts/search?q=Renee%20I.%20Abdallah"> Renee I. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20M.%20Moustafa"> Yasser M. Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three asymmetric dicationic ionic liquids (ADILs), 1-(2-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)ethyl)-3-methyl pyridinium bromide (IL₁), 1-(6-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)hexyl)-3-methyl pyridinium bromide (IL₂) and 1-(10-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)decyl)-3-methyl pyridinium bromide (IL₃) were synthesized with yield of 83.54, 84.12 & 83.05% respectively. They were elucidated via conventional tools of analysis (elemental analysis, FT-IR, and 1H-NMR). The thermogravimetric analysis confirmed that the three ADILs possessed high thermal stability (up to 500ᵒC). Their critical micelle concentration (CMC) was investigated and exhibited values of 5.5-1*10⁻³ Mol./L. They were evaluated as oil spill dispersants were at different temperatures (10, 30 & 50ᵒC) with different concentrations (750, 1500, 2000, 3000 ppm). Data reveals that the efficiency is ranked as follows: IL₂ > IL₁ > IL₃, which showed high dispersion efficiency reached to 63% with the concentration of 1500 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic" title=" amphiphilic"> amphiphilic</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill%20dispersants" title=" oil spill dispersants"> oil spill dispersants</a>, <a href="https://publications.waset.org/abstracts/search?q=dicationic" title=" dicationic"> dicationic</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20test" title=" efficiency test"> efficiency test</a> </p> <a href="https://publications.waset.org/abstracts/135621/effect-of-asymmetric-amphiphilic-dicationic-ionic-liquids-as-oil-spill-dispersants-in-red-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">740</span> Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadao%20Araki">Sadao Araki</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisuke%20Gondo"> Daisuke Gondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Satoshi%20Imasaka"> Satoshi Imasaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Hideki%20Yamamoto"> Hideki Yamamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title="hydrophobic">hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Hansen%20solubility%20parameter" title=" Hansen solubility parameter"> Hansen solubility parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20group" title=" functional group"> functional group</a> </p> <a href="https://publications.waset.org/abstracts/35524/organic-permeation-properties-of-hydrophobic-silica-membranes-with-different-functional-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">739</span> Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Hasbullah">N. Hasbullah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Sekak"> K. A. Sekak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolyte%20membrane%20%28PEM%29" title="polymer electrolyte membrane (PEM)">polymer electrolyte membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfonated%20poly%20%28ether%20ether%20ketone%29%20%28SPEEK%29" title=" sulfonated poly (ether ether ketone) (SPEEK)"> sulfonated poly (ether ether ketone) (SPEEK)</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20sulfonation" title=" degree sulfonation"> degree sulfonation</a>, <a href="https://publications.waset.org/abstracts/search?q=Electrospinning" title=" Electrospinning"> Electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanofibers" title=" Nanofibers "> Nanofibers </a> </p> <a href="https://publications.waset.org/abstracts/26841/synthesis-and-characterizations-of-sulfonated-poly-ether-ether-ketone-speek-nanofiber-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">738</span> Comparative in silico and in vitro Study of N-(1-Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pamita%20Awasthi">Pamita Awasthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirna"> Kirna</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Dogra"> Shilpa Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manu%20Vatsal"> Manu Vatsal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Barthwal"> Ritu Barthwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doxorubicin, also known as adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemias, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhoea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, anti-inflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilino-ethyl)benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 µM where as for doxorubicin is 7.2 µ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doxorubicin" title="Doxorubicin">Doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20dock" title=" auto dock"> auto dock</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silco" title=" in silco"> in silco</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a> </p> <a href="https://publications.waset.org/abstracts/20279/comparative-in-silico-and-in-vitro-study-of-n-1-methyl-2-oxo-2-n-methyl-anilino-ethyl-benzene-sulfonamide-and-its-analogues-as-an-anticancer-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">737</span> Improvement of Egyptian Vacuum Distillates by Solvent Dewaxing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehssan%20M.%20R.%20Nassef">Ehssan M. R. Nassef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> De-waxing of vacuum distillates by using solvent was investigated in the present study. The present work deals with studying solvent dewaxing system which have been developed to give better dewaxing performance with respect to the important factors in the choice of solvents which are good solubility of oil in the solvent and low solubility of wax in the solvent. In this study, solvent dewaxing process using Methyl Ethyl Ketone (MEK) and toluene are used for Egyptian vacuum distillates using two types of distillates. The effect of varying the composition of(MEK to toluene) on the percent yield of the oil, percent of wax, pour point, refractive index at 20 and 70°C, viscosity at 40 and 100°C, viscosity index and specific gravity of the oil produced for the two types of distillates (I & II) were evaluated. In the present study, the operating conditions of solvent dewaxing using MEK toluene mixture achieved the best pour point at -15°C for distillate I at (1:1) solvent composition mixture. At the same ratio of MEK to toluene the best specific gravity of oil produced changed from 0.871 to 0.8802, with refractive index of 1.84. Percent yield of 65% for oil was obtained. The results for distillate II, of higher specific gravity, are comparatively higher than those for distillate I. The effect of temperature was also investigated and the best temperature was -20°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewaxing" title="dewaxing">dewaxing</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20dewaxing" title=" solvent dewaxing"> solvent dewaxing</a>, <a href="https://publications.waset.org/abstracts/search?q=pour%20point" title=" pour point"> pour point</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricating%20oil%20production" title=" lubricating oil production"> lubricating oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=wax" title=" wax "> wax </a> </p> <a href="https://publications.waset.org/abstracts/22202/improvement-of-egyptian-vacuum-distillates-by-solvent-dewaxing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">736</span> Corrosion Inhibition of Brass in Phosphoric Acid Solution by 2-(5-Methyl-2-Nitro-1H-Imidazol-1-Yl) Ethyl Benzoate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Khrifou">R. Khrifou</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Galai"> M. Galai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Touir"> R. Touir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ebn%20Touhami"> M. Ebn Touhami</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ramli"> Y. Ramli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 2-(5-methyl-2-Nitro-1H-imidazol-1-yl)ethyl benzoate (IMDZ-B) was synthesized and characterized using elemental analyses, NMR, and Fourier transform infrared (FTIR) techniques. Its effect on brass corrosion in 1.0 M H₃PO₄ solution was investigated by using electrochemical measurements coupled with X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The polarization measurements showed that the IMDZ-B acts as a mixed-type inhibitor. Indeed, it is found that the IMDZ-B compound is a very good inhibitor, and its inhibition efficiency increases with concentration to reach a maximum of 99.5 % at 10-³ M. In addition, the obtained electrochemical parameters from impedance indicated that the IMDZ-B molecules act by adsorption on metallic surfaces. This adsorption was found to obey Langmuir’s adsorption isotherm. However, the temperature effect on the performance of IMDZ-B was also studied. It is found that the IMDZ-B takes its performance at high temperatures. In addition, the obtained kinetic and thermodynamic parameters showed that the IMDZ-B molecules act via two adsorption modes, physisorption and chemisorptions, and its process is endothermic and spontaneous. Finally, the XRD and SEM/EDX analyses confirmed the electrochemical obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20concentration" title="low concentration">low concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-corrosion%20brass" title=" anti-corrosion brass"> anti-corrosion brass</a>, <a href="https://publications.waset.org/abstracts/search?q=IMDZ-B%20product" title=" IMDZ-B product"> IMDZ-B product</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoric%20acid%20solution" title=" phosphoric acid solution"> phosphoric acid solution</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%5CEDAX%20analysis" title=" SEM\EDAX analysis"> SEM\EDAX analysis</a> </p> <a href="https://publications.waset.org/abstracts/182044/corrosion-inhibition-of-brass-in-phosphoric-acid-solution-by-2-5-methyl-2-nitro-1h-imidazol-1-yl-ethyl-benzoate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">735</span> Parabens, Paraben Metabolites and Triclocarban in Sediment Samples from the Trondheim Fjord, Norway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristine%20Vike-Jonas">Kristine Vike-Jonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Susana%20V.%20Gonzalez"> Susana V. Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Olav%20L.%20Bakkerud"> Olav L. Bakkerud</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoline%20S.%20Gjelstad"> Karoline S. Gjelstad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazia%20N.%20Aslam"> Shazia N. Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%98yvind%20Mikkelsen"> Øyvind Mikkelsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20Asimakopoulos"> Alexandros Asimakopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> P-hydrobenzoic acid esters (parabens), paraben metabolites, and triclocarban (TCC) are a group of synthetic antimicrobials classified as endocrine disrupting chemicals (EDCs) and emerging pollutants. The aim of this study was to investigate the levels of these compounds in sediment near the effluent of a wastewater treatment plant (WWTP) in the Trondheim Fjord, Norway. Paraben, paraben metabolites, and TCC are high volume production chemicals that are found in a range of consumer products, especially pharmaceuticals and personal care products (PCPs). In this study, six parabens (methyl paraben; MeP, ethyl paraben; EtP, propyl paraben; PrP, butyl paraben; BuP, benzyl paraben; BezP, heptyl paraben; HeP), four paraben metabolites (4-hydroxybenzoic acid; 4-HB, 3,4-dihydroxybenzoic acid; 3,4-DHB, methyl protocatechuic acid; OH-MeP, ethyl protocatechuic acid; OH-EtP) and TCC were determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in 64 sediment samples from 10 different locations outside Trondheim, Norway. Of these 11 target analytes, four were detected in 40 % or more of the samples. The sum of six parabens (∑Parabens), four paraben metabolites (∑Metabolites) and TCC in sediment ranged from 4.88 to 11.56 (mean 6.81) ng/g, 52.16 to 368.28 (mean 93.89) ng/g and 0.53 to 3.65 (mean 1.50) ng/g dry sediment, respectively. Pearson correlation coefficients indicated that TCC was positively correlated with OH-MeP, but negatively correlated with 4-HB. To the best of the author’s knowledge, this is the first time parabens, paraben metabolites and TCC have been reported in the Trondheim Fjord. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabens" title="parabens">parabens</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20mass%20spectrometry" title=" tandem mass spectrometry"> tandem mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/113904/parabens-paraben-metabolites-and-triclocarban-in-sediment-samples-from-the-trondheim-fjord-norway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">734</span> Methyl Red Dye Adsorption On PMMA/GO and PMMA/GO-Fe3O4 Nanocomposites: Equilibrium Isotherm Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rajabi">Mostafa Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Mahanpoor"> Kazem Mahanpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of the methyl red (MR) dye adsorption on poly(methyl methacrylate)/graphene oxide (PMMA/GO) and poly(methyl methacrylate)/graphene oxide-Fe3O4 (PMMA/GO-Fe3O4) nanocomposites as adsorbents were investigated. Our results showed that for adsorption of MR dye on PMMA/GO-Fe3O4 and PMMA/GO nanocomposites, 80 minutes, 298 K, and pH 2 were the best contact time, temperature and pH value for process, respectively, because the optimum adsorption of the MR dye with both nanocomposite adsorbents were observed in these values of the parameters. The equilibrium study results showed that PMMA/GO-Fe3O4 and PMMA/GO were suitable adsorbents for MR dye removing and were best in agreement with the Langmuir isotherm model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20methacrylate" title=" methyl methacrylate"> methyl methacrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20red" title=" methyl red"> methyl red</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20magnetic%20Fe3O4" title=" nano magnetic Fe3O4"> nano magnetic Fe3O4</a> </p> <a href="https://publications.waset.org/abstracts/140772/methyl-red-dye-adsorption-on-pmmago-and-pmmago-fe3o4-nanocomposites-equilibrium-isotherm-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">733</span> Asymmetric Synthesis of Catalponol Using Chiral Iridium Catalyst </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takeyuki%20Suzuki">Takeyuki Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismiyarto"> Ismiyarto</a>, <a href="https://publications.waset.org/abstracts/search?q=Da-Yang%20Zhou"> Da-Yang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaori%20Asano"> Kaori Asano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Sasai"> Hiroaki Sasai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of catalytic asymmetric reaction is important for the synthesis of natural products. To construct the multiple stereogenic centers, the desymmetrization of meso compounds is powerful strategy for the synthesis of chiral molecules. Oxidative desymmetrization of meso diols using chiral iridium catalyst provides a chiral hydroxyl ketone. The reaction is practical and an environmentally benign method which does not require the use of stoichiometric amount of heavy metals. This time we report here catalytic asymmetric synthesis of catalponol based on tandem coupling of meso-diols and an aldehyde. The tandem reaction includes oxidative desymmetrization of meso-diols, aldol condensation with an aldehyde. The reaction of meso-diol, benzaldehyde in the presence of a catalytic amount of chiral Ir complex and CsOH in tetrahydrofuran afforded the desired benzylidene ketone in 82% yield with 96% ee (enantiomeric excess). Next, we applied this benzylidene ketone derivative to the synthesis of catalponol. The corresponding benzylidene ketone was obtained in 87% yield with 99% ee. Finally, catalponol was synthesized by the regio- and stereo-selective reduction of dienone moiety in good yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalponol" title="catalponol">catalponol</a>, <a href="https://publications.waset.org/abstracts/search?q=desymmetrization" title=" desymmetrization"> desymmetrization</a>, <a href="https://publications.waset.org/abstracts/search?q=iridium" title=" iridium"> iridium</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/95973/asymmetric-synthesis-of-catalponol-using-chiral-iridium-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">732</span> Antioxidant Activity of Friedelin, Eudesmic Acid and Methyl-3,4,5-Trimethoxybenzoate from Tapinanthus bangwensis (Engl., and K. Krause) [Loranthaceae] Grown in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odunayo%20Christy%20Atewolara-Odule">Odunayo Christy Atewolara-Odule</a>, <a href="https://publications.waset.org/abstracts/search?q=Olapeju%20O.%20Aiyelaagbe"> Olapeju O. Aiyelaagbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search for new natural anti-oxidants has grown tremendously over the years because reactive oxygen species (ROS) production and oxidative stress have been linked to a large number of human degenerative diseases, such as cancer, cardiovascular diseases, inflammation, and diabetes. Tapinanthus bangwensis, a parasitic plant commonly known as mistletoe belonging to the Loranthaceae family, is mostly employed traditionally to treat inflammation, cancer, diabetes, and hypertension to mention a few. In this study, air-dried pulverized leaves and stem of Tapinanthus bangwensis were successively extracted with n-hexane, ethyl acetate, and methanol to give the corresponding crude extracts. The extracts were purified by column chromatography and high-performance liquid chromatography to give the isolated compounds. Structural elucidation was done using mass spectrometry, Fourier transform infra-red, 1D and 2D NMR spectroscopy. The antioxidant activity of the compounds was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ascorbic acid as standard. Three compounds; Friedelin, Eudesmic acid (3,4,5-trimethoxybenzoic) and Methyl-3,4,5-trimethoxybenzoate were isolated from the extracts of Tapinanthus bangwensis. Friedelin was isolated from the ethyl acetate extract of the stem while the two other compounds were isolated from the methanol extract of the leaves. The percentages of free radical scavenging activities of the compounds are as follows: Friedelin, 73.69%, methyl-3,4,5-trimethoxybenzoate, 79.33% and eudesmic, 87.68% anti-oxidant activity which were quite comparable to 93.96% given by ascorbic acid. We are reporting, to our best knowledge, for the first time the occurrence of friedelin and eudesmic acid in Tapinanthus bangwensis. The high anti-oxidant activity of these compounds supports the use of this plant in the management of diabetes and hypertension as they will be useful in combating complications arising from the disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=column%20chromatography" title="column chromatography">column chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=eudesmic%20acid" title=" eudesmic acid"> eudesmic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=friedelin" title=" friedelin"> friedelin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapinanthus%20bangwensis" title=" Tapinanthus bangwensis"> Tapinanthus bangwensis</a> </p> <a href="https://publications.waset.org/abstracts/93000/antioxidant-activity-of-friedelin-eudesmic-acid-and-methyl-345-trimethoxybenzoate-from-tapinanthus-bangwensis-engl-and-k-krause-loranthaceae-grown-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">731</span> Analysis of Bio-Oil Produced from Sugar Cane Bagasse Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Fardhyanti">D. S. Fardhyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Megawati"> M. Megawati</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Prasetiawan"> H. Prasetiawan</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Mediaty"> U. Mediaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, fossil fuel is supplying most of world’s energy resources. However, fossil fuel resources are depleted rapidly and require an alternative energy to overcome the increasing of energy demands. Bio-oil is one of a promising alternative renewable energy resources which is converted from biomass through pyrolysis or fast pyrolysis process. Bio-oil is a dark liquid fuel, has a smelling smoke and usually obtained from sugar cane, wood, coconut shell and any other biomass. Sugar cane content analysis showed that the content of oligosaccharide, hemicellulose, cellulose and lignin was 16.69%, 25.66%, 51.27% and 6.38% respectively. Sugar cane is a potential sources for bio-oil production shown by its high content of cellulose. In this study, production of bio-oil from sugar cane bagasse was investigated via fast pyrolysis reactor. Fast pyrolysis was carried out at 500 °C with a heating rate of 10 °C and 1 hour holding time at pyrolysis temperature. Physical properties and chemical composition of bio-oil were analyzed. The viscosity, density, calorific value and molecular weight of produced bio-oil was 3.12 cp, 2.78 g/cm3, 11,048.44 cals/g, and 222.67 respectively. The Bio-oil chemical composition was investigated using GC-MS. Percentage value of furfural, phenol, 3-methyl 1,2-cyclopentanedione, 5-methyl-3-methylene 5-hexen-2-one, 4-methyl phenol, 4-ethyl phenol, 1,2-benzenediol, and 2,6-dimethoxy phenol was 20.76%, 16.42%, 10.86%, 7.54%, 7.05%, 7.72%, 5.27% and 6.79% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-oil" title="bio-oil">bio-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse" title=" bagasse"> bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20cane" title=" sugar cane"> sugar cane</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectroscopy" title=" gas chromatography-mass spectroscopy"> gas chromatography-mass spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/93052/analysis-of-bio-oil-produced-from-sugar-cane-bagasse-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">730</span> Efficient Synthesis of Thiourea Based Iminothiazoline Heterocycles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hummera%20Rafique">Hummera Rafique</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamer%20Saeed"> Aamer Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thioureas are highly biologically active compounds, as many important applications are associated with this nucleus. They serve as exceptionally versatile building block for the synthesis of wide variety of heterocyclic systems, which also possess extensive range of bioactivities. These thioureas were converted into five-membered heterocycles with imino moiety like ethyl 4-[2-benzamido-4-methylthiazol-3(2H)-yl)]benzoates (2a-j) by base catalyzed cyclization of corresponding thioureas with 2-bromoacetone and triethylamine in good yields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethyl%204-%5B2-benzamido-4-methylthiazol-3%282H%29-yl%29%5Dbenzoates" title="ethyl 4-[2-benzamido-4-methylthiazol-3(2H)-yl)]benzoates">ethyl 4-[2-benzamido-4-methylthiazol-3(2H)-yl)]benzoates</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%204-%283-benzoylthioureido%29%20benzoates" title=" ethyl 4-(3-benzoylthioureido) benzoates"> ethyl 4-(3-benzoylthioureido) benzoates</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/24282/efficient-synthesis-of-thiourea-based-iminothiazoline-heterocycles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">729</span> Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Kugler">Szymon Kugler</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Kowalczyk"> Krzysztof Kowalczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Spychaj"> Tadeusz Spychaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20cardanol" title="bio-based cardanol">bio-based cardanol</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20coatings" title=" epoxy coatings"> epoxy coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=tolylbiguanide" title=" tolylbiguanide"> tolylbiguanide</a> </p> <a href="https://publications.waset.org/abstracts/74761/amine-hardeners-with-carbon-nanotubes-dispersing-ability-for-epoxy-coating-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">728</span> An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Mani%20Rathnam">V. Mani Rathnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Giridhar%20Madras"> Giridhar Madras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20theory" title="association theory">association theory</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20mixtures" title=" liquid mixtures"> liquid mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilities" title=" solubilities"> solubilities</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide" title=" supercritical carbon dioxide"> supercritical carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/107534/an-association-model-to-correlate-the-experimentally-determined-mixture-solubilities-of-methyl-10-undecenoate-with-methyl-ricinoleate-in-supercritical-carbon-dioxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">727</span> Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akan%20C.%20Offong">Akan C. Offong</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20J.%20Anthony"> E. J. Anthony</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasilije%20Manovic"> Vasilije Manovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A modified steady-state numerical model is developed for the electrochemical reduction of CO<sub>2</sub> to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm<sup>2</sup>), FE-faradaic efficiency (~98%) and conversion (~80%) for CO<sub>2</sub> electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF<sub>4</sub>]) electrolyte, on CD, FE and CO<sub>2</sub> conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF<sub>4</sub>]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO<sub>2</sub> mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO<sub>2</sub> conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H<sub>2 </sub>formations. However, H<sub>2</sub> formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO<sub>2</sub> flow rate increases, CD, FE and CO<sub>2</sub> conversion increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-chemical%20reduction" title=" electro-chemical reduction"> electro-chemical reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/103876/modelling-and-simulating-co2-electro-reduction-to-formic-acid-using-microfluidic-electrolytic-cells-the-influence-of-bi-sn-catalyst-and-1-ethyl-3-methyl-imidazolium-tetra-fluoroborate-electrolyte-on-cell-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">726</span> Benzene Sulfonamide Derivatives: Synthesis, Absorption, Distribution, Metabolism, and Excretion (ADME) Studies, Anti-proliferative Activity, and Docking Simulation with Theoretical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20M.%20Fahim">Asmaa M. Fahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this elucidation, we synthesized different heterocyclic compounds attached to Benzene sulfonamide moiety via (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)-4-methyl benzene sulfonamide which is obtained from Nucleophilic substitution reaction between 4-methylbenzene sulfonyl chloride and 1-(4-aminophenyl)ethan-1-one in pyridine to get N-(4-acetyl phenyl)-4-methyl benzenesulfonamide which reacted 4-bromobenzal dehyde undergoes aldol condensation in NaOH to afford the corresponding chalchone 4. Moreover, the reactivity of chalchone 4 showed several active methylene derivatives utilized the pressurized microwave irradiation as a green energy resource. Chalcone 4 was allowed to react with ethyl cyanoacetate and acetylacetone, respectively, at 70 °C with pressure under microwave reaction condition to afford the 5-cyano-6-oxo-1,2,5,6-tetrahydropyridin-2-yl)-4-methylbenzenesulfonamide 6 and N-(4'-acetyl-4''-bromo-5'-oxo-2',3',4',5'-tetrahydro-[1,1':3',1''-terphenyl]-4-yl)-4-methylbenzenesulfonamide 8 derivatives. Moreover, the reactivity of this sulphonamide chalchone with NH2NH2 in EtOH and acetic acid, which gave 2,5-dihydro-1H-imidazol-4-yl)-4-methyl benzenesulfonamide, 1H-pyrazol-3-yl)-4-methyl and reactivity with NH2OH.HCl gave isoxazol-3-yl)-4-methylbenzenesulfonamide derivatives. The synthesized compounds were screened for their ADME properties and directed to antitumor activity on HepG2 hepatocellular carcinoma and MCF-7 breast cancer and exhibited excellent behavior against standard drugs; these results were confirmed through molecular simulations with different proteins. Additionally, the Density Functional Theory analysis of optimized structures investigated their physical descriptors, FMO, ESP and MEP, which correlated with biological evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis" title="synthesis">synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=antitumor%20activity" title=" antitumor activity"> antitumor activity</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20study" title=" DFT study"> DFT study</a> </p> <a href="https://publications.waset.org/abstracts/174378/benzene-sulfonamide-derivatives-synthesis-absorption-distribution-metabolism-and-excretion-adme-studies-anti-proliferative-activity-and-docking-simulation-with-theoretical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">725</span> Solar Photocatalysis of Methyl Orange Using Multi-Ion Doped TiO2 Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20R.%20Thulari">Victor R. Thulari</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Akach"> John Akach</a>, <a href="https://publications.waset.org/abstracts/search?q=Haleden%20Chiririwa"> Haleden Chiririwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoyi%20Ochieng"> Aoyi Ochieng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 &deg;C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO<sub>2</sub>. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO<sub>2</sub> and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO<sub>2</sub>. Varieties of laboratory prepared TiO<sub>2</sub> catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO<sub>2</sub>. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/59808/solar-photocatalysis-of-methyl-orange-using-multi-ion-doped-tio2-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">724</span> Glycerol-Free Biodiesel Synthesis from Crude Mahua (Madhuca indica) Oil under Supercritical Methyl Acetate Using CO2 as a Co-Solvent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antaram%20Sarve">Antaram Sarve</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Varma"> Mahesh Varma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shriram%20Sonawane"> Shriram Sonawane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional route of producing biodiesel with alcohol produces glycerol as side product which leads to oversupply and devaluation in the world market. Supercritical methyl acetate (SCMA) has been proven to convert triglycerides into fatty acid methyl esters (FAMEs) and triacetin, which is a valuable biodiesel additive as side product rather than glycerol. However, due to the low reactivity of supercritical methyl acetate on triglycerides, high reaction conditions are required to obtained maximum yields. The present study describes the renewable approach for the production of biodiesel from low-cost, high acid value mahua oil under supercritical methyl acetate condition using carbon dioxide (CO2) as a co-solvent. CO2 was employed to decrease high reaction conditions required for supercritical methyl acetate transesterification. The influence of process parameters such as temperature, oil to methyl acetate molar ratio, reaction time, and the CO2 pressure was evaluated. The properties of biodiesel produced were found to be superior compared to conventional biodiesel method. Furthermore, SCMA has a high tolerance towards free fatty acids (FFAs) which is crucial to allow the utilization of inexpensive waste oils as a biodiesel feedstock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercritical%20methyl%20acetate" title="supercritical methyl acetate">supercritical methyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20properties" title=" fuel properties"> fuel properties</a> </p> <a href="https://publications.waset.org/abstracts/34550/glycerol-free-biodiesel-synthesis-from-crude-mahua-madhuca-indica-oil-under-supercritical-methyl-acetate-using-co2-as-a-co-solvent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">723</span> Oxidative Stability of Methyl and Ethyl Microalgae Biodiesel with Synthetic Antioxidants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Willian%20L.%20G.%20Silva">Willian L. G. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20R.%20M.%20Batista"> Fabio R. M. Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthieu%20Tubino"> Matthieu Tubino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae can be considered a potential source of oil for biodiesel synthesis since this microorganism can grow rapidly in either fresh or salty water, not competing with food production. There are several favorable conditions in Brazil for this type of culture due to the country’s great amount of water. Another very positive aspect of this type of culture is its ability to fix atmospheric CO2, contributing to the reduction of greenhouse gases and their effects on global warming. Despite this biodiesel environmental advantages it degrades resulting in changes in its physical and chemical properties. In this work, the methyl and ethyl microalgae biodiesel oxidative stability was studied in the absence and presence of a synthetic antioxidant. The synthetic antioxidants used were propyl gallate (PG) and tert-butylhydroquinone (TBHQ), at a 0,12% (w/w) concentration. The biodiesel mixture was kept in a sealed glass flask, sheltered from light, and at room temperature (about 25 ºC) for 180 days. During this period, aliquots from this biodiesel were subjected to induced degradation by the Rancimat method, which determines an important quality parameter, provided in the current methods, and is used to monitor the degradation processes that occur in the biodiesel over time. The induction period (IP) expresses the biodiesel oxidative stability. It was stablished that the minimum accepted IP value for biodiesel is 8 hours. The results show that ethylic biodiesel increased its IP value from 7,6 hours to 31 hours when using PG, and to 67 hours when using TBHQ, exceeding the minimum accepted IP value. When the antioxidants were added to the methylic biodiesel samples, the IP was raised to 28 hours when using PG, and to 62 hours when using TBHQ. These values were maintained throughout the entire period of study (180 days). On the other hand, the biodiesel samples without additives maintained an IP above the allowed value for only 30 days. Therefore, in order to preserve microalgae biodiesel for longer periods of time, it is necessary to add antioxidants to both derivatives, i.e., the ethylic and methylic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stability" title=" oxidative stability"> oxidative stability</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20antioxidants" title=" synthetic antioxidants"> synthetic antioxidants</a> </p> <a href="https://publications.waset.org/abstracts/34649/oxidative-stability-of-methyl-and-ethyl-microalgae-biodiesel-with-synthetic-antioxidants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">722</span> The Effect of Diluents in the Liquid-Liquid Extraction of Cobalt(II) with Di(2-Ethylhexyl) Phosphoric Acid </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Ghebghoub">Fatima Ghebghoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solvent extraction of cobalt (II) from sulfate medium using di(2-ethylhexy1) phosphoric acid (D2EHPA, HL) at 25°C has been investigated. The influence of the following parameters was studied: the equilibrium pH, the concentration of the extractant and the nature of diluent. The effect of the diluent using polar and non-polar solvents in the extraction of nickel(II) is discussed. The extracted nickel (II species were found to be CoL2 in 1-octanol and methyl isobutyl ketone and CoL2.2HL in toluene, dichloromethane, chloroform, carbon tetrachloride and cyclohexane. The extraction constants are evaluated for the different diluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20extraction" title="liquid-liquid extraction">liquid-liquid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%28II%29" title=" cobalt(II)"> cobalt(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=di%282-ethylhexyl%29%20phosphoric%20acid" title=" di(2-ethylhexyl) phosphoric acid"> di(2-ethylhexyl) phosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=diluent%20effect" title=" diluent effect"> diluent effect</a> </p> <a href="https://publications.waset.org/abstracts/22488/the-effect-of-diluents-in-the-liquid-liquid-extraction-of-cobaltii-with-di2-ethylhexyl-phosphoric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">721</span> Physicochemical Characterization of Low Sulfonated Polyether Ether Ketone/ Layered Double Hydroxide/Sepiolite Hybrid to Improve the Performance of Sulfonated Poly Ether Ether Ketone Composite Membranes for Proton Exchange Membrane Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Ahmed">Zakaria Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Charradi"> Khaled Charradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20M.%20A.%20S.%20%20Keshk"> Sherif M. A. S. Keshk</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhouane%20Chtourou"> Radhouane Chtourou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfonated poly ether ether ketone (SPEEK) with a low sulfonation degree was blended using nanofiller Layered Double Hydroxide (LDH, Mg2AlCl) /sepiolite nanostructured material as additive to use as an electrolyte membrane for fuel cell application. Characterization assessments, i.e., mechanical stability, thermal gravimetric analysis, ion exchange capability, swelling properties, water uptake capacities, electrochemical impedance spectroscopy analysis, and Fourier transform infrared spectroscopy (FTIR) of the composite membranes were conducted. The presence of LDH/sepiolite nanoarchitecture material within SPEEK was found to have the highest water retention and proton conductivity value at high temperature rather than LDH/SPEEK and pristine SPEEK membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPEEK" title="SPEEK">SPEEK</a>, <a href="https://publications.waset.org/abstracts/search?q=sepiolite%20clay" title=" sepiolite clay"> sepiolite clay</a>, <a href="https://publications.waset.org/abstracts/search?q=LDH%20clay" title=" LDH clay"> LDH clay</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane" title=" proton exchange membrane"> proton exchange membrane</a> </p> <a href="https://publications.waset.org/abstracts/132896/physicochemical-characterization-of-low-sulfonated-polyether-ether-ketone-layered-double-hydroxidesepiolite-hybrid-to-improve-the-performance-of-sulfonated-poly-ether-ether-ketone-composite-membranes-for-proton-exchange-membrane-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">720</span> Surface Modification of Titanium Alloy with Laser Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassier%20A.%20Nassir">Nassier A. Nassir</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Birch"> Robert Birch</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rico%20Sierra"> D. Rico Sierra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Edwardson"> S. P. Edwardson</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Dearden"> G. Dearden</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwei%20Guan"> Zhongwei Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20strength" title="bonding strength">bonding strength</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20surface%20treatment" title=" laser surface treatment"> laser surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=PEKK" title=" PEKK"> PEKK</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-ether-ketone-ketone" title="poly-ether-ketone-ketone">poly-ether-ketone-ketone</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloy" title=" titanium alloy"> titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/92507/surface-modification-of-titanium-alloy-with-laser-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">719</span> Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Abdulhamid">Mahmoud A. Abdulhamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20engineering" title="molecular engineering">molecular engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20synthesis" title=" polymer synthesis"> polymer synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fabrication" title=" membrane fabrication"> membrane fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20separation" title=" liquid separation"> liquid separation</a> </p> <a href="https://publications.waset.org/abstracts/158572/molecular-engineering-of-high-performance-nanofiltration-membranes-from-intrinsically-microporous-poly-ether-ether-ketone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">718</span> Solvent-Aided Dispersion of Tannic Acid to Enhance Flame Retardancy of Epoxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Korey">Matthew Korey</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20Youngblood"> Jeffrey Youngblood</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Howarter"> John Howarter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Significance: Tannic acid (TA) is a bio-based high molecular weight organic, aromatic molecule that has been found to increase thermal stability and flame retardancy of many polymer matrices when used as an additive. Although it is biologically sourced, TA is a pollutant in industrial wastewater streams, and there is a desire to find applications in which to downcycle this molecule after extraction from these streams. Additionally, epoxy thermosets have revolutionized many industries, but are too flammable to be used in many applications without additives which augment their flame retardancy (FR). Many flame retardants used in epoxy thermosets are synthesized from petroleum-based monomers leading to significant environmental impacts on the industrial scale. Many of these compounds also have significant impacts on human health. Various bio-based modifiers have been developed to improve the FR of the epoxy resin; however, increasing FR of the system without tradeoffs with other properties has proven challenging, especially for TA. Methodologies: In this work, TA was incorporated into the thermoset by use of solvent-exchange using methyl ethyl ketone, a co-solvent for TA, and epoxy resin. Samples were then characterized optically (UV-vis spectroscopy and optical microscopy), thermally (thermogravimetric analysis and differential scanning calorimetry), and for their flame retardancy (mass loss calorimetry). Major Findings: Compared to control samples, all samples were found to have increased thermal stability. Further, the addition of tannic acid to the polymer matrix by the use of solvent greatly increased the compatibility of the additive in epoxy thermosets. By using solvent-exchange, the highest loading level of TA found in literature was achieved in this work (40 wt%). Conclusions: The use of solvent-exchange shows promises for circumventing the limitations of TA in epoxy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title=" flame retardant"> flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=tannic%20acid" title=" tannic acid"> tannic acid</a> </p> <a href="https://publications.waset.org/abstracts/116586/solvent-aided-dispersion-of-tannic-acid-to-enhance-flame-retardancy-of-epoxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">717</span> GAC Adsorption Modelling of Metsulfuron Methyl from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathaporn%20Areerachakul">Nathaporn Areerachakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=GAC" title=" GAC"> GAC</a>, <a href="https://publications.waset.org/abstracts/search?q=metsulfuron%20methyl" title=" metsulfuron methyl"> metsulfuron methyl</a> </p> <a href="https://publications.waset.org/abstracts/8935/gac-adsorption-modelling-of-metsulfuron-methyl-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">716</span> Isothermal Crystallization Kinetics of Lauric Acid Methyl Ester from DSC Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charine%20Faith%20H.%20Lagrimas">Charine Faith H. Lagrimas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rommel%20N.%20Galvan"> Rommel N. Galvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizalinda%20L.%20de%20Leon"> Rizalinda L. de Leon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ongoing study, methyl laurate to be used as a refrigerant in an HVAC system, requires the crystallization kinetics of the said substance. Step-wise and normal forms of Avrami model parameters were used to describe the isothermal crystallization kinetics of methyl laurate at different temperatures from Differential Scanning Calorimetry (DSC) measurements. At 3 °C, parameters showed that methyl laurate exhibits a secondary crystallization. The primary crystallization occurred with instantaneous nuclei and spherulitic growth; followed by a secondary instantaneous nucleation with a lower growth of dimensionality, rod-like. At 4 °C to 6 °C, the exotherms from DSC implied that the system was under the isokinetic range. The kinetics behavior is the same which is instantaneous nucleation with one-dimensional growth. The differences for the isokinetic range temperatures are the activation energies (directly proportional to T) and nucleation rates (inversely proportional to T). From the images obtained during the crystallization of methyl laurate using an optical microscope, it is confirmed that the nucleation and crystal growth modes obtained from the optical microscope are consistent with the parameters from Avrami model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avrami%20model" title="Avrami model">Avrami model</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20crystallization" title=" isothermal crystallization"> isothermal crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids%20kinetics" title=" lipids kinetics"> lipids kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20laurate" title=" methyl laurate"> methyl laurate</a> </p> <a href="https://publications.waset.org/abstracts/27068/isothermal-crystallization-kinetics-of-lauric-acid-methyl-ester-from-dsc-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=25">25</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=methyl%20ethyl%20ketone&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10