CINXE.COM

Convenient vector space - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Convenient vector space - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"759a5e9f-266a-43eb-82a0-f9ff747950fa","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Convenient_vector_space","wgTitle":"Convenient vector space","wgCurRevisionId":1249348052,"wgRevisionId":1249348052,"wgArticleId":43466503,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Multivariable calculus","Differential calculus","Calculus of variations"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Convenient_vector_space","wgRelevantArticleId":43466503,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{ "levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q25303670","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready", "site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming", "ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Convenient vector space - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Convenient_vector_space"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Convenient_vector_space&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Convenient_vector_space"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Convenient_vector_space rootpage-Convenient_vector_space skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Convenient+vector+space" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Convenient+vector+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Convenient+vector+space" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Convenient+vector+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-The_c∞-topology" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_c∞-topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>The c<sup>∞</sup>-topology</span> </div> </a> <ul id="toc-The_c∞-topology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convenient_vector_spaces" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Convenient_vector_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Convenient vector spaces</span> </div> </a> <ul id="toc-Convenient_vector_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Smooth_mappings" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Smooth_mappings"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Smooth mappings</span> </div> </a> <ul id="toc-Smooth_mappings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Main_properties_of_smooth_calculus" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Main_properties_of_smooth_calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Main properties of smooth calculus</span> </div> </a> <ul id="toc-Main_properties_of_smooth_calculus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_convenient_calculi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Related_convenient_calculi"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Related convenient calculi</span> </div> </a> <ul id="toc-Related_convenient_calculi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Application:_Manifolds_of_mappings_between_finite_dimensional_manifolds" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Application:_Manifolds_of_mappings_between_finite_dimensional_manifolds"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Application: Manifolds of mappings between finite dimensional manifolds</span> </div> </a> <button aria-controls="toc-Application:_Manifolds_of_mappings_between_finite_dimensional_manifolds-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Application: Manifolds of mappings between finite dimensional manifolds subsection</span> </button> <ul id="toc-Application:_Manifolds_of_mappings_between_finite_dimensional_manifolds-sublist" class="vector-toc-list"> <li id="toc-Regular_Lie_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Regular_Lie_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Regular Lie groups</span> </div> </a> <ul id="toc-Regular_Lie_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_principal_bundle_of_embeddings" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_principal_bundle_of_embeddings"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>The principal bundle of embeddings</span> </div> </a> <ul id="toc-The_principal_bundle_of_embeddings-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_applications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Further_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Further applications</span> </div> </a> <ul id="toc-Further_applications-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Convenient vector space</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q25303670#sitelinks-wikipedia" title="Add interlanguage links" class="wbc-editpage">Add links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Convenient_vector_space" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Convenient_vector_space" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Convenient_vector_space"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Convenient_vector_space&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Convenient_vector_space"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Convenient_vector_space&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Convenient_vector_space" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Convenient_vector_space" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Convenient_vector_space&amp;oldid=1249348052" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Convenient_vector_space&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Convenient_vector_space&amp;id=1249348052&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConvenient_vector_space"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConvenient_vector_space"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Convenient_vector_space&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Convenient_vector_space&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q25303670" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>In mathematics, <b>convenient vector spaces</b> are <a href="/wiki/Locally_convex" class="mw-redirect" title="Locally convex">locally convex</a> vector spaces satisfying a very mild <a href="/wiki/Uniform_space#Completeness" title="Uniform space">completeness condition</a>. </p><p>Traditional <a href="/wiki/Multivariable_calculus" title="Multivariable calculus">differential calculus</a> is effective in the analysis of finite-dimensional <a href="/wiki/Vector_space" title="Vector space">vector spaces</a> and for <a href="/wiki/Banach_space" title="Banach space">Banach spaces</a>. Beyond Banach spaces, difficulties begin to arise; in particular, composition of <a href="/wiki/Continuous_linear_operator" title="Continuous linear operator">continuous linear mappings</a> stop being jointly continuous at the level of Banach spaces,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>Note 1<span class="cite-bracket">&#93;</span></a></sup> for any compatible topology on the spaces of continuous linear mappings. </p><p>Mappings between convenient vector spaces are <b>smooth</b> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ed05871d69309df32efdfd2020128c9cf69d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.673ex; height:2.343ex;" alt="{\displaystyle C^{\infty }}"></span> if they map smooth curves to smooth curves. This leads to a <a href="/wiki/Cartesian_closed_category" title="Cartesian closed category">Cartesian closed category</a> of smooth mappings between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea42236ef42c2ececda38db3711419625b58b6fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.882ex; height:2.343ex;" alt="{\displaystyle c^{\infty }}"></span>-open subsets of convenient vector spaces (see property 6 below). The corresponding calculus of smooth mappings is called <i>convenient calculus</i>. It is weaker than any other reasonable notion of differentiability, it is easy to apply, but there are smooth mappings which are not continuous (see Note 1). This type of calculus alone is not useful in solving equations<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>Note 2<span class="cite-bracket">&#93;</span></a></sup>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="The_c∞-topology"><span id="The_c.E2.88.9E-topology"></span>The c<sup>∞</sup>-topology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=1" title="Edit section: The c∞-topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Differentiable_vector-valued_functions_from_Euclidean_space" class="mw-redirect" title="Differentiable vector-valued functions from Euclidean space">Differentiable vector-valued functions from Euclidean space</a> and <a href="/wiki/Differentiation_in_Fr%C3%A9chet_spaces" title="Differentiation in Fréchet spaces">Differentiation in Fréchet spaces</a></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> be a <a href="/wiki/Locally_convex_vector_space" class="mw-redirect" title="Locally convex vector space">locally convex vector space</a>. A curve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c:\mathbb {R} \to E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c:\mathbb {R} \to E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e3fb1dbddf794f212161044b000209489197611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.012ex; height:2.176ex;" alt="{\displaystyle c:\mathbb {R} \to E}"></span> is called <i>smooth</i> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ed05871d69309df32efdfd2020128c9cf69d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.673ex; height:2.343ex;" alt="{\displaystyle C^{\infty }}"></span> if all derivatives exist and are continuous. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e44a22d4ae1ba8f14897878cf0529349b7591fff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.97ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ,E)}"></span> be the space of smooth curves. It can be shown that the set of smooth curves does not depend entirely on the locally convex topology of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89862747e88ca143e979241a9a243b5ef66ddc67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.422ex; height:2.509ex;" alt="{\displaystyle E,}"></span> only on its associated <a href="/wiki/Bornological_space" title="Bornological space">bornology</a> (system of bounded sets); see [KM], 2.11. The <a href="/wiki/Final_topology" title="Final topology">final topologies</a> with respect to the following sets of mappings into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> coincide; see [KM], 2.13. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ,E).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ,E).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff8fb83a4ca35a060e425650c9551b30c2c9dfb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.617ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ,E).}"></span></li> <li>The set of all <a href="/wiki/Lipschitz_continuity" title="Lipschitz continuity">Lipschitz curves</a> (so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{{\dfrac {c(t)-c(s)}{t-s}}:t\neq s{,}|t|,|s|\leq C\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </mfrac> </mstyle> </mrow> <mo>:</mo> <mi>t</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>C</mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{{\dfrac {c(t)-c(s)}{t-s}}:t\neq s{,}|t|,|s|\leq C\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e28e58d3342305d4188e105ecd4549de0193ee2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.754ex; height:6.343ex;" alt="{\displaystyle \left\{{\dfrac {c(t)-c(s)}{t-s}}:t\neq s{,}|t|,|s|\leq C\right\}}"></span> is bounded in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89862747e88ca143e979241a9a243b5ef66ddc67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.422ex; height:2.509ex;" alt="{\displaystyle E,}"></span> for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>).</li> <li>The set of injections <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{B}\to E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{B}\to E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30e6804ebcc85ca8bfa51e54c2906c43dc6dc16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.585ex; height:2.509ex;" alt="{\displaystyle E_{B}\to E}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> runs through all bounded <a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">absolutely convex</a> subsets in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89862747e88ca143e979241a9a243b5ef66ddc67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.422ex; height:2.509ex;" alt="{\displaystyle E,}"></span> and where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b71d40b28612bb3f7578929558cccef2bb5798d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.195ex; height:2.509ex;" alt="{\displaystyle E_{B}}"></span> is the linear span of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> equipped with the <a href="/wiki/Minkowski_functional" title="Minkowski functional">Minkowski functional</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|x\|_{B}:=\inf\{\lambda &gt;0:x\in \lambda B\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>x</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>:=</mo> <mo movablelimits="true" form="prefix">inf</mo> <mo fence="false" stretchy="false">{</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>&gt;</mo> <mn>0</mn> <mo>:</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mi>B</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|x\|_{B}:=\inf\{\lambda &gt;0:x\in \lambda B\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01cfb55ecb5c0fd636f22c2323061c79e047dc71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.345ex; height:2.843ex;" alt="{\displaystyle \|x\|_{B}:=\inf\{\lambda &gt;0:x\in \lambda B\}.}"></span></li> <li>The set of all <a href="/wiki/Mackey_convergent_sequence" class="mw-redirect" title="Mackey convergent sequence">Mackey convergent sequences</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}\to x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}\to x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd1fbf73434aa72a428b9b100919b1f6e26f6c84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.492ex; height:2.176ex;" alt="{\displaystyle x_{n}\to x}"></span> (there exists a sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\lambda _{n}\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\lambda _{n}\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60d6b9ccff9250bbcabf24ee206b08780da07b76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.772ex; height:2.509ex;" alt="{\displaystyle 0&lt;\lambda _{n}\to \infty }"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{n}\left(x_{n}-x\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{n}\left(x_{n}-x\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/902ded8d5b1236828a50a8c7ac533102f5983210" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.488ex; height:2.843ex;" alt="{\displaystyle \lambda _{n}\left(x_{n}-x\right)}"></span> bounded).</li></ul> <p>This topology is called the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea42236ef42c2ececda38db3711419625b58b6fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.882ex; height:2.343ex;" alt="{\displaystyle c^{\infty }}"></span>-<i>topology</i> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> and we write <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\infty }E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\infty }E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af1ca125632d61815d204ccc54b8a273edea8409" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.658ex; height:2.343ex;" alt="{\displaystyle c^{\infty }E}"></span> for the resulting topological space. In general (on the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> of smooth functions with compact support on the real line, for example) it is finer than the given locally convex topology, it is not a vector space topology, since addition is no longer jointly continuous. Namely, even <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\infty }(D\times D)\neq \left(c^{\infty }D\right)\times \left(c^{\infty }D\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>D</mi> <mo>&#x00D7;<!-- × --></mo> <mi>D</mi> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mi>D</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mi>D</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\infty }(D\times D)\neq \left(c^{\infty }D\right)\times \left(c^{\infty }D\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d5d3d47181f492759e729ea2a3109cd6ee583da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.585ex; height:2.843ex;" alt="{\displaystyle c^{\infty }(D\times D)\neq \left(c^{\infty }D\right)\times \left(c^{\infty }D\right).}"></span> The finest among all locally convex topologies on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> which are coarser than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\infty }E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\infty }E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af1ca125632d61815d204ccc54b8a273edea8409" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.658ex; height:2.343ex;" alt="{\displaystyle c^{\infty }E}"></span> is the bornologification of the given locally convex topology. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> is a <a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\infty }E=E.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mi>E</mi> <mo>=</mo> <mi>E</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\infty }E=E.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb440dc12a58fe4425d94b0eba0513dd8e4d9c5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.179ex; height:2.343ex;" alt="{\displaystyle c^{\infty }E=E.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Convenient_vector_spaces">Convenient vector spaces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=2" title="Edit section: Convenient vector spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A locally convex vector space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> is said to be a <i>convenient vector space</i> if one of the following equivalent conditions holds (called <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea42236ef42c2ececda38db3711419625b58b6fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.882ex; height:2.343ex;" alt="{\displaystyle c^{\infty }}"></span>-completeness); see [KM], 2.14. </p> <ul><li>For any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in C^{\infty }(\mathbb {R} ,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in C^{\infty }(\mathbb {R} ,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6aec9c626aafea346f455eb496f980a013a1e69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.818ex; height:2.843ex;" alt="{\displaystyle c\in C^{\infty }(\mathbb {R} ,E)}"></span> the (Riemann-) integral <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{1}c(t)\,dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{0}^{1}c(t)\,dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2b1d7712b7063231de014b16c307bf1a3140537" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:10.004ex; height:6.176ex;" alt="{\displaystyle \int _{0}^{1}c(t)\,dt}"></span> exists in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>.</li> <li>Any Lipschitz curve in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> is locally Riemann integrable.</li> <li>Any <i>scalar wise</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ed05871d69309df32efdfd2020128c9cf69d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.673ex; height:2.343ex;" alt="{\displaystyle C^{\infty }}"></span> curve is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ed05871d69309df32efdfd2020128c9cf69d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.673ex; height:2.343ex;" alt="{\displaystyle C^{\infty }}"></span>: A curve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c:\mathbb {R} \to E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c:\mathbb {R} \to E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e3fb1dbddf794f212161044b000209489197611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.012ex; height:2.176ex;" alt="{\displaystyle c:\mathbb {R} \to E}"></span> is smooth if and only if the composition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \circ c:t\mapsto \lambda (c(t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>c</mi> <mo>:</mo> <mi>t</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \circ c:t\mapsto \lambda (c(t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a62b502e363cdf9ce0d976f8c296debb72542d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.768ex; height:2.843ex;" alt="{\displaystyle \lambda \circ c:t\mapsto \lambda (c(t))}"></span> is in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9317953e77edb85849d588db3482c77dd95abc72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.873ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ,\mathbb {R} )}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \in E^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \in E^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f99a538fe974b39cb4ded5fc5a29620c7991727" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.044ex; height:2.343ex;" alt="{\displaystyle \lambda \in E^{*}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a91d2119445b3b65384ba491c4b95f1557571ecc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.848ex; height:2.343ex;" alt="{\displaystyle E^{*}}"></span> is the dual of all continuous linear functionals on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>. <ul><li>Equivalently, for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \in E'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>E</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \in E'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96c28d2f57864520bc9046df222408771c934db2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.674ex; height:2.509ex;" alt="{\displaystyle \lambda \in E&#039;}"></span>, the dual of all bounded linear functionals.</li> <li>Equivalently, for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \in V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \in V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05088d1ac3a0ba49cdb48480baf8a246006a4f7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.983ex; height:2.176ex;" alt="{\displaystyle \lambda \in V}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> is a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>E</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a574600572696493d48300245a45b8de0638ce21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle E&#039;}"></span> which recognizes bounded subsets in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>; see [KM], 5.22.</li></ul></li> <li>Any Mackey-Cauchy-sequence (i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{nm}(x-x_{m})\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{nm}(x-x_{m})\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4946048305943d494581c75ce7004c65bd13ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.261ex; height:2.843ex;" alt="{\displaystyle t_{nm}(x-x_{m})\to 0}"></span> for some <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{nm}\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>m</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{nm}\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fc1c68ff95da3742f798b3916a85ad73aa51a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.439ex; height:2.343ex;" alt="{\displaystyle t_{nm}\to \infty }"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> converges in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>. This is visibly a mild completeness requirement.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is bounded closed absolutely convex, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b71d40b28612bb3f7578929558cccef2bb5798d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.195ex; height:2.509ex;" alt="{\displaystyle E_{B}}"></span> is a Banach space.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} \to E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} \to E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fc96e6ed30f5010800e1d5dad21a8ec8a8b7ad6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.284ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {R} \to E}"></span> is scalar wise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{Lip}}^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>Lip</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{Lip}}^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80473296574b66345616172c46695c9a650b907" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.481ex; height:3.009ex;" alt="{\displaystyle {\text{Lip}}^{k}}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{Lip}}^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>Lip</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{Lip}}^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80473296574b66345616172c46695c9a650b907" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.481ex; height:3.009ex;" alt="{\displaystyle {\text{Lip}}^{k}}"></span>, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cda43bd4034dc2d04cd562005d0af81d3d2dbc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\displaystyle k&gt;1}"></span>.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} \to E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} \to E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fc96e6ed30f5010800e1d5dad21a8ec8a8b7ad6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.284ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {R} \to E}"></span> is scalar wise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ed05871d69309df32efdfd2020128c9cf69d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.673ex; height:2.343ex;" alt="{\displaystyle C^{\infty }}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is differentiable at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>.</li></ul> <p>Here a mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} \to E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} \to E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fc96e6ed30f5010800e1d5dad21a8ec8a8b7ad6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.284ex; height:2.509ex;" alt="{\displaystyle f:\mathbb {R} \to E}"></span> is called <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{Lip}}^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>Lip</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{Lip}}^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80473296574b66345616172c46695c9a650b907" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.481ex; height:3.009ex;" alt="{\displaystyle {\text{Lip}}^{k}}"></span> if all derivatives up to order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> exist and are Lipschitz, locally on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Smooth_mappings">Smooth mappings</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=3" title="Edit section: Smooth mappings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> be convenient vector spaces, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subseteq E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subseteq E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711cf300f38297eb0881669757b3c5376e42fa54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.657ex; height:2.343ex;" alt="{\displaystyle U\subseteq E}"></span> be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea42236ef42c2ececda38db3711419625b58b6fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.882ex; height:2.343ex;" alt="{\displaystyle c^{\infty }}"></span>-open. A mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:U\to F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:U\to F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b98818b5ef840d693c35d65f7bbe79b11b67586" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.353ex; height:2.509ex;" alt="{\displaystyle f:U\to F}"></span> is called <i>smooth</i> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ed05871d69309df32efdfd2020128c9cf69d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.673ex; height:2.343ex;" alt="{\displaystyle C^{\infty }}"></span>, if the composition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\circ c\in C^{\infty }(\mathbb {R} ,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\circ c\in C^{\infty }(\mathbb {R} ,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48ac3382def553029a89c48c439c71049456eecc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.256ex; height:2.843ex;" alt="{\displaystyle f\circ c\in C^{\infty }(\mathbb {R} ,F)}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\in C^{\infty }(\mathbb {R} ,U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\in C^{\infty }(\mathbb {R} ,U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46167e920fc739c672cff859abf71838ebadf38b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.825ex; height:2.843ex;" alt="{\displaystyle c\in C^{\infty }(\mathbb {R} ,U)}"></span>. See [KM], 3.11. </p> <div class="mw-heading mw-heading2"><h2 id="Main_properties_of_smooth_calculus">Main properties of smooth calculus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=4" title="Edit section: Main properties of smooth calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>1. For maps on Fréchet spaces this notion of smoothness coincides with all other reasonable definitions. On <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> this is a non-trivial theorem, proved by Boman, 1967. See also [KM], 3.4. </p><p>2. Multilinear mappings are smooth if and only if they are bounded ([KM], 5.5). </p><p>3. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:E\supseteq U\to F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>E</mi> <mo>&#x2287;<!-- ⊇ --></mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:E\supseteq U\to F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a493fc2a9b0700cf30622790e26f1d391efefc96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.227ex; height:2.509ex;" alt="{\displaystyle f:E\supseteq U\to F}"></span> is smooth then the derivative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle df:U\times E\to F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>f</mi> <mo>:</mo> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle df:U\times E\to F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbeccdf4d4fab23d72c65f4bdc7c8f8e1dd739c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.185ex; height:2.509ex;" alt="{\displaystyle df:U\times E\to F}"></span> is smooth, and also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle df:U\to L(E,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>f</mi> <mo>:</mo> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>L</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle df:U\to L(E,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe00c64e713693a9cd992c06ef630a99accc5161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.771ex; height:2.843ex;" alt="{\displaystyle df:U\to L(E,F)}"></span> is smooth where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(E,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(E,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/417ec43a3941d3fceaaf19c81180b48b7cbf207f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.942ex; height:2.843ex;" alt="{\displaystyle L(E,F)}"></span> denotes the space of all bounded linear mappings with the topology of uniform convergence on bounded subsets; see [KM], 3.18. </p><p>4. The chain rule holds ([KM], 3.18). </p><p>5. The space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd1fd4794e956960ce6f25d382901d675a6baf3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.04ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U,F)}"></span> of all smooth mappings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\to F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\to F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a39672c2717f34a6d4f56a8a2dd4674236a776a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.137ex; height:2.176ex;" alt="{\displaystyle U\to F}"></span> is again a convenient vector space where the structure is given by the following injection, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9317953e77edb85849d588db3482c77dd95abc72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.873ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ,\mathbb {R} )}"></span> carries the topology of compact convergence in each derivative separately; see [KM], 3.11 and 3.7. </p> <dl><dd><dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U,F)\to \prod _{c\in C^{\infty }(\mathbb {R} ,U),\ell \in F^{*}}C^{\infty }(\mathbb {R} ,\mathbb {R} ),\quad f\mapsto (\ell \circ f\circ c)_{c,\ell }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x2113;<!-- ℓ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mrow> </munder> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <mi>&#x2113;<!-- ℓ --></mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>c</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>,</mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U,F)\to \prod _{c\in C^{\infty }(\mathbb {R} ,U),\ell \in F^{*}}C^{\infty }(\mathbb {R} ,\mathbb {R} ),\quad f\mapsto (\ell \circ f\circ c)_{c,\ell }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbbc9dd98311f2916a8594743fdeb529a58fe22e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:57.853ex; height:6.009ex;" alt="{\displaystyle C^{\infty }(U,F)\to \prod _{c\in C^{\infty }(\mathbb {R} ,U),\ell \in F^{*}}C^{\infty }(\mathbb {R} ,\mathbb {R} ),\quad f\mapsto (\ell \circ f\circ c)_{c,\ell }\,.}"></span></dd></dl></dd></dl></dd></dl></dd></dl> <p>6. The <i>exponential law</i> holds ([KM], 3.12): For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea42236ef42c2ececda38db3711419625b58b6fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.882ex; height:2.343ex;" alt="{\displaystyle c^{\infty }}"></span>-open <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\subseteq F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\subseteq F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db25392b8201357dea1e79c7e46c739e8256d1aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.626ex; height:2.343ex;" alt="{\displaystyle V\subseteq F}"></span> the following mapping is a linear diffeomorphism of convenient vector spaces. </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(U,C^{\infty }(V,G))\cong C^{\infty }(U\times V,G),\qquad f\mapsto g,\qquad f(u)(v)=g(u,v).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo>,</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2245;<!-- ≅ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mi>f</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>g</mi> <mo>,</mo> <mspace width="2em" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(U,C^{\infty }(V,G))\cong C^{\infty }(U\times V,G),\qquad f\mapsto g,\qquad f(u)(v)=g(u,v).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8423864b69595e3456882f0ae000a257332348b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:71.164ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(U,C^{\infty }(V,G))\cong C^{\infty }(U\times V,G),\qquad f\mapsto g,\qquad f(u)(v)=g(u,v).}"></span></dd></dl></dd></dl></dd></dl> <p>This is the main assumption of variational calculus. Here it is a theorem. This property is the source of the name <i>convenient</i>, which was borrowed from (Steenrod 1967). </p><p>7. <i>Smooth uniform boundedness theorem</i> ([KM], theorem 5.26). A linear mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:E\to C^{\infty }(V,G)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>V</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:E\to C^{\infty }(V,G)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94253c32385709fb6594e23eb153cc69c27db51c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.736ex; height:2.843ex;" alt="{\displaystyle f:E\to C^{\infty }(V,G)}"></span> is smooth (by (2) equivalent to bounded) if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {ev} _{v}\circ f:V\to G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ev</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>:</mo> <mi>V</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {ev} _{v}\circ f:V\to G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42b89d3f26063ccd67f5ad00a8a024680dcb6e81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.283ex; height:2.509ex;" alt="{\displaystyle \operatorname {ev} _{v}\circ f:V\to G}"></span> is smooth for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\in V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\in V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99886ebbde63daa0224fb9bf56fa11b3c8a6f4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.756ex; height:2.176ex;" alt="{\displaystyle v\in V}"></span>. </p><p>8. The following canonical mappings are smooth. This follows from the exponential law by simple categorical reasonings, see [KM], 3.13. </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\operatorname {ev} :C^{\infty }(E,F)\times E\to F,\quad {\text{ev}}(f,x)=f(x)\\[6pt]&amp;\operatorname {ins} :E\to C^{\infty }(F,E\times F),\quad {\text{ins}}(x)(y)=(x,y)\\[6pt]&amp;(\quad )^{\wedge }:C^{\infty }(E,C^{\infty }(F,G))\to C^{\infty }(E\times F,G)\\[6pt]&amp;(\quad )^{\vee }:C^{\infty }(E\times F,G)\to C^{\infty }(E,C^{\infty }(F,G))\\[6pt]&amp;\operatorname {comp} :C^{\infty }(F,G)\times C^{\infty }(E,F)\to C^{\infty }(E,G)\\[6pt]&amp;C^{\infty }(\quad ,\quad ):C^{\infty }(F,F_{1})\times C^{\infty }(E_{1},E)\to C^{\infty }(C^{\infty }(E,F),C^{\infty }(E_{1},F_{1})),\quad (f,g)\mapsto (h\mapsto f\circ h\circ g)\\[6pt]&amp;\prod :\prod C^{\infty }(E_{i},F_{i})\to C^{\infty }\left(\prod E_{i},\prod F_{i}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.9em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi>ev</mi> <mo>:</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>F</mi> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>ev</mtext> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>ins</mi> <mo>:</mo> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>E</mi> <mo>&#x00D7;<!-- × --></mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>ins</mtext> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mspace width="1em" /> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2227;<!-- ∧ --></mo> </mrow> </msup> <mo>:</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>&#x00D7;<!-- × --></mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">(</mo> <mspace width="1em" /> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2228;<!-- ∨ --></mo> </mrow> </msup> <mo>:</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>&#x00D7;<!-- × --></mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi>comp</mi> <mo>:</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mspace width="1em" /> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">)</mo> <mo>:</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>h</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>g</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x220F;<!-- ∏ --></mo> <mo>:</mo> <mo>&#x220F;<!-- ∏ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo>&#x220F;<!-- ∏ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mo>&#x220F;<!-- ∏ --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\operatorname {ev} :C^{\infty }(E,F)\times E\to F,\quad {\text{ev}}(f,x)=f(x)\\[6pt]&amp;\operatorname {ins} :E\to C^{\infty }(F,E\times F),\quad {\text{ins}}(x)(y)=(x,y)\\[6pt]&amp;(\quad )^{\wedge }:C^{\infty }(E,C^{\infty }(F,G))\to C^{\infty }(E\times F,G)\\[6pt]&amp;(\quad )^{\vee }:C^{\infty }(E\times F,G)\to C^{\infty }(E,C^{\infty }(F,G))\\[6pt]&amp;\operatorname {comp} :C^{\infty }(F,G)\times C^{\infty }(E,F)\to C^{\infty }(E,G)\\[6pt]&amp;C^{\infty }(\quad ,\quad ):C^{\infty }(F,F_{1})\times C^{\infty }(E_{1},E)\to C^{\infty }(C^{\infty }(E,F),C^{\infty }(E_{1},F_{1})),\quad (f,g)\mapsto (h\mapsto f\circ h\circ g)\\[6pt]&amp;\prod :\prod C^{\infty }(E_{i},F_{i})\to C^{\infty }\left(\prod E_{i},\prod F_{i}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/311cb65cc419d2029c679e7a9f3e2d760e80001b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.505ex; width:97.65ex; height:32.176ex;" alt="{\displaystyle {\begin{aligned}&amp;\operatorname {ev} :C^{\infty }(E,F)\times E\to F,\quad {\text{ev}}(f,x)=f(x)\\[6pt]&amp;\operatorname {ins} :E\to C^{\infty }(F,E\times F),\quad {\text{ins}}(x)(y)=(x,y)\\[6pt]&amp;(\quad )^{\wedge }:C^{\infty }(E,C^{\infty }(F,G))\to C^{\infty }(E\times F,G)\\[6pt]&amp;(\quad )^{\vee }:C^{\infty }(E\times F,G)\to C^{\infty }(E,C^{\infty }(F,G))\\[6pt]&amp;\operatorname {comp} :C^{\infty }(F,G)\times C^{\infty }(E,F)\to C^{\infty }(E,G)\\[6pt]&amp;C^{\infty }(\quad ,\quad ):C^{\infty }(F,F_{1})\times C^{\infty }(E_{1},E)\to C^{\infty }(C^{\infty }(E,F),C^{\infty }(E_{1},F_{1})),\quad (f,g)\mapsto (h\mapsto f\circ h\circ g)\\[6pt]&amp;\prod :\prod C^{\infty }(E_{i},F_{i})\to C^{\infty }\left(\prod E_{i},\prod F_{i}\right)\end{aligned}}}"></span></dd></dl></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Related_convenient_calculi">Related convenient calculi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=5" title="Edit section: Related convenient calculi"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Convenient calculus of smooth mappings appeared for the first time in [Frölicher, 1981], [Kriegl 1982, 1983]. Convenient calculus (having properties 6 and 7) exists also for: </p> <ul><li>Real analytic mappings (Kriegl, Michor, 1990; see also [KM], chapter II).</li> <li>Holomorphic mappings (Kriegl, Nel, 1985; see also [KM], chapter II). The notion of holomorphy is that of [Fantappié, 1930-33].</li> <li>Many classes of Denjoy Carleman ultradifferentiable functions, both of Beurling type and of Roumieu-type [Kriegl, Michor, Rainer, 2009, 2011, 2015].</li> <li>With some adaptations, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Lip} ^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Lip</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Lip} ^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d93735d221e133a20dfca21923303a80c1dbd66d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.481ex; height:3.009ex;" alt="{\displaystyle \operatorname {Lip} ^{k}}"></span>, [FK].</li> <li>With more adaptations, even <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{k,\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{k,\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/322c9178a53ba5d9ebc339ceb8bbe71052b530a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.396ex; height:2.676ex;" alt="{\displaystyle C^{k,\alpha }}"></span> (i.e., the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-th derivative is Hölder-continuous with index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>) ([Faure, 1989], [Faure, These Geneve, 1991]).</li></ul> <p>The corresponding notion of convenient vector space is the same (for their underlying real vector space in the complex case) for all these theories. </p> <div class="mw-heading mw-heading2"><h2 id="Application:_Manifolds_of_mappings_between_finite_dimensional_manifolds">Application: Manifolds of mappings between finite dimensional manifolds</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=6" title="Edit section: Application: Manifolds of mappings between finite dimensional manifolds"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The exponential law 6 of convenient calculus allows for very simple proofs of the basic facts about manifolds of mappings. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> be finite dimensional <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">smooth manifolds</a> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is <a href="/wiki/Compact_space" title="Compact space">compact</a>. We use an auxiliary <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemann metric</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c88fb5e9772f3c36bcd6f6500e8fba5047109f15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.232ex; height:2.343ex;" alt="{\displaystyle {\bar {g}}}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>. The <a href="/wiki/Exponential_map_(Riemannian_geometry)" title="Exponential map (Riemannian geometry)">Riemannian exponential mapping</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c88fb5e9772f3c36bcd6f6500e8fba5047109f15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.232ex; height:2.343ex;" alt="{\displaystyle {\bar {g}}}"></span> is described in the following diagram: </p> <dl><dd><dl><dd><dl><dd><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:ManifoldOfMappingsDiagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/ManifoldOfMappingsDiagram.svg/354px-ManifoldOfMappingsDiagram.svg.png" decoding="async" width="354" height="98" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/ManifoldOfMappingsDiagram.svg/531px-ManifoldOfMappingsDiagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6b/ManifoldOfMappingsDiagram.svg/708px-ManifoldOfMappingsDiagram.svg.png 2x" data-file-width="354" data-file-height="98" /></a></span></dd></dl></dd></dl></dd></dl> <p>It induces an atlas of charts on the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(M,N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(M,N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff7fc908c375c16b8acc0f62107dc1455dd8bfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.022ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(M,N)}"></span> of all smooth mappings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\to N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\to N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e152d4a2247d912b3747f0a3d0277a78cd092759" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.12ex; height:2.176ex;" alt="{\displaystyle M\to N}"></span> as follows. A chart centered at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in C^{\infty }(M,N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in C^{\infty }(M,N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77339477dc0b45632c93cbed79159ee15d7af62e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.141ex; height:2.843ex;" alt="{\displaystyle f\in C^{\infty }(M,N)}"></span>, is: </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{f}:C^{\infty }(M,N)\supset U_{f}=\{g:(f,g)(M)\subset V^{N\times N}\}\to {\tilde {U}}_{f}\subset \Gamma (f^{*}TN),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>:</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo>&#x2283;<!-- ⊃ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>:</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>&#x2282;<!-- ⊂ --></mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x00D7;<!-- × --></mo> <mi>N</mi> </mrow> </msup> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo>&#x2282;<!-- ⊂ --></mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>T</mi> <mi>N</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{f}:C^{\infty }(M,N)\supset U_{f}=\{g:(f,g)(M)\subset V^{N\times N}\}\to {\tilde {U}}_{f}\subset \Gamma (f^{*}TN),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3e7c4f8eed7b422c57b8c72e6ff9a885c0a2f2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:68.273ex; height:3.343ex;" alt="{\displaystyle u_{f}:C^{\infty }(M,N)\supset U_{f}=\{g:(f,g)(M)\subset V^{N\times N}\}\to {\tilde {U}}_{f}\subset \Gamma (f^{*}TN),}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{f}(g)=(\pi _{N},\exp ^{\bar {g}})^{-1}\circ (f,g),\quad u_{f}(g)(x)=(\exp _{f(x)}^{\bar {g}})^{-1}(g(x)),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>,</mo> <msup> <mi>exp</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2218;<!-- ∘ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>exp</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msubsup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{f}(g)=(\pi _{N},\exp ^{\bar {g}})^{-1}\circ (f,g),\quad u_{f}(g)(x)=(\exp _{f(x)}^{\bar {g}})^{-1}(g(x)),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/563adcfdba4fbee731325ed41ee4a1640b626afa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:61.536ex; height:4.176ex;" alt="{\displaystyle u_{f}(g)=(\pi _{N},\exp ^{\bar {g}})^{-1}\circ (f,g),\quad u_{f}(g)(x)=(\exp _{f(x)}^{\bar {g}})^{-1}(g(x)),}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{f})^{-1}(s)=\exp _{f}^{\bar {g}}\circ s,\qquad \quad (u_{f})^{-1}(s)(x)=\exp _{f(x)}^{\bar {g}}(s(x)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>exp</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msubsup> <mo>&#x2218;<!-- ∘ --></mo> <mi>s</mi> <mo>,</mo> <mspace width="2em" /> <mspace width="1em" /> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>exp</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msubsup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (u_{f})^{-1}(s)=\exp _{f}^{\bar {g}}\circ s,\qquad \quad (u_{f})^{-1}(s)(x)=\exp _{f(x)}^{\bar {g}}(s(x)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6b80db879a763a66bf5ae1a96c74a5a5673de38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:57.276ex; height:4.176ex;" alt="{\displaystyle (u_{f})^{-1}(s)=\exp _{f}^{\bar {g}}\circ s,\qquad \quad (u_{f})^{-1}(s)(x)=\exp _{f(x)}^{\bar {g}}(s(x)).}"></span></dd></dl></dd></dl></dd></dl> <p>Now the basics facts follow in easily. Trivializing the pull back vector bundle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}TN}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>T</mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}TN}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c77ef84bb39cd83ef3ecb8b233c1df7364b2ef3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.075ex; height:2.676ex;" alt="{\displaystyle f^{*}TN}"></span> and applying the exponential law 6 leads to the diffeomorphism </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ,\Gamma (M;f^{*}TN))=\Gamma (\mathbb {R} \times M;\operatorname {pr_{2}} ^{*}f^{*}TN).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo>;</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>T</mi> <mi>N</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>M</mi> <mo>;</mo> <msup> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">p</mi> <msub> <mi mathvariant="normal">r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>T</mi> <mi>N</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ,\Gamma (M;f^{*}TN))=\Gamma (\mathbb {R} \times M;\operatorname {pr_{2}} ^{*}f^{*}TN).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/614504fd98f37bab913e42f8141b165cc0bb4e75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.784ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ,\Gamma (M;f^{*}TN))=\Gamma (\mathbb {R} \times M;\operatorname {pr_{2}} ^{*}f^{*}TN).}"></span></dd></dl></dd></dl></dd></dl> <p>All chart change mappings are smooth (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/971ed05871d69309df32efdfd2020128c9cf69d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.673ex; height:2.343ex;" alt="{\displaystyle C^{\infty }}"></span>) since they map smooth curves to smooth curves: </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {U}}_{f_{1}}\ni s\mapsto (\pi _{N},\exp ^{\bar {g}})\circ s\mapsto (\pi _{N},\exp ^{\bar {g}})\circ (f_{2},\exp _{f_{1}}^{\bar {g}}\circ s).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x220B;<!-- ∋ --></mo> <mi>s</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>,</mo> <msup> <mi>exp</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2218;<!-- ∘ --></mo> <mi>s</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>,</mo> <msup> <mi>exp</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2218;<!-- ∘ --></mo> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msubsup> <mi>exp</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msubsup> <mo>&#x2218;<!-- ∘ --></mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {U}}_{f_{1}}\ni s\mapsto (\pi _{N},\exp ^{\bar {g}})\circ s\mapsto (\pi _{N},\exp ^{\bar {g}})\circ (f_{2},\exp _{f_{1}}^{\bar {g}}\circ s).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1db2c571d25cecbf0aa38a1cff902060a74971f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:55.105ex; height:4.176ex;" alt="{\displaystyle {\tilde {U}}_{f_{1}}\ni s\mapsto (\pi _{N},\exp ^{\bar {g}})\circ s\mapsto (\pi _{N},\exp ^{\bar {g}})\circ (f_{2},\exp _{f_{1}}^{\bar {g}}\circ s).}"></span></dd></dl></dd></dl></dd></dl> <p>Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(M,N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(M,N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff7fc908c375c16b8acc0f62107dc1455dd8bfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.022ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(M,N)}"></span> is a smooth manifold modeled on Fréchet spaces. The space of all smooth curves in this manifold is given by </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ,C^{\infty }(M,N))\cong C^{\infty }(\mathbb {R} \times M,N).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2245;<!-- ≅ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ,C^{\infty }(M,N))\cong C^{\infty }(\mathbb {R} \times M,N).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58c3956e753e61a9148974bcd1fa7ff9368aea00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.503ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ,C^{\infty }(M,N))\cong C^{\infty }(\mathbb {R} \times M,N).}"></span></dd></dl></dd></dl></dd></dl> <p>Since it visibly maps smooth curves to smooth curves, <i>composition</i> </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(P,M)\times C^{\infty }(M,N)\to C^{\infty }(P,N),\qquad (f,g)\mapsto g\circ f,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>P</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>f</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(P,M)\times C^{\infty }(M,N)\to C^{\infty }(P,N),\qquad (f,g)\mapsto g\circ f,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c507c239baf666a51e7fbf9648d9b0725faa546b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.273ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(P,M)\times C^{\infty }(M,N)\to C^{\infty }(P,N),\qquad (f,g)\mapsto g\circ f,}"></span></dd></dl></dd></dl></dd></dl> <p>is smooth. As a consequence of the chart structure, the <a href="/wiki/Tangent_bundle" title="Tangent bundle">tangent bundle</a> of the manifold of mappings is given by </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{C^{\infty }(M,N)}=C^{\infty }(M,\pi _{N}):TC^{\infty }(M,N)=C^{\infty }(M,TN)\to C^{\infty }(M,N).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>:</mo> <mi>T</mi> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>T</mi> <mi>N</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{C^{\infty }(M,N)}=C^{\infty }(M,\pi _{N}):TC^{\infty }(M,N)=C^{\infty }(M,TN)\to C^{\infty }(M,N).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/372229d26f04e23166d1017bcbdf34f68a371c84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:69.959ex; height:3.176ex;" alt="{\displaystyle \pi _{C^{\infty }(M,N)}=C^{\infty }(M,\pi _{N}):TC^{\infty }(M,N)=C^{\infty }(M,TN)\to C^{\infty }(M,N).}"></span></dd></dl></dd></dl></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Regular_Lie_groups">Regular Lie groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=7" title="Edit section: Regular Lie groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> be a connected smooth <a href="/wiki/Lie_group" title="Lie group">Lie group</a> modeled on convenient vector spaces, with Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}=T_{e}G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}=T_{e}G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afeabe2bcf8c7f4c04a57c29ecd4cbbba0f90e78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.453ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {g}}=T_{e}G}"></span>. Multiplication and inversion are denoted by: </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu :G\times G\to G,\quad \mu (x,y)=x.y=\mu _{x}(y)=\mu ^{y}(x),\qquad \nu :G\to G,\nu (x)=x^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>:</mo> <mi>G</mi> <mo>&#x00D7;<!-- × --></mo> <mi>G</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> <mo>,</mo> <mspace width="1em" /> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>.</mo> <mi>y</mi> <mo>=</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mi>&#x03BD;<!-- ν --></mi> <mo>:</mo> <mi>G</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> <mo>,</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu :G\times G\to G,\quad \mu (x,y)=x.y=\mu _{x}(y)=\mu ^{y}(x),\qquad \nu :G\to G,\nu (x)=x^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c6f480d781ca75bce163ca3ac2644efdb9730af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:78.232ex; height:3.176ex;" alt="{\displaystyle \mu :G\times G\to G,\quad \mu (x,y)=x.y=\mu _{x}(y)=\mu ^{y}(x),\qquad \nu :G\to G,\nu (x)=x^{-1}.}"></span></dd></dl></dd></dl></dd></dl> <p>The notion of a regular Lie group is originally due to Omori et al. for Fréchet Lie groups, was weakened and made more transparent by J. Milnor, and was then carried over to convenient Lie groups; see [KM], 38.4. </p><p>A Lie group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> is called <i>regular</i> if the following two conditions hold: </p> <ul><li>For each smooth curve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\in C^{\infty }(\mathbb {R} ,{\mathfrak {g}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\in C^{\infty }(\mathbb {R} ,{\mathfrak {g}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d549488ca07c8693fab0e275c8fb014e1142d59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.187ex; height:2.843ex;" alt="{\displaystyle X\in C^{\infty }(\mathbb {R} ,{\mathfrak {g}})}"></span> in the Lie algebra there exists a smooth curve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\in C^{\infty }(\mathbb {R} ,G)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\in C^{\infty }(\mathbb {R} ,G)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a8cd1e2294cf85946fb1a2447d65c795b9eb5c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.978ex; height:2.843ex;" alt="{\displaystyle g\in C^{\infty }(\mathbb {R} ,G)}"></span> in the Lie group whose right logarithmic derivative is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. It turn out that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is uniquely determined by its initial value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef9ac33acee4c0045521f091546f50540d8eb364" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.088ex; height:2.843ex;" alt="{\displaystyle g(0)}"></span>, if it exists. That is,</li></ul> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(0)=e,\qquad \partial _{t}g(t)=T_{e}(\mu ^{g(t)})X(t)=X(t).g(t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>e</mi> <mo>,</mo> <mspace width="2em" /> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(0)=e,\qquad \partial _{t}g(t)=T_{e}(\mu ^{g(t)})X(t)=X(t).g(t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1793ae03ba0a3021a0826690a55cf9165dc2b35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.136ex; height:3.343ex;" alt="{\displaystyle g(0)=e,\qquad \partial _{t}g(t)=T_{e}(\mu ^{g(t)})X(t)=X(t).g(t).}"></span></dd></dl></dd></dl></dd></dl> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is the unique solution for the curve <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> required above, we denote </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {evol} _{G}^{r}(X)=g(1),\quad \operatorname {Evol} _{G}^{r}(X)(t):=g(t)=\operatorname {evol} _{G}^{r}(tX).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>evol</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <msubsup> <mi>Evol</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>evol</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {evol} _{G}^{r}(X)=g(1),\quad \operatorname {Evol} _{G}^{r}(X)(t):=g(t)=\operatorname {evol} _{G}^{r}(tX).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4d28895d0887d28ee6dadcb0c45d9ec3310d277" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:53.985ex; height:2.843ex;" alt="{\displaystyle \operatorname {evol} _{G}^{r}(X)=g(1),\quad \operatorname {Evol} _{G}^{r}(X)(t):=g(t)=\operatorname {evol} _{G}^{r}(tX).}"></span></dd></dl></dd></dl></dd></dl> <ul><li>The following mapping is required to be smooth:</li></ul> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {evol} _{G}^{r}:C^{\infty }(\mathbb {R} ,{\mathfrak {g}})\to G.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>evol</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <mo>:</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>G</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {evol} _{G}^{r}:C^{\infty }(\mathbb {R} ,{\mathfrak {g}})\to G.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ca9f2d5005957682de4f18966aa78a9f6811507" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.984ex; height:2.843ex;" alt="{\displaystyle \operatorname {evol} _{G}^{r}:C^{\infty }(\mathbb {R} ,{\mathfrak {g}})\to G.}"></span></dd></dl></dd></dl></dd></dl> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a constant curve in the Lie algebra, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {evol} _{G}^{r}(X)=\exp ^{G}(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>evol</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>exp</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {evol} _{G}^{r}(X)=\exp ^{G}(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf2becfa412ebfc400940df7a74a75fe048b6182" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.347ex; height:3.176ex;" alt="{\displaystyle \operatorname {evol} _{G}^{r}(X)=\exp ^{G}(X)}"></span> is the group exponential mapping. </p><p><b>Theorem.</b> For each compact manifold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>, the diffeomorphism group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Diff} (M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Diff</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Diff} (M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ab0882a1c98ae06c1e718c1398554bd2ba8e4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.098ex; height:2.843ex;" alt="{\displaystyle \operatorname {Diff} (M)}"></span> is a regular Lie group. Its Lie algebra is the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {X}}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {X}}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98adcdb076cb8069c2d19d06030cf7e2c2f237f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.923ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {X}}(M)}"></span> of all smooth vector fields on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>, with the negative of the usual bracket as Lie bracket. </p><p><i>Proof:</i> The diffeomorphism group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Diff} (M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Diff</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Diff} (M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ab0882a1c98ae06c1e718c1398554bd2ba8e4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.098ex; height:2.843ex;" alt="{\displaystyle \operatorname {Diff} (M)}"></span> is a smooth manifold since it is an open subset in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(M,M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(M,M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cac107acda021d12be5948caf0d0685ecee25ffa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.401ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(M,M)}"></span>. Composition is smooth by restriction. Inversion is smooth: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\to f(t,\ )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\to f(t,\ )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/499fcce722c9d68fff5e959ace1ee3c5445a3a83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.996ex; height:2.843ex;" alt="{\displaystyle t\to f(t,\ )}"></span> is a smooth curve in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Diff} (M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Diff</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Diff} (M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ab0882a1c98ae06c1e718c1398554bd2ba8e4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.098ex; height:2.843ex;" alt="{\displaystyle \operatorname {Diff} (M)}"></span>, then <span class="texhtml"><i>f</i>(<i>t</i>,&#160;&#160;)<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t,\ )^{-1}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t,\ )^{-1}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3df657991fc5fa5242d69f66e619f314c8a9a787" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.014ex; height:3.176ex;" alt="{\displaystyle f(t,\ )^{-1}(x)}"></span> satisfies the implicit equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(t,f(t,\quad )^{-1}(x))=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mspace width="1em" /> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(t,f(t,\quad )^{-1}(x))=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e2b7450836bdd5d620743566bb8ba3c2974e090" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.145ex; height:3.176ex;" alt="{\displaystyle f(t,f(t,\quad )^{-1}(x))=x}"></span>, so by the finite dimensional implicit function theorem, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (t,x)\mapsto f(t,\ )^{-1}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (t,x)\mapsto f(t,\ )^{-1}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e826d19e6e79f46c72dc46a8e50b0157d830b569" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.64ex; height:3.176ex;" alt="{\displaystyle (t,x)\mapsto f(t,\ )^{-1}(x)}"></span> is smooth. So inversion maps smooth curves to smooth curves, and thus inversion is smooth. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(t,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(t,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/356ef8cafc3e01d46b1fa10509402b613678539e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.993ex; height:2.843ex;" alt="{\displaystyle X(t,x)}"></span> be a time dependent vector field on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> (in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(\mathbb {R} ,{\mathfrak {X}}(M))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(\mathbb {R} ,{\mathfrak {X}}(M))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8317cd5de8b743f255a5dfc5d19b1d3288cce73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.117ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(\mathbb {R} ,{\mathfrak {X}}(M))}"></span>). Then the flow operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Fl} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Fl</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Fl} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beadd0015d0d371e6d10d8c1029a9c23036daa81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.165ex; height:2.176ex;" alt="{\displaystyle \operatorname {Fl} }"></span> of the corresponding autonomous vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{t}\times X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{t}\times X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a73cf6883b0194f10b4d5aadc7306fa773f18316" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.881ex; height:2.509ex;" alt="{\displaystyle \partial _{t}\times X}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} \times M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} \times M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e751af5fca234a6923df10e0949b9ee487bd16cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.961ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} \times M}"></span> induces the evolution operator via </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Fl} _{s}(t,x)=(t+s,\operatorname {Evol} (X)(t,x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Fl</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>+</mo> <mi>s</mi> <mo>,</mo> <mi>Evol</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Fl} _{s}(t,x)=(t+s,\operatorname {Evol} (X)(t,x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb5e5bae37b2cdf646527a9ab7542dc0e5fd1347" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.314ex; height:2.843ex;" alt="{\displaystyle \operatorname {Fl} _{s}(t,x)=(t+s,\operatorname {Evol} (X)(t,x))}"></span></dd></dl></dd></dl></dd></dl> <p>which satisfies the ordinary differential equation </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{t}\operatorname {Evol} (X)(t,x)=X(t,\operatorname {Evol} (X)(t,x)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi>Evol</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>Evol</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{t}\operatorname {Evol} (X)(t,x)=X(t,\operatorname {Evol} (X)(t,x)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a769c3877f66ab6986c706fb8667e2e1d9e6c76e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.699ex; height:2.843ex;" alt="{\displaystyle \partial _{t}\operatorname {Evol} (X)(t,x)=X(t,\operatorname {Evol} (X)(t,x)).}"></span></dd></dl></dd></dl></dd></dl> <p>Given a smooth curve in the Lie algebra, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(s,t,x)\in C^{\infty }(\mathbb {R} ^{2},{\mathfrak {X}}(M))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(s,t,x)\in C^{\infty }(\mathbb {R} ^{2},{\mathfrak {X}}(M))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d39b4029bfccb5232abf19b658c58f71fb4fa0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.129ex; height:3.176ex;" alt="{\displaystyle X(s,t,x)\in C^{\infty }(\mathbb {R} ^{2},{\mathfrak {X}}(M))}"></span>, then the solution of the ordinary differential equation depends smoothly also on the further variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span>, thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {evol} _{\operatorname {Diff} (M)}^{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>evol</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Diff</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {evol} _{\operatorname {Diff} (M)}^{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b3b8ec30018c5a3bc5d8447b9b9fdea443fae0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:10.027ex; height:3.343ex;" alt="{\displaystyle \operatorname {evol} _{\operatorname {Diff} (M)}^{r}}"></span> maps smooth curves of time dependent vector fields to smooth curves of diffeomorphism. QED. </p> <div class="mw-heading mw-heading3"><h3 id="The_principal_bundle_of_embeddings">The principal bundle of embeddings</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=8" title="Edit section: The principal bundle of embeddings"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For finite dimensional manifolds <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> compact, the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Emb} (M,N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Emb</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Emb} (M,N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ddff3609e44e57f6ec32fe18761146794a9e46e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.16ex; height:2.843ex;" alt="{\displaystyle \operatorname {Emb} (M,N)}"></span> of all smooth embeddings of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>, is open in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{\infty }(M,N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{\infty }(M,N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff7fc908c375c16b8acc0f62107dc1455dd8bfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.022ex; height:2.843ex;" alt="{\displaystyle C^{\infty }(M,N)}"></span>, so it is a smooth manifold. The diffeomorphism group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Diff} (M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Diff</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Diff} (M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ab0882a1c98ae06c1e718c1398554bd2ba8e4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.098ex; height:2.843ex;" alt="{\displaystyle \operatorname {Diff} (M)}"></span> acts freely and smoothly from the right on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Emb} (M,N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Emb</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Emb} (M,N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ddff3609e44e57f6ec32fe18761146794a9e46e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.16ex; height:2.843ex;" alt="{\displaystyle \operatorname {Emb} (M,N)}"></span>. </p><p><b>Theorem:</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Emb} (M,N)\to \operatorname {Emb} (M,N)/\operatorname {Diff} (M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Emb</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Emb</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>Diff</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Emb} (M,N)\to \operatorname {Emb} (M,N)/\operatorname {Diff} (M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a50d7309c34dc51f78ab6d5947879ff22b760650" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.582ex; height:2.843ex;" alt="{\displaystyle \operatorname {Emb} (M,N)\to \operatorname {Emb} (M,N)/\operatorname {Diff} (M)}"></span> is a principal fiber bundle with structure group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Diff} (M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Diff</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Diff} (M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ab0882a1c98ae06c1e718c1398554bd2ba8e4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.098ex; height:2.843ex;" alt="{\displaystyle \operatorname {Diff} (M)}"></span>. </p><p><i>Proof:</i> One uses again an auxiliary Riemannian metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c88fb5e9772f3c36bcd6f6500e8fba5047109f15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.232ex; height:2.343ex;" alt="{\displaystyle {\bar {g}}}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>. Given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in \operatorname {Emb} (M,N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Emb</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in \operatorname {Emb} (M,N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0467e705a81f32a02abb36ca13a72cda7bfaa2bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.28ex; height:2.843ex;" alt="{\displaystyle f\in \operatorname {Emb} (M,N)}"></span>, view <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/838e63aefd54118a54c25fd9f0ef22528a69e36c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.53ex; height:2.843ex;" alt="{\displaystyle f(M)}"></span> as a submanifold of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>, and split the restriction of the tangent bundle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle TN}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle TN}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd09d1b81f8d232dcf7bc9dfe5f0d08810aa4b75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.7ex; height:2.176ex;" alt="{\displaystyle TN}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/838e63aefd54118a54c25fd9f0ef22528a69e36c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.53ex; height:2.843ex;" alt="{\displaystyle f(M)}"></span> into the subbundle normal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/838e63aefd54118a54c25fd9f0ef22528a69e36c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.53ex; height:2.843ex;" alt="{\displaystyle f(M)}"></span> and tangential to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/838e63aefd54118a54c25fd9f0ef22528a69e36c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.53ex; height:2.843ex;" alt="{\displaystyle f(M)}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle TN|_{f(M)}=\operatorname {Nor} (f(M))\oplus Tf(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mi>N</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <mi>Nor</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2295;<!-- ⊕ --></mo> <mi>T</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle TN|_{f(M)}=\operatorname {Nor} (f(M))\oplus Tf(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5628872741e2f6cbb80dfc663b932c5cf0fc7152" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:32.751ex; height:3.343ex;" alt="{\displaystyle TN|_{f(M)}=\operatorname {Nor} (f(M))\oplus Tf(M)}"></span>. Choose a tubular neighborhood </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{f(M)}:\operatorname {Nor} (f(M))\supset W_{f(M)}\to f(M).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>:</mo> <mi>Nor</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2283;<!-- ⊃ --></mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{f(M)}:\operatorname {Nor} (f(M))\supset W_{f(M)}\to f(M).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bdeb3c5c8a12446680ce2142ec9925baa6175b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; margin-left: -0.089ex; width:37.721ex; height:3.176ex;" alt="{\displaystyle p_{f(M)}:\operatorname {Nor} (f(M))\supset W_{f(M)}\to f(M).}"></span></dd></dl></dd></dl></dd></dl> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:M\to N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:M\to N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5b0f58e9e6691e5e739035bdf60cbd8bd45f055" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.173ex; height:2.509ex;" alt="{\displaystyle g:M\to N}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd24bae0d7570018e828e19851902c09c618af91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.852ex; height:2.676ex;" alt="{\displaystyle C^{1}}"></span>-near to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, then </p> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (g):=f^{-1}\circ \,p_{f(M)}\circ \,g\in \operatorname {Diff} (M)\quad {\text{and}}\quad g\circ \,\phi (g)^{-1}\in \Gamma (f^{*}W_{f(M)})\subset \Gamma (f^{*}\operatorname {Nor} (f(M))).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2218;<!-- ∘ --></mo> <mspace width="thinmathspace" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>&#x2218;<!-- ∘ --></mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>Diff</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mi>g</mi> <mo>&#x2218;<!-- ∘ --></mo> <mspace width="thinmathspace" /> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2282;<!-- ⊂ --></mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>Nor</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (g):=f^{-1}\circ \,p_{f(M)}\circ \,g\in \operatorname {Diff} (M)\quad {\text{and}}\quad g\circ \,\phi (g)^{-1}\in \Gamma (f^{*}W_{f(M)})\subset \Gamma (f^{*}\operatorname {Nor} (f(M))).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4472f8fcb871218cd41e0906cfff0873863e114" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:88.713ex; height:3.509ex;" alt="{\displaystyle \phi (g):=f^{-1}\circ \,p_{f(M)}\circ \,g\in \operatorname {Diff} (M)\quad {\text{and}}\quad g\circ \,\phi (g)^{-1}\in \Gamma (f^{*}W_{f(M)})\subset \Gamma (f^{*}\operatorname {Nor} (f(M))).}"></span></dd></dl></dd></dl></dd></dl> <p>This is the required local splitting. <i>QED</i> </p> <div class="mw-heading mw-heading3"><h3 id="Further_applications">Further applications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=9" title="Edit section: Further applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An overview of applications using geometry of shape spaces and diffeomorphism groups can be found in [Bauer, Bruveris, Michor, 2014]. </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=10" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">An example of a composition mapping is the evaluation mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{ev}}:E\times E^{*}\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>ev</mtext> </mrow> <mo>:</mo> <mi>E</mi> <mo>&#x00D7;<!-- × --></mo> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{ev}}:E\times E^{*}\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c2f42873e560f1eeae01711c408610de941a17e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.953ex; height:2.343ex;" alt="{\displaystyle {\text{ev}}:E\times E^{*}\to \mathbb {R} }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> is a <a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">locally convex vector space</a>, and where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a91d2119445b3b65384ba491c4b95f1557571ecc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.848ex; height:2.343ex;" alt="{\displaystyle E^{*}}"></span> is its <a href="/wiki/Dual_space" title="Dual space">dual</a> of continuous linear functionals equipped with any locally convex topology such that the evaluation mapping is separately continuous. If the evaluation is assumed to be jointly continuous, then there are neighborhoods <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subseteq E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subseteq E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711cf300f38297eb0881669757b3c5376e42fa54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.657ex; height:2.343ex;" alt="{\displaystyle U\subseteq E}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V\subseteq E^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>&#x2286;<!-- ⊆ --></mo> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V\subseteq E^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99486c47b29cb8db5b1459e68338e7a0809231ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.734ex; height:2.509ex;" alt="{\displaystyle V\subseteq E^{*}}"></span> of zero such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\times V\subseteq [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x00D7;<!-- × --></mo> <mi>V</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\times V\subseteq [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20736075b9e01a471f5086c5da357af10fc9b00a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.161ex; height:2.843ex;" alt="{\displaystyle U\times V\subseteq [0,1]}"></span>. However, this means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> is contained in the <a href="/wiki/Polar_set" title="Polar set">polar</a> of the open set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>; so it is bounded in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> admits a bounded neighborhood of zero, and is thus a <a href="/wiki/Normed_vector_space" title="Normed vector space">normed vector space</a>.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">In order to be useful for solving equations like nonlinear PDE's, convenient calculus has to be supplemented by, for example, <a href="/wiki/A_priori_estimate" title="A priori estimate">a priori estimates</a> which help to create enough Banach space situation to allow convergence of some iteration procedure; for example, see the <a href="/wiki/Nash%E2%80%93Moser_theorem" title="Nash–Moser theorem">Nash–Moser theorem</a>, described in terms of convenient calculus in [KM], section 51.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Convenient_vector_space&amp;action=edit&amp;section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> </div> <ul><li>Bauer, M., Bruveris, M., Michor, P.W.: Overview of the Geometries of Shape Spaces and Diffeomorphism Groups. Journal of Mathematical Imaging and Vision, 50, 1-2, 60-97, 2014. <a rel="nofollow" class="external text" href="https://arxiv.org/abs/1305.1150">(arXiv:1305.11500)</a></li> <li>Boman, J.: Differentiability of a function and of its composition with a function of one variable, Mathematica Scandinavia vol. 20 (1967), 249–268.</li> <li>Faure, C.-A.: Sur un théorème de Boman, C. R. Acad. Sci., Paris}, vol. 309 (1989), 1003–1006.</li> <li>Faure, C.-A.: Théorie de la différentiation dans les espaces convenables, These, Université de Genève, 1991.</li> <li>Frölicher, A.: Applications lisses entre espaces et variétés de Fréchet, C. R. Acad. Sci. Paris, vol. 293 (1981), 125–127.</li> <li>[FK] Frölicher, A., Kriegl, A.: Linear spaces and differentiation theory. Pure and Applied Mathematics, J. Wiley, Chichester, 1988.</li> <li>Kriegl, A.: Die richtigen Räume für Analysis im Unendlich – Dimensionalen, Monatshefte für Mathematik vol. 94 (1982) 109–124.</li> <li>Kriegl, A.: Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen lokalkonvexen Vektorräumen, Monatshefte für Mathematik vol. 95 (1983) 287–309.</li> <li>[KM] Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, Volume: 53, American Mathematical Society, Providence, 1997. <a rel="nofollow" class="external text" href="https://www.mat.univie.ac.at/~michor/apbookh-ams.pdf">(pdf)</a></li> <li>Kriegl, A., Michor, P. W., Rainer, A.: The convenient setting for non-quasianalytic Denjoy–Carleman differentiable mappings, Journal of Functional Analysis, vol. 256 (2009), 3510–3544. <a rel="nofollow" class="external text" href="https://arxiv.org/abs/0804.2995">(arXiv:0804.2995)</a></li> <li>Kriegl, A., Michor, P. W., Rainer, A.: The convenient setting for quasianalytic Denjoy–Carleman differentiable mappings, Journal of Functional Analysis, vol. 261 (2011), 1799–1834. <a rel="nofollow" class="external text" href="https://arxiv.org/abs/0909.5632">(arXiv:0909.5632)</a></li> <li>Kriegl, A., Michor, P. W., Rainer, A.: The convenient setting for Denjoy-Carleman differentiable mappings of Beurling and Roumieu type. Revista Matemática Complutense (2015). doi:10.1007/s13163-014-0167-1. <a rel="nofollow" class="external text" href="https://arxiv.org/abs/1111.1819">(arXiv:1111.1819)</a></li> <li>Michor, P.W.: Manifolds of mappings and shapes. <a rel="nofollow" class="external text" href="https://arxiv.org/abs/1505.02359">(arXiv:1505.02359)</a></li> <li>Steenrod, N. E.: A convenient category for topological spaces, Michigan Mathematical Journal, vol. 14 (1967), 133–152.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Analysis_in_topological_vector_spaces" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Analysis_in_topological_vector_spaces" title="Template:Analysis in topological vector spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Analysis_in_topological_vector_spaces" title="Template talk:Analysis in topological vector spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Analysis_in_topological_vector_spaces" title="Special:EditPage/Template:Analysis in topological vector spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Analysis_in_topological_vector_spaces" style="font-size:114%;margin:0 4em"><a href="/wiki/Mathematical_analysis" title="Mathematical analysis">Analysis</a> in <a href="/wiki/Topological_vector_space" title="Topological vector space">topological vector spaces</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_Wiener_space" title="Abstract Wiener space">Abstract Wiener space</a> <ul><li><a href="/wiki/Classical_Wiener_space" title="Classical Wiener space">Classical Wiener space</a></li></ul></li> <li><a href="/wiki/Bochner_space" title="Bochner space">Bochner space</a></li> <li><a href="/wiki/Convex_series" title="Convex series">Convex series</a></li> <li><a href="/wiki/Cylinder_set_measure" title="Cylinder set measure">Cylinder set measure</a></li> <li><a href="/wiki/Infinite-dimensional_vector_function" title="Infinite-dimensional vector function">Infinite-dimensional vector function</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix calculus</a></li> <li><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Derivative" title="Derivative">Derivatives</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differentiable_vector%E2%80%93valued_functions_from_Euclidean_space" title="Differentiable vector–valued functions from Euclidean space">Differentiable vector–valued functions from Euclidean space</a></li> <li><a href="/wiki/Differentiation_in_Fr%C3%A9chet_spaces" title="Differentiation in Fréchet spaces">Differentiation in Fréchet spaces</a></li> <li><a href="/wiki/Fr%C3%A9chet_derivative" title="Fréchet derivative">Fréchet derivative</a> <ul><li><a href="/wiki/Total_derivative" title="Total derivative">Total</a></li></ul></li> <li><a href="/wiki/Functional_derivative" title="Functional derivative">Functional derivative</a></li> <li><a href="/wiki/Gateaux_derivative" title="Gateaux derivative">Gateaux derivative</a> <ul><li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional</a></li></ul></li> <li><a href="/wiki/Generalizations_of_the_derivative" title="Generalizations of the derivative">Generalizations of the derivative</a></li> <li><a href="/wiki/Hadamard_derivative" title="Hadamard derivative">Hadamard derivative</a></li> <li><a href="/wiki/Infinite-dimensional_holomorphy" title="Infinite-dimensional holomorphy">Holomorphic</a></li> <li><a href="/wiki/Quasi-derivative" title="Quasi-derivative">Quasi-derivative</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Measurability</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Besov_measure" title="Besov measure">Besov measure</a></li> <li><a href="/wiki/Cylinder_set_measure" title="Cylinder set measure">Cylinder set measure</a> <ul><li><a href="/wiki/Canonical_Gaussian_cylinder_set_measure" class="mw-redirect" title="Canonical Gaussian cylinder set measure">Canonical Gaussian</a></li> <li><a href="/wiki/Classical_Wiener_measure" class="mw-redirect" title="Classical Wiener measure">Classical Wiener measure</a></li></ul></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a>&#160;like&#160;<a href="/wiki/Set_function" title="Set function">set functions</a> <ul><li><a href="/wiki/Gaussian_measure#Infinite-dimensional_spaces" title="Gaussian measure">infinite-dimensional Gaussian measure</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued</a></li> <li><a href="/wiki/Vector_measure" title="Vector measure">Vector</a></li></ul></li> <li><a href="/wiki/Bochner_measurable_function" title="Bochner measurable function">Bochner</a> / <a href="/wiki/Weakly_measurable_function" title="Weakly measurable function">Weakly</a> / <a href="/wiki/Strongly_measurable_function" title="Strongly measurable function">Strongly</a> <a href="/wiki/Measurable_function" title="Measurable function">measurable function</a></li> <li><a href="/wiki/Radonifying_function" title="Radonifying function">Radonifying function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integral" title="Integral">Integrals</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bochner_integral" title="Bochner integral">Bochner</a></li> <li><a href="/wiki/Direct_integral" title="Direct integral">Direct integral</a></li> <li><a href="/wiki/Dunford_integral" class="mw-redirect" title="Dunford integral">Dunford</a></li> <li><a href="/wiki/Pettis_integral" title="Pettis integral">Gelfand–Pettis/Weak</a></li> <li><a href="/wiki/Regulated_integral" title="Regulated integral">Regulated</a></li> <li><a href="/wiki/Paley%E2%80%93Wiener_integral" title="Paley–Wiener integral">Paley–Wiener</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Results</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cameron%E2%80%93Martin_theorem" title="Cameron–Martin theorem">Cameron–Martin theorem</a></li> <li><a href="/wiki/Inverse_function_theorem" title="Inverse function theorem">Inverse function theorem</a> <ul><li><a href="/wiki/Nash%E2%80%93Moser_theorem" title="Nash–Moser theorem">Nash–Moser theorem</a></li></ul></li> <li><a href="/wiki/Feldman%E2%80%93H%C3%A1jek_theorem" title="Feldman–Hájek theorem">Feldman–Hájek theorem</a></li> <li><a href="/wiki/Infinite-dimensional_Lebesgue_measure" title="Infinite-dimensional Lebesgue measure">No infinite-dimensional Lebesgue measure</a></li> <li><a href="/wiki/Sazonov%27s_theorem" title="Sazonov&#39;s theorem">Sazonov's theorem</a></li> <li><a href="/wiki/Structure_theorem_for_Gaussian_measures" title="Structure theorem for Gaussian measures">Structure theorem for Gaussian measures</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Crinkled_arc" title="Crinkled arc">Crinkled arc</a></li> <li><a href="/wiki/Covariance_operator" title="Covariance operator">Covariance operator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Functional_calculus" title="Functional calculus">Functional calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Borel_functional_calculus" title="Borel functional calculus">Borel functional calculus</a></li> <li><a href="/wiki/Continuous_functional_calculus" title="Continuous functional calculus">Continuous functional calculus</a></li> <li><a href="/wiki/Holomorphic_functional_calculus" title="Holomorphic functional calculus">Holomorphic functional calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_manifold" title="Banach manifold">Banach manifold</a>&#160;(<a href="/wiki/Banach_bundle" title="Banach bundle">bundle</a>)</li> <li><a class="mw-selflink selflink">Convenient vector space</a></li> <li><a href="/wiki/Choquet_theory" title="Choquet theory">Choquet theory</a></li> <li><a href="/wiki/Fr%C3%A9chet_manifold" title="Fréchet manifold">Fréchet manifold</a></li> <li><a href="/wiki/Hilbert_manifold" title="Hilbert manifold">Hilbert manifold</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Topological_vector_spaces_(TVSs)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Topological_vector_spaces" title="Template:Topological vector spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Topological_vector_spaces" title="Template talk:Topological vector spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Topological_vector_spaces" title="Special:EditPage/Template:Topological vector spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Topological_vector_spaces_(TVSs)" style="font-size:114%;margin:0 4em"><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector spaces</a> (TVSs)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach space</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">Completeness</a></li> <li><a href="/wiki/Continuous_linear_operator" title="Continuous linear operator">Continuous linear operator</a></li> <li><a href="/wiki/Linear_form" title="Linear form">Linear functional</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet space</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex space</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">Metrizability</a></li> <li><a href="/wiki/Operator_topologies" title="Operator topologies">Operator topologies</a></li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector space</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Main results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anderson%E2%80%93Kadec_theorem" title="Anderson–Kadec theorem">Anderson–Kadec</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li> <li><a href="/wiki/Closed_graph_theorem_(functional_analysis)" title="Closed graph theorem (functional analysis)">Closed graph theorem</a></li> <li><a href="/wiki/F._Riesz%27s_theorem" title="F. Riesz&#39;s theorem">F. Riesz's</a></li> <li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a>&#160;(<a href="/wiki/Hyperplane_separation_theorem" title="Hyperplane separation theorem">hyperplane separation</a></li> <li><a href="/wiki/Vector-valued_Hahn%E2%80%93Banach_theorems" title="Vector-valued Hahn–Banach theorems">Vector-valued Hahn–Banach</a>)</li> <li><a href="/wiki/Open_mapping_theorem_(functional_analysis)" title="Open mapping theorem (functional analysis)">Open mapping (Banach–Schauder)</a> <ul><li><a href="/wiki/Bounded_inverse_theorem" class="mw-redirect" title="Bounded inverse theorem">Bounded inverse</a></li></ul></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Uniform boundedness (Banach–Steinhaus)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bilinear_operator" class="mw-redirect" title="Bilinear operator">Bilinear operator</a> <ul><li><a href="/wiki/Bilinear_form" title="Bilinear form">form</a></li></ul></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a> <ul><li><a href="/wiki/Almost_open_linear_map" class="mw-redirect" title="Almost open linear map">Almost open</a></li> <li><a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Continuous_linear_operator" title="Continuous linear operator">Continuous</a></li> <li><a href="/wiki/Closed_linear_operator" title="Closed linear operator">Closed</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a></li> <li><a href="/wiki/Densely_defined_operator" title="Densely defined operator">Densely defined</a></li> <li><a href="/wiki/Discontinuous_linear_map" title="Discontinuous linear map">Discontinuous</a></li></ul></li> <li><a href="/wiki/Topological_homomorphism" title="Topological homomorphism">Topological homomorphism</a></li> <li><a href="/wiki/Functional_(mathematics)" title="Functional (mathematics)">Functional</a> <ul><li><a href="/wiki/Linear_form" title="Linear form">Linear</a></li> <li><a href="/wiki/Bilinear_form" title="Bilinear form">Bilinear</a></li> <li><a href="/wiki/Sesquilinear_form" title="Sesquilinear form">Sesquilinear</a></li></ul></li> <li><a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">Norm</a></li> <li><a href="/wiki/Seminorm" title="Seminorm">Seminorm</a></li> <li><a href="/wiki/Sublinear_function" title="Sublinear function">Sublinear function</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of sets</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolutely_convex_set" title="Absolutely convex set">Absolutely convex/disk</a></li> <li><a href="/wiki/Absorbing_set" title="Absorbing set">Absorbing/Radial</a></li> <li><a href="/wiki/Affine_space" title="Affine space">Affine</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced/Circled</a></li> <li><a href="/wiki/Auxiliary_normed_space" title="Auxiliary normed space">Banach disks</a></li> <li><a href="/wiki/Bounding_point" title="Bounding point">Bounding points</a></li> <li><a href="/wiki/Bounded_set_(topological_vector_space)" title="Bounded set (topological vector space)">Bounded</a></li> <li><a href="/wiki/Complemented_subspace" title="Complemented subspace">Complemented subspace</a></li> <li><a href="/wiki/Convex_set" title="Convex set">Convex</a></li> <li><a href="/wiki/Convex_cone" title="Convex cone">Convex cone <span style="font-size:85%;">(subset)</span></a></li> <li><a href="/wiki/Cone_(linear_algebra)" class="mw-redirect" title="Cone (linear algebra)">Linear cone <span style="font-size:85%;">(subset)</span></a></li> <li><a href="/wiki/Extreme_point" title="Extreme point">Extreme point</a></li> <li><a href="/wiki/Totally_bounded_space#Topological_vector_spaces" title="Totally bounded space">Pre-compact/Totally bounded</a></li> <li><a href="/wiki/Prevalent_and_shy_sets" title="Prevalent and shy sets">Prevalent/Shy</a></li> <li><a href="/wiki/Radial_set" title="Radial set">Radial</a></li> <li><a href="/wiki/Star_domain" title="Star domain">Radially convex/Star-shaped</a></li> <li><a href="/wiki/Symmetric_set" title="Symmetric set">Symmetric</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Set operations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_hull" title="Affine hull">Affine hull</a></li> <li>(<a href="/wiki/Algebraic_interior#Relative_algebraic_interior" title="Algebraic interior">Relative</a>)&#160;<a href="/wiki/Algebraic_interior" title="Algebraic interior">Algebraic interior (core)</a></li> <li><a href="/wiki/Convex_hull" title="Convex hull">Convex hull</a></li> <li><a href="/wiki/Linear_span" title="Linear span">Linear span</a></li> <li><a href="/wiki/Minkowski_addition" title="Minkowski addition">Minkowski addition</a></li> <li><a href="/wiki/Polar_set" title="Polar set">Polar</a></li> <li>(<a href="/wiki/Algebraic_interior#Quasi_relative_interior" title="Algebraic interior">Quasi</a>)&#160;<a href="/wiki/Algebraic_interior#Relative_interior" title="Algebraic interior">Relative interior</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of TVSs</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Asplund_space" title="Asplund space">Asplund</a></li> <li><a href="/wiki/Ptak_space" title="Ptak space">B-complete/Ptak</a></li> <li><a href="/wiki/Banach_space" title="Banach space">Banach</a></li> <li>(<a href="/wiki/Countably_barrelled_space" title="Countably barrelled space">Countably</a>)&#160;<a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/BK-space" title="BK-space">BK-space</a></li> <li>(<a href="/wiki/Ultrabornological_space" title="Ultrabornological space">Ultra-</a>)&#160;<a href="/wiki/Bornological_space" title="Bornological space">Bornological</a></li> <li><a href="/wiki/Brauner_space" title="Brauner space">Brauner</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a class="mw-selflink selflink">Convenient</a></li> <li><a href="/wiki/DF-space" title="DF-space">(DF)-space</a></li> <li><a href="/wiki/Distinguished_space" title="Distinguished space">Distinguished</a></li> <li><a href="/wiki/F-space" title="F-space">F-space</a></li> <li><a href="/wiki/FK-AK_space" title="FK-AK space">FK-AK space</a></li> <li><a href="/wiki/FK-space" title="FK-space">FK-space</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a> <ul><li><a href="/wiki/Differentiation_in_Fr%C3%A9chet_spaces#Tame_Fréchet_spaces" title="Differentiation in Fréchet spaces">tame Fréchet</a></li></ul></li> <li><a href="/wiki/Grothendieck_space" title="Grothendieck space">Grothendieck</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert</a></li> <li><a href="/wiki/Infrabarreled_space" class="mw-redirect" title="Infrabarreled space">Infrabarreled</a></li> <li><a href="/wiki/Interpolation_space" title="Interpolation space">Interpolation space</a></li> <li><a href="/wiki/K-space_(functional_analysis)" title="K-space (functional analysis)">K-space</a></li> <li><a href="/wiki/LB-space" title="LB-space">LB-space</a></li> <li><a href="/wiki/LF-space" title="LF-space">LF-space</a></li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex space</a></li> <li><a href="/wiki/Mackey_space" title="Mackey space">Mackey</a></li> <li><a href="/wiki/Metrizable_topological_vector_space" title="Metrizable topological vector space">(Pseudo)Metrizable</a></li> <li><a href="/wiki/Montel_space" title="Montel space">Montel</a></li> <li><a href="/wiki/Quasibarrelled_space" class="mw-redirect" title="Quasibarrelled space">Quasibarrelled</a></li> <li><a href="/wiki/Quasi-complete" class="mw-redirect" title="Quasi-complete">Quasi-complete</a></li> <li><a href="/wiki/Quasinorm" title="Quasinorm">Quasinormed</a></li> <li>(<a href="/wiki/Polynomially_reflexive_space" title="Polynomially reflexive space">Polynomially</a></li> <li><a href="/wiki/Semi-reflexive_space" title="Semi-reflexive space">Semi-</a>)&#160;<a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Riesz_space" title="Riesz space">Riesz</a></li> <li><a href="/wiki/Schwartz_TVS" class="mw-redirect" title="Schwartz TVS">Schwartz</a></li> <li><a href="/wiki/Semi-complete" class="mw-redirect" title="Semi-complete">Semi-complete</a></li> <li><a href="/wiki/Smith_space" title="Smith space">Smith</a></li> <li><a href="/wiki/Stereotype_space" class="mw-redirect" title="Stereotype space">Stereotype</a></li> <li>(<a href="/wiki/B-convex_space" title="B-convex space">B</a></li> <li><a href="/wiki/Strictly_convex_space" title="Strictly convex space">Strictly</a></li> <li><a href="/wiki/Uniformly_convex_space" title="Uniformly convex space">Uniformly</a>)&#160;convex</li> <li>(<a href="/wiki/Quasi-ultrabarrelled_space" title="Quasi-ultrabarrelled space">Quasi-</a>)&#160;<a href="/wiki/Ultrabarrelled_space" title="Ultrabarrelled space">Ultrabarrelled</a></li> <li><a href="/wiki/Uniformly_smooth_space" title="Uniformly smooth space">Uniformly smooth</a></li> <li><a href="/wiki/Webbed_space" title="Webbed space">Webbed</a></li> <li><a href="/wiki/Approximation_property" title="Approximation property">With the approximation property</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Topological_vector_spaces" title="Category:Topological vector spaces">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Functional_analysis_(topics_–_glossary)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Functional_analysis" title="Template:Functional analysis"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Functional_analysis" title="Template talk:Functional analysis"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Functional_analysis" title="Special:EditPage/Template:Functional analysis"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Functional_analysis_(topics_–_glossary)" style="font-size:114%;margin:0 4em"><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a>&#160;(<a href="/wiki/List_of_functional_analysis_topics" title="List of functional analysis topics">topics</a> – <a href="/wiki/Glossary_of_functional_analysis" title="Glossary of functional analysis">glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Spaces</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a></li> <li><a href="/wiki/Besov_space" title="Besov space">Besov</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert</a></li> <li><a href="/wiki/H%C3%B6lder_space" class="mw-redirect" title="Hölder space">Hölder</a></li> <li><a href="/wiki/Nuclear_space" title="Nuclear space">Nuclear</a></li> <li><a href="/wiki/Orlicz_space" title="Orlicz space">Orlicz</a></li> <li><a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev</a></li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a href="/wiki/Dual_space" title="Dual space">Dual</a> (<a href="/wiki/Dual_space#Algebraic_dual_space" title="Dual space">Algebraic</a> / <a href="/wiki/Dual_space#Continuous_dual_space" title="Dual space">Topological</a>)</li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex</a></li> <li><a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Separable_space" title="Separable space">Separable</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Theorems</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a></li> <li><a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation</a></li> <li><a href="/wiki/Closed_graph_theorem_(functional_analysis)" title="Closed graph theorem (functional analysis)">Closed graph</a></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Uniform boundedness principle</a></li> <li><a href="/wiki/Kakutani_fixed-point_theorem#Infinite-dimensional_generalizations" title="Kakutani fixed-point theorem">Kakutani fixed-point</a></li> <li><a href="/wiki/Krein%E2%80%93Milman_theorem" title="Krein–Milman theorem">Krein–Milman</a></li> <li><a href="/wiki/Min-max_theorem" title="Min-max theorem">Min–max</a></li> <li><a href="/wiki/Gelfand%E2%80%93Naimark_theorem" title="Gelfand–Naimark theorem">Gelfand–Naimark</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Operators</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_operator" class="mw-redirect" title="Adjoint operator">Adjoint</a></li> <li><a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a></li> <li><a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt</a></li> <li><a href="/wiki/Normal_operator" title="Normal operator">Normal</a></li> <li><a href="/wiki/Nuclear_operator" title="Nuclear operator">Nuclear</a></li> <li><a href="/wiki/Trace_class" title="Trace class">Trace class</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li> <li><a href="/wiki/Unbounded_operator" title="Unbounded operator">Unbounded</a></li> <li><a href="/wiki/Unitary_operator" title="Unitary operator">Unitary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebras</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebra</a></li> <li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Spectrum_of_a_C*-algebra" title="Spectrum of a C*-algebra">Spectrum of a C*-algebra</a></li> <li><a href="/wiki/Operator_algebra" title="Operator algebra">Operator algebra</a></li> <li><a href="/wiki/Group_algebra_of_a_locally_compact_group" title="Group algebra of a locally compact group">Group algebra of a locally compact group</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Open problems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Invariant_subspace_problem" title="Invariant subspace problem">Invariant subspace problem</a></li> <li><a href="/wiki/Mahler%27s_conjecture" class="mw-redirect" title="Mahler&#39;s conjecture">Mahler's conjecture</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hardy_space" title="Hardy space">Hardy space</a></li> <li><a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">Spectral theory of ordinary differential equations</a></li> <li><a href="/wiki/Heat_kernel" title="Heat kernel">Heat kernel</a></li> <li><a href="/wiki/Index_theorem" class="mw-redirect" title="Index theorem">Index theorem</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Calculus of variations</a></li> <li><a href="/wiki/Functional_calculus" title="Functional calculus">Functional calculus</a></li> <li><a href="/wiki/Integral_operator" title="Integral operator">Integral operator</a></li> <li><a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological quantum field theory</a></li> <li><a href="/wiki/Noncommutative_geometry" title="Noncommutative geometry">Noncommutative geometry</a></li> <li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">Distribution</a> (or <a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Advanced topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Approximation_property" title="Approximation property">Approximation property</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced set</a></li> <li><a href="/wiki/Choquet_theory" title="Choquet theory">Choquet theory</a></li> <li><a href="/wiki/Weak_topology" title="Weak topology">Weak topology</a></li> <li><a href="/wiki/Banach%E2%80%93Mazur_distance" class="mw-redirect" title="Banach–Mazur distance">Banach–Mazur distance</a></li> <li><a href="/wiki/Tomita%E2%80%93Takesaki_theory" title="Tomita–Takesaki theory">Tomita–Takesaki theory</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Functional_analysis" title="Category:Functional analysis">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐xldxh Cached time: 20241125024154 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.344 seconds Real time usage: 0.566 seconds Preprocessor visited node count: 1629/1000000 Post‐expand include size: 56658/2097152 bytes Template argument size: 2036/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 36757/5000000 bytes Lua time usage: 0.106/10.000 seconds Lua memory usage: 1685891/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 207.391 1 -total 52.74% 109.372 4 Template:Navbox 43.28% 89.758 1 Template:Analysis_in_topological_vector_spaces 24.75% 51.331 1 Template:See_also 8.63% 17.899 1 Template:TopologicalVectorSpaces 7.64% 15.845 3 Template:Reflist 5.35% 11.104 1 Template:Math 4.17% 8.657 1 Template:Functional_Analysis 3.88% 8.057 2 Template:Icon 3.31% 6.863 2 Template:Refn --> <!-- Saved in parser cache with key enwiki:pcache:idhash:43466503-0!canonical and timestamp 20241125024154 and revision id 1249348052. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Convenient_vector_space&amp;oldid=1249348052">https://en.wikipedia.org/w/index.php?title=Convenient_vector_space&amp;oldid=1249348052</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Multivariable_calculus" title="Category:Multivariable calculus">Multivariable calculus</a></li><li><a href="/wiki/Category:Differential_calculus" title="Category:Differential calculus">Differential calculus</a></li><li><a href="/wiki/Category:Calculus_of_variations" title="Category:Calculus of variations">Calculus of variations</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 4 October 2024, at 13:17<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Convenient_vector_space&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b7f745dd4-wvvkb","wgBackendResponseTime":118,"wgPageParseReport":{"limitreport":{"cputime":"0.344","walltime":"0.566","ppvisitednodes":{"value":1629,"limit":1000000},"postexpandincludesize":{"value":56658,"limit":2097152},"templateargumentsize":{"value":2036,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":36757,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 207.391 1 -total"," 52.74% 109.372 4 Template:Navbox"," 43.28% 89.758 1 Template:Analysis_in_topological_vector_spaces"," 24.75% 51.331 1 Template:See_also"," 8.63% 17.899 1 Template:TopologicalVectorSpaces"," 7.64% 15.845 3 Template:Reflist"," 5.35% 11.104 1 Template:Math"," 4.17% 8.657 1 Template:Functional_Analysis"," 3.88% 8.057 2 Template:Icon"," 3.31% 6.863 2 Template:Refn"]},"scribunto":{"limitreport-timeusage":{"value":"0.106","limit":"10.000"},"limitreport-memusage":{"value":1685891,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-xldxh","timestamp":"20241125024154","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Convenient vector space","url":"https:\/\/en.wikipedia.org\/wiki\/Convenient_vector_space","sameAs":"http:\/\/www.wikidata.org\/entity\/Q25303670","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q25303670","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2014-08-03T22:21:10Z","dateModified":"2024-10-04T13:17:23Z","headline":"locally convex vector spaces satisfying a very mild completeness condition"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10