CINXE.COM

{"title":"Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction","authors":"E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto","volume":113,"journal":"International Journal of Materials and Metallurgical Engineering","pagesStart":597,"pagesEnd":602,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10004463","abstract":"<p>Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti<sub>2<\/sub>O\/SiO<sub>2<\/sub>), performed with the GeNS nodal suspension, compared with sputtered &lambda;\/4 thin films nowadays employed.<\/p>\r\n","references":"[1]\tMarshall W et al 2003 Phys Rev Lett 91 13040\r\n[2]\tNumata K, Kemery A, and Jordan Camp 2004 Phys. Rev. Lett. 93 250602\r\n[3]\tHeidmann A et al. 1997 Appl Phys B 64 173-180\r\n[4]\tF. Acernese et al., \u201cAdvanced Virgo: a second-generation interferometric gravitational wave detector,\u201d Class. Quantum Grav. 32, 024001, 2015.\r\n[5]\tJ. Aasi et al., \u201cAdvanced LIGO,\u201d Class. Quantum Grav. 32, 074001, 2015.\r\n[6]\tB. P. Abbott et al., \u201cObservation of Gravitational Waves from a Binary Black Hole Merger,\u201d Phys. Rev. Lett. 116, 061102, 2016.\r\n[7]\tH. B Callen and T. A. Welton, \u201cIrreversibility and Generalized Noise,\u201d Phys. Rev. 83, 34, 1951.\r\n[8]\tS. D. Penn et al., \u201cMechanical loss in tantala\/silica dielectric mirror coatings,\u201d Class. Quantum Grav. 20, 2917, 2003\r\n[9]\tG.M. Harry et al., \u201cTitania-doped Tantala\/Silica coatings for gravitational-wave detection,\u201d Class. Quantum Grav. 24, 40, 2006.\r\n[10]\tA.E. Villar et al., \u201cMeasurement of thermal noise in multilayer coatings with optimized layer thickness,\u201d Phys. Rev. D 81, 122001, 2010. \r\n[11]\tM. Punturo et al., \u201cThe third generation of gravitational wave observatories and their science reach,\u201d Class. Quantum Grav. 27, 084007, 2010.\r\n[12]\tThe LIGO Scientific Collaboration, \u201cInstrument Science White Paper,\u201d LIGO-T1400316\u2013v4, 2015.\r\n[13]\tI. W. Martin et al., \u201cMeasurement of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2,\u201d Class. Quantum Grav. 25, 055005, 2008. \r\n[14]\tG. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, \u201cTenfold reduction of Brownian noise in optical interferometry,\u201d Nature Photonics, 7, 8, 2013.\r\n[15]\tA. Cumming et al., \u201cMeasurement of the mechanical loss of prototype GaP\/AlGaP crystalline coatings for future gravitational wave detectors,\u201d Class. Quantum Grav., 32, 035002, 2015.\r\n[16]\tS. Gossler, J. Cumpston, K. McKenzie, C.M. Mow-Lowry, M.B. Gray, and D.E. McClelland, \u201cCoating-free mirrors for high precision interferometric experiments,\u201d Phys. Rev. A 76, 053810, 2007.\r\n[17]\tS. Kroker et al., \"Coupled grating reflectors with highly angular tolerant reflectance,\" Opt. Letters, 38, 3336 \u2013 3339, 2013.\r\n[18]\tI.M. Pinto, M. Principe and R. De Salvo, \u201cSubwavelength layered Titania-Silica for advanced interferometer coatings,\u201d LIGO-G1100586, 2011.\r\n[19]\tS. Chao, H.-W. Pan, L.-C. Kuo, I.M. Pinto, R. De Salvo, M. Principe, \"Mechanical loss reduction for nm-layered composites by thermal annealing,\" LIGO-G1501024, 2015.\r\n[20]\tS. Rowan, G. Cagnoli, P. Sneddon, J. Hough, R. Route, E. K. Gustafson, M. M. Fejer, and V. Mitrofanov, \u201cInvestigation of mechanical loss factors of some candidate materials for the test masses of gravitational wave detectors,\u201d Phys. Lett. A 265, 5, 2000.\r\n[21]\tHarry G M et al. \u201cHarry G M et al 2002 Class. and Quantum Grav. 19 897,\u201d Class. Quantum Grav. 19, 897, 2002.\r\n[22]\tK. Numata, G. Bertolotto Bianc, N. Ohishi, A. Sekiya, S. Otsuka, K. Kawabe, M. Ando, and K. Tsubono, Phys. Lett. A, 276, 37, 2000.\r\n[23]\tE. Cesarini et al., \u201cA \u201cgentle\u201d nodal suspension for measurements of the acoustic attenuation in materials,\u201d Rev. Sci. Instrum. 80, 053904, 2009.\r\n[24]\tC. Zener, \u201cInternal friction in solids, II. General theory of thermoelastic internal friction,\u201d Phys. Rev., 53, 90-99, 1938.\r\n[25]\tI. W. Martin et al., \u201cComparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2\u201d, Class. Quantum Grav., 26, 155012, 2009.\r\n[26]\tS. Chao, H.-W. Pan, L.-C. Kuo, I.M. Pinto, R. De Salvo, M. Principe, \"Mechanical loss angles of annealed nm-layered SiO2\/TiO2 composites: preliminary results\" LIGO-G1401055-v2, 2015.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 113, 2016"}