CINXE.COM
Search results for: Swiss Re Bond
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Swiss Re Bond</title> <meta name="description" content="Search results for: Swiss Re Bond"> <meta name="keywords" content="Swiss Re Bond"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Swiss Re Bond" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Swiss Re Bond"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 684</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Swiss Re Bond</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> Model-Independent Price Bounds for the Swiss Re Mortality Bond 2003</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Kumari%20Bahl">Raj Kumari Bahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Sotirios%20Sabanis"> Sotirios Sabanis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are concerned with the valuation of the first Catastrophic Mortality Bond that was launched in the market namely the Swiss Re Mortality Bond 2003. This bond encapsulates the behavior of a well-defined mortality index to generate payoffs for the bondholders. Pricing this bond is a challenging task. We adapt the payoff of the terminal principal of the bond in terms of the payoff of an Asian put option and present an approach to derive model-independent bounds exploiting comonotonic theory. We invoke Jensen’s inequality for the computation of lower bounds and employ Lagrange optimization technique to achieve the upper bound. The success of these bounds is based on the availability of compatible European mortality options in the market. We carry out Monte Carlo simulations to estimate the bond price and illustrate the strength of these bounds across a variety of models. The fact that our bounds are model-independent is a crucial breakthrough in the pricing of catastrophic mortality bonds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mortality%20bond" title="mortality bond">mortality bond</a>, <a href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond" title=" Swiss Re Bond"> Swiss Re Bond</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality%20index" title=" mortality index"> mortality index</a>, <a href="https://publications.waset.org/abstracts/search?q=comonotonicity" title=" comonotonicity"> comonotonicity</a> </p> <a href="https://publications.waset.org/abstracts/54923/model-independent-price-bounds-for-the-swiss-re-mortality-bond-2003" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> Building an Integrated Relational Database from Swiss Nutrition National Survey and Swiss Health Datasets for Data Mining Purposes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilona%20Mewes">Ilona Mewes</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20Jenzer"> Helena Jenzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshideh%20Einsele"> Farshideh Einsele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The objective of the study was to integrate two big databases from Swiss nutrition national survey (menuCH) and Swiss health national survey 2012 for data mining purposes. Each database has a demographic base data. An integrated Swiss database is built to later discover critical food consumption patterns linked with lifestyle diseases known to be strongly tied with food consumption. Design: Swiss nutrition national survey (menuCH) with approx. 2000 respondents from two different surveys, one by Phone and the other by questionnaire along with Swiss health national survey 2012 with 21500 respondents were pre-processed, cleaned and finally integrated to a unique relational database. Results: The result of this study is an integrated relational database from the Swiss nutritional and health databases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20informatics" title="health informatics">health informatics</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20and%20health%20databases" title=" nutritional and health databases"> nutritional and health databases</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20and%20chronical%20databases" title=" nutritional and chronical databases"> nutritional and chronical databases</a> </p> <a href="https://publications.waset.org/abstracts/132719/building-an-integrated-relational-database-from-swiss-nutrition-national-survey-and-swiss-health-datasets-for-data-mining-purposes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Historical Analysis of the Evolution of Swiss Identity and the Successful Integration of Multilingualism into the Swiss Concept of Nationhood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Beringer">James Beringer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Switzerland’s ability to forge a strong national identity across linguistic barriers has long been of interest to nationalism scholars. This begs the question of how this has been achieved, given that traditional explanations of luck or exceptionalism appear highly reductionist. This paper evaluates the theory that successful Swiss management of linguistic diversity stems from the strong integration of multilingualism into Swiss national identity. Using archival analysis of Swiss government records, historical accounts of prominent Swiss citizens, as well as secondary literature concerning the fundamental aspects of Swiss national identity, this paper charts the historical evolution of Swiss national identity. It explains how multilingualism was deliberately and successfully integrated into Swiss national identity as a response to political fragmentation along linguistic lines during the First World War. Its primary conclusions are the following. Firstly, the earliest foundations of Swiss national identity were purposefully removed from any association with a single national language. This produced symbols, myths, and values -such as a strong commitment to communalism, the imagery of the Swiss natural landscape, and the use of Latin expressions, which can be adopted across Swiss linguistic groups. Secondly, the First World War triggered a turning point in the evolution of Swiss national identity. The fundamental building blocks proved insufficient in preventing political fractures amongst linguistic lines, as each Swiss linguistic group gravitated towards its linguistic neighbours within Europe. To avoid a repeat of such fragmentation, a deliberate effort was made to fully integrate multilingualism as a fundamental aspect of Swiss national identity. Existing natural symbols, such as the St Gotthard Mountains, were recontextualized in order to become associated with multilingualism. The education system was similarly reformed to reflect the unique multilingual nature of the Swiss nation. The successful result of this process can be readily observed in polls and surveys, with large segments of the Swiss population highlighting multilingualism as a uniquely Swiss characteristic, indicating the symbiotic connection between multilingualism and the Swiss nation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=language%27s%20role%20in%20identity%20formation" title="language's role in identity formation">language's role in identity formation</a>, <a href="https://publications.waset.org/abstracts/search?q=multilingualism%20in%20nationalism" title=" multilingualism in nationalism"> multilingualism in nationalism</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20identity%20formation" title=" national identity formation"> national identity formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Swiss%20national%20identity%20history" title=" Swiss national identity history"> Swiss national identity history</a> </p> <a href="https://publications.waset.org/abstracts/115633/historical-analysis-of-the-evolution-of-swiss-identity-and-the-successful-integration-of-multilingualism-into-the-swiss-concept-of-nationhood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Studying the Bond Strength of Geo-Polymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rama%20Seshu%20Doguparti">Rama Seshu Doguparti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental investigation on the bond behavior of geo polymer concrete. The bond behavior of geo polymer concrete cubes of grade M35 reinforced with 16 mm TMT rod is analyzed. The results indicate that the bond performance of reinforced geo polymer concrete is good and thus proves its application for construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geo-polymer" title="geo-polymer">geo-polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=behaviour" title=" behaviour"> behaviour</a> </p> <a href="https://publications.waset.org/abstracts/19114/studying-the-bond-strength-of-geo-polymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> Experimental Investigation on the Effect of Bond Thickness on the Interface Behaviour of Fibre Reinforced Polymer Sheet Bonded to Timber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Vahedian">Abbas Vahedian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rijun%20Shrestha"> Rijun Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Crews"> Keith Crews</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bond mechanism between timber and fibre reinforced polymer (FRP) is relatively complex and is influenced by a number of variables including bond thickness, bond width, bond length, material properties, and geometries. This study investigates the influence of bond thickness on the behaviour of interface, failure mode, and bond strength of externally bonded FRP-to-timber interface. In the present study, 106 single shear joint specimens have been investigated. Experiment results showed that higher layers of FRP increase the ultimate load carrying capacity of interface; conversely, such increase led to decrease the slip of interface. Moreover, samples with more layers of FRPs may fail in a brittle manner without noticeable warning that collapse is imminent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibre%20reinforced%20polymer" title="fibre reinforced polymer">fibre reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20shear%20test" title=" single shear test"> single shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20thickness" title=" bond thickness"> bond thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a> </p> <a href="https://publications.waset.org/abstracts/100515/experimental-investigation-on-the-effect-of-bond-thickness-on-the-interface-behaviour-of-fibre-reinforced-polymer-sheet-bonded-to-timber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Dynamic Marketing Capabilities; From Marketing to Product Development and Technological Change: An Exploratory Study of Independent Companies of the Swiss Luxury Watchmaking Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Bashutkina">Maria Bashutkina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In seeking to identify marketing factors that influence company’s performance, product management as well as new technology configuration, this study adopts resource based theory and applies it to the Swiss watchmaking companies. This paper presents results of qualitative research based on semi-structured interviews with CEO and marketing managers among watchmaking companies. This paper provides empirical evidences illustrating the link between the use of dynamic marketing capabilities and competitive advantage. We also present a set of propositions that outline how dynamic marketing capabilities could benefit product management and technological change in the Swiss independent watchmaking company, revealing competitive advantage in the highly competitive and turbulent market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20marketing%20capabilities" title="dynamic marketing capabilities">dynamic marketing capabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=luxury%20marketing" title=" luxury marketing"> luxury marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20based%20theory" title=" resource based theory"> resource based theory</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20management" title=" product management"> product management</a>, <a href="https://publications.waset.org/abstracts/search?q=Swiss%20watchmaking" title=" Swiss watchmaking"> Swiss watchmaking</a> </p> <a href="https://publications.waset.org/abstracts/78297/dynamic-marketing-capabilities-from-marketing-to-product-development-and-technological-change-an-exploratory-study-of-independent-companies-of-the-swiss-luxury-watchmaking-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> An Experimental Investigation of Bond Properties of Reinforcements Embedded in Geopolymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jee-Sang%20Kim">Jee-Sang Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Ho%20Park"> Jong Ho Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geopolymer concretes are a new class of construction materials that have emerged as an alternative to Ordinary Portland cement concrete. Considerable researches have been carried out on material development of geopolymer concrete, however, a few studies have been reported on the structural use of them. This paper presents the bond behaviors of reinforcement embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strengths of concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16, and 25 mm are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure bond strength and slips between concrete and reinforcements. The average bond strengths decreased from 23.06MPa to 17.26 MPa, as the diameters of reinforcements increased from 10mm to 25mm. The compressive strength levels of geopolymer concrete showed no significant influence on bond strengths in this study. Also, the bond-slip relations between geopolymer concrete and reinforcement are derived using non-linear regression analysis for various experimental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond-slip%20relation" title="bond-slip relation">bond-slip relation</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title=" geopolymer concrete"> geopolymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20test" title=" pull-out test"> pull-out test</a> </p> <a href="https://publications.waset.org/abstracts/14860/an-experimental-investigation-of-bond-properties-of-reinforcements-embedded-in-geopolymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for Fluorous Compounds: C13H12F7ClN2O</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Ghammamy">Shahriar Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Masomeh%20Shahsavary"> Masomeh Shahsavary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the optimized geometries and frequencies of the stationary point and the minimum energy paths of C13H12F7ClN2O are calculated by using the DFT (B3LYP) methods with LANL2DZ basis sets. B3LYP/ LANL2DZ calculation results indicated that some selected bond length and bond angles values for the C13H12F7ClN2O. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C13H12F7ClN2O" title="C13H12F7ClN2O">C13H12F7ClN2O</a>, <a href="https://publications.waset.org/abstracts/search?q=vatural%20bond%20orbital" title=" vatural bond orbital"> vatural bond orbital</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorous%20compounds" title=" fluorous compounds"> fluorous compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20calculations" title=" functional calculations"> functional calculations</a> </p> <a href="https://publications.waset.org/abstracts/6062/structural-properties-natural-bond-orbital-theory-functional-calculations-dft-and-energies-for-fluorous-compounds-c13h12f7cln2o" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> A Study on the Improvement of the Bond Performance of Polypropylene Macro Fiber according to Longitudinal Shape Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-yong%20Choi">Sung-yong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo-tai%20Jung"> Woo-tai Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-hwan%20Park"> Young-hwan Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study intends to improve the bond performance of the polypropylene fiber used as reinforcing fiber for concrete by changing its shape into double crimped type through the enhancement its fabrication process. The bond performance of such double crimped fiber is evaluated by applying the JCI SF-8 (dog-bone shape) testing method. The test results reveal that the double crimped fiber develops bond performance improved by more than 19% compared to the conventional crimped type fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bond" title="Bond">Bond</a>, <a href="https://publications.waset.org/abstracts/search?q=Polypropylene" title=" Polypropylene"> Polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforcement" title=" fiber reinforcement"> fiber reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20fiber" title=" macro fiber"> macro fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20change" title=" shape change"> shape change</a> </p> <a href="https://publications.waset.org/abstracts/1536/a-study-on-the-improvement-of-the-bond-performance-of-polypropylene-macro-fiber-according-to-longitudinal-shape-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Translation, War and Humanitarian Action: A Case Study of the Kindertransporte to Switzerland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Mockli">Lisa Mockli</a>, <a href="https://publications.waset.org/abstracts/search?q=Chelsea%20Sambells"> Chelsea Sambells</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By combining the methodologies of history and translation studies, this study will explore the interplay between humanitarian action, politics, and translation within the advertising for a lesser-known Swiss child evacuation project of some 60.000 Belgium and French children to Switzerland for three month periods from 1940 to 1945. Inspired by Descriptive-Explanatory Translation Studies, this project compares Swiss speeches published between May and September 1942 (the termination of the evacuations). Radio broadcasts, leaflets and newspapers will triangulate the data. First, linguistic and content-related differences will be identified and described. Second, based on findings from the Swiss Federal Archives, the evidence from the comparative textual analysis will then be evaluated in order to explore how the speeches were modified, for what purpose, and which key issues were raised during their modification. By exploring these questions, this paper provides new insights into (I) Switzerland’s understanding of Swiss neutrality and humanitarianism during the Second World War, (II) the role of children in war and (III) the role of translation in shaping political discourse and humanitarian action. Moreover, this interdisciplinary approach also demonstrates how scholarly collaboration may help to make some elements of humanitarian action more self-reflexive and effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=children" title="children">children</a>, <a href="https://publications.waset.org/abstracts/search?q=history" title=" history"> history</a>, <a href="https://publications.waset.org/abstracts/search?q=humanitarianism" title=" humanitarianism"> humanitarianism</a>, <a href="https://publications.waset.org/abstracts/search?q=politics" title=" politics"> politics</a>, <a href="https://publications.waset.org/abstracts/search?q=translation" title=" translation"> translation</a> </p> <a href="https://publications.waset.org/abstracts/53011/translation-war-and-humanitarian-action-a-case-study-of-the-kindertransporte-to-switzerland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> Investigating the Difference in Stability of Various Isomeric Hydrogen Bonded Dimers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ayoub">Mohamed Ayoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structures and energetics of various isomeric hydrogen bonded dimers, such as (FH…OC, FH…CO), (FH…CNH, FH…NCH), (FH…N2O, FH…ON2), and (FH…NHCO, FH…OCNH) have been investigated using DFT B3LYP with aug-cc-pVTZ basis set and by natural bond orbital (NBO) analysis. For each isomeric pair we calculated: H-bond energy (ΔEB…H), charge-transfer (QCT), where B is atom bearing lone-pairs in CO, CNH, NCH, N2O, and NHCO, H-bond distances (RB…H), the elongation of HF bond (ΔRHF) and the red-shift of HF stretching frequency (ΔVHF). We conclude that the principle difference in the relative stability between each isomeric pair is attributed to distinctive interaction of carbon and oxygen lone pairs of CO, carbon and nitrogen lone-pairs of CNH and NCH, and nitrogen and oxygen lone pairs of N2O and NHCO into the unfilled antibond on HF (σ*HF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20transfer" title="charge transfer">charge transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20chemistry" title=" computational chemistry"> computational chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=isomeric%20hydrogen%20bond" title=" isomeric hydrogen bond"> isomeric hydrogen bond</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20bond%20orbital" title=" natural bond orbital "> natural bond orbital </a> </p> <a href="https://publications.waset.org/abstracts/37558/investigating-the-difference-in-stability-of-various-isomeric-hydrogen-bonded-dimers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Research of Interaction between Layers of Compressed Composite Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daumantas%20Zidanavicius">Daumantas Zidanavicius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the bond between concrete and steel in the circular steel tube column filled with concrete, the 7 series of specimens were tested with the same geometrical parameters but different concrete properties. Two types of specimens were chosen. For the first type, the expansive additives to the concrete mixture were taken to increase internal forces. And for the second type, mechanical components were used. All 7 series of the short columns were modeled by FEM and tested experimentally. In the work, big attention was taken to the bond-slip models between steel and concrete. Results show that additives to concrete let increase the bond strength up to two times and the mechanical anchorage –up to 6 times compared to control specimens without additives and anchorage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20filled%20steel%20tube" title="concrete filled steel tube">concrete filled steel tube</a>, <a href="https://publications.waset.org/abstracts/search?q=push-out%20test" title=" push-out test"> push-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20slip%20relationship" title=" bond slip relationship"> bond slip relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20stress%20distribution" title=" bond stress distribution"> bond stress distribution</a> </p> <a href="https://publications.waset.org/abstracts/133631/research-of-interaction-between-layers-of-compressed-composite-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Push-Out Bond Strength of Two Root-End Filling Materials in Root-End Cavities Prepared by Er,Cr: YSGG Laser or Ultrasonic Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noushin%20Shokouhinejad">Noushin Shokouhinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Razmi"> Hasan Razmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Fekrazad"> Reza Fekrazad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Asgary"> Saeed Asgary</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Neshati"> Ammar Neshati</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Assadian"> Hadi Assadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanam%20Kheirieh"> Sanam Kheirieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compared the push-out bond strength of mineral trioxide aggregate (MTA) and a new endodontic cement (NEC) as root-end filling materials in root-end cavities prepared by ultrasonic technique (US) or Er,Cr:YSGG laser (L). Eighty single-rooted extracted human teeth were endodontically treated, apicectomised and randomly divided into four following groups (n = 20): US/MTA, US/NEC, L/MTA and L/NEC. In US/MTA and US/NEC groups, rooted cavities were prepared with ultrasonic retrotip and filled with MTA and NEC, respectively. In L/MTA and L/NEC groups, root-end cavities were prepared using Er, Cr:YSGG laser and filled with MTA and NEC, respectively. Each root was cut apically to create a 2 mm-thick root slice for measurement of bond strength using a universal testing machine. Then, all slices were examined to determine the mode of bond failure. Data were analysed using two-way ANOVA. Root-end filling materials showed significantly higher bond strength in root-end cavities prepared using the ultrasonic technique (US/MTA and US/NEC) (P < 0.001). The bond strengths of MTA and NEC did not differ significantly. The failure modes were mainly adhesive for MTA, but cohesive for NEC. In conclusion, bond strengths of MTA and NEC to root-end cavities were comparable and higher in ultrasonically prepared cavities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title="bond strength">bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Er" title=" Er"> Er</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr%3AYSGG%20laser" title="Cr:YSGG laser">Cr:YSGG laser</a>, <a href="https://publications.waset.org/abstracts/search?q=MTA" title=" MTA"> MTA</a>, <a href="https://publications.waset.org/abstracts/search?q=NEC" title=" NEC"> NEC</a>, <a href="https://publications.waset.org/abstracts/search?q=root-end%20cavity" title=" root-end cavity"> root-end cavity</a> </p> <a href="https://publications.waset.org/abstracts/17770/push-out-bond-strength-of-two-root-end-filling-materials-in-root-end-cavities-prepared-by-ercr-ysgg-laser-or-ultrasonic-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Effect of Impact Load on the Bond between Steel and CFRP Laminate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Al-Mosawe">Alaa Al-Mosawe</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Al-Mahaidi"> Riadh Al-Mahaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon fiber reinforced polymers have been wildly used to strengthen steel structural elements. Those structural elements are normally subjected to static, dynamic, fatigue loadings during their life time. CFRP laminate is one of the common methods to strengthen these structures under the subjected loads. A number of researches have been focused on the bond characteristics of CFRP sheets to steel members under static, dynamic and fatigue loadings. There is a lack in understanding the behavior of the CFRP laminates under impact loading. This paper is showing the effect of high load rate on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joint by using Araldite 420 epoxy. The results showed that applying high load rate has a significant effect on the bond strength while a little influence on the effective bond length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesively%20bonded%20joints" title="adhesively bonded joints">adhesively bonded joints</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP%20laminate" title=" CFRP laminate"> CFRP laminate</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20tensile%20loading" title=" impact tensile loading"> impact tensile loading</a> </p> <a href="https://publications.waset.org/abstracts/14013/effect-of-impact-load-on-the-bond-between-steel-and-cfrp-laminate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Siong%20Wee">Lee Siong Wee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Kang%20Hai"> Tan Kang Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20En-Hua"> Yang En-Hua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20stress" title="bond stress">bond stress</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20fiber%20reinforced%20cement%20composites" title=" high performance fiber reinforced cement composites"> high performance fiber reinforced cement composites</a>, <a href="https://publications.waset.org/abstracts/search?q=slip" title=" slip"> slip</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/29290/bond-slip-response-of-reinforcing-bars-embedded-in-high-performance-fiber-reinforced-cement-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usama%20Mohamed%20Ahamed">Usama Mohamed Ahamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=bond" title=" bond"> bond</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20weather%20and%20carbon%20fiber" title=" hot weather and carbon fiber"> hot weather and carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymers" title=" carbon fiber reinforced polymers"> carbon fiber reinforced polymers</a> </p> <a href="https://publications.waset.org/abstracts/169015/effect-of-concrete-strength-on-the-bond-between-carbon-fiber-reinforced-polymer-and-concrete-in-hot-weather" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Origin of Hydrogen Bonding: Natural Bond Orbital Electron Donor-Acceptor Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ayoub">Mohamed Ayoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We perform computational investigation using density functional theory, B3LYP with aug-cc-pVTZ basis set followed by natural bond orbital analysis (NBO), which provides best single “natural Lewis structure” (NLS) representation of chosen wavefunction (Ψ) with natural resonance theory (NRT) to provide an analysis of molecular electron density in terms of resonance structures (RS) and weights (w). We selected for the study a wide range of gas phase dimers (B…HA), with hydrogen bond dissociation energies (ΔEB…H) that span more than two orders of magnitude. We demonstrate that charge transfer from a donor Lewis-type NBO (nB:) to an acceptor non-Lewis-type NBO (σHA*) is the primary cause for H-bonding not classical electrostatic (dipole-dipole or ionic). We provide a variety of structure, and spectroscopic descriptors to support the conclusion, such as IR frequency shift (ΔνHA), H-bond penetration distance (ΔRB..H), bond order (bB..H), charge-transfer (CTB→HA) and the corresponding donor-acceptor stabilization energy (ΔE(2)). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20bond%20orbital" title="natural bond orbital">natural bond orbital</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonding" title=" hydrogen bonding"> hydrogen bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20donor" title=" electron donor"> electron donor</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20acceptor" title=" electron acceptor"> electron acceptor</a> </p> <a href="https://publications.waset.org/abstracts/17444/origin-of-hydrogen-bonding-natural-bond-orbital-electron-donor-acceptor-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> Effect of Fiber Types and Elevated Temperatures on the Bond Characteristic of Fiber Reinforced Concretes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erdo%C4%9Fan%20%C3%96zbay">Erdoğan Özbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20T.%20T%C3%BCrker"> Hakan T. Türker</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCzeyyen%20Bal%C3%A7%C4%B1kanl%C4%B1"> Müzeyyen Balçıkanlı</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Lachemi"> Mohamed Lachemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effects of fiber types and elevated temperatures on compressive strength, modulus of rapture and the bond characteristics of fiber reinforced concretes (FRC) are presented. By using the three different types of fibers (steel fiber-SF, polypropylene-PPF and polyvinyl alcohol-PVA), FRC specimens were produced and exposed to elevated temperatures up to 800 ºC for 1.5 hours. In addition, a plain concrete (without fiber) was produced and used as a control. Test results obtained showed that the steel fiber reinforced concrete (SFRC) had the highest compressive strength, modulus of rapture and bond stress values at room temperatures, the residual bond, flexural and compressive strengths of both FRC and plain concrete dropped sharply after exposure to high temperatures. The results also indicated that the reduction of bond, flexural and compressive strengths with increasing the exposed temperature was relatively less for SFRC than for plain, and FRC with PPF and PVA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20stress" title="bond stress">bond stress</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperatures" title=" elevated temperatures"> elevated temperatures</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rapture" title=" modulus of rapture"> modulus of rapture</a> </p> <a href="https://publications.waset.org/abstracts/29676/effect-of-fiber-types-and-elevated-temperatures-on-the-bond-characteristic-of-fiber-reinforced-concretes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> Use of a Business Intelligence Software for Interactive Visualization of Data on the Swiss Elite Sports System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Corinne%20Zurmuehle">Corinne Zurmuehle</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Christoph%20Weber"> Andreas Christoph Weber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2019, the Swiss Federal Institute of Sport Magglingen (SFISM) conducted a mixed-methods study on the Swiss elite sports system, which yielded a large quantity of research data. In a quantitative online survey, 1151 elite sports athletes, 542 coaches, and 102 Performance Directors of national sports federations (NF) have submitted their perceptions of the national support measures of the Swiss elite sports system. These data provide an essential database for the further development of the Swiss elite sports system. The results were published in a report presenting the results divided into 40 Olympic summer and 14 winter sports (Olympic classification). The authors of this paper assume that, in practice, this division is too unspecific to assess where further measures would be needed. The aim of this paper is to find appropriate parameters for data visualization in order to identify disparities in sports promotion that allow an assessment of where further interventions by Swiss Olympic (NF umbrella organization) are required. Method: First, the variable 'salary earned from sport' was defined as a variable to measure the impact of elite sports promotion. This variable was chosen as a measure as it represents an important indicator for the professionalization of elite athletes and therefore reflects national level sports promotion measures applied by Swiss Olympic. Afterwards, the variable salary was tested with regard to the correlation between Olympic classification [a], calculating the Eta coefficient. To estimate the appropriate parameters for data visualization, the correlation between salary and four further parameters was analyzed by calculating the Eta coefficient: [a] sport; [b] prioritization (from 1 to 5) of the sports by Swiss Olympic; [c] gender; [d] employment level in sports. Results & Discussion: The analyses reveal a very small correlation between salary and Olympic classification (ɳ² = .011, p = .005). Gender demonstrates an even small correlation (ɳ² = .006, p = .014). The parameter prioritization was correlating with small effect (ɳ² = .017, p = .001) as did employment level (ɳ² = .028, p < .001). The highest correlation was identified by the parameter sport with a moderate effect (ɳ² = .075, p = .047). The analyses show that the disparities in sports promotion cannot be determined by a particular parameter but presumably explained by a combination of several parameters. We argue that the possibility of combining parameters for data visualization should be enabled when the analysis is provided to Swiss Olympic for further strategic decision-making. However, the inclusion of multiple parameters massively multiplies the number of graphs and is therefore not suitable for practical use. Therefore, we suggest to apply interactive dashboards for data visualization using Business Intelligence Software. Practical & Theoretical Contribution: This contribution provides the first attempt to use Business Intelligence Software for strategic decision-making in national level sports regarding the prioritization of national resources for sports and athletes. This allows to set specific parameters with a significant effect as filters. By using filters, parameters can be combined and compared against each other and set individually for each strategic decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20visualization" title="data visualization">data visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20intelligence" title=" business intelligence"> business intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=Swiss%20elite%20sports%20system" title=" Swiss elite sports system"> Swiss elite sports system</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20decision-making" title=" strategic decision-making"> strategic decision-making</a> </p> <a href="https://publications.waset.org/abstracts/148988/use-of-a-business-intelligence-software-for-interactive-visualization-of-data-on-the-swiss-elite-sports-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">665</span> Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maruful%20H.%20Mazumder">Maruful H. Mazumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20I.%20Gilbert"> Raymond I. Gilbert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20stress" title="bond stress">bond stress</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20length" title=" development length"> development length</a>, <a href="https://publications.waset.org/abstracts/search?q=lapped%20splice%20length" title=" lapped splice length"> lapped splice length</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a> </p> <a href="https://publications.waset.org/abstracts/2746/empirical-analytical-modelling-of-average-bond-stress-and-anchorage-of-tensile-bars-in-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> Electromyographic Analysis of Trunk Muscle Activity of Healthy Individuals While Catching a Ball on Three Different Seating Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20H.%20%20ALQahtani">Hanan H. ALQahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Jones"> Karen Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catching a ball during sitting is a functional exercise commonly used in rehabilitation to enhance trunk muscle activity. To progress this exercise, physiotherapists incorporate a Swiss ball or change seat height. However, no study has assessed the effect of different seating surfaces on trunk muscle activity while catching a ball. Objective: To investigate the effect of catching a ball during sitting on a Swiss ball, a low seat and a high seat on trunk muscle activity. Method: A repeated-measures, counterbalanced design was used. A total of 26 healthy participants (15 female and 11 male) performed three repetitions of catching a ball on each seating surface. Using surface electromyography (sEMG), the activity of the bilateral transversus abdominis/internal oblique (TrA/IO), rectus abdominis (RA), erector spinae (ES) and lumbar multifidus (MF) was recorded. Trunk muscle activity was normalized using maximum voluntary isometric contraction and analyzed. Statistical significance was set at p ≤ .05. Results: No significant differences were observed in the activity of RA, TrA/IO, ES or MF between a low seat and a Swiss ball. However, the activity of the right and left ES on a low seat was significantly greater than on a high seat (p = .017 and p = .017, respectively). Conversely, the activity of the right and left RA on a high seat was significantly greater than on a low seat (p = .007 and p = .004, respectively). Conclusion: This study suggests that replacing a low seat with a Swiss ball while catching a ball is insufficient to increase trunk muscle activity, whereas changing the seat height could induce different trunk muscle activities. However, research conducted on patients is needed before translating these results into clinical settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catching" title="catching">catching</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyography" title=" electromyography"> electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=seating" title=" seating"> seating</a>, <a href="https://publications.waset.org/abstracts/search?q=trunk" title=" trunk"> trunk</a> </p> <a href="https://publications.waset.org/abstracts/140046/electromyographic-analysis-of-trunk-muscle-activity-of-healthy-individuals-while-catching-a-ball-on-three-different-seating-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicola%20G.%20G.%20Cecca">Nicola G. G. Cecca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20bond" title="chemical bond">chemical bond</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20orbital%20theory" title=" molecular orbital theory"> molecular orbital theory</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20force" title=" magnetic attraction force"> magnetic attraction force</a>, <a href="https://publications.waset.org/abstracts/search?q=GEOMAG%E2%84%A2" title=" GEOMAG™"> GEOMAG™</a> </p> <a href="https://publications.waset.org/abstracts/42544/new-teaching-tools-for-a-modern-representation-of-chemical-bond-in-the-course-of-food-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> Defects Estimation of Embedded Systems Components by a Bond Graph Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Gahlouz">I. Gahlouz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil"> A. Chellil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation" title="estimation">estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20graph" title=" bond graph"> bond graph</a>, <a href="https://publications.waset.org/abstracts/search?q=controllability" title=" controllability"> controllability</a>, <a href="https://publications.waset.org/abstracts/search?q=observability" title=" observability"> observability</a> </p> <a href="https://publications.waset.org/abstracts/42724/defects-estimation-of-embedded-systems-components-by-a-bond-graph-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> Innovation Management in State-Owned-Enterprises in the Digital Transformation: An Empirical Case Study of Swiss Post</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiayun%20Shen">Jiayun Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenz%20Wyss"> Lorenz Wyss</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Golliard"> Thierry Golliard</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Finger"> Matthias Finger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovation is widely recognized as the key for private enterprises to win the market competition. The state-owned-enterprises need to be innovative to compete in the market after the privatization as well. However, it is a lack of research to study how state-owned-enterprises manage innovation to create new products and services. Swiss Post, a Swiss state-owned-enterprises, has established a department to transform the corporate culture and foster innovation to achieve digital transformation. This paper describes the innovation management process at the Swiss Post and analyzes the impacts of the instruments, the organizational structure, and explores the barriers of innovation. This study used qualitative methods based on a review of the literature on innovation management and semi-structured interviews. Being established for over five years, the Swiss Post’s innovation management department has established a software-assisted modularized platform with systematic instruments to help the internal employees with the different innovation processes. It guides the innovators from idea creation to piloting in markets and supports with a separate financing source, with knowledge inputs and coaching, as well as with connections to external partners through the open innovation and venturing team. The platform also adapts to different business units within the corporate with a customized tailor for the various operational business units. The separate financing instruments enabled the creation and further development of new ideas; the coaching services contribute greatly to the transformation of teams’ innovation culture by providing new knowledge, thinking methods, and use cases for inspiration. It also facilitates organizational learning to help the whole corporate with the digital transformation. However, it is also confronted with a big challenge in twofold. Internally, the disruptive projects often hardly overcome the obstacles of long-established operational processes in the traditional business units; externally, the expectations of the public and restrictions from the federal government have become high hurdles for the company to stay and compete in the innovation track. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20case%20study" title="empirical case study">empirical case study</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20management" title=" innovation management"> innovation management</a>, <a href="https://publications.waset.org/abstracts/search?q=state-owned-enterprise" title=" state-owned-enterprise"> state-owned-enterprise</a>, <a href="https://publications.waset.org/abstracts/search?q=Swiss%20Post" title=" Swiss Post"> Swiss Post</a> </p> <a href="https://publications.waset.org/abstracts/119227/innovation-management-in-state-owned-enterprises-in-the-digital-transformation-an-empirical-case-study-of-swiss-post" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> Theorical Studies on the Structural Properties of 2,3-Bis(Furan-2-Yl)Pyrazino[2,3-F][1,10]Phenanthroline Derivaties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Sadeghian">Zahra Sadeghian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the geometrical parameters optimized of the stationary point for the 2,3-Bis(furan-2-yl)pyrazino[2,3-f][1,10]phenanthroline. The calculations are performed using density functional theory (DFT) method at the B3LYP/LanL2DZ level. We determined bond lengths and bond angles values for the compound and calculate the amount of bond hybridization according to the natural bond orbital theory (NBO) too. The energy of frontier orbital (HOMO and LUMO) are computed. In addition, calculated data are accurately compared with the experimental result. This comparison show that the our theoretical data are in reasonable agreement with the experimental values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-Bis%28furan-2-yl%29pyrazino%5B2" title="3-Bis(furan-2-yl)pyrazino[2">3-Bis(furan-2-yl)pyrazino[2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-f%5D%5B1" title="3-f][1">3-f][1</a>, <a href="https://publications.waset.org/abstracts/search?q=10%5Dphenanthroline" title="10]phenanthroline">10]phenanthroline</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=theorical%20calculations" title=" theorical calculations"> theorical calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=LanL2DZ%20level" title=" LanL2DZ level"> LanL2DZ level</a>, <a href="https://publications.waset.org/abstracts/search?q=B3LYP%20level" title=" B3LYP level"> B3LYP level</a> </p> <a href="https://publications.waset.org/abstracts/12220/theorical-studies-on-the-structural-properties-of-23-bisfuran-2-ylpyrazino23-f110phenanthroline-derivaties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> Effect of the Concrete Cover on the Bond Strength of the FRP Wrapped and Non-Wrapped Reinforced Concrete Beam with Lap Splice under Uni-Direction Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayed%20Alyousef">Rayed Alyousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Topper"> Tim Topper</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Al-Mayah"> Adil Al-Mayah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of the reinforced concrete structures subject to cyclic load constructed before the modern bond and fatigue design code. One of the main issue face on exists structure is the bond strength of the longitudinal steel bar and the surrounding concrete. A lap splice is a common connection method to transfer the force between the steel rebar in a reinforced concrete member. Usually, the lap splice is the weak connection on the bond strength. Fatigue flexural loading imposes severe demands on the strength and ductility of the lap splice region in reinforced concrete structures and can lead to a brittle and sudden failure of the member. This paper investigates the effect of different concrete covers on the fatigue bond strength of reinforcing concrete beams containing a lap splice under a fatigue loads. It includes tests of thirty-seven beams divided into three groups. Each group has beams with 30 mm and 50 mm clear side and bottom concrete covers. The variables that were addressed where the concrete cover, the presence or absence of CFRP or GFRP sheet wrapping, the type of loading (monotonic or fatigue) and the fatigue load ranges. The test results showed that an increase in the concrete cover led to an increase in the bond strength under both monotonic and fatigue loading for both the unwrapped and wrapped beams. Also, the FRP sheets increased both the fatigue strength and the ductility for both the 30 mm and the 50 mm concrete covers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title="bond strength">bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Lap%20splice" title=" Lap splice"> Lap splice</a>, <a href="https://publications.waset.org/abstracts/search?q=FRp%20wrapping" title=" FRp wrapping"> FRp wrapping</a> </p> <a href="https://publications.waset.org/abstracts/34465/effect-of-the-concrete-cover-on-the-bond-strength-of-the-frp-wrapped-and-non-wrapped-reinforced-concrete-beam-with-lap-splice-under-uni-direction-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-Metal Alloys (Ni-Cr-T3, Verabond, Super Cast) and One Noble Alloy (X-33) in Metal-Ceramic Restorations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Neshati">Ammar Neshati</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Hamidi%20Shishavan"> Elham Hamidi Shishavan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and which causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the common VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, Verabond) and one group of noble alloy (x-33) were selected. The number of alloys in each group was 15. All the groups went through the casting process and change from wax pattern into metal disks. Then, VMK Master Porcelain was fired on each group. All the specimens were put in the UTM and a shear force was loaded until a fracture occurred. The fracture force was then recorded by the machine. The data was subjected to SPSS Version 16 and One-Way ANOVA was run to compare shear strength between the groups. Furthermore, the groups were compared two by two through running Tukey test. Results: The findings of this study revealed that shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 Mpa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87 Mpa or 283.87 N). Both Verabond (69.66 Mpa or 245 N) and x-33 alloys (66.53 Mpa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, the use of this low-cost alloy is recommended in metal-ceramic restorations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20bond" title="shear bond">shear bond</a>, <a href="https://publications.waset.org/abstracts/search?q=base-metal%20alloy" title=" base-metal alloy"> base-metal alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=noble%20alloy" title=" noble alloy"> noble alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=porcelain" title=" porcelain"> porcelain</a> </p> <a href="https://publications.waset.org/abstracts/9916/a-comparison-between-shear-bond-strength-of-vmk-master-porcelain-with-three-base-metal-alloys-ni-cr-t3-verabond-super-cast-and-one-noble-alloy-x-33-in-metal-ceramic-restorations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">657</span> Effect of Different FRP Wrapping and Thickness of Concrete Cover on Fatigue Bond Strength of Spliced Concrete Beam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayed%20Alyousef">Rayed Alyousef</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Topper"> Tim Topper</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Al-Mayah"> Adil Al-Mayah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of an ongoing research program at University of Waterloo to study the effect of external FRP sheet wrap confinement along a lap splice of reinforced concrete (RC) beams on their fatigue bond strength. Fatigue loading of RC beams containing a lap splice resulted in an increase in the number and width of cracks, an increase in deflection and a decrease of the bond strength between the steel rebar and the surrounding concrete. The phase of the research described here consists of monotonic and fatigue tests of thirty two reinforced concrete beam with dimensions 2200⨉350⨉250 mm. Each beam was reinforced with two 20M bars lap spliced in the constant moment region of the tension zone and two 10M bars in the compression zone outside the constant moment region. The test variables were the presence or absence of a FRP wrapping, the type of the FRP wrapping (GFRP or CFRP), the type of loading and the fatigue load range. The test results for monotonic loading showed that the stiffness of all beams was almost same, but that the FRP sheet wrapping increased the bond strength and the deflection at ultimate load. All beams tested under fatigue loading failed by a bond failure except one CFRP wrapped beam that failed by fatigue of the main reinforcement. The FRP sheet increased the bond strength for all specimens under fatigue loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lap%20splice" title="lap splice">lap splice</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20loading" title=" fatigue loading"> fatigue loading</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a> </p> <a href="https://publications.waset.org/abstracts/34597/effect-of-different-frp-wrapping-and-thickness-of-concrete-cover-on-fatigue-bond-strength-of-spliced-concrete-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">656</span> Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumanta%20Das">Sumanta Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Ga%C5%A1par%C3%ADk"> Miroslav Gašparík</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Kytka"> Tomáš Kytka</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar%20Sethy"> Anil Kumar Sethy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-laminated%20timber" title="cross-laminated timber">cross-laminated timber</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=glue%20spread%20rate" title=" glue spread rate"> glue spread rate</a>, <a href="https://publications.waset.org/abstracts/search?q=poplar" title=" poplar"> poplar</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=PUR" title=" PUR"> PUR</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20failure%20percentage" title=" wood failure percentage"> wood failure percentage</a> </p> <a href="https://publications.waset.org/abstracts/143583/effect-of-pressure-and-glue-spread-on-the-bonding-properties-of-clt-panels-made-from-low-grade-hardwood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> The Relationships between Market Orientation and Competitiveness of Companies in Banking Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patrik%20Jangl">Patrik Jangl</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Mikul%C3%A1%C5%A1t%C3%ADk"> Milan Mikuláštík</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the paper is to measure and compare market orientation of Swiss and Czech banks, as well as examine statistically the degree of influence it has on competitiveness of the institutions. The analysis of market orientation is based on the collecting, analysis and correct interpretation of the data. Descriptive analysis of market orientation describe current situation. Research of relation of competitiveness and market orientation in the sector of big international banks is suggested with the expectation of existence of a strong relationship. Partially, the work served as reconfirmation of suitability of classic methodologies to measurement of banks’ market orientation. Two types of data were gathered. Firstly, by measuring subjectively perceived market orientation of a company and secondly, by quantifying its competitiveness. All data were collected from a sample of small, mid-sized and large banks. We used numerical secondary character data from the international statistical financial Bureau Van Dijk’s BANKSCOPE database. Statistical analysis led to the following results. Assuming classical market orientation measures to be scientifically justified, Czech banks are statistically less market-oriented than Swiss banks. Secondly, among small Swiss banks, which are not broadly internationally active, small relationship exist between market orientation measures and market share based competitiveness measures. Thirdly, among all Swiss banks, a strong relationship exists between market orientation measures and market share based competitiveness measures. Above results imply existence of a strong relation of this measure in sector of big international banks. A strong statistical relationship has been proven to exist between market orientation measures and equity/total assets ratio in Switzerland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=market%20orientation" title="market orientation">market orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title=" competitiveness"> competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing%20strategy" title=" marketing strategy"> marketing strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20of%20market%20orientation" title=" measurement of market orientation"> measurement of market orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=relation%20between%20market%20orientation%20and%20competitiveness" title=" relation between market orientation and competitiveness"> relation between market orientation and competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=banking%20sector" title=" banking sector"> banking sector</a> </p> <a href="https://publications.waset.org/abstracts/9587/the-relationships-between-market-orientation-and-competitiveness-of-companies-in-banking-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Swiss%20Re%20Bond&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>