CINXE.COM

<!DOCTYPE html><html data-capo=""><head><meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1"> <script id="CookieBot" src="https://consent.cookiebot.com/uc.js?cbid=6b5b25c6-89f0-4619-834a-8af9d1157dc1" async type="text/javascript"></script> <link rel="preconnect" href="https://pub.mdpi-res.com" crossorigin> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/fonts/suisse/fonts.css" media="all"> <style>/*! tailwindcss v3.3.2 | MIT License | https://tailwindcss.com*/*,:after,:before{border:0 solid;box-sizing:border-box}:after,:before{--tw-content:""}html{line-height:1.5;-webkit-text-size-adjust:100%;font-family:Suisse Int\'l,ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-feature-settings:normal;font-variation-settings:normal;tab-size:4}body{line-height:inherit;margin:0}hr{border-top-width:1px;color:inherit;height:0}abbr:where([title]){-webkit-text-decoration:underline dotted;text-decoration:underline dotted}h1,h2,h3,h4,h5,h6{font-size:inherit;font-weight:inherit}a{color:inherit;text-decoration:inherit}b,strong{font-weight:bolder}code,kbd,pre,samp{font-family:ui-monospace,SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace;font-size:1em}small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:initial}sub{bottom:-.25em}sup{top:-.5em}table{border-collapse:collapse;border-color:inherit;text-indent:0}button,input,optgroup,select,textarea{color:inherit;font-family:inherit;font-size:100%;font-weight:inherit;line-height:inherit;margin:0;padding:0}button,select{text-transform:none}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button;background-color:initial;background-image:none}:-moz-focusring{outline:auto}:-moz-ui-invalid{box-shadow:none}progress{vertical-align:initial}::-webkit-inner-spin-button,::-webkit-outer-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}summary{display:list-item}blockquote,dd,dl,figure,h1,h2,h3,h4,h5,h6,hr,p,pre{margin:0}fieldset{margin:0}fieldset,legend{padding:0}menu,ol,ul{list-style:none;margin:0;padding:0}textarea{resize:vertical}input::placeholder,textarea::placeholder{color:#9ca3af;opacity:1}[role=button],button{cursor:pointer}:disabled{cursor:default}audio,canvas,embed,iframe,img,object,svg,video{display:block;vertical-align:middle}img,video{height:auto;max-width:100%}[hidden]{display:none}html{color:var(--color-text-default)}*,::backdrop,:after,:before{--tw-border-spacing-x:0;--tw-border-spacing-y:0;--tw-translate-x:0;--tw-translate-y:0;--tw-rotate:0;--tw-skew-x:0;--tw-skew-y:0;--tw-scale-x:1;--tw-scale-y:1;--tw-pan-x: ;--tw-pan-y: ;--tw-pinch-zoom: ;--tw-scroll-snap-strictness:proximity;--tw-gradient-from-position: ;--tw-gradient-via-position: ;--tw-gradient-to-position: ;--tw-ordinal: ;--tw-slashed-zero: ;--tw-numeric-figure: ;--tw-numeric-spacing: ;--tw-numeric-fraction: ;--tw-ring-inset: ;--tw-ring-offset-width:0px;--tw-ring-offset-color:#fff;--tw-ring-color:#3b82f680;--tw-ring-offset-shadow:0 0 #0000;--tw-ring-shadow:0 0 #0000;--tw-shadow:0 0 #0000;--tw-shadow-colored:0 0 #0000;--tw-blur: ;--tw-brightness: ;--tw-contrast: ;--tw-grayscale: ;--tw-hue-rotate: ;--tw-invert: ;--tw-saturate: ;--tw-sepia: ;--tw-drop-shadow: ;--tw-backdrop-blur: ;--tw-backdrop-brightness: ;--tw-backdrop-contrast: ;--tw-backdrop-grayscale: ;--tw-backdrop-hue-rotate: ;--tw-backdrop-invert: ;--tw-backdrop-opacity: ;--tw-backdrop-saturate: ;--tw-backdrop-sepia: }.container{width:100%}@media (min-width:576px){.container{max-width:576px}}@media (min-width:768px){.container{max-width:768px}}@media (min-width:1024px){.container{max-width:1024px}}@media (min-width:1280px){.container{max-width:1280px}}@media (min-width:1440px){.container{max-width:1440px}}@media (min-width:1920px){.container{max-width:1920px}}.prose{color:var(--tw-prose-body);max-width:65ch}.prose :where(p):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em;margin-top:1.25em}.prose :where([class~=lead]):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-lead);font-size:1.25em;line-height:1.6;margin-bottom:1.2em;margin-top:1.2em}.prose :where(a):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-links);font-weight:500;text-decoration:underline}.prose :where(strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-bold);font-weight:600}.prose :where(a strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(blockquote strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(thead th strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(ol):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:decimal;margin-bottom:1.25em;margin-top:1.25em;padding-inline-start:1.625em}.prose :where(ol[type=A]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-alpha}.prose :where(ol[type=a]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-alpha}.prose :where(ol[type=A s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-alpha}.prose :where(ol[type=a s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-alpha}.prose :where(ol[type=I]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-roman}.prose :where(ol[type=i]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-roman}.prose :where(ol[type=I s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-roman}.prose :where(ol[type=i s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-roman}.prose :where(ol[type="1"]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:decimal}.prose :where(ul):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:disc;margin-bottom:1.25em;margin-top:1.25em;padding-inline-start:1.625em}.prose :where(ol>li):not(:where([class~=not-prose],[class~=not-prose] *))::marker{color:var(--tw-prose-counters);font-weight:400}.prose :where(ul>li):not(:where([class~=not-prose],[class~=not-prose] *))::marker{color:var(--tw-prose-bullets)}.prose :where(dt):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;margin-top:1.25em}.prose :where(hr):not(:where([class~=not-prose],[class~=not-prose] *)){border-color:var(--tw-prose-hr);border-top-width:1px;margin-bottom:3em;margin-top:3em}.prose :where(blockquote):not(:where([class~=not-prose],[class~=not-prose] *)){border-inline-start-color:var(--tw-prose-quote-borders);border-inline-start-width:.25rem;color:var(--tw-prose-quotes);font-style:italic;font-weight:500;margin-bottom:1.6em;margin-top:1.6em;padding-inline-start:1em;quotes:"\201C""\201D""\2018""\2019"}.prose :where(blockquote p:first-of-type):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:open-quote}.prose :where(blockquote p:last-of-type):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:close-quote}.prose :where(h1):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:2.25em;font-weight:800;line-height:1.1111111;margin-bottom:.8888889em;margin-top:0}.prose :where(h1 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:900}.prose :where(h2):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:1.5em;font-weight:700;line-height:1.3333333;margin-bottom:1em;margin-top:2em}.prose :where(h2 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:800}.prose :where(h3):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:1.25em;font-weight:600;line-height:1.6;margin-bottom:.6em;margin-top:1.6em}.prose :where(h3 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:700}.prose :where(h4):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;line-height:1.5;margin-bottom:.5em;margin-top:1.5em}.prose :where(h4 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:700}.prose :where(img):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(picture):not(:where([class~=not-prose],[class~=not-prose] *)){display:block;margin-bottom:2em;margin-top:2em}.prose :where(video):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(kbd):not(:where([class~=not-prose],[class~=not-prose] *)){border-radius:.3125rem;box-shadow:0 0 0 1px rgb(var(--tw-prose-kbd-shadows)/10%),0 3px 0 rgb(var(--tw-prose-kbd-shadows)/10%);color:var(--tw-prose-kbd);font-family:inherit;font-size:.875em;font-weight:500;padding-inline-end:.375em;padding-bottom:.1875em;padding-top:.1875em;padding-inline-start:.375em}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-code);font-size:.875em;font-weight:600}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:"`"}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:"`"}.prose :where(a code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(h1 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(h2 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-size:.875em}.prose :where(h3 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-size:.9em}.prose :where(h4 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(blockquote code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(thead th code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(pre):not(:where([class~=not-prose],[class~=not-prose] *)){background-color:var(--tw-prose-pre-bg);border-radius:.375rem;color:var(--tw-prose-pre-code);font-size:.875em;font-weight:400;line-height:1.7142857;margin-bottom:1.7142857em;margin-top:1.7142857em;overflow-x:auto;padding-inline-end:1.1428571em;padding-bottom:.8571429em;padding-top:.8571429em;padding-inline-start:1.1428571em}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)){background-color:initial;border-radius:0;border-width:0;color:inherit;font-family:inherit;font-size:inherit;font-weight:inherit;line-height:inherit;padding:0}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:none}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:none}.prose :where(table):not(:where([class~=not-prose],[class~=not-prose] *)){font-size:.875em;line-height:1.7142857;margin-bottom:2em;margin-top:2em;table-layout:auto;width:100%}.prose :where(thead):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-color:var(--tw-prose-th-borders);border-bottom-width:1px}.prose :where(thead th):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;padding-inline-end:.5714286em;padding-bottom:.5714286em;padding-inline-start:.5714286em;vertical-align:bottom}.prose :where(tbody tr):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-color:var(--tw-prose-td-borders);border-bottom-width:1px}.prose :where(tbody tr:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-width:0}.prose :where(tbody td):not(:where([class~=not-prose],[class~=not-prose] *)){vertical-align:initial}.prose :where(tfoot):not(:where([class~=not-prose],[class~=not-prose] *)){border-top-color:var(--tw-prose-th-borders);border-top-width:1px}.prose :where(tfoot td):not(:where([class~=not-prose],[class~=not-prose] *)){vertical-align:top}.prose :where(th,td):not(:where([class~=not-prose],[class~=not-prose] *)){text-align:start}.prose :where(figure>*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0;margin-top:0}.prose :where(figcaption):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-captions);font-size:.875em;line-height:1.4285714;margin-top:.8571429em}.prose{--tw-prose-body:#374151;--tw-prose-headings:#111827;--tw-prose-lead:#4b5563;--tw-prose-links:#111827;--tw-prose-bold:#111827;--tw-prose-counters:#6b7280;--tw-prose-bullets:#d1d5db;--tw-prose-hr:#e5e7eb;--tw-prose-quotes:#111827;--tw-prose-quote-borders:#e5e7eb;--tw-prose-captions:#6b7280;--tw-prose-kbd:#111827;--tw-prose-kbd-shadows:17 24 39;--tw-prose-code:#111827;--tw-prose-pre-code:#e5e7eb;--tw-prose-pre-bg:#1f2937;--tw-prose-th-borders:#d1d5db;--tw-prose-td-borders:#e5e7eb;--tw-prose-invert-body:#d1d5db;--tw-prose-invert-headings:#fff;--tw-prose-invert-lead:#9ca3af;--tw-prose-invert-links:#fff;--tw-prose-invert-bold:#fff;--tw-prose-invert-counters:#9ca3af;--tw-prose-invert-bullets:#4b5563;--tw-prose-invert-hr:#374151;--tw-prose-invert-quotes:#f3f4f6;--tw-prose-invert-quote-borders:#374151;--tw-prose-invert-captions:#9ca3af;--tw-prose-invert-kbd:#fff;--tw-prose-invert-kbd-shadows:255 255 255;--tw-prose-invert-code:#fff;--tw-prose-invert-pre-code:#d1d5db;--tw-prose-invert-pre-bg:#00000080;--tw-prose-invert-th-borders:#4b5563;--tw-prose-invert-td-borders:#374151;font-size:1rem;line-height:1.75}.prose :where(picture>img):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0;margin-top:0}.prose :where(li):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.5em;margin-top:.5em}.prose :where(ol>li):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:.375em}.prose :where(ul>li):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:.375em}.prose :where(.prose>ul>li p):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.75em;margin-top:.75em}.prose :where(.prose>ul>li>p:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:1.25em}.prose :where(.prose>ul>li>p:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em}.prose :where(.prose>ol>li>p:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:1.25em}.prose :where(.prose>ol>li>p:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em}.prose :where(ul ul,ul ol,ol ul,ol ol):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.75em;margin-top:.75em}.prose :where(dl):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em;margin-top:1.25em}.prose :where(dd):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:.5em;padding-inline-start:1.625em}.prose :where(hr+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h2+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h3+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h4+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(thead th:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:0}.prose :where(thead th:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:0}.prose :where(tbody td,tfoot td):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:.5714286em;padding-bottom:.5714286em;padding-top:.5714286em;padding-inline-start:.5714286em}.prose :where(tbody td:first-child,tfoot td:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:0}.prose :where(tbody td:last-child,tfoot td:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:0}.prose :where(figure):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(.prose>:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(.prose>:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0}.sr-only{height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px;clip:rect(0,0,0,0);border-width:0;white-space:nowrap}.pointer-events-none{pointer-events:none}.visible{visibility:visible}.invisible{visibility:hidden}.collapse{visibility:collapse}.static{position:static}.fixed{position:fixed}.\!absolute{position:absolute!important}.absolute{position:absolute}.relative{position:relative}.sticky{position:sticky}.inset-0{inset:0}.inset-y-0{bottom:0;top:0}.-top-px{top:-1px}.bottom-0{bottom:0}.bottom-1{bottom:.25rem}.bottom-1\.5{bottom:.375rem}.bottom-10{bottom:2.5rem}.bottom-24{bottom:6rem}.bottom-4{bottom:1rem}.bottom-6{bottom:1.5rem}.bottom-\[7\.5rem\]{bottom:7.5rem}.bottom-md{bottom:var(--spacing-md)}.left-0{left:0}.left-1\/2{left:50%}.left-12{left:3rem}.left-4{left:1rem}.left-6{left:1.5rem}.left-md{left:var(--spacing-md)}.right-0{right:0}.right-1{right:.25rem}.right-1\.5{right:.375rem}.right-12{right:3rem}.right-2{right:.5rem}.right-2\.5{right:.625rem}.right-4{right:1rem}.right-6{right:1.5rem}.right-8{right:2rem}.right-\[-10px\]{right:-10px}.right-\[-4px\]{right:-4px}.right-\[-8px\]{right:-8px}.right-\[1rem\]{right:1rem}.right-\[3\.125rem\]{right:3.125rem}.top-0{top:0}.top-1{top:.25rem}.top-1\/2{top:50%}.top-12{top:3rem}.top-14{top:3.5rem}.top-16{top:4rem}.top-20{top:5rem}.top-4{top:1rem}.top-6{top:1.5rem}.top-\[-4px\]{top:-4px}.top-\[-5\.875rem\]{top:-5.875rem}.top-\[4\.625rem\]{top:4.625rem}.top-\[48\%\]{top:48%}.top-\[calc\(50vh\+15rem\)\]{top:calc(50vh + 15rem)}.top-\[calc\(50vh\+6\.25rem\)\]{top:calc(50vh + 6.25rem)}.isolate{isolation:isolate}.-z-10{z-index:-10}.z-0{z-index:0}.z-1{z-index:1}.z-10{z-index:10}.z-20{z-index:20}.z-40{z-index:40}.z-50{z-index:50}.float-left{float:left}.clear-left{clear:left}.m-0{margin:0}.m-\[\.625rem\]{margin:.625rem}.m-auto{margin:auto}.m-md{margin:var(--spacing-md)}.mx-auto{margin-left:auto;margin-right:auto}.mx-lg{margin-left:var(--spacing-lg);margin-right:var(--spacing-lg)}.mx-md{margin-left:var(--spacing-md);margin-right:var(--spacing-md)}.mx-sm{margin-left:var(--spacing-sm);margin-right:var(--spacing-sm)}.my-0{margin-bottom:0;margin-top:0}.my-2xl{margin-bottom:var(--spacing-2xl);margin-top:var(--spacing-2xl)}.my-4{margin-bottom:1rem;margin-top:1rem}.my-5xl{margin-bottom:var(--spacing-5xl);margin-top:var(--spacing-5xl)}.my-lg{margin-bottom:var(--spacing-lg);margin-top:var(--spacing-lg)}.my-md{margin-bottom:var(--spacing-md);margin-top:var(--spacing-md)}.my-sm{margin-bottom:var(--spacing-sm);margin-top:var(--spacing-sm)}.my-xl{margin-bottom:var(--spacing-xl);margin-top:var(--spacing-xl)}.-mr-0{margin-right:0}.-mr-0\.5{margin-right:-.125rem}.-mr-1{margin-right:-.25rem}.-mr-2{margin-right:-.5rem}.-mr-2\.5{margin-right:-.625rem}.-mt-xs{margin-top:calc(var(--spacing-xs)*-1)}.mb-1{margin-bottom:.25rem}.mb-2{margin-bottom:.5rem}.mb-2xl{margin-bottom:var(--spacing-2xl)}.mb-3{margin-bottom:.75rem}.mb-4{margin-bottom:1rem}.mb-6{margin-bottom:1.5rem}.mb-7xl{margin-bottom:var(--spacing-7xl)}.mb-\[0\.25rem\]{margin-bottom:.25rem}.mb-lg{margin-bottom:var(--spacing-lg)}.mb-md{margin-bottom:var(--spacing-md)}.mb-sm{margin-bottom:var(--spacing-sm)}.mb-xl{margin-bottom:var(--spacing-xl)}.mb-xs{margin-bottom:var(--spacing-xs)}.ml-2{margin-left:.5rem}.ml-2xl{margin-left:var(--spacing-2xl)}.ml-\[-0\.0625rem\]{margin-left:-.0625rem}.ml-\[-0\.75rem\]{margin-left:-.75rem}.ml-\[0\.625rem\]{margin-left:.625rem}.ml-\[0\.75rem\]{margin-left:.75rem}.ml-auto{margin-left:auto}.ml-lg{margin-left:var(--spacing-lg)}.ml-md{margin-left:var(--spacing-md)}.ml-sm{margin-left:var(--spacing-sm)}.ml-xs{margin-left:var(--spacing-xs)}.mr-4{margin-right:1rem}.mr-5{margin-right:1.25rem}.mr-6{margin-right:1.5rem}.mr-\[\.125rem\]{margin-right:.125rem}.mr-\[\.625rem\]{margin-right:.625rem}.mr-\[0\.3125rem\]{margin-right:.3125rem}.mr-\[2\.3125rem\]{margin-right:2.3125rem}.mr-\[2\.375rem\]{margin-right:2.375rem}.mr-\[5\.625rem\]{margin-right:5.625rem}.mr-lg{margin-right:var(--spacing-lg)}.mr-md{margin-right:var(--spacing-md)}.mr-sm{margin-right:var(--spacing-sm)}.mr-xl{margin-right:var(--spacing-xl)}.mr-xs{margin-right:var(--spacing-xs)}.mt-1{margin-top:.25rem}.mt-2xl{margin-top:var(--spacing-2xl)}.mt-3xl{margin-top:var(--spacing-3xl)}.mt-6{margin-top:1.5rem}.mt-\[-3rem\]{margin-top:-3rem}.mt-\[\.625rem\]{margin-top:.625rem}.mt-\[1\.25rem\]{margin-top:1.25rem}.mt-\[1rem\]{margin-top:1rem}.mt-lg{margin-top:var(--spacing-lg)}.mt-md{margin-top:var(--spacing-md)}.mt-sm{margin-top:var(--spacing-sm)}.mt-xl{margin-top:var(--spacing-xl)}.mt-xs{margin-top:var(--spacing-xs)}.box-border{box-sizing:border-box}.line-clamp-1{-webkit-line-clamp:1}.line-clamp-1,.line-clamp-3{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical}.line-clamp-3{-webkit-line-clamp:3}.\!block{display:block!important}.block{display:block}.\!inline-block{display:inline-block!important}.inline-block{display:inline-block}.\!inline{display:inline!important}.inline{display:inline}.flex{display:flex}.\!inline-flex{display:inline-flex!important}.inline-flex{display:inline-flex}.table{display:table}.grid{display:grid}.contents{display:contents}.\!hidden{display:none!important}.hidden{display:none}.aspect-\[1\/1\.414\]{aspect-ratio:1/1.414}.aspect-\[1200\/630\]{aspect-ratio:1200/630}.aspect-\[381\/200\]{aspect-ratio:381/200}.aspect-\[4\/5\]{aspect-ratio:4/5}.aspect-square{aspect-ratio:1/1}.aspect-video{aspect-ratio:16/9}.\!h-6{height:1.5rem!important}.h-0{height:0}.h-0\.5{height:.125rem}.h-1{height:.25rem}.h-1\.5{height:.375rem}.h-10{height:2.5rem}.h-12{height:3rem}.h-14{height:3.5rem}.h-16{height:4rem}.h-2{height:.5rem}.h-20{height:5rem}.h-28{height:7rem}.h-3{height:.75rem}.h-32{height:8rem}.h-36{height:9rem}.h-4{height:1rem}.h-48{height:12rem}.h-5{height:1.25rem}.h-52{height:13rem}.h-6{height:1.5rem}.h-7{height:1.75rem}.h-8{height:2rem}.h-80{height:20rem}.h-9{height:2.25rem}.h-96{height:24rem}.h-\[\.25rem\]{height:.25rem}.h-\[0\.5rem\]{height:.5rem}.h-\[0\.9rem\]{height:.9rem}.h-\[1\.15em\]{height:1.15em}.h-\[1\.3rem\]{height:1.3rem}.h-\[1\.4rem\]{height:1.4rem}.h-\[1\.5rem\]{height:1.5rem}.h-\[1\.8125rem\]{height:1.8125rem}.h-\[1\.875rem\]{height:1.875rem}.h-\[100\%\]{height:100%}.h-\[100px\]{height:100px}.h-\[150px\]{height:150px}.h-\[160px\]{height:160px}.h-\[1rem\]{height:1rem}.h-\[2\.5rem\]{height:2.5rem}.h-\[24rem\]{height:24rem}.h-\[25\.25rem\]{height:25.25rem}.h-\[3\.625rem\]{height:3.625rem}.h-\[3\.75rem\]{height:3.75rem}.h-\[30rem\]{height:30rem}.h-\[35\.5rem\]{height:35.5rem}.h-\[38rem\]{height:38rem}.h-\[4\.5rem\]{height:4.5rem}.h-\[50rem\]{height:50rem}.h-\[5rem\]{height:5rem}.h-\[6\.5rem\]{height:6.5rem}.h-\[6px\]{height:6px}.h-\[auto\],.h-auto{height:auto}.h-fit{height:fit-content}.h-full{height:100%}.h-px{height:1px}.max-h-60{max-height:15rem}.max-h-80{max-height:20rem}.min-h-\[1\.5rem\]{min-height:1.5rem}.min-h-\[100px\]{min-height:100px}.min-h-\[15vh\]{min-height:15vh}.min-h-\[45rem\]{min-height:45rem}.min-h-\[70vh\]{min-height:70vh}.min-h-full{min-height:100%}.\!w-2xl{width:var(--spacing-2xl)!important}.\!w-40{width:10rem!important}.\!w-fit{width:fit-content!important}.\!w-full{width:100%!important}.w-1{width:.25rem}.w-1\.5{width:.375rem}.w-1\/2{width:50%}.w-1\/4{width:25%}.w-1\/5{width:20%}.w-10{width:2.5rem}.w-12{width:3rem}.w-14{width:3.5rem}.w-16{width:4rem}.w-2{width:.5rem}.w-20{width:5rem}.w-28{width:7rem}.w-3{width:.75rem}.w-3\/5{width:60%}.w-32{width:8rem}.w-36{width:9rem}.w-4{width:1rem}.w-4\/5{width:80%}.w-40{width:10rem}.w-4xl{width:var(--spacing-4xl)}.w-5{width:1.25rem}.w-6{width:1.5rem}.w-60{width:15rem}.w-7{width:1.75rem}.w-8{width:2rem}.w-80{width:20rem}.w-9{width:2.25rem}.w-96{width:24rem}.w-\[\.25rem\]{width:.25rem}.w-\[1\.15em\]{width:1.15em}.w-\[1\.4rem\]{width:1.4rem}.w-\[1\.5rem\]{width:1.5rem}.w-\[1\.6rem\]{width:1.6rem}.w-\[10\%\]{width:10%}.w-\[10\.25rem\]{width:10.25rem}.w-\[10\.625rem\]{width:10.625rem}.w-\[100\%\]{width:100%}.w-\[10rem\]{width:10rem}.w-\[13\.125rem\]{width:13.125rem}.w-\[13rem\]{width:13rem}.w-\[15\%\]{width:15%}.w-\[18rem\]{width:18rem}.w-\[1rem\]{width:1rem}.w-\[2\.5rem\]{width:2.5rem}.w-\[2\.75rem\]{width:2.75rem}.w-\[20\%\]{width:20%}.w-\[22px\]{width:22px}.w-\[25rem\]{width:25rem}.w-\[30\%\]{width:30%}.w-\[33\%\]{width:33%}.w-\[4\.5rem\]{width:4.5rem}.w-\[6\.5rem\]{width:6.5rem}.w-\[6\.75rem\]{width:6.75rem}.w-\[7\.5rem\]{width:7.5rem}.w-\[92\.5vw\]{width:92.5vw}.w-auto{width:auto}.w-fit{width:fit-content}.w-full{width:100%}.w-max{width:max-content}.w-min{width:min-content}.w-px{width:1px}.w-screen{width:100vw}.\!min-w-0{min-width:0!important}.min-w-10{min-width:2.5rem}.min-w-12{min-width:3rem}.min-w-14{min-width:3.5rem}.min-w-28{min-width:7rem}.min-w-5{min-width:1.25rem}.min-w-6{min-width:1.5rem}.min-w-7{min-width:1.75rem}.min-w-8{min-width:2rem}.min-w-\[0\.5rem\]{min-width:.5rem}.min-w-\[0\.9rem\]{min-width:.9rem}.min-w-\[1\.3rem\]{min-width:1.3rem}.min-w-\[12\.5rem\]{min-width:12.5rem}.min-w-\[146px\]{min-width:146px}.min-w-\[156px\]{min-width:156px}.min-w-\[21rem\]{min-width:21rem}.min-w-\[3\.75rem\]{min-width:3.75rem}.min-w-\[4\.5rem\]{min-width:4.5rem}.min-w-\[6\.5rem\]{min-width:6.5rem}.min-w-fit{min-width:fit-content}.max-w-\[100\%\]{max-width:100%}.max-w-\[20rem\]{max-width:20rem}.max-w-\[25rem\]{max-width:25rem}.max-w-\[28\.5rem\]{max-width:28.5rem}.max-w-\[30\%\]{max-width:30%}.max-w-\[5rem\]{max-width:5rem}.max-w-\[6px\]{max-width:6px}.max-w-\[80\%\]{max-width:80%}.max-w-\[90rem\]{max-width:90rem}.max-w-\[96\%\]{max-width:96%}.max-w-\[98vw\]{max-width:98vw}.max-w-full{max-width:100%}.max-w-prose{max-width:65ch}.max-w-sm{max-width:24rem}.max-w-xs{max-width:20rem}.\!flex-none{flex:none!important}.flex-1{flex:1 1 0%}.flex-\[1\]{flex:1}.flex-\[2\]{flex:2}.flex-\[3\]{flex:3}.flex-auto{flex:1 1 auto}.flex-none{flex:none}.flex-shrink-0,.shrink-0{flex-shrink:0}.shrink-\[14\]{flex-shrink:14}.grow{flex-grow:1}.grow-\[2\]{flex-grow:2}.basis-6{flex-basis:1.5rem}.origin-bottom{transform-origin:bottom}.origin-bottom-left{transform-origin:bottom left}.origin-bottom-right{transform-origin:bottom right}.origin-center{transform-origin:center}.origin-left{transform-origin:left}.origin-right{transform-origin:right}.origin-top{transform-origin:top}.origin-top-left{transform-origin:top left}.origin-top-right{transform-origin:top right}.-translate-x-1\/2{--tw-translate-x:-50%;transform:translate(-50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-x-full{--tw-translate-x:-100%;transform:translate(-100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-1\/2{--tw-translate-y:-50%;transform:translate(var(--tw-translate-x),-50%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-2{--tw-translate-y:-0.5rem;transform:translate(var(--tw-translate-x),-.5rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-4{--tw-translate-y:-1rem;transform:translate(var(--tw-translate-x),-1rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-\[calc\(100\%\+0\.25rem\)\]{--tw-translate-y:calc(-100% + -0.25rem);transform:translate(var(--tw-translate-x),calc(-100% + -.25rem)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-full{--tw-translate-y:-100%;transform:translate(var(--tw-translate-x),-100%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-0{--tw-translate-x:0px;transform:translateY(var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-0\.5{--tw-translate-x:0.125rem;transform:translate(.125rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-\[1\.375rem\]{--tw-translate-x:1.375rem;transform:translate(1.375rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-full{--tw-translate-x:100%;transform:translate(100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-0{--tw-translate-y:0px;transform:translate(var(--tw-translate-x)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-4{--tw-translate-y:1rem;transform:translate(var(--tw-translate-x),1rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-full{--tw-translate-y:100%;transform:translate(var(--tw-translate-x),100%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.rotate-180{--tw-rotate:180deg;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(180deg) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.rotate-45{--tw-rotate:45deg;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(45deg) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-100{--tw-scale-x:1;--tw-scale-y:1;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(1) scaleY(1);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-95{--tw-scale-x:.95;--tw-scale-y:.95;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(.95) scaleY(.95);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-\[101\.5\%\]{--tw-scale-x:101.5%;--tw-scale-y:101.5%;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(101.5%) scaleY(101.5%)}.scale-\[101\.5\%\],.transform{transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}@keyframes spin{to{transform:rotate(1turn)}}.animate-spin{animation:spin 1s linear infinite}.cursor-default{cursor:default}.cursor-move{cursor:move}.cursor-not-allowed{cursor:not-allowed}.cursor-pointer{cursor:pointer}.select-none{-webkit-user-select:none;user-select:none}.resize-none{resize:none}.resize{resize:both}.\!list-inside{list-style-position:inside!important}.list-inside{list-style-position:inside}.list-decimal{list-style-type:decimal}.list-disc{list-style-type:disc}.appearance-none{appearance:none}.grid-cols-3{grid-template-columns:repeat(3,minmax(0,1fr))}.flex-row{flex-direction:row}.flex-row-reverse{flex-direction:row-reverse}.flex-col{flex-direction:column}.flex-col-reverse{flex-direction:column-reverse}.flex-wrap{flex-wrap:wrap}.place-content-center{place-content:center}.content-center{align-content:center}.items-start{align-items:flex-start}.items-end{align-items:flex-end}.items-center{align-items:center}.items-baseline{align-items:baseline}.\!justify-start{justify-content:flex-start!important}.justify-start{justify-content:flex-start}.justify-end{justify-content:flex-end}.justify-center{justify-content:center}.\!justify-between{justify-content:space-between!important}.justify-between{justify-content:space-between}.justify-around{justify-content:space-around}.\!gap-md{gap:var(--spacing-md)!important}.gap-1{gap:.25rem}.gap-2{gap:.5rem}.gap-2\.5{gap:.625rem}.gap-3{gap:.75rem}.gap-4{gap:1rem}.gap-5{gap:1.25rem}.gap-6{gap:1.5rem}.gap-8{gap:2rem}.gap-\[0\.65em\]{gap:.65em}.gap-lg{gap:var(--spacing-lg)}.gap-md{gap:var(--spacing-md)}.gap-sm{gap:var(--spacing-sm)}.gap-xl{gap:var(--spacing-xl)}.gap-xs{gap:var(--spacing-xs)}.gap-x-1{column-gap:.25rem}.gap-x-4{column-gap:1rem}.gap-x-lg{column-gap:var(--spacing-lg)}.gap-x-sm{column-gap:var(--spacing-sm)}.gap-x-xs{column-gap:var(--spacing-xs)}.gap-y-5{row-gap:1.25rem}.gap-y-lg{row-gap:var(--spacing-lg)}.gap-y-md{row-gap:var(--spacing-md)}.gap-y-sm{row-gap:var(--spacing-sm)}.gap-y-xl{row-gap:var(--spacing-xl)}.gap-y-xs{row-gap:var(--spacing-xs)}.space-x-1>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:.25rem;margin-left:calc(.25rem*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(.25rem*var(--tw-space-x-reverse))}.space-x-5>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:1.25rem;margin-left:calc(1.25rem*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(1.25rem*var(--tw-space-x-reverse))}.space-y-1>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(.25rem*var(--tw-space-y-reverse));margin-top:.25rem;margin-top:calc(.25rem*(1 - var(--tw-space-y-reverse)))}.space-y-2>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(.5rem*var(--tw-space-y-reverse));margin-top:.5rem;margin-top:calc(.5rem*(1 - var(--tw-space-y-reverse)))}.space-y-2xl>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-2xl)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-2xl)*(1 - var(--tw-space-y-reverse)))}.space-y-4>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(1rem*var(--tw-space-y-reverse));margin-top:1rem;margin-top:calc(1rem*(1 - var(--tw-space-y-reverse)))}.space-y-lg>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-lg)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-lg)*(1 - var(--tw-space-y-reverse)))}.space-y-md>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-md)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-md)*(1 - var(--tw-space-y-reverse)))}.space-y-sm>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-sm)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-sm)*(1 - var(--tw-space-y-reverse)))}.space-y-xs>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-xs)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-xs)*(1 - var(--tw-space-y-reverse)))}.divide-y>:not([hidden])~:not([hidden]){--tw-divide-y-reverse:0;border-bottom-width:0;border-bottom-width:calc(1px*var(--tw-divide-y-reverse));border-top-width:1px;border-top-width:calc(1px*(1 - var(--tw-divide-y-reverse)))}.divide-color-default>:not([hidden])~:not([hidden]){--tw-divide-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-divide-opacity))}.self-center{align-self:center}.overflow-auto{overflow:auto}.\!overflow-hidden{overflow:hidden!important}.overflow-hidden{overflow:hidden}.\!overflow-visible{overflow:visible!important}.overflow-scroll{overflow:scroll}.overflow-x-auto{overflow-x:auto}.overflow-y-auto{overflow-y:auto}.overflow-y-hidden{overflow-y:hidden}.overflow-y-scroll{overflow-y:scroll}.overscroll-none{overscroll-behavior:none}.truncate{overflow:hidden;white-space:nowrap}.text-ellipsis,.truncate{text-overflow:ellipsis}.whitespace-nowrap{white-space:nowrap}.whitespace-pre{white-space:pre}.whitespace-pre-line{white-space:pre-line}.\!break-words{overflow-wrap:break-word!important}.break-words{overflow-wrap:break-word}.\!break-all{word-break:break-all!important}.break-all{word-break:break-all}.rounded{border-radius:.25rem}.rounded-2xl{border-radius:1rem}.rounded-3xl{border-radius:1.5rem}.rounded-\[0\.15em\]{border-radius:.15em}.rounded-\[100\%\]{border-radius:100%}.rounded-\[4px\]{border-radius:4px}.rounded-\[50\%\]{border-radius:50%}.rounded-full{border-radius:9999px}.rounded-lg{border-radius:.5rem}.rounded-md{border-radius:.375rem}.rounded-none{border-radius:0}.rounded-sm{border-radius:.125rem}.rounded-xl{border-radius:.75rem}.border{border-width:1px}.border-2{border-width:2px}.border-\[\.0625rem\]{border-width:.0625rem}.border-\[0\.15em\]{border-width:.15em}.border-x-0{border-left-width:0;border-right-width:0}.border-b{border-bottom-width:1px}.border-b-2{border-bottom-width:2px}.border-l{border-left-width:1px}.border-l-2{border-left-width:2px}.border-l-\[0\.0625rem\]{border-left-width:.0625rem}.border-l-\[0\.125rem\]{border-left-width:.125rem}.border-l-\[3px\]{border-left-width:3px}.border-r{border-right-width:1px}.border-t{border-top-width:1px}.border-t-0{border-top-width:0}.border-t-2{border-top-width:2px}.border-t-\[\.0625rem\]{border-top-width:.0625rem}.border-solid{border-style:solid}.border-dashed{border-style:dashed}.border-none{border-style:none}.\!border-color-bold{--tw-border-opacity:1!important;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))!important}.\!border-color-brand{--tw-border-opacity:1!important;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))!important}.border-\[\#000\]{--tw-border-opacity:1;border-color:#000;border-color:rgb(0 0 0/var(--tw-border-opacity))}.border-\[\#DCDFE4\]{--tw-border-opacity:1;border-color:#dcdfe4;border-color:rgb(220 223 228/var(--tw-border-opacity))}.border-\[\#F8F9FD\]{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.border-\[\#FACC15\]{--tw-border-opacity:1;border-color:#facc15;border-color:rgb(250 204 21/var(--tw-border-opacity))}.border-\[\#FEF9C3\]{--tw-border-opacity:1;border-color:#fef9c3;border-color:rgb(254 249 195/var(--tw-border-opacity))}.border-\[\#b3b9c4\]{--tw-border-opacity:1;border-color:#b3b9c4;border-color:rgb(179 185 196/var(--tw-border-opacity))}.border-\[\#dcdfe6\]{--tw-border-opacity:1;border-color:#dcdfe6;border-color:rgb(220 223 230/var(--tw-border-opacity))}.border-\[\#f8f9fd\]{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.border-\[white\]{--tw-border-opacity:1;border-color:#fff;border-color:rgb(255 255 255/var(--tw-border-opacity))}.border-color-bold{--tw-border-opacity:1;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))}.border-color-brand{--tw-border-opacity:1;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))}.border-color-default{--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.border-color-error{--tw-border-opacity:1;border-color:rgba(var(--color-border-error),var(--tw-border-opacity))}.border-color-info{--tw-border-opacity:1;border-color:rgba(var(--color-border-info),var(--tw-border-opacity))}.border-color-inherit{border-color:inherit}.border-color-success{--tw-border-opacity:1;border-color:rgba(var(--color-border-success),var(--tw-border-opacity))}.border-color-transparent{border-color:#0000}.border-color-warning{--tw-border-opacity:1;border-color:rgba(var(--color-border-warning),var(--tw-border-opacity))}.border-t-color-default{--tw-border-opacity:1;border-top-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.\!bg-black{--tw-bg-opacity:1!important;background-color:rgba(var(--color-black),1)!important;background-color:rgba(var(--color-black),var(--tw-bg-opacity))!important}.\!bg-brand-bold{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-bold),1)!important;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))!important}.\!bg-brand-default{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-default),1)!important;background-color:rgba(var(--color-brand-default),var(--tw-bg-opacity))!important}.\!bg-brand-subtler{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-subtler),1)!important;background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))!important}.\!bg-brand-sunken{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-sunken),1)!important;background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))!important}.\!bg-success-subtlest{--tw-bg-opacity:1!important;background-color:rgba(var(--color-bg-success-subtlest),1)!important;background-color:rgba(var(--color-bg-success-subtlest),var(--tw-bg-opacity))!important}.\!bg-surface-disabled{--tw-bg-opacity:1!important;background-color:rgba(var(--color-surface-disabled),1)!important;background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))!important}.\!bg-surface-subtle{--tw-bg-opacity:1!important;background-color:rgba(var(--color-surface-subtle),1)!important;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))!important}.\!bg-warning-bold{--tw-bg-opacity:1!important;background-color:rgba(var(--color-bg-warning-bold),1)!important;background-color:rgba(var(--color-bg-warning-bold),var(--tw-bg-opacity))!important}.bg-\[\#000000\],.bg-\[\#000\]{--tw-bg-opacity:1;background-color:#000;background-color:rgb(0 0 0/var(--tw-bg-opacity))}.bg-\[\#2867B2\]{--tw-bg-opacity:1;background-color:#2867b2;background-color:rgb(40 103 178/var(--tw-bg-opacity))}.bg-\[\#409eff\]{--tw-bg-opacity:1;background-color:#409eff;background-color:rgb(64 158 255/var(--tw-bg-opacity))}.bg-\[\#66b1ff\]{--tw-bg-opacity:1;background-color:#66b1ff;background-color:rgb(102 177 255/var(--tw-bg-opacity))}.bg-\[\#EAB308\]{--tw-bg-opacity:1;background-color:#eab308;background-color:rgb(234 179 8/var(--tw-bg-opacity))}.bg-\[\#F8F9FD\]{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgb(248 249 253/var(--tw-bg-opacity))}.bg-\[\#b3b9c4\]{--tw-bg-opacity:1;background-color:#b3b9c4;background-color:rgb(179 185 196/var(--tw-bg-opacity))}.bg-\[\#eaeaee\]{--tw-bg-opacity:1;background-color:#eaeaee;background-color:rgb(234 234 238/var(--tw-bg-opacity))}.bg-\[\#facc15\]{--tw-bg-opacity:1;background-color:#facc15;background-color:rgb(250 204 21/var(--tw-bg-opacity))}.bg-\[\#fff\]{--tw-bg-opacity:1;background-color:#fff;background-color:rgb(255 255 255/var(--tw-bg-opacity))}.bg-black{--tw-bg-opacity:1;background-color:rgba(var(--color-black),1);background-color:rgba(var(--color-black),var(--tw-bg-opacity))}.bg-black\/50{background-color:rgba(var(--color-black),.5)}.bg-black\/60{background-color:rgba(var(--color-black),.6)}.bg-black\/\[0\.12\]{background-color:rgba(var(--color-black),.12)}.bg-brand-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.bg-brand-boldest{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-boldest),1);background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.bg-brand-default{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-default),1);background-color:rgba(var(--color-brand-default),var(--tw-bg-opacity))}.bg-brand-subtler{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtler),1);background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))}.bg-brand-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtlest),1);background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.bg-brand-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-sunken),1);background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))}.bg-content-bolder{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-bolder),1);background-color:rgba(var(--color-bg-content-bolder),var(--tw-bg-opacity))}.bg-content-default{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-default),1);background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.bg-content-inverse-subtler{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-inverse-subtler),1);background-color:rgba(var(--color-bg-content-inverse-subtler),var(--tw-bg-opacity))}.bg-content-subtle{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtle),1);background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.bg-content-subtler{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtler),1);background-color:rgba(var(--color-bg-content-subtler),var(--tw-bg-opacity))}.bg-content-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtlest),1);background-color:rgba(var(--color-bg-content-subtlest),var(--tw-bg-opacity))}.bg-content-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-sunken),1);background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.bg-error-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-error-bold),1);background-color:rgba(var(--color-bg-error-bold),var(--tw-bg-opacity))}.bg-error-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-error-subtlest),1);background-color:rgba(var(--color-bg-error-subtlest),var(--tw-bg-opacity))}.bg-error-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-error-sunken),1);background-color:rgba(var(--color-bg-error-sunken),var(--tw-bg-opacity))}.bg-info-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-info-bold),1);background-color:rgba(var(--color-bg-info-bold),var(--tw-bg-opacity))}.bg-info-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-info-subtlest),1);background-color:rgba(var(--color-bg-info-subtlest),var(--tw-bg-opacity))}.bg-info-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-info-sunken),1);background-color:rgba(var(--color-bg-info-sunken),var(--tw-bg-opacity))}.bg-inherit{background-color:inherit}.bg-success-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-success-bold),1);background-color:rgba(var(--color-bg-success-bold),var(--tw-bg-opacity))}.bg-success-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-success-subtlest),1);background-color:rgba(var(--color-bg-success-subtlest),var(--tw-bg-opacity))}.bg-success-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-success-sunken),1);background-color:rgba(var(--color-bg-success-sunken),var(--tw-bg-opacity))}.bg-surface-default{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.bg-surface-disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-disabled),1);background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))}.bg-surface-inverse{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-inverse),1);background-color:rgba(var(--color-surface-inverse),var(--tw-bg-opacity))}.bg-surface-selected{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-selected),1);background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.bg-surface-subtle{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.bg-transparent{background-color:initial}.bg-warning-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-warning-bold),1);background-color:rgba(var(--color-bg-warning-bold),var(--tw-bg-opacity))}.bg-warning-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-warning-subtlest),1);background-color:rgba(var(--color-bg-warning-subtlest),var(--tw-bg-opacity))}.bg-warning-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-warning-sunken),1);background-color:rgba(var(--color-bg-warning-sunken),var(--tw-bg-opacity))}.bg-white{--tw-bg-opacity:1;background-color:rgba(var(--color-white),1);background-color:rgba(var(--color-white),var(--tw-bg-opacity))}.bg-opacity-25{--tw-bg-opacity:0.25}.bg-opacity-75{--tw-bg-opacity:0.75}.bg-\[url\(\'\/img\/homepage\.png\'\)\]{background-image:url(/img/homepage.png)}.bg-gradient-to-r{background-image:linear-gradient(to right,var(--tw-gradient-stops))}.bg-none{background-image:none}.from-black\/70{--tw-gradient-from:rgba(var(--color-black),0.7) var(--tw-gradient-from-position);--tw-gradient-to:rgba(var(--color-black),0) var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to)}.from-transparent{--tw-gradient-from:#0000 var(--tw-gradient-from-position);--tw-gradient-to:#0000 var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to)}.to-black\/5{--tw-gradient-to:rgba(var(--color-black),0.05) var(--tw-gradient-to-position)}.to-white{--tw-gradient-to:rgba(var(--color-white),1) var(--tw-gradient-to-position)}.bg-cover{background-size:cover}.bg-fixed{background-attachment:fixed}.bg-center{background-position:50%}.bg-no-repeat{background-repeat:no-repeat}.fill-brand-bold{fill:rgba(var(--color-brand-bold),1)}.fill-brand-sunken{fill:rgba(var(--color-brand-sunken),1)}.object-cover{object-fit:cover}.\!p-0{padding:0!important}.\!p-sm{padding:var(--spacing-sm)!important}.\!p-xs{padding:var(--spacing-xs)!important}.p-0{padding:0}.p-0\.5{padding:.125rem}.p-4{padding:1rem}.p-5{padding:1.25rem}.p-8{padding:2rem}.p-\[\.75rem\]{padding:.75rem}.p-lg{padding:var(--spacing-lg)}.p-md{padding:var(--spacing-md)}.p-px{padding:1px}.p-sm{padding:var(--spacing-sm)}.p-xl{padding:var(--spacing-xl)}.\!px-0{padding-left:0!important;padding-right:0!important}.\!px-sm{padding-left:var(--spacing-sm)!important;padding-right:var(--spacing-sm)!important}.px-0{padding-left:0;padding-right:0}.px-10{padding-left:2.5rem;padding-right:2.5rem}.px-2{padding-left:.5rem;padding-right:.5rem}.px-4{padding-left:1rem;padding-right:1rem}.px-5{padding-left:1.25rem;padding-right:1.25rem}.px-8{padding-left:2rem;padding-right:2rem}.px-\[\.625rem\]{padding-left:.625rem;padding-right:.625rem}.px-\[\.9375rem\]{padding-left:.9375rem;padding-right:.9375rem}.px-\[0\.2rem\]{padding-left:.2rem;padding-right:.2rem}.px-\[0\.625rem\]{padding-left:.625rem;padding-right:.625rem}.px-lg{padding-left:var(--spacing-lg);padding-right:var(--spacing-lg)}.px-md{padding-left:var(--spacing-md);padding-right:var(--spacing-md)}.px-sm{padding-left:var(--spacing-sm);padding-right:var(--spacing-sm)}.px-xl{padding-left:var(--spacing-xl);padding-right:var(--spacing-xl)}.px-xs{padding-left:var(--spacing-xs);padding-right:var(--spacing-xs)}.py-0{padding-bottom:0;padding-top:0}.py-0\.5{padding-bottom:.125rem;padding-top:.125rem}.py-10{padding-bottom:2.5rem;padding-top:2.5rem}.py-2{padding-bottom:.5rem;padding-top:.5rem}.py-2xl{padding-bottom:var(--spacing-2xl);padding-top:var(--spacing-2xl)}.py-3{padding-bottom:.75rem;padding-top:.75rem}.py-3xl{padding-bottom:var(--spacing-3xl);padding-top:var(--spacing-3xl)}.py-4{padding-bottom:1rem;padding-top:1rem}.py-5xl{padding-bottom:var(--spacing-5xl);padding-top:var(--spacing-5xl)}.py-6{padding-bottom:1.5rem;padding-top:1.5rem}.py-7xl{padding-bottom:var(--spacing-7xl);padding-top:var(--spacing-7xl)}.py-\[\.3125rem\]{padding-bottom:.3125rem;padding-top:.3125rem}.py-\[0\.625rem\],.py-\[\.625rem\]{padding-bottom:.625rem;padding-top:.625rem}.py-\[1\.5rem\]{padding-bottom:1.5rem;padding-top:1.5rem}.py-lg{padding-bottom:var(--spacing-lg);padding-top:var(--spacing-lg)}.py-md{padding-bottom:var(--spacing-md);padding-top:var(--spacing-md)}.py-sm{padding-bottom:var(--spacing-sm);padding-top:var(--spacing-sm)}.py-xl{padding-bottom:var(--spacing-xl);padding-top:var(--spacing-xl)}.py-xs{padding-bottom:var(--spacing-xs);padding-top:var(--spacing-xs)}.\!pl-0{padding-left:0!important}.\!pl-sm{padding-left:var(--spacing-sm)!important}.\!pr-sm{padding-right:var(--spacing-sm)!important}.pb-0{padding-bottom:0}.pb-2xl{padding-bottom:var(--spacing-2xl)}.pb-3{padding-bottom:.75rem}.pb-6{padding-bottom:1.5rem}.pb-7xl{padding-bottom:var(--spacing-7xl)}.pb-\[\.5rem\]{padding-bottom:.5rem}.pb-\[1\.875rem\]{padding-bottom:1.875rem}.pb-lg{padding-bottom:var(--spacing-lg)}.pb-md{padding-bottom:var(--spacing-md)}.pb-sm{padding-bottom:var(--spacing-sm)}.pb-xl{padding-bottom:var(--spacing-xl)}.pb-xs{padding-bottom:var(--spacing-xs)}.pl-0{padding-left:0}.pl-10{padding-left:2.5rem}.pl-2xl{padding-left:var(--spacing-2xl)}.pl-3{padding-left:.75rem}.pl-5{padding-left:1.25rem}.pl-8{padding-left:2rem}.pl-lg{padding-left:var(--spacing-lg)}.pl-md{padding-left:var(--spacing-md)}.pl-sm{padding-left:var(--spacing-sm)}.pl-xl{padding-left:var(--spacing-xl)}.pl-xs{padding-left:var(--spacing-xs)}.pr-0{padding-right:0}.pr-2xl{padding-right:var(--spacing-2xl)}.pr-3{padding-right:.75rem}.pr-lg{padding-right:var(--spacing-lg)}.pr-md{padding-right:var(--spacing-md)}.pr-sm{padding-right:var(--spacing-sm)}.pr-xl{padding-right:var(--spacing-xl)}.pr-xs{padding-right:var(--spacing-xs)}.pt-12{padding-top:3rem}.pt-14{padding-top:3.5rem}.pt-2xl{padding-top:var(--spacing-2xl)}.pt-3xl{padding-top:var(--spacing-3xl)}.pt-5xl{padding-top:var(--spacing-5xl)}.pt-6{padding-top:1.5rem}.pt-7xl{padding-top:var(--spacing-7xl)}.pt-\[\.625rem\]{padding-top:.625rem}.pt-\[\.75rem\]{padding-top:.75rem}.pt-\[0\.125rem\]{padding-top:.125rem}.pt-\[1\.25rem\]{padding-top:1.25rem}.pt-\[1\.875rem\]{padding-top:1.875rem}.pt-\[1rem\]{padding-top:1rem}.pt-\[2rem\]{padding-top:2rem}.pt-\[5rem\]{padding-top:5rem}.pt-lg{padding-top:var(--spacing-lg)}.pt-md{padding-top:var(--spacing-md)}.pt-sm{padding-top:var(--spacing-sm)}.pt-xl{padding-top:var(--spacing-xl)}.pt-xs{padding-top:var(--spacing-xs)}.text-left{text-align:left}.text-center{text-align:center}.text-right{text-align:right}.\!align-middle{vertical-align:middle!important}.align-middle{vertical-align:middle}.\!align-text-bottom{vertical-align:text-bottom!important}.\!text-base{font-size:1rem!important;line-height:1.5rem!important}.\!text-lg{font-size:1.125rem!important;line-height:1.75rem!important}.\!text-xs{font-size:.75rem!important;line-height:1rem!important}.text-2xl{font-size:1.5rem;line-height:2rem}.text-3xl{font-size:1.875rem;line-height:2.25rem}.text-4xl{font-size:2.25rem;line-height:2.5rem}.text-5xl{font-size:3rem;line-height:1}.text-\[\.4rem\]{font-size:.4rem}.text-\[\.75rem\]{font-size:.75rem}.text-\[\.875rem\]{font-size:.875rem}.text-\[0\.4rem\]{font-size:.4rem}.text-\[0\.575rem\]{font-size:.575rem}.text-\[1\.875rem\]{font-size:1.875rem}.text-\[2\.5rem\]{font-size:2.5rem}.text-base{font-size:1rem;line-height:1.5rem}.text-lg{font-size:1.125rem;line-height:1.75rem}.text-sm{font-size:.875rem;line-height:1.25rem}.text-xl{font-size:1.25rem;line-height:1.75rem}.text-xs{font-size:.75rem;line-height:1rem}.font-bold{font-weight:700}.font-light{font-weight:300}.font-medium{font-weight:500}.font-normal{font-weight:400}.font-semibold{font-weight:600}.uppercase{text-transform:uppercase}.lowercase{text-transform:lowercase}.italic{font-style:italic}.\!leading-\[0\]{line-height:0!important}.leading-10{line-height:2.5rem}.leading-6{line-height:1.5rem}.leading-\[0\]{line-height:0}.leading-\[1\.125rem\]{line-height:1.125rem}.leading-\[1\.1\]{line-height:1.1}.leading-\[1\.875rem\]{line-height:1.875rem}.leading-\[140\%\]{line-height:140%}.leading-none{line-height:1}.leading-normal{line-height:1.5}.\!text-color-black{--tw-text-opacity:1!important;color:rgba(var(--color-black),1)!important;color:rgba(var(--color-black),var(--tw-text-opacity))!important}.\!text-color-brand-bold{--tw-text-opacity:1!important;color:rgba(var(--color-text-brand-bold),1)!important;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))!important}.\!text-color-default{--tw-text-opacity:1!important;color:rgba(var(--color-text-default),1)!important;color:rgba(var(--color-text-default),var(--tw-text-opacity))!important}.\!text-color-disabled{--tw-text-opacity:1!important;color:rgba(var(--color-text-disabled),1)!important;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))!important}.\!text-color-link-bold{--tw-text-opacity:1!important;color:rgba(var(--color-text-link-bold),1)!important;color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))!important}.\!text-color-subtle{--tw-text-opacity:1!important;color:rgba(var(--color-text-subtle),1)!important;color:rgba(var(--color-text-subtle),var(--tw-text-opacity))!important}.\!text-color-white{--tw-text-opacity:1!important;color:rgba(var(--color-white),1)!important;color:rgba(var(--color-white),var(--tw-text-opacity))!important}.text-\[\#000\]{--tw-text-opacity:1;color:#000;color:rgb(0 0 0/var(--tw-text-opacity))}.text-\[\#0156CE\]{--tw-text-opacity:1;color:#0156ce;color:rgb(1 86 206/var(--tw-text-opacity))}.text-\[\#172B4D\]{--tw-text-opacity:1;color:#172b4d;color:rgb(23 43 77/var(--tw-text-opacity))}.text-\[\#626F86\]{--tw-text-opacity:1;color:#626f86;color:rgb(98 111 134/var(--tw-text-opacity))}.text-\[\#758195\]{--tw-text-opacity:1;color:#758195;color:rgb(117 129 149/var(--tw-text-opacity))}.text-\[\#EAB308\]{--tw-text-opacity:1;color:#eab308;color:rgb(234 179 8/var(--tw-text-opacity))}.text-\[\#F1F2F4\]{--tw-text-opacity:1;color:#f1f2f4;color:rgb(241 242 244/var(--tw-text-opacity))}.text-\[\#FACC15\]{--tw-text-opacity:1;color:#facc15;color:rgb(250 204 21/var(--tw-text-opacity))}.text-\[\#FFFFFF\]{--tw-text-opacity:1;color:#fff;color:rgb(255 255 255/var(--tw-text-opacity))}.text-\[\#b3b9c4\]{--tw-text-opacity:1;color:#b3b9c4;color:rgb(179 185 196/var(--tw-text-opacity))}.text-\[\#f00\]{--tw-text-opacity:1;color:red;color:rgb(255 0 0/var(--tw-text-opacity))}.text-\[\#fff\]{--tw-text-opacity:1;color:#fff;color:rgb(255 255 255/var(--tw-text-opacity))}.text-color-black{--tw-text-opacity:1;color:rgba(var(--color-black),1);color:rgba(var(--color-black),var(--tw-text-opacity))}.text-color-border-bold{--tw-text-opacity:1;color:rgba(var(--color-border-bold),1);color:rgba(var(--color-border-bold),var(--tw-text-opacity))}.text-color-brand-bold{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.text-color-brand-bolder{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bolder),1);color:rgba(var(--color-text-brand-bolder),var(--tw-text-opacity))}.text-color-current{color:currentColor}.text-color-default{--tw-text-opacity:1;color:rgba(var(--color-text-default),1);color:rgba(var(--color-text-default),var(--tw-text-opacity))}.text-color-disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.text-color-error{--tw-text-opacity:1;color:rgba(var(--color-text-error),1);color:rgba(var(--color-text-error),var(--tw-text-opacity))}.text-color-info{--tw-text-opacity:1;color:rgba(var(--color-text-info),1);color:rgba(var(--color-text-info),var(--tw-text-opacity))}.text-color-inherit{color:inherit}.text-color-inverse{--tw-text-opacity:1;color:rgba(var(--color-white),1);color:rgba(var(--color-white),var(--tw-text-opacity))}.text-color-link-bold{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.text-color-link-bolder{--tw-text-opacity:1;color:rgba(var(--color-text-link-bolder),1);color:rgba(var(--color-text-link-bolder),var(--tw-text-opacity))}.text-color-link-subtle{--tw-text-opacity:1;color:rgba(var(--color-text-link-subtle),1);color:rgba(var(--color-text-link-subtle),var(--tw-text-opacity))}.text-color-on-brand{--tw-text-opacity:1;color:rgba(var(--color-text-on-brand),1);color:rgba(var(--color-text-on-brand),var(--tw-text-opacity))}.text-color-subtle{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.text-color-subtlest{--tw-text-opacity:1;color:rgba(var(--color-text-subtlest),1);color:rgba(var(--color-text-subtlest),var(--tw-text-opacity))}.text-color-success{--tw-text-opacity:1;color:rgba(var(--color-text-success),1);color:rgba(var(--color-text-success),var(--tw-text-opacity))}.text-color-warning{--tw-text-opacity:1;color:rgba(var(--color-text-warning),1);color:rgba(var(--color-text-warning),var(--tw-text-opacity))}.text-color-white{--tw-text-opacity:1;color:rgba(var(--color-white),1);color:rgba(var(--color-white),var(--tw-text-opacity))}.underline{text-decoration-line:underline}.\!no-underline{text-decoration-line:none!important}.no-underline{text-decoration-line:none}.antialiased{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.placeholder-text-color-subtle::placeholder{--tw-placeholder-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-placeholder-opacity))}.opacity-0{opacity:0}.opacity-100{opacity:1}.opacity-25{opacity:.25}.opacity-40{opacity:.4}.shadow{--tw-shadow:0 1px 3px 0 #0000001a,0 1px 2px -1px #0000001a;--tw-shadow-colored:0 1px 3px 0 var(--tw-shadow-color),0 1px 2px -1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 3px 0 #0000001a,0 1px 2px -1px #0000001a;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-\[4px_8px_10px_rgba\(214\2c 217\2c 222\2c 0\.8\)\]{--tw-shadow:4px 8px 10px #d6d9decc;--tw-shadow-colored:4px 8px 10px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,4px 8px 10px #d6d9decc;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-lg{--tw-shadow:0 10px 15px -3px #0000001a,0 4px 6px -4px #0000001a;--tw-shadow-colored:0 10px 15px -3px var(--tw-shadow-color),0 4px 6px -4px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 10px 15px -3px #0000001a,0 4px 6px -4px #0000001a;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-md{--tw-shadow:0 4px 6px -1px #0000001a,0 2px 4px -2px #0000001a;--tw-shadow-colored:0 4px 6px -1px var(--tw-shadow-color),0 2px 4px -2px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 4px 6px -1px #0000001a,0 2px 4px -2px #0000001a;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-slider{--tw-shadow:0.5px 0.5px 2px 1px #00000052;--tw-shadow-colored:0.5px 0.5px 2px 1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,.5px .5px 2px 1px #00000052;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-slider-active{--tw-shadow:0.5px 0.5px 2px 1px #0000006b;--tw-shadow-colored:0.5px 0.5px 2px 1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,.5px .5px 2px 1px #0000006b;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-sm{--tw-shadow:0 1px 2px 0 #0000000d;--tw-shadow-colored:0 1px 2px 0 var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 2px 0 #0000000d;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-xl{--tw-shadow:0 20px 25px -5px #0000001a,0 8px 10px -6px #0000001a;--tw-shadow-colored:0 20px 25px -5px var(--tw-shadow-color),0 8px 10px -6px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 20px 25px -5px #0000001a,0 8px 10px -6px #0000001a;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.outline-none{outline:2px solid #0000;outline-offset:2px}.outline{outline-style:solid}.outline-2{outline-width:2px}.outline-offset-2{outline-offset:2px}.outline-\[\#EAB308\]{outline-color:#eab308}.outline-color-bold{outline-color:rgba(var(--color-border-bold),1)}.outline-color-brand{outline-color:rgba(var(--color-border-brand),1)}.ring-0{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.blur{--tw-blur:blur(8px);filter:blur(8px) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.grayscale{--tw-grayscale:grayscale(100%);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) grayscale(100%) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.filter,.grayscale{filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.transition{transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,-webkit-backdrop-filter;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,backdrop-filter;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,backdrop-filter,-webkit-backdrop-filter;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-all{transition-duration:.15s;transition-property:all;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-colors{transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-height{transition-duration:.15s;transition-property:height;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-opacity{transition-duration:.15s;transition-property:opacity;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-transform{transition-duration:.15s;transition-property:transform;transition-timing-function:cubic-bezier(.4,0,.2,1)}.duration-100{transition-duration:.1s}.duration-150{transition-duration:.15s}.duration-200{transition-duration:.2s}.duration-300{transition-duration:.3s}.duration-75{transition-duration:75ms}.duration-\[350ms\]{transition-duration:.35s}.ease-in{transition-timing-function:cubic-bezier(.4,0,1,1)}.ease-in-out{transition-timing-function:cubic-bezier(.4,0,.2,1)}.ease-out{transition-timing-function:cubic-bezier(0,0,.2,1)}.content-\[\'\'\]{--tw-content:"";content:"";content:var(--tw-content)}.cursor-grab{cursor:grab}.cursor-grabbing{cursor:grabbing}.touch-none{touch-action:none}.tap-highlight-transparent{-webkit-tap-highlight-color:rgba(0,0,0,0)}.touch-callout-none{-webkit-touch-callout:none}.transform-origin-0{transform-origin:0 0}.transform-style-flat{transform-style:flat}.cursor-ew-resize{cursor:ew-resize}.arrow-left:before{border:5px solid #0000;border-right-color:inherit;left:-10px}.arrow-left:before,.arrow-right:before{content:"";height:0;position:absolute;top:50%;transform:translateY(-50%);width:0}.arrow-right:before{border:5px solid #0000;border-left-color:inherit;right:-10px}.text-body{font-size:.875rem;line-height:1.25rem}@media (min-width:768px){.text-body{font-size:1rem;line-height:1.5rem}}.\[appearance\:textfield\]{appearance:textfield}.before\:absolute:before{content:var(--tw-content);position:absolute}.before\:-inset-2:before{content:var(--tw-content);inset:-.5rem}.after\:absolute:after{content:var(--tw-content);position:absolute}.after\:hidden:after{content:var(--tw-content);display:none}.after\:h-1\/2:after{content:var(--tw-content);height:50%}.after\:w-1\/2:after{content:var(--tw-content);width:50%}.after\:rounded-full:after{border-radius:9999px;content:var(--tw-content)}.after\:bg-brand-bold:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.after\:bg-content-default:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-default),1);background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.first\:pt-0:first-child{padding-top:0}.focus-within\:outline-none:focus-within{outline:2px solid #0000;outline-offset:2px}.focus-within\:outline:focus-within{outline-style:solid}.hover\:rounded-2xl:hover{border-radius:1rem}.hover\:border-2:hover{border-width:2px}.hover\:border-\[\#0156CE\]:hover{--tw-border-opacity:1;border-color:#0156ce;border-color:rgb(1 86 206/var(--tw-border-opacity))}.hover\:border-\[\#F8F9FD\]:hover{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.hover\:border-color-brand:hover{--tw-border-opacity:1;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))}.hover\:\!bg-surface-selected:hover{--tw-bg-opacity:1!important;background-color:rgba(var(--color-surface-selected),1)!important;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))!important}.hover\:\!bg-transparent:hover{background-color:initial!important}.hover\:bg-brand-bolder:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bolder),1);background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.hover\:bg-brand-subtlest:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtlest),1);background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.hover\:bg-brand-sunken:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-sunken),1);background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))}.hover\:bg-content-bold:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-bold),1);background-color:rgba(var(--color-bg-content-bold),var(--tw-bg-opacity))}.hover\:bg-content-sunken:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-sunken),1);background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.hover\:bg-surface-default:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.hover\:bg-surface-selected:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-selected),1);background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.hover\:pl-sm:hover{padding-left:var(--spacing-sm)}.hover\:font-semibold:hover{font-weight:600}.hover\:\!text-color-black:hover{--tw-text-opacity:1!important;color:rgba(var(--color-black),1)!important;color:rgba(var(--color-black),var(--tw-text-opacity))!important}.hover\:text-color-black:hover{--tw-text-opacity:1;color:rgba(var(--color-black),1);color:rgba(var(--color-black),var(--tw-text-opacity))}.hover\:text-color-brand-bold:hover{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.hover\:text-color-link-bold:hover{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.hover\:text-color-link-bolder:hover{--tw-text-opacity:1;color:rgba(var(--color-text-link-bolder),1);color:rgba(var(--color-text-link-bolder),var(--tw-text-opacity))}.hover\:text-color-subtle:hover{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.hover\:underline:hover{text-decoration-line:underline}.hover\:grayscale-0:hover{--tw-grayscale:grayscale(0);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) grayscale(0) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.focus\:bg-brand-strong:focus{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-strong),1);background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.focus\:outline-none:focus{outline:2px solid #0000;outline-offset:2px}.focus\:outline-color-brand:focus{outline-color:rgba(var(--color-border-brand),1)}.focus\:ring-2:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.focus\:ring-text-color-border-selected:focus{--tw-ring-opacity:1;--tw-ring-color:rgba(var(--color-border-selected),var(--tw-ring-opacity))}.focus-visible\:bg-brand-bold:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.focus-visible\:bg-brand-boldest:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-boldest),1);background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.focus-visible\:bg-error-bold:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-error-bold),1);background-color:rgba(var(--color-bg-error-bold),var(--tw-bg-opacity))}.focus-visible\:bg-surface-default:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.focus-visible\:bg-surface-selected:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-selected),1);background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.focus-visible\:outline-none:focus-visible{outline:2px solid #0000;outline-offset:2px}.focus-visible\:outline:focus-visible{outline-style:solid}.focus-visible\:outline-2:focus-visible{outline-width:2px}.focus-visible\:outline-color-selected:focus-visible{outline-color:rgba(var(--color-border-selected),1)}.focus-visible\:ring-2:focus-visible{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.focus-visible\:ring-offset-2:focus-visible{--tw-ring-offset-width:2px}.focus-visible\:ring-offset-brand-bold:focus-visible{--tw-ring-offset-color:rgba(var(--color-brand-bold),1)}.focus-visible\:ring-offset-white:focus-visible{--tw-ring-offset-color:rgba(var(--color-white),1)}.active\:\!bg-brand-subtlest:active{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-subtlest),1)!important;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))!important}.active\:\!bg-inherit:active{background-color:inherit!important}.active\:\!bg-transparent:active{background-color:initial!important}.active\:bg-brand-boldest:active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-boldest),1);background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.active\:bg-brand-strong:active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-strong),1);background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.active\:bg-brand-subtler:active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtler),1);background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))}.active\:bg-brand-subtlest:active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtlest),1);background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.active\:bg-content-bolder:active{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-bolder),1);background-color:rgba(var(--color-bg-content-bolder),var(--tw-bg-opacity))}.active\:bg-content-subtlest:active{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtlest),1);background-color:rgba(var(--color-bg-content-subtlest),var(--tw-bg-opacity))}.active\:text-color-brand-boldest:active{--tw-text-opacity:1;color:rgba(var(--color-text-brand-boldest),1);color:rgba(var(--color-text-brand-boldest),var(--tw-text-opacity))}.disabled\:border-color-default:disabled{--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.disabled\:bg-surface-subtle:disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.disabled\:text-color-disabled:disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.group:hover .group-hover\:after\:bg-brand-bolder:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bolder),1);background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.group:active .group-active\:after\:bg-brand-boldest:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:rgba(var(--color-brand-boldest),1);background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.aria-disabled\:pointer-events-none[aria-disabled=true]{pointer-events:none}.aria-disabled\:cursor-default[aria-disabled=true]{cursor:default}.aria-disabled\:text-color-disabled[aria-disabled=true]{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.ui-open\:text-color-brand-bold[data-headlessui-state~=open]{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}:where([data-headlessui-state~=open]) .ui-open\:text-color-brand-bold{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.ui-disabled\:pointer-events-none[data-headlessui-state~=disabled]{pointer-events:none}.ui-disabled\:cursor-default[data-headlessui-state~=disabled]{cursor:default}.ui-disabled\:text-color-disabled[data-headlessui-state~=disabled]{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}:where([data-headlessui-state~=disabled]) .ui-disabled\:pointer-events-none{pointer-events:none}:where([data-headlessui-state~=disabled]) .ui-disabled\:cursor-default{cursor:default}:where([data-headlessui-state~=disabled]) .ui-disabled\:text-color-disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}:where([data-headlessui-focus-visible]) .ui-focus-visible\:outline-color-brand:focus{outline-color:rgba(var(--color-border-brand),1)}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-2:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-brand-bold:focus{--tw-ring-opacity:1;--tw-ring-color:rgba(var(--color-brand-bold),var(--tw-ring-opacity))}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-opacity-75:focus{--tw-ring-opacity:0.75}.slider-horizontal .h\:-right-2{right:-.5rem}.slider-horizontal .h\:-top-1{top:-.25rem}.slider-horizontal .h\:-top-1\.5{top:-.375rem}.slider-horizontal .h\:left-1\/2{left:50%}.slider-horizontal .h\:h-0{height:0}.slider-horizontal .h\:h-4{height:1rem}.slider-horizontal .h\:w-4{width:1rem}.slider-horizontal .h\:-translate-x-1\/2{--tw-translate-x:-50%;transform:translate(-50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-horizontal .h\:arrow-bottom:before{border:5px solid #0000;border-top-color:inherit;bottom:-10px}.slider-horizontal .h\:arrow-bottom:before,.slider-horizontal .h\:arrow-top:before{content:"";height:0;left:50%;position:absolute;transform:translate(-50%);width:0}.slider-horizontal .h\:arrow-top:before{border:5px solid #0000;border-bottom-color:inherit;top:-10px}.slider-vertical .v\:-right-1{right:-.25rem}.slider-vertical .v\:-right-1\.25{right:-.3125rem}.slider-vertical .v\:-top-2{top:-.5rem}.slider-vertical .v\:-top-full{top:-100%}.slider-vertical .v\:top-1\/2{top:50%}.slider-vertical .v\:h-4{height:1rem}.slider-vertical .v\:w-0{width:0}.slider-vertical .v\:w-4{width:1rem}.slider-vertical .v\:-translate-y-1\/2{--tw-translate-y:-50%;transform:translate(var(--tw-translate-x),-50%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-vertical .v\:cursor-ns-resize{cursor:ns-resize}.slider-vertical .v\:arrow-left:before{border:5px solid #0000;border-right-color:inherit;left:-10px}.slider-vertical .v\:arrow-left:before,.slider-vertical .v\:arrow-right:before{content:"";height:0;position:absolute;top:50%;transform:translateY(-50%);width:0}.slider-vertical .v\:arrow-right:before{border:5px solid #0000;border-left-color:inherit;right:-10px}.slider-horizontal .slider-origin>.merge-h\:bottom-3{bottom:.75rem}.slider-horizontal .slider-origin>.merge-h\:bottom-3\.5{bottom:.875rem}.slider-horizontal .slider-origin>.merge-h\:left-auto{left:auto}.slider-horizontal .slider-origin>.merge-h\:top-5{top:1.25rem}.slider-horizontal .slider-origin>.merge-h\:translate-x-1\/2{--tw-translate-x:50%;transform:translate(50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-vertical .slider-origin>.merge-v\:left-7{left:1.75rem}.slider-vertical .slider-origin>.merge-v\:right-1{right:.25rem}.slider-vertical .slider-origin>.merge-v\:top-auto{top:auto}.slider-vertical .slider-origin>.merge-v\:-translate-x-4{--tw-translate-x:-1rem;transform:translate(-1rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:-left-2{left:-.5rem}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:left-0{left:0}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:right-auto{right:auto}.slider-tap .tap\:transition-transform{transition-duration:.15s;transition-property:transform;transition-timing-function:cubic-bezier(.4,0,.2,1)}.slider-tap .tap\:duration-300{transition-duration:.3s}.slider-tooltip-focus:not(.slider-focused) .tt-focus\:hidden{display:none!important}.slider-tooltip-focus.slider-focused:not(.slider-tooltip-hidden) .tt-focused\:block{display:block!important}.slider-tooltip-drag:not(.slider-state-drag) .tt-drag\:hidden{display:none!important}.slider-tooltip-drag.slider-state-drag .tt-dragging\:block\:not\(\.slider-tooltip-hidden\){display:block!important}@media not all and (min-width:1280px){.max-xl\:w-full{width:100%}}@media not all and (min-width:1024px){.max-lg\:items-center{align-items:center}.max-lg\:gap-x-6{column-gap:1.5rem}.max-lg\:pt-lg{padding-top:var(--spacing-lg)}}@media (min-width:576px){.sm\:sticky{position:sticky}.sm\:top-20{top:5rem}.sm\:w-20{width:5rem}.sm\:w-2xl{width:var(--spacing-2xl)}.sm\:w-\[100\%\]{width:100%}.sm\:w-\[50\%\]{width:50%}.sm\:\!max-w-\[20\%\]{max-width:20%!important}.sm\:max-w-\[33\%\]{max-width:33%}.sm\:grid-cols-2{grid-template-columns:repeat(2,minmax(0,1fr))}.sm\:border-0{border-width:0}.sm\:border-t{border-top-width:1px}.sm\:border-\[\#000\]{--tw-border-opacity:1;border-color:#000;border-color:rgb(0 0 0/var(--tw-border-opacity))}.sm\:pr-md{padding-right:var(--spacing-md)}.sm\:pt-0{padding-top:0}.sm\:pt-\[\.625rem\]{padding-top:.625rem}}@media (min-width:768px){.md\:h-9{height:2.25rem}.md\:w-9{width:2.25rem}.md\:w-\[100\%\]{width:100%}.md\:w-\[50\%\]{width:50%}.md\:flex-row{flex-direction:row}.md\:flex-row-reverse{flex-direction:row-reverse}}@media (min-width:1024px){.lg\:absolute{position:absolute}.lg\:sticky{position:sticky}.lg\:\!bottom-\[50vh\]{bottom:50vh!important}.lg\:bottom-xl{bottom:var(--spacing-xl)}.lg\:left-xl{left:var(--spacing-xl)}.lg\:top-7xl{top:var(--spacing-7xl)}.lg\:top-\[10\%\]{top:10%}.lg\:top-\[20\%\]{top:20%}.lg\:top-\[30\%\]{top:30%}.lg\:top-\[4\.5rem\]{top:4.5rem}.lg\:top-\[40\%\]{top:40%}.lg\:top-\[50\%\]{top:50%}.lg\:top-\[60\%\]{top:60%}.lg\:top-\[70\%\]{top:70%}.lg\:order-first{order:-9999}.lg\:m-0{margin:0}.lg\:m-lg{margin:var(--spacing-lg)}.lg\:mx-auto{margin-left:auto;margin-right:auto}.lg\:my-0{margin-bottom:0;margin-top:0}.lg\:my-12{margin-bottom:3rem;margin-top:3rem}.lg\:my-7xl{margin-bottom:var(--spacing-7xl);margin-top:var(--spacing-7xl)}.lg\:my-\[18\.75rem\]{margin-bottom:18.75rem;margin-top:18.75rem}.lg\:-mt-4xl{margin-top:calc(var(--spacing-4xl)*-1)}.lg\:mb-0{margin-bottom:0}.lg\:mb-10xl{margin-bottom:var(--spacing-10xl)}.lg\:mb-lg{margin-bottom:var(--spacing-lg)}.lg\:ml-3xl{margin-left:var(--spacing-3xl)}.lg\:ml-lg{margin-left:var(--spacing-lg)}.lg\:ml-sm{margin-left:var(--spacing-sm)}.lg\:mr-8xl{margin-right:var(--spacing-8xl)}.lg\:mr-\[4\.6875rem\]{margin-right:4.6875rem}.lg\:mr-lg{margin-right:var(--spacing-lg)}.lg\:mr-xl{margin-right:var(--spacing-xl)}.lg\:mt-0{margin-top:0}.lg\:mt-\[-3rem\]{margin-top:-3rem}.lg\:mt-lg{margin-top:var(--spacing-lg)}.lg\:mt-md{margin-top:var(--spacing-md)}.lg\:\!block{display:block!important}.lg\:block{display:block}.lg\:flex{display:flex}.lg\:\!inline-flex{display:inline-flex!important}.lg\:grid{display:grid}.lg\:\!hidden{display:none!important}.lg\:hidden{display:none}.lg\:aspect-\[1\/1\.414\]{aspect-ratio:1/1.414}.lg\:aspect-square{aspect-ratio:1/1}.lg\:h-12{height:3rem}.lg\:h-\[296px\]{height:296px}.lg\:h-\[7\.5rem\]{height:7.5rem}.lg\:max-h-\[100\%\]{max-height:100%}.lg\:max-h-\[30\%\]{max-height:30%}.lg\:max-h-\[40\%\]{max-height:40%}.lg\:max-h-\[50\%\]{max-height:50%}.lg\:max-h-\[60\%\]{max-height:60%}.lg\:max-h-\[70\%\]{max-height:70%}.lg\:max-h-\[80\%\]{max-height:80%}.lg\:max-h-\[90\%\]{max-height:90%}.lg\:min-h-screen{min-height:100vh}.lg\:\!w-\[20\%\]{width:20%!important}.lg\:\!w-\[75\%\]{width:75%!important}.lg\:\!w-fit{width:fit-content!important}.lg\:w-1\/2{width:50%}.lg\:w-1\/4{width:25%}.lg\:w-1\/5{width:20%}.lg\:w-12{width:3rem}.lg\:w-2\/3{width:66.666667%}.lg\:w-4\/5{width:80%}.lg\:w-\[100\%\]{width:100%}.lg\:w-\[19\.0625rem\]{width:19.0625rem}.lg\:w-\[22\.5rem\]{width:22.5rem}.lg\:w-\[25\%\]{width:25%}.lg\:w-\[31\.25rem\]{width:31.25rem}.lg\:w-\[315px\]{width:315px}.lg\:w-\[32rem\]{width:32rem}.lg\:w-\[33\%\]{width:33%}.lg\:w-\[333px\]{width:333px}.lg\:w-\[360px\]{width:360px}.lg\:w-\[50\%\]{width:50%}.lg\:w-fit{width:fit-content}.lg\:w-full{width:100%}.lg\:w-max{width:max-content}.lg\:\!min-w-\[40\%\]{min-width:40%!important}.lg\:max-w-2xl{max-width:42rem}.lg\:max-w-3xl{max-width:48rem}.lg\:max-w-4xl{max-width:56rem}.lg\:max-w-5xl{max-width:64rem}.lg\:max-w-6xl{max-width:72rem}.lg\:max-w-7xl{max-width:80rem}.lg\:max-w-\[28\.5rem\]{max-width:28.5rem}.lg\:max-w-\[30\%\]{max-width:30%}.lg\:max-w-\[32\%\]{max-width:32%}.lg\:max-w-\[80\%\]{max-width:80%}.lg\:max-w-lg{max-width:32rem}.lg\:max-w-md{max-width:28rem}.lg\:max-w-sm{max-width:24rem}.lg\:max-w-xl{max-width:36rem}.lg\:max-w-xs{max-width:20rem}.lg\:flex-1{flex:1 1 0%}.lg\:flex-auto{flex:1 1 auto}.lg\:flex-none{flex:none}.lg\:basis-1\/2{flex-basis:50%}.lg\:basis-1\/4{flex-basis:25%}.lg\:basis-\[15\.625rem\]{flex-basis:15.625rem}.lg\:list-disc{list-style-type:disc}.lg\:grid-cols-3{grid-template-columns:repeat(3,minmax(0,1fr))}.lg\:flex-row{flex-direction:row}.lg\:flex-row-reverse{flex-direction:row-reverse}.lg\:flex-col{flex-direction:column}.lg\:flex-wrap{flex-wrap:wrap}.lg\:flex-nowrap{flex-wrap:nowrap}.lg\:items-center{align-items:center}.lg\:justify-end{justify-content:flex-end}.lg\:justify-between{justify-content:space-between}.lg\:gap-0{gap:0}.lg\:gap-2xl{gap:var(--spacing-2xl)}.lg\:gap-lg{gap:var(--spacing-lg)}.lg\:gap-xl{gap:var(--spacing-xl)}.lg\:gap-x-lg{column-gap:var(--spacing-lg)}.lg\:gap-y-lg{row-gap:var(--spacing-lg)}.lg\:\!space-y-0>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0!important;margin-bottom:0!important;margin-bottom:calc(0px*var(--tw-space-y-reverse))!important;margin-top:0!important;margin-top:calc(0px*(1 - var(--tw-space-y-reverse)))!important}.lg\:space-x-lg>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:calc(var(--spacing-lg)*(1 - var(--tw-space-x-reverse)));margin-right:calc(var(--spacing-lg)*var(--tw-space-x-reverse))}.lg\:space-x-xl>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:calc(var(--spacing-xl)*(1 - var(--tw-space-x-reverse)));margin-right:calc(var(--spacing-xl)*var(--tw-space-x-reverse))}.lg\:space-y-0>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(0px*var(--tw-space-y-reverse));margin-top:0;margin-top:calc(0px*(1 - var(--tw-space-y-reverse)))}.lg\:space-y-2xl>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-2xl)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-2xl)*(1 - var(--tw-space-y-reverse)))}.lg\:rounded-2xl{border-radius:1rem}.lg\:rounded-3xl{border-radius:1.5rem}.lg\:border{border-width:1px}.lg\:border-0{border-width:0}.lg\:border-b{border-bottom-width:1px}.lg\:border-l{border-left-width:1px}.lg\:border-t-0{border-top-width:0}.lg\:border-none{border-style:none}.lg\:bg-surface-subtle{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.lg\:p-0{padding:0}.lg\:p-2xl{padding:var(--spacing-2xl)}.lg\:p-lg{padding:var(--spacing-lg)}.lg\:px-0{padding-left:0;padding-right:0}.lg\:px-10{padding-left:2.5rem;padding-right:2.5rem}.lg\:px-4{padding-left:1rem;padding-right:1rem}.lg\:px-4xl{padding-left:var(--spacing-4xl);padding-right:var(--spacing-4xl)}.lg\:px-\[\.9375rem\]{padding-left:.9375rem;padding-right:.9375rem}.lg\:px-lg{padding-left:var(--spacing-lg);padding-right:var(--spacing-lg)}.lg\:py-0{padding-bottom:0;padding-top:0}.lg\:py-10xl{padding-bottom:var(--spacing-10xl);padding-top:var(--spacing-10xl)}.lg\:py-12{padding-bottom:3rem;padding-top:3rem}.lg\:py-2xl{padding-bottom:var(--spacing-2xl);padding-top:var(--spacing-2xl)}.lg\:py-32{padding-bottom:8rem;padding-top:8rem}.lg\:py-3xl{padding-bottom:var(--spacing-3xl);padding-top:var(--spacing-3xl)}.lg\:py-4xl{padding-bottom:var(--spacing-4xl);padding-top:var(--spacing-4xl)}.lg\:py-5xl{padding-bottom:var(--spacing-5xl);padding-top:var(--spacing-5xl)}.lg\:py-7xl{padding-bottom:var(--spacing-7xl);padding-top:var(--spacing-7xl)}.lg\:py-lg{padding-bottom:var(--spacing-lg);padding-top:var(--spacing-lg)}.lg\:py-xl{padding-bottom:var(--spacing-xl);padding-top:var(--spacing-xl)}.lg\:pb-0{padding-bottom:0}.lg\:pb-2xl{padding-bottom:var(--spacing-2xl)}.lg\:pb-3xl{padding-bottom:var(--spacing-3xl)}.lg\:pb-5xl{padding-bottom:var(--spacing-5xl)}.lg\:pb-7xl{padding-bottom:var(--spacing-7xl)}.lg\:pb-\[12\.5rem\]{padding-bottom:12.5rem}.lg\:pb-\[6\.3125rem\]{padding-bottom:6.3125rem}.lg\:pb-lg{padding-bottom:var(--spacing-lg)}.lg\:pb-md{padding-bottom:var(--spacing-md)}.lg\:pb-sm{padding-bottom:var(--spacing-sm)}.lg\:pl-10{padding-left:2.5rem}.lg\:pl-2xl{padding-left:var(--spacing-2xl)}.lg\:pl-lg{padding-left:var(--spacing-lg)}.lg\:pl-sm{padding-left:var(--spacing-sm)}.lg\:pl-xl{padding-left:var(--spacing-xl)}.lg\:pr-0{padding-right:0}.lg\:pr-lg{padding-right:var(--spacing-lg)}.lg\:pr-xl{padding-right:var(--spacing-xl)}.lg\:pt-0{padding-top:0}.lg\:pt-2xl{padding-top:var(--spacing-2xl)}.lg\:pt-3xl{padding-top:var(--spacing-3xl)}.lg\:pt-5xl{padding-top:var(--spacing-5xl)}.lg\:pt-7xl{padding-top:var(--spacing-7xl)}.lg\:pt-\[5rem\]{padding-top:5rem}.lg\:pt-\[7\.5rem\]{padding-top:7.5rem}.lg\:pt-\[8\.125rem\]{padding-top:8.125rem}.lg\:pt-lg{padding-top:var(--spacing-lg)}.lg\:pt-md{padding-top:var(--spacing-md)}.lg\:pt-xl{padding-top:var(--spacing-xl)}.lg\:text-center{text-align:center}.lg\:\!text-3xl{font-size:1.875rem!important;line-height:2.25rem!important}}@media (min-width:1280px){.xl\:mr-7xl{margin-right:var(--spacing-7xl)}.xl\:mr-lg{margin-right:var(--spacing-lg)}.xl\:h-16{height:4rem}.xl\:w-16{width:4rem}.xl\:w-4{width:1rem}.xl\:w-\[100\%\]{width:100%}.xl\:w-\[25\%\]{width:25%}.xl\:w-\[27\.6875rem\]{width:27.6875rem}.xl\:w-\[33\%\]{width:33%}.xl\:w-\[50\%\]{width:50%}.xl\:space-x-3xl>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:calc(var(--spacing-3xl)*(1 - var(--tw-space-x-reverse)));margin-right:calc(var(--spacing-3xl)*var(--tw-space-x-reverse))}}@media (min-width:1440px){.xxl\:w-\[33\%\]{width:33%}}.\[\&\:\:-webkit-inner-spin-button\]\:appearance-none::-webkit-inner-spin-button,.\[\&\:\:-webkit-outer-spin-button\]\:appearance-none::-webkit-outer-spin-button{appearance:none}.\[\&\>a\]\:block>a{display:block}.\[\&\>a\]\:w-full>a{width:100%}.\[\&\>a\]\:px-2>a{padding-left:.5rem;padding-right:.5rem}.\[\&\>a\]\:px-4>a{padding-left:1rem;padding-right:1rem}.\[\&\>a\]\:py-md>a{padding-bottom:var(--spacing-md);padding-top:var(--spacing-md)}.\[\&\>div\]\:z-1>div{z-index:1}.\[\&\>div\]\:z-10>div{z-index:10}.\[\&\>div\]\:w-fit>div{width:fit-content}.\[\&\>ol\>li\]\:truncate>ol>li{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.\[\&\>span\]\:overflow-hidden>span{overflow:hidden}.\[\&\>span\]\:truncate>span{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.\[\&_input\]\:\!w-\[1\.15em\] input{width:1.15em!important}.\[\&_input\]\:text-center input{text-align:center}.\[\&_span\]\:hover\:text-color-brand-bold:hover span,.\[\&_span\]\:text-color-brand-bold span{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}</style> <style>@charset "UTF-8"; /*! tailwindcss v3.3.2 | MIT License | https://tailwindcss.com*/*,:after,:before{border:0 solid;box-sizing:border-box}:after,:before{--tw-content:""}html{line-height:1.5;-webkit-text-size-adjust:100%;font-family:Suisse Int\'l,ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-feature-settings:normal;font-variation-settings:normal;-moz-tab-size:4;-o-tab-size:4;tab-size:4}body{line-height:inherit;margin:0}hr{border-top-width:1px;color:inherit;height:0}abbr:where([title]){-webkit-text-decoration:underline dotted;text-decoration:underline dotted}h1,h2,h3,h4,h5,h6{font-size:inherit;font-weight:inherit}a{color:inherit;text-decoration:inherit}b,strong{font-weight:bolder}code,kbd,pre,samp{font-family:ui-monospace,SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace;font-size:1em}small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}table{border-collapse:collapse;border-color:inherit;text-indent:0}button,input,optgroup,select,textarea{color:inherit;font-family:inherit;font-size:100%;font-weight:inherit;line-height:inherit;margin:0;padding:0}button,select{text-transform:none}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button;background-color:transparent;background-image:none}:-moz-focusring{outline:auto}:-moz-ui-invalid{box-shadow:none}progress{vertical-align:baseline}::-webkit-inner-spin-button,::-webkit-outer-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}summary{display:list-item}blockquote,dd,dl,figure,h1,h2,h3,h4,h5,h6,hr,p,pre{margin:0}fieldset{margin:0}fieldset,legend{padding:0}menu,ol,ul{list-style:none;margin:0;padding:0}textarea{resize:vertical}input::-moz-placeholder,textarea::-moz-placeholder{color:#9ca3af;opacity:1}input::placeholder,textarea::placeholder{color:#9ca3af;opacity:1}[role=button],button{cursor:pointer}:disabled{cursor:default}audio,canvas,embed,iframe,img,object,svg,video{display:block;vertical-align:middle}img,video{height:auto;max-width:100%}[hidden]{display:none}html{color:0,0,0;color:var(--color-text-default)}:root{--color-blue-000:233,241,255;--color-blue-100:208,228,255;--color-blue-200:155,203,255;--color-blue-300:105,176,245;--color-blue-400:76,149,216;--color-blue-500:51,122,183;--color-blue-600:0,98,159;--color-blue-700:0,88,144;--color-blue-800:0,74,121;--color-blue-900:0,50,86;--color-blue-1000:0,29,52;--color-red-000:255,251,255;--color-red-100:255,218,212;--color-red-200:255,180,166;--color-red-300:255,138,117;--color-red-400:255,85,59;--color-red-500:225,25,0;--color-red-600:211,28,4;--color-red-700:189,19,0;--color-red-800:144,12,0;--color-red-900:103,6,0;--color-red-1000:64,2,0;--color-yellow-000:254,252,232;--color-yellow-100:254,249,195;--color-yellow-200:254,240,138;--color-yellow-300:253,224,71;--color-yellow-400:250,204,21;--color-yellow-500:234,179,8;--color-yellow-600:209,149,7;--color-yellow-700:196,132,4;--color-yellow-800:168,106,7;--color-yellow-900:143,87,13;--color-yellow-1000:125,75,17;--color-green-000:241,254,248;--color-green-100:191,238,215;--color-green-200:101,214,160;--color-green-300:60,194,129;--color-green-400:34,173,106;--color-green-500:5,148,79;--color-green-600:9,133,73;--color-green-700:0,109,56;--color-green-800:0,82,41;--color-green-900:0,57,26;--color-green-1000:0,33,13;--color-cyan-000:245,251,255;--color-cyan-100:220,243,255;--color-cyan-200:195,234,254;--color-cyan-300:170,224,253;--color-cyan-400:145,214,251;--color-cyan-500:89,186,240;--color-cyan-600:44,154,207;--color-cyan-700:0,127,176;--color-cyan-800:0,101,141;--color-cyan-900:0,76,107;--color-cyan-1000:0,52,75;--color-neutral-000:248,249,253;--color-neutral-100:247,248,249;--color-neutral-200:241,242,244;--color-neutral-300:220,223,228;--color-neutral-400:179,185,196;--color-neutral-500:133,144,162;--color-neutral-600:117,129,149;--color-neutral-700:98,111,134;--color-neutral-800:68,84,111;--color-neutral-900:44,62,93;--color-neutral-1000:23,43,77;--color-white:255,255,255;--color-black:0,0,0;--color-brand-sunken:var(--color-yellow-000);--color-brand-subtlest:var(--color-yellow-100);--color-brand-subtler:var(--color-yellow-200);--color-brand-subtle:var(--color-yellow-300);--color-brand-default:var(--color-yellow-400);--color-brand-bold:var(--color-yellow-500);--color-brand-bolder:var(--color-yellow-600);--color-brand-boldest:var(--color-yellow-700);--color-brand-strong:var(--color-yellow-800);--color-brand-stronger:var(--color-yellow-900);--color-brand-strongest:var(--color-yellow-1000);--color-accent-sunken:var(--color-black);--color-accent-subtlest:var(--color-black);--color-accent-subtler:var(--color-black);--color-accent-subtle:var(--color-black);--color-accent-default:var(--color-black);--color-accent-bold:var(--color-black);--color-accent-bolder:var(--color-black);--color-accent-boldest:var(--color-black);--color-accent-strong:var(--color-black);--color-accent-stronger:var(--color-black);--color-accent-strongest:var(--color-black);--color-error-sunken:var(--color-red-000);--color-error-subtlest:var(--color-red-100);--color-error-bold:var(--color-red-500);--color-warning-sunken:var(--color-yellow-000);--color-warning-subtlest:var(--color-yellow-100);--color-warning-bold:var(--color-yellow-500);--color-success-sunken:var(--color-green-000);--color-success-subtlest:var(--color-green-100);--color-success-bold:var(--color-green-500);--color-info-sunken:var(--color-cyan-000);--color-info-subtlest:var(--color-cyan-100);--color-info-bold:var(--color-cyan-500);--color-link-bold:1,86,206;--color-link-bolder:1,75,181;--color-link-boldest:1,65,155;--color-text-default:var(--color-black);--color-text-subtle:var(--color-neutral-700);--color-text-subtlest:var(--color-neutral-600);--color-text-disabled:var(--color-neutral-400);--color-text-inverse:var(--color-white);--color-text-onbrand:var(--color-white);--color-text-onaccent:var(--color-white);--color-text-brand-bold:var(--color-brand-bold);--color-text-brand-bolder:var(--color-brand-bolder);--color-text-brand-boldest:var(--color-brand-boldest);--color-text-accent-bold:var(--color-white);--color-text-accent-bolder:var(--color-white);--color-text-accent-boldest:var(--color-white);--color-text-link-bold:var(--color-link-bold);--color-text-link-bolder:var(--color-link-bolder);--color-text-link-boldest:var(--color-link-boldest);--color-text-link-subtle:var(--color-neutral-700);--color-text-error:var(--color-red-600);--color-text-warning:var(--color-yellow-600);--color-text-success:var(--color-green-600);--color-text-info:var(--color-cyan-600);--color-surface-subtle:var(--color-neutral-000);--color-surface-default:var(--color-white);--color-surface-inverse:var(--color-black);--color-surface-selected:var(--color-neutral-000);--color-surface-disabled:var(--color-neutral-200);--color-bg-brand-sunken:var(--color-brand-sunken);--color-bg-brand-subtlest:var(--color-brand-subtlest);--color-bg-brand-subtler:var(--color-brand-subtler);--color-bg-brand-subtle:var(--color-brand-subtle);--color-bg-brand-default:var(--color-brand-default);--color-bg-brand-bold:var(--color-brand-bold);--color-bg-brand-bolder:var(--color-brand-bolder);--color-bg-brand-boldest:var(--color-brand-boldest);--color-bg-brand-strong:var(--color-brand-strong);--color-bg-brand-stronger:var(--color-brand-stronger);--color-bg-brand-strongest:var(--color-brand-strongest);--color-bg-accent-sunken:var(--color-accent-sunken);--color-bg-accent-subtlest:var(--color-accent-subtlest);--color-bg-accent-subtler:var(--color-accent-subtler);--color-bg-accent-subtle:var(--color-accent-subtle);--color-bg-accent-default:var(--color-accent-default);--color-bg-accent-bold:var(--color-accent-bold);--color-bg-accent-bolder:var(--color-accent-bolder);--color-bg-accent-boldest:var(--color-accent-boldest);--color-bg-accent-strong:var(--color-accent-strong);--color-bg-accent-stronger:var(--color-accent-stronger);--color-bg-accent-strongest:var(--color-accent-strongest);--color-bg-content-sunken:var(--color-brand-sunken);--color-bg-content-subtlest:var(--color-brand-subtlest);--color-bg-content-subtler:var(--color-brand-subtler);--color-bg-content-subtle:var(--color-brand-subtle);--color-bg-content-default:var(--color-brand-default);--color-bg-content-bold:var(--color-brand-bold);--color-bg-content-bolder:var(--color-brand-bolder);--color-bg-content-boldest:var(--color-brand-boldest);--color-bg-content-inverse-subtler:var(--color-brand-strong);--color-bg-content-inverse-subtle:var(--color-brand-stronger);--color-bg-content-inverse:var(--color-brand-strongest);--color-bg-error-sunken:var(--color-error-sunken);--color-bg-error-subtlest:var(--color-error-subtlest);--color-bg-error-bold:var(--color-error-bold);--color-bg-warning-sunken:var(--color-warning-sunken);--color-bg-warning-subtlest:var(--color-warning-subtlest);--color-bg-warning-bold:var(--color-warning-bold);--color-bg-success-sunken:var(--color-success-sunken);--color-bg-success-subtlest:var(--color-success-subtlest);--color-bg-success-bold:var(--color-success-bold);--color-bg-info-sunken:var(--color-info-sunken);--color-bg-info-subtlest:var(--color-info-subtlest);--color-bg-info-bold:var(--color-info-bold);--color-border-default:var(--color-neutral-300);--color-border-bold:var(--color-neutral-400);--color-border-brand:var(--color-brand-bold);--color-border-selected:var(--color-brand-bold);--color-border-error:var(--color-error-bold);--color-border-warning:var(--color-warning-bold);--color-border-success:var(--color-success-bold);--color-border-info:var(--color-info-bold);--spacing-xs:0.25rem;--spacing-sm:0.5rem;--spacing-md:1rem;--spacing-lg:1.5rem;--spacing-xl:2rem;--spacing-2xl:2.5rem;--spacing-3xl:3rem;--spacing-4xl:3.5rem;--spacing-5xl:4rem;--spacing-6xl:4.5rem;--spacing-7xl:5rem;--spacing-8xl:5.5rem;--spacing-9xl:6rem;--spacing-10xl:6.5rem;--h1-lg-size:3.75rem;--h1-md-size:3rem;--h1-sm-size:2.25rem;--h2-lg-size:3rem;--h2-md-size:2.25rem;--h2-sm-size:1.875rem;--h3-lg-size:2.375rem;--h3-md-size:1.875rem;--h3-sm-size:1.5rem;--h4-lg-size:1.875rem;--h4-md-size:1.5rem;--h4-sm-size:1.25rem;--h5-lg-size:1.25rem;--h5-md-size:1.125rem;--h5-sm-size:1rem;--h6-lg-size:1.125rem;--h6-md-size:1rem;--h6-sm-size:0.875rem;--h1-lg-line-height:1;--h1-md-line-height:1;--h1-sm-line-height:1.11;--h2-lg-line-height:1.2;--h2-md-line-height:1.11;--h2-sm-line-height:1.2;--h3-lg-line-height:1.3;--h3-md-line-height:1.2;--h3-sm-line-height:1.33;--h4-lg-line-height:1.3;--h4-md-line-height:1.33;--h4-sm-line-height:1.4;--h5-lg-line-height:1.5;--h5-md-line-height:1.55;--h5-sm-line-height:1.5;--h6-lg-line-height:1.55;--h6-md-line-height:1.5;--h6-sm-line-height:1.5}.m-switch{--color-brand-default:35,35,35;--color-bg-content-default:var(--color-neutral-400);--color-bg-content-bold:var(--color-neutral-500);--color-bg-content-bolder:var(--color-neutral-600);--color-brand-bold:var(--color-black);--color-brand-bolder:var(--color-black)}.m-checkbox{--color-brand-bold:0,0,0;--color-border-brand:0,0,0;--color-brand-default:0,0,0}.m-autocomplete,.m-select{--color-text-brand-bold:0,0,0;--color-text-brand-bolder:0,0,0}.m-range-slider{--color-brand-bold:0,0,0;--color-brand-bolder:0,0,0;--color-brand-strong:0,0,0;--color-bg-content-default:var(--color-border-default)}.m-tag{--color-text-brand-bold:0,0,0}.m-chip{--color-text-brand-bolder:0,0,0}.m-dropdown,.m-list,.m-notification,.m-tabs{--color-text-brand-bold:0,0,0}.m-tabs__header{--color-bg-content-subtle:var(--color-border-default)}.m-loader{--color-brand-bold:0,0,0;--color-brand-sunken:var(--color-neutral-100)}.m-search-select{--color-surface-selected:var(--color-brand-default);--color-surface-subtle:var(--color-white);--color-text-brand-bold:var(--color-black)}.m-button-group>.m-button--active{--color-brand-strong:var(--color-black);--color-text-on-brand:var(--color-white)}.m-radio-group{--color-border-brand:0,0,0;--color-brand-bold:0,0,0;--color-brand-bolder:0,0,0;--color-brand-boldest:0,0,0}.m-stepper{--color-surface-selected:var(--color-bg-brand-boldest);--color-text-brand-bold:var(--color-black);--color-brand-bold:var(--color-bg-brand-subtler);--color-white:var(--color-text-subtle);--color-brand-default:var(--color-bg-brand-subtlest);--color-text-default:var(--color-text-subtle)}.m-stepper__line{--color-brand-bold:var(--color-black);--color-bg-content-default:var(--color-border-bold)}.m-feature{--color-text-brand-bolder:var(--color-brand-default)}*,:after,:before{--tw-border-spacing-x:0;--tw-border-spacing-y:0;--tw-translate-x:0;--tw-translate-y:0;--tw-rotate:0;--tw-skew-x:0;--tw-skew-y:0;--tw-scale-x:1;--tw-scale-y:1;--tw-pan-x: ;--tw-pan-y: ;--tw-pinch-zoom: ;--tw-scroll-snap-strictness:proximity;--tw-gradient-from-position: ;--tw-gradient-via-position: ;--tw-gradient-to-position: ;--tw-ordinal: ;--tw-slashed-zero: ;--tw-numeric-figure: ;--tw-numeric-spacing: ;--tw-numeric-fraction: ;--tw-ring-inset: ;--tw-ring-offset-width:0px;--tw-ring-offset-color:#fff;--tw-ring-color:rgba(59,130,246,.5);--tw-ring-offset-shadow:0 0 #0000;--tw-ring-shadow:0 0 #0000;--tw-shadow:0 0 #0000;--tw-shadow-colored:0 0 #0000;--tw-blur: ;--tw-brightness: ;--tw-contrast: ;--tw-grayscale: ;--tw-hue-rotate: ;--tw-invert: ;--tw-saturate: ;--tw-sepia: ;--tw-drop-shadow: ;--tw-backdrop-blur: ;--tw-backdrop-brightness: ;--tw-backdrop-contrast: ;--tw-backdrop-grayscale: ;--tw-backdrop-hue-rotate: ;--tw-backdrop-invert: ;--tw-backdrop-opacity: ;--tw-backdrop-saturate: ;--tw-backdrop-sepia: }::backdrop{--tw-border-spacing-x:0;--tw-border-spacing-y:0;--tw-translate-x:0;--tw-translate-y:0;--tw-rotate:0;--tw-skew-x:0;--tw-skew-y:0;--tw-scale-x:1;--tw-scale-y:1;--tw-pan-x: ;--tw-pan-y: ;--tw-pinch-zoom: ;--tw-scroll-snap-strictness:proximity;--tw-gradient-from-position: ;--tw-gradient-via-position: ;--tw-gradient-to-position: ;--tw-ordinal: ;--tw-slashed-zero: ;--tw-numeric-figure: ;--tw-numeric-spacing: ;--tw-numeric-fraction: ;--tw-ring-inset: ;--tw-ring-offset-width:0px;--tw-ring-offset-color:#fff;--tw-ring-color:rgba(59,130,246,.5);--tw-ring-offset-shadow:0 0 #0000;--tw-ring-shadow:0 0 #0000;--tw-shadow:0 0 #0000;--tw-shadow-colored:0 0 #0000;--tw-blur: ;--tw-brightness: ;--tw-contrast: ;--tw-grayscale: ;--tw-hue-rotate: ;--tw-invert: ;--tw-saturate: ;--tw-sepia: ;--tw-drop-shadow: ;--tw-backdrop-blur: ;--tw-backdrop-brightness: ;--tw-backdrop-contrast: ;--tw-backdrop-grayscale: ;--tw-backdrop-hue-rotate: ;--tw-backdrop-invert: ;--tw-backdrop-opacity: ;--tw-backdrop-saturate: ;--tw-backdrop-sepia: }.container{width:100%}@media (min-width:576px){.container{max-width:576px}}@media (min-width:768px){.container{max-width:768px}}@media (min-width:1024px){.container{max-width:1024px}}@media (min-width:1280px){.container{max-width:1280px}}@media (min-width:1440px){.container{max-width:1440px}}@media (min-width:1920px){.container{max-width:1920px}}.prose{color:var(--tw-prose-body);max-width:65ch}.prose :where(p):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em;margin-top:1.25em}.prose :where([class~=lead]):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-lead);font-size:1.25em;line-height:1.6;margin-bottom:1.2em;margin-top:1.2em}.prose :where(a):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-links);font-weight:500;text-decoration:underline}.prose :where(strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-bold);font-weight:600}.prose :where(a strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(blockquote strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(thead th strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(ol):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:decimal;margin-bottom:1.25em;margin-top:1.25em;padding-inline-start:1.625em}.prose :where(ol[type=A]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-alpha}.prose :where(ol[type=a]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-alpha}.prose :where(ol[type=A s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-alpha}.prose :where(ol[type=a s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-alpha}.prose :where(ol[type=I]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-roman}.prose :where(ol[type=i]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-roman}.prose :where(ol[type=I s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-roman}.prose :where(ol[type=i s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-roman}.prose :where(ol[type="1"]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:decimal}.prose :where(ul):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:disc;margin-bottom:1.25em;margin-top:1.25em;padding-inline-start:1.625em}.prose :where(ol>li):not(:where([class~=not-prose],[class~=not-prose] *))::marker{color:var(--tw-prose-counters);font-weight:400}.prose :where(ul>li):not(:where([class~=not-prose],[class~=not-prose] *))::marker{color:var(--tw-prose-bullets)}.prose :where(dt):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;margin-top:1.25em}.prose :where(hr):not(:where([class~=not-prose],[class~=not-prose] *)){border-color:var(--tw-prose-hr);border-top-width:1px;margin-bottom:3em;margin-top:3em}.prose :where(blockquote):not(:where([class~=not-prose],[class~=not-prose] *)){border-inline-start-color:var(--tw-prose-quote-borders);border-inline-start-width:.25rem;color:var(--tw-prose-quotes);font-style:italic;font-weight:500;margin-bottom:1.6em;margin-top:1.6em;padding-inline-start:1em;quotes:"\201C""\201D""\2018""\2019"}.prose :where(blockquote p:first-of-type):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:open-quote}.prose :where(blockquote p:last-of-type):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:close-quote}.prose :where(h1):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:2.25em;font-weight:800;line-height:1.1111111;margin-bottom:.8888889em;margin-top:0}.prose :where(h1 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:900}.prose :where(h2):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:1.5em;font-weight:700;line-height:1.3333333;margin-bottom:1em;margin-top:2em}.prose :where(h2 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:800}.prose :where(h3):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:1.25em;font-weight:600;line-height:1.6;margin-bottom:.6em;margin-top:1.6em}.prose :where(h3 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:700}.prose :where(h4):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;line-height:1.5;margin-bottom:.5em;margin-top:1.5em}.prose :where(h4 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:700}.prose :where(img):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(picture):not(:where([class~=not-prose],[class~=not-prose] *)){display:block;margin-bottom:2em;margin-top:2em}.prose :where(video):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(kbd):not(:where([class~=not-prose],[class~=not-prose] *)){border-radius:.3125rem;box-shadow:0 0 0 1px rgb(var(--tw-prose-kbd-shadows)/10%),0 3px 0 rgb(var(--tw-prose-kbd-shadows)/10%);color:var(--tw-prose-kbd);font-family:inherit;font-size:.875em;font-weight:500;padding-inline-end:.375em;padding-bottom:.1875em;padding-top:.1875em;padding-inline-start:.375em}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-code);font-size:.875em;font-weight:600}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:"`"}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:"`"}.prose :where(a code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(h1 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(h2 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-size:.875em}.prose :where(h3 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-size:.9em}.prose :where(h4 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(blockquote code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(thead th code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(pre):not(:where([class~=not-prose],[class~=not-prose] *)){background-color:var(--tw-prose-pre-bg);border-radius:.375rem;color:var(--tw-prose-pre-code);font-size:.875em;font-weight:400;line-height:1.7142857;margin-bottom:1.7142857em;margin-top:1.7142857em;overflow-x:auto;padding-inline-end:1.1428571em;padding-bottom:.8571429em;padding-top:.8571429em;padding-inline-start:1.1428571em}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)){background-color:transparent;border-radius:0;border-width:0;color:inherit;font-family:inherit;font-size:inherit;font-weight:inherit;line-height:inherit;padding:0}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:none}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:none}.prose :where(table):not(:where([class~=not-prose],[class~=not-prose] *)){font-size:.875em;line-height:1.7142857;margin-bottom:2em;margin-top:2em;table-layout:auto;width:100%}.prose :where(thead):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-color:var(--tw-prose-th-borders);border-bottom-width:1px}.prose :where(thead th):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;padding-inline-end:.5714286em;padding-bottom:.5714286em;padding-inline-start:.5714286em;vertical-align:bottom}.prose :where(tbody tr):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-color:var(--tw-prose-td-borders);border-bottom-width:1px}.prose :where(tbody tr:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-width:0}.prose :where(tbody td):not(:where([class~=not-prose],[class~=not-prose] *)){vertical-align:baseline}.prose :where(tfoot):not(:where([class~=not-prose],[class~=not-prose] *)){border-top-color:var(--tw-prose-th-borders);border-top-width:1px}.prose :where(tfoot td):not(:where([class~=not-prose],[class~=not-prose] *)){vertical-align:top}.prose :where(th,td):not(:where([class~=not-prose],[class~=not-prose] *)){text-align:start}.prose :where(figure>*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0;margin-top:0}.prose :where(figcaption):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-captions);font-size:.875em;line-height:1.4285714;margin-top:.8571429em}.prose{--tw-prose-body:#374151;--tw-prose-headings:#111827;--tw-prose-lead:#4b5563;--tw-prose-links:#111827;--tw-prose-bold:#111827;--tw-prose-counters:#6b7280;--tw-prose-bullets:#d1d5db;--tw-prose-hr:#e5e7eb;--tw-prose-quotes:#111827;--tw-prose-quote-borders:#e5e7eb;--tw-prose-captions:#6b7280;--tw-prose-kbd:#111827;--tw-prose-kbd-shadows:17 24 39;--tw-prose-code:#111827;--tw-prose-pre-code:#e5e7eb;--tw-prose-pre-bg:#1f2937;--tw-prose-th-borders:#d1d5db;--tw-prose-td-borders:#e5e7eb;--tw-prose-invert-body:#d1d5db;--tw-prose-invert-headings:#fff;--tw-prose-invert-lead:#9ca3af;--tw-prose-invert-links:#fff;--tw-prose-invert-bold:#fff;--tw-prose-invert-counters:#9ca3af;--tw-prose-invert-bullets:#4b5563;--tw-prose-invert-hr:#374151;--tw-prose-invert-quotes:#f3f4f6;--tw-prose-invert-quote-borders:#374151;--tw-prose-invert-captions:#9ca3af;--tw-prose-invert-kbd:#fff;--tw-prose-invert-kbd-shadows:255 255 255;--tw-prose-invert-code:#fff;--tw-prose-invert-pre-code:#d1d5db;--tw-prose-invert-pre-bg:rgba(0,0,0,.5);--tw-prose-invert-th-borders:#4b5563;--tw-prose-invert-td-borders:#374151;font-size:1rem;line-height:1.75}.prose :where(picture>img):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0;margin-top:0}.prose :where(li):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.5em;margin-top:.5em}.prose :where(ol>li):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:.375em}.prose :where(ul>li):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:.375em}.prose :where(.prose>ul>li p):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.75em;margin-top:.75em}.prose :where(.prose>ul>li>p:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:1.25em}.prose :where(.prose>ul>li>p:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em}.prose :where(.prose>ol>li>p:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:1.25em}.prose :where(.prose>ol>li>p:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em}.prose :where(ul ul,ul ol,ol ul,ol ol):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.75em;margin-top:.75em}.prose :where(dl):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em;margin-top:1.25em}.prose :where(dd):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:.5em;padding-inline-start:1.625em}.prose :where(hr+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h2+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h3+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h4+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(thead th:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:0}.prose :where(thead th:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:0}.prose :where(tbody td,tfoot td):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:.5714286em;padding-bottom:.5714286em;padding-top:.5714286em;padding-inline-start:.5714286em}.prose :where(tbody td:first-child,tfoot td:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:0}.prose :where(tbody td:last-child,tfoot td:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:0}.prose :where(figure):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(.prose>:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(.prose>:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0}.sr-only{height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px;clip:rect(0,0,0,0);border-width:0;white-space:nowrap}.pointer-events-none{pointer-events:none}.visible{visibility:visible}.invisible{visibility:hidden}.collapse{visibility:collapse}.static{position:static}.fixed{position:fixed}.\!absolute{position:absolute!important}.absolute{position:absolute}.relative{position:relative}.sticky{position:sticky}.inset-0{inset:0}.inset-y-0{bottom:0;top:0}.-top-px{top:-1px}.bottom-0{bottom:0}.bottom-1{bottom:.25rem}.bottom-1\.5{bottom:.375rem}.bottom-10{bottom:2.5rem}.bottom-24{bottom:6rem}.bottom-4{bottom:1rem}.bottom-6{bottom:1.5rem}.bottom-\[7\.5rem\]{bottom:7.5rem}.bottom-md{bottom:1rem;bottom:var(--spacing-md)}.left-0{left:0}.left-1\/2{left:50%}.left-12{left:3rem}.left-4{left:1rem}.left-6{left:1.5rem}.left-md{left:1rem;left:var(--spacing-md)}.right-0{right:0}.right-1{right:.25rem}.right-1\.5{right:.375rem}.right-12{right:3rem}.right-2{right:.5rem}.right-2\.5{right:.625rem}.right-4{right:1rem}.right-6{right:1.5rem}.right-8{right:2rem}.right-\[-10px\]{right:-10px}.right-\[-4px\]{right:-4px}.right-\[-8px\]{right:-8px}.right-\[1rem\]{right:1rem}.right-\[3\.125rem\]{right:3.125rem}.top-0{top:0}.top-1{top:.25rem}.top-1\/2{top:50%}.top-12{top:3rem}.top-14{top:3.5rem}.top-16{top:4rem}.top-20{top:5rem}.top-4{top:1rem}.top-6{top:1.5rem}.top-\[-4px\]{top:-4px}.top-\[-5\.875rem\]{top:-5.875rem}.top-\[4\.625rem\]{top:4.625rem}.top-\[48\%\]{top:48%}.top-\[calc\(50vh\+15rem\)\]{top:calc(50vh + 15rem)}.top-\[calc\(50vh\+6\.25rem\)\]{top:calc(50vh + 6.25rem)}.isolate{isolation:isolate}.-z-10{z-index:-10}.z-0{z-index:0}.z-1{z-index:1}.z-10{z-index:10}.z-20{z-index:20}.z-40{z-index:40}.z-50{z-index:50}.float-left{float:left}.clear-left{clear:left}.m-0{margin:0}.m-\[\.625rem\]{margin:.625rem}.m-auto{margin:auto}.m-md{margin:1rem;margin:var(--spacing-md)}.mx-auto{margin-left:auto;margin-right:auto}.mx-lg{margin-left:1.5rem;margin-left:var(--spacing-lg);margin-right:1.5rem;margin-right:var(--spacing-lg)}.mx-md{margin-left:1rem;margin-left:var(--spacing-md);margin-right:1rem;margin-right:var(--spacing-md)}.mx-sm{margin-left:.5rem;margin-left:var(--spacing-sm);margin-right:.5rem;margin-right:var(--spacing-sm)}.my-0{margin-bottom:0;margin-top:0}.my-2xl{margin-bottom:2.5rem;margin-bottom:var(--spacing-2xl);margin-top:2.5rem;margin-top:var(--spacing-2xl)}.my-4{margin-bottom:1rem;margin-top:1rem}.my-5xl{margin-bottom:4rem;margin-bottom:var(--spacing-5xl);margin-top:4rem;margin-top:var(--spacing-5xl)}.my-lg{margin-bottom:1.5rem;margin-bottom:var(--spacing-lg);margin-top:1.5rem;margin-top:var(--spacing-lg)}.my-md{margin-bottom:1rem;margin-bottom:var(--spacing-md);margin-top:1rem;margin-top:var(--spacing-md)}.my-sm{margin-bottom:.5rem;margin-bottom:var(--spacing-sm);margin-top:.5rem;margin-top:var(--spacing-sm)}.my-xl{margin-bottom:2rem;margin-bottom:var(--spacing-xl);margin-top:2rem;margin-top:var(--spacing-xl)}.-mr-0{margin-right:0}.-mr-0\.5{margin-right:-.125rem}.-mr-1{margin-right:-.25rem}.-mr-2{margin-right:-.5rem}.-mr-2\.5{margin-right:-.625rem}.-mt-xs{margin-top:-.25rem;margin-top:calc(var(--spacing-xs)*-1)}.mb-1{margin-bottom:.25rem}.mb-2{margin-bottom:.5rem}.mb-2xl{margin-bottom:2.5rem;margin-bottom:var(--spacing-2xl)}.mb-3{margin-bottom:.75rem}.mb-4{margin-bottom:1rem}.mb-6{margin-bottom:1.5rem}.mb-7xl{margin-bottom:5rem;margin-bottom:var(--spacing-7xl)}.mb-\[0\.25rem\]{margin-bottom:.25rem}.mb-lg{margin-bottom:1.5rem;margin-bottom:var(--spacing-lg)}.mb-md{margin-bottom:1rem;margin-bottom:var(--spacing-md)}.mb-sm{margin-bottom:.5rem;margin-bottom:var(--spacing-sm)}.mb-xl{margin-bottom:2rem;margin-bottom:var(--spacing-xl)}.mb-xs{margin-bottom:.25rem;margin-bottom:var(--spacing-xs)}.ml-2{margin-left:.5rem}.ml-2xl{margin-left:2.5rem;margin-left:var(--spacing-2xl)}.ml-\[-0\.0625rem\]{margin-left:-.0625rem}.ml-\[-0\.75rem\]{margin-left:-.75rem}.ml-\[0\.625rem\]{margin-left:.625rem}.ml-\[0\.75rem\]{margin-left:.75rem}.ml-auto{margin-left:auto}.ml-lg{margin-left:1.5rem;margin-left:var(--spacing-lg)}.ml-md{margin-left:1rem;margin-left:var(--spacing-md)}.ml-sm{margin-left:.5rem;margin-left:var(--spacing-sm)}.ml-xs{margin-left:.25rem;margin-left:var(--spacing-xs)}.mr-4{margin-right:1rem}.mr-5{margin-right:1.25rem}.mr-6{margin-right:1.5rem}.mr-\[\.125rem\]{margin-right:.125rem}.mr-\[\.625rem\]{margin-right:.625rem}.mr-\[0\.3125rem\]{margin-right:.3125rem}.mr-\[2\.3125rem\]{margin-right:2.3125rem}.mr-\[2\.375rem\]{margin-right:2.375rem}.mr-\[5\.625rem\]{margin-right:5.625rem}.mr-lg{margin-right:1.5rem;margin-right:var(--spacing-lg)}.mr-md{margin-right:1rem;margin-right:var(--spacing-md)}.mr-sm{margin-right:.5rem;margin-right:var(--spacing-sm)}.mr-xl{margin-right:2rem;margin-right:var(--spacing-xl)}.mr-xs{margin-right:.25rem;margin-right:var(--spacing-xs)}.mt-1{margin-top:.25rem}.mt-2xl{margin-top:2.5rem;margin-top:var(--spacing-2xl)}.mt-3xl{margin-top:3rem;margin-top:var(--spacing-3xl)}.mt-6{margin-top:1.5rem}.mt-\[-3rem\]{margin-top:-3rem}.mt-\[\.625rem\]{margin-top:.625rem}.mt-\[1\.25rem\]{margin-top:1.25rem}.mt-\[1rem\]{margin-top:1rem}.mt-lg{margin-top:1.5rem;margin-top:var(--spacing-lg)}.mt-md{margin-top:1rem;margin-top:var(--spacing-md)}.mt-sm{margin-top:.5rem;margin-top:var(--spacing-sm)}.mt-xl{margin-top:2rem;margin-top:var(--spacing-xl)}.mt-xs{margin-top:.25rem;margin-top:var(--spacing-xs)}.box-border{box-sizing:border-box}.line-clamp-1{-webkit-line-clamp:1}.line-clamp-1,.line-clamp-3{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical}.line-clamp-3{-webkit-line-clamp:3}.\!block{display:block!important}.block{display:block}.\!inline-block{display:inline-block!important}.inline-block{display:inline-block}.\!inline{display:inline!important}.inline{display:inline}.flex{display:flex}.\!inline-flex{display:inline-flex!important}.inline-flex{display:inline-flex}.table{display:table}.grid{display:grid}.contents{display:contents}.\!hidden{display:none!important}.hidden{display:none}.aspect-\[1\/1\.414\]{aspect-ratio:1/1.414}.aspect-\[1200\/630\]{aspect-ratio:1200/630}.aspect-\[381\/200\]{aspect-ratio:381/200}.aspect-\[4\/5\]{aspect-ratio:4/5}.aspect-square{aspect-ratio:1/1}.aspect-video{aspect-ratio:16/9}.\!h-6{height:1.5rem!important}.h-0{height:0}.h-0\.5{height:.125rem}.h-1{height:.25rem}.h-1\.5{height:.375rem}.h-10{height:2.5rem}.h-12{height:3rem}.h-14{height:3.5rem}.h-16{height:4rem}.h-2{height:.5rem}.h-20{height:5rem}.h-28{height:7rem}.h-3{height:.75rem}.h-32{height:8rem}.h-36{height:9rem}.h-4{height:1rem}.h-48{height:12rem}.h-5{height:1.25rem}.h-52{height:13rem}.h-6{height:1.5rem}.h-7{height:1.75rem}.h-8{height:2rem}.h-80{height:20rem}.h-9{height:2.25rem}.h-96{height:24rem}.h-\[\.25rem\]{height:.25rem}.h-\[0\.5rem\]{height:.5rem}.h-\[0\.9rem\]{height:.9rem}.h-\[1\.15em\]{height:1.15em}.h-\[1\.3rem\]{height:1.3rem}.h-\[1\.4rem\]{height:1.4rem}.h-\[1\.5rem\]{height:1.5rem}.h-\[1\.8125rem\]{height:1.8125rem}.h-\[1\.875rem\]{height:1.875rem}.h-\[100\%\]{height:100%}.h-\[100px\]{height:100px}.h-\[150px\]{height:150px}.h-\[160px\]{height:160px}.h-\[1rem\]{height:1rem}.h-\[2\.5rem\]{height:2.5rem}.h-\[24rem\]{height:24rem}.h-\[25\.25rem\]{height:25.25rem}.h-\[3\.625rem\]{height:3.625rem}.h-\[3\.75rem\]{height:3.75rem}.h-\[30rem\]{height:30rem}.h-\[35\.5rem\]{height:35.5rem}.h-\[38rem\]{height:38rem}.h-\[4\.5rem\]{height:4.5rem}.h-\[50rem\]{height:50rem}.h-\[5rem\]{height:5rem}.h-\[6\.5rem\]{height:6.5rem}.h-\[6px\]{height:6px}.h-\[auto\],.h-auto{height:auto}.h-fit{height:-moz-fit-content;height:fit-content}.h-full{height:100%}.h-px{height:1px}.max-h-60{max-height:15rem}.max-h-80{max-height:20rem}.min-h-\[1\.5rem\]{min-height:1.5rem}.min-h-\[100px\]{min-height:100px}.min-h-\[15vh\]{min-height:15vh}.min-h-\[45rem\]{min-height:45rem}.min-h-\[70vh\]{min-height:70vh}.min-h-full{min-height:100%}.\!w-2xl{width:2.5rem!important;width:var(--spacing-2xl)!important}.\!w-40{width:10rem!important}.\!w-fit{width:-moz-fit-content!important;width:fit-content!important}.\!w-full{width:100%!important}.w-1{width:.25rem}.w-1\.5{width:.375rem}.w-1\/2{width:50%}.w-1\/4{width:25%}.w-1\/5{width:20%}.w-10{width:2.5rem}.w-12{width:3rem}.w-14{width:3.5rem}.w-16{width:4rem}.w-2{width:.5rem}.w-20{width:5rem}.w-28{width:7rem}.w-3{width:.75rem}.w-3\/5{width:60%}.w-32{width:8rem}.w-36{width:9rem}.w-4{width:1rem}.w-4\/5{width:80%}.w-40{width:10rem}.w-4xl{width:3.5rem;width:var(--spacing-4xl)}.w-5{width:1.25rem}.w-6{width:1.5rem}.w-60{width:15rem}.w-7{width:1.75rem}.w-8{width:2rem}.w-80{width:20rem}.w-9{width:2.25rem}.w-96{width:24rem}.w-\[\.25rem\]{width:.25rem}.w-\[1\.15em\]{width:1.15em}.w-\[1\.4rem\]{width:1.4rem}.w-\[1\.5rem\]{width:1.5rem}.w-\[1\.6rem\]{width:1.6rem}.w-\[10\%\]{width:10%}.w-\[10\.25rem\]{width:10.25rem}.w-\[10\.625rem\]{width:10.625rem}.w-\[100\%\]{width:100%}.w-\[10rem\]{width:10rem}.w-\[13\.125rem\]{width:13.125rem}.w-\[13rem\]{width:13rem}.w-\[15\%\]{width:15%}.w-\[18rem\]{width:18rem}.w-\[1rem\]{width:1rem}.w-\[2\.5rem\]{width:2.5rem}.w-\[2\.75rem\]{width:2.75rem}.w-\[20\%\]{width:20%}.w-\[22px\]{width:22px}.w-\[25rem\]{width:25rem}.w-\[30\%\]{width:30%}.w-\[33\%\]{width:33%}.w-\[4\.5rem\]{width:4.5rem}.w-\[6\.5rem\]{width:6.5rem}.w-\[6\.75rem\]{width:6.75rem}.w-\[7\.5rem\]{width:7.5rem}.w-\[92\.5vw\]{width:92.5vw}.w-auto{width:auto}.w-fit{width:-moz-fit-content;width:fit-content}.w-full{width:100%}.w-max{width:-moz-max-content;width:max-content}.w-min{width:-moz-min-content;width:min-content}.w-px{width:1px}.w-screen{width:100vw}.\!min-w-0{min-width:0!important}.min-w-10{min-width:2.5rem}.min-w-12{min-width:3rem}.min-w-14{min-width:3.5rem}.min-w-28{min-width:7rem}.min-w-5{min-width:1.25rem}.min-w-6{min-width:1.5rem}.min-w-7{min-width:1.75rem}.min-w-8{min-width:2rem}.min-w-\[0\.5rem\]{min-width:.5rem}.min-w-\[0\.9rem\]{min-width:.9rem}.min-w-\[1\.3rem\]{min-width:1.3rem}.min-w-\[12\.5rem\]{min-width:12.5rem}.min-w-\[146px\]{min-width:146px}.min-w-\[156px\]{min-width:156px}.min-w-\[21rem\]{min-width:21rem}.min-w-\[3\.75rem\]{min-width:3.75rem}.min-w-\[4\.5rem\]{min-width:4.5rem}.min-w-\[6\.5rem\]{min-width:6.5rem}.min-w-fit{min-width:-moz-fit-content;min-width:fit-content}.max-w-\[100\%\]{max-width:100%}.max-w-\[20rem\]{max-width:20rem}.max-w-\[25rem\]{max-width:25rem}.max-w-\[28\.5rem\]{max-width:28.5rem}.max-w-\[30\%\]{max-width:30%}.max-w-\[5rem\]{max-width:5rem}.max-w-\[6px\]{max-width:6px}.max-w-\[80\%\]{max-width:80%}.max-w-\[90rem\]{max-width:90rem}.max-w-\[96\%\]{max-width:96%}.max-w-\[98vw\]{max-width:98vw}.max-w-full{max-width:100%}.max-w-prose{max-width:65ch}.max-w-sm{max-width:24rem}.max-w-xs{max-width:20rem}.\!flex-none{flex:none!important}.flex-1{flex:1 1 0%}.flex-\[1\]{flex:1}.flex-\[2\]{flex:2}.flex-\[3\]{flex:3}.flex-auto{flex:1 1 auto}.flex-none{flex:none}.flex-shrink-0,.shrink-0{flex-shrink:0}.shrink-\[14\]{flex-shrink:14}.grow{flex-grow:1}.grow-\[2\]{flex-grow:2}.basis-6{flex-basis:1.5rem}.origin-bottom{transform-origin:bottom}.origin-bottom-left{transform-origin:bottom left}.origin-bottom-right{transform-origin:bottom right}.origin-center{transform-origin:center}.origin-left{transform-origin:left}.origin-right{transform-origin:right}.origin-top{transform-origin:top}.origin-top-left{transform-origin:top left}.origin-top-right{transform-origin:top right}.-translate-x-1\/2{--tw-translate-x:-50%;transform:translate(-50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-x-full{--tw-translate-x:-100%;transform:translate(-100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-1\/2{--tw-translate-y:-50%;transform:translate(var(--tw-translate-x),-50%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-2{--tw-translate-y:-0.5rem;transform:translate(var(--tw-translate-x),-.5rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-4{--tw-translate-y:-1rem;transform:translate(var(--tw-translate-x),-1rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-\[calc\(100\%\+0\.25rem\)\]{--tw-translate-y:calc(-100% + -0.25rem);transform:translate(var(--tw-translate-x),calc(-100% + -.25rem)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-full{--tw-translate-y:-100%;transform:translate(var(--tw-translate-x),-100%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-0{--tw-translate-x:0px;transform:translateY(var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-0\.5{--tw-translate-x:0.125rem;transform:translate(.125rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-\[1\.375rem\]{--tw-translate-x:1.375rem;transform:translate(1.375rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-full{--tw-translate-x:100%;transform:translate(100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-0{--tw-translate-y:0px;transform:translate(var(--tw-translate-x)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-4{--tw-translate-y:1rem;transform:translate(var(--tw-translate-x),1rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-full{--tw-translate-y:100%;transform:translate(var(--tw-translate-x),100%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.rotate-180{--tw-rotate:180deg;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(180deg) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.rotate-45{--tw-rotate:45deg;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(45deg) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-100{--tw-scale-x:1;--tw-scale-y:1;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(1) scaleY(1);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-95{--tw-scale-x:.95;--tw-scale-y:.95;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(.95) scaleY(.95);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-\[101\.5\%\]{--tw-scale-x:101.5%;--tw-scale-y:101.5%;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(101.5%) scaleY(101.5%)}.scale-\[101\.5\%\],.transform{transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}@keyframes spin{to{transform:rotate(1turn)}}.animate-spin{animation:spin 1s linear infinite}.cursor-default{cursor:default}.cursor-move{cursor:move}.cursor-not-allowed{cursor:not-allowed}.cursor-pointer{cursor:pointer}.select-none{-webkit-user-select:none;-moz-user-select:none;user-select:none}.resize-none{resize:none}.resize{resize:both}.\!list-inside{list-style-position:inside!important}.list-inside{list-style-position:inside}.list-decimal{list-style-type:decimal}.list-disc{list-style-type:disc}.appearance-none{-webkit-appearance:none;-moz-appearance:none;appearance:none}.grid-cols-3{grid-template-columns:repeat(3,minmax(0,1fr))}.flex-row{flex-direction:row}.flex-row-reverse{flex-direction:row-reverse}.flex-col{flex-direction:column}.flex-col-reverse{flex-direction:column-reverse}.flex-wrap{flex-wrap:wrap}.place-content-center{place-content:center}.content-center{align-content:center}.items-start{align-items:flex-start}.items-end{align-items:flex-end}.items-center{align-items:center}.items-baseline{align-items:baseline}.\!justify-start{justify-content:flex-start!important}.justify-start{justify-content:flex-start}.justify-end{justify-content:flex-end}.justify-center{justify-content:center}.\!justify-between{justify-content:space-between!important}.justify-between{justify-content:space-between}.justify-around{justify-content:space-around}.\!gap-md{gap:1rem!important;gap:var(--spacing-md)!important}.gap-1{gap:.25rem}.gap-2{gap:.5rem}.gap-2\.5{gap:.625rem}.gap-3{gap:.75rem}.gap-4{gap:1rem}.gap-5{gap:1.25rem}.gap-6{gap:1.5rem}.gap-8{gap:2rem}.gap-\[0\.65em\]{gap:.65em}.gap-lg{gap:1.5rem;gap:var(--spacing-lg)}.gap-md{gap:1rem;gap:var(--spacing-md)}.gap-sm{gap:.5rem;gap:var(--spacing-sm)}.gap-xl{gap:2rem;gap:var(--spacing-xl)}.gap-xs{gap:.25rem;gap:var(--spacing-xs)}.gap-x-1{-moz-column-gap:.25rem;column-gap:.25rem}.gap-x-4{-moz-column-gap:1rem;column-gap:1rem}.gap-x-lg{-moz-column-gap:1.5rem;column-gap:1.5rem;-moz-column-gap:var(--spacing-lg);column-gap:var(--spacing-lg)}.gap-x-sm{-moz-column-gap:.5rem;column-gap:.5rem;-moz-column-gap:var(--spacing-sm);column-gap:var(--spacing-sm)}.gap-x-xs{-moz-column-gap:.25rem;column-gap:.25rem;-moz-column-gap:var(--spacing-xs);column-gap:var(--spacing-xs)}.gap-y-5{row-gap:1.25rem}.gap-y-lg{row-gap:1.5rem;row-gap:var(--spacing-lg)}.gap-y-md{row-gap:1rem;row-gap:var(--spacing-md)}.gap-y-sm{row-gap:.5rem;row-gap:var(--spacing-sm)}.gap-y-xl{row-gap:2rem;row-gap:var(--spacing-xl)}.gap-y-xs{row-gap:.25rem;row-gap:var(--spacing-xs)}.space-x-1>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:.25rem;margin-left:calc(.25rem*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(.25rem*var(--tw-space-x-reverse))}.space-x-5>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:1.25rem;margin-left:calc(1.25rem*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(1.25rem*var(--tw-space-x-reverse))}.space-y-1>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(.25rem*var(--tw-space-y-reverse));margin-top:.25rem;margin-top:calc(.25rem*(1 - var(--tw-space-y-reverse)))}.space-y-2>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(.5rem*var(--tw-space-y-reverse));margin-top:.5rem;margin-top:calc(.5rem*(1 - var(--tw-space-y-reverse)))}.space-y-2xl>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-2xl)*var(--tw-space-y-reverse));margin-top:2.5rem;margin-top:calc(var(--spacing-2xl)*(1 - var(--tw-space-y-reverse)))}.space-y-4>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(1rem*var(--tw-space-y-reverse));margin-top:1rem;margin-top:calc(1rem*(1 - var(--tw-space-y-reverse)))}.space-y-lg>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-lg)*var(--tw-space-y-reverse));margin-top:1.5rem;margin-top:calc(var(--spacing-lg)*(1 - var(--tw-space-y-reverse)))}.space-y-md>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-md)*var(--tw-space-y-reverse));margin-top:1rem;margin-top:calc(var(--spacing-md)*(1 - var(--tw-space-y-reverse)))}.space-y-sm>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-sm)*var(--tw-space-y-reverse));margin-top:.5rem;margin-top:calc(var(--spacing-sm)*(1 - var(--tw-space-y-reverse)))}.space-y-xs>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-xs)*var(--tw-space-y-reverse));margin-top:.25rem;margin-top:calc(var(--spacing-xs)*(1 - var(--tw-space-y-reverse)))}.divide-y>:not([hidden])~:not([hidden]){--tw-divide-y-reverse:0;border-bottom-width:0;border-bottom-width:calc(1px*var(--tw-divide-y-reverse));border-top-width:1px;border-top-width:calc(1px*(1 - var(--tw-divide-y-reverse)))}.divide-color-default>:not([hidden])~:not([hidden]){--tw-divide-opacity:1;border-color:#dcdfe4;border-color:rgba(var(--color-border-default),var(--tw-divide-opacity))}.self-center{align-self:center}.overflow-auto{overflow:auto}.\!overflow-hidden{overflow:hidden!important}.overflow-hidden{overflow:hidden}.\!overflow-visible{overflow:visible!important}.overflow-scroll{overflow:scroll}.overflow-x-auto{overflow-x:auto}.overflow-y-auto{overflow-y:auto}.overflow-y-hidden{overflow-y:hidden}.overflow-y-scroll{overflow-y:scroll}.overscroll-none{overscroll-behavior:none}.truncate{overflow:hidden;white-space:nowrap}.text-ellipsis,.truncate{text-overflow:ellipsis}.whitespace-nowrap{white-space:nowrap}.whitespace-pre{white-space:pre}.whitespace-pre-line{white-space:pre-line}.\!break-words{overflow-wrap:break-word!important}.break-words{overflow-wrap:break-word}.\!break-all{word-break:break-all!important}.break-all{word-break:break-all}.rounded{border-radius:.25rem}.rounded-2xl{border-radius:1rem}.rounded-3xl{border-radius:1.5rem}.rounded-\[0\.15em\]{border-radius:.15em}.rounded-\[100\%\]{border-radius:100%}.rounded-\[4px\]{border-radius:4px}.rounded-\[50\%\]{border-radius:50%}.rounded-full{border-radius:9999px}.rounded-lg{border-radius:.5rem}.rounded-md{border-radius:.375rem}.rounded-none{border-radius:0}.rounded-sm{border-radius:.125rem}.rounded-xl{border-radius:.75rem}.border{border-width:1px}.border-2{border-width:2px}.border-\[\.0625rem\]{border-width:.0625rem}.border-\[0\.15em\]{border-width:.15em}.border-x-0{border-left-width:0;border-right-width:0}.border-b{border-bottom-width:1px}.border-b-2{border-bottom-width:2px}.border-l{border-left-width:1px}.border-l-2{border-left-width:2px}.border-l-\[0\.0625rem\]{border-left-width:.0625rem}.border-l-\[0\.125rem\]{border-left-width:.125rem}.border-l-\[3px\]{border-left-width:3px}.border-r{border-right-width:1px}.border-t{border-top-width:1px}.border-t-0{border-top-width:0}.border-t-2{border-top-width:2px}.border-t-\[\.0625rem\]{border-top-width:.0625rem}.border-solid{border-style:solid}.border-dashed{border-style:dashed}.border-none{border-style:none}.\!border-color-bold{--tw-border-opacity:1!important;border-color:#b3b9c4!important;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))!important}.\!border-color-brand{--tw-border-opacity:1!important;border-color:#eab308!important;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))!important}.border-\[\#000\]{--tw-border-opacity:1;border-color:#000;border-color:rgb(0 0 0/var(--tw-border-opacity))}.border-\[\#DCDFE4\]{--tw-border-opacity:1;border-color:#dcdfe4;border-color:rgb(220 223 228/var(--tw-border-opacity))}.border-\[\#F8F9FD\]{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.border-\[\#FACC15\]{--tw-border-opacity:1;border-color:#facc15;border-color:rgb(250 204 21/var(--tw-border-opacity))}.border-\[\#FEF9C3\]{--tw-border-opacity:1;border-color:#fef9c3;border-color:rgb(254 249 195/var(--tw-border-opacity))}.border-\[\#b3b9c4\]{--tw-border-opacity:1;border-color:#b3b9c4;border-color:rgb(179 185 196/var(--tw-border-opacity))}.border-\[\#dcdfe6\]{--tw-border-opacity:1;border-color:#dcdfe6;border-color:rgb(220 223 230/var(--tw-border-opacity))}.border-\[\#f8f9fd\]{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.border-\[white\]{--tw-border-opacity:1;border-color:#fff;border-color:rgb(255 255 255/var(--tw-border-opacity))}.border-color-bold{--tw-border-opacity:1;border-color:#b3b9c4;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))}.border-color-brand{--tw-border-opacity:1;border-color:#eab308;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))}.border-color-default{--tw-border-opacity:1;border-color:#dcdfe4;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.border-color-error{--tw-border-opacity:1;border-color:#e11900;border-color:rgba(var(--color-border-error),var(--tw-border-opacity))}.border-color-info{--tw-border-opacity:1;border-color:#59baf0;border-color:rgba(var(--color-border-info),var(--tw-border-opacity))}.border-color-inherit{border-color:inherit}.border-color-success{--tw-border-opacity:1;border-color:#05944f;border-color:rgba(var(--color-border-success),var(--tw-border-opacity))}.border-color-transparent{border-color:transparent}.border-color-warning{--tw-border-opacity:1;border-color:#eab308;border-color:rgba(var(--color-border-warning),var(--tw-border-opacity))}.border-t-color-default{--tw-border-opacity:1;border-top-color:#dcdfe4;border-top-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.\!bg-black{--tw-bg-opacity:1!important;background-color:#000!important;background-color:rgba(var(--color-black),var(--tw-bg-opacity))!important}.\!bg-brand-bold{--tw-bg-opacity:1!important;background-color:#eab308!important;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))!important}.\!bg-brand-default{--tw-bg-opacity:1!important;background-color:#facc15!important;background-color:rgba(var(--color-brand-default),var(--tw-bg-opacity))!important}.\!bg-brand-subtler{--tw-bg-opacity:1!important;background-color:#fef08a!important;background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))!important}.\!bg-brand-sunken{--tw-bg-opacity:1!important;background-color:#fefce8!important;background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))!important}.\!bg-success-subtlest{--tw-bg-opacity:1!important;background-color:#bfeed7!important;background-color:rgba(var(--color-bg-success-subtlest),var(--tw-bg-opacity))!important}.\!bg-surface-disabled{--tw-bg-opacity:1!important;background-color:#f1f2f4!important;background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))!important}.\!bg-surface-subtle{--tw-bg-opacity:1!important;background-color:#f8f9fd!important;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))!important}.\!bg-warning-bold{--tw-bg-opacity:1!important;background-color:#eab308!important;background-color:rgba(var(--color-bg-warning-bold),var(--tw-bg-opacity))!important}.bg-\[\#000000\],.bg-\[\#000\]{--tw-bg-opacity:1;background-color:#000;background-color:rgb(0 0 0/var(--tw-bg-opacity))}.bg-\[\#2867B2\]{--tw-bg-opacity:1;background-color:#2867b2;background-color:rgb(40 103 178/var(--tw-bg-opacity))}.bg-\[\#409eff\]{--tw-bg-opacity:1;background-color:#409eff;background-color:rgb(64 158 255/var(--tw-bg-opacity))}.bg-\[\#66b1ff\]{--tw-bg-opacity:1;background-color:#66b1ff;background-color:rgb(102 177 255/var(--tw-bg-opacity))}.bg-\[\#EAB308\]{--tw-bg-opacity:1;background-color:#eab308;background-color:rgb(234 179 8/var(--tw-bg-opacity))}.bg-\[\#F8F9FD\]{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgb(248 249 253/var(--tw-bg-opacity))}.bg-\[\#b3b9c4\]{--tw-bg-opacity:1;background-color:#b3b9c4;background-color:rgb(179 185 196/var(--tw-bg-opacity))}.bg-\[\#eaeaee\]{--tw-bg-opacity:1;background-color:#eaeaee;background-color:rgb(234 234 238/var(--tw-bg-opacity))}.bg-\[\#facc15\]{--tw-bg-opacity:1;background-color:#facc15;background-color:rgb(250 204 21/var(--tw-bg-opacity))}.bg-\[\#fff\]{--tw-bg-opacity:1;background-color:#fff;background-color:rgb(255 255 255/var(--tw-bg-opacity))}.bg-black{--tw-bg-opacity:1;background-color:#000;background-color:rgba(var(--color-black),var(--tw-bg-opacity))}.bg-black\/50{background-color:rgba(0,0,0,.5);background-color:rgba(var(--color-black),.5)}.bg-black\/60{background-color:rgba(0,0,0,.6);background-color:rgba(var(--color-black),.6)}.bg-black\/\[0\.12\]{background-color:rgba(0,0,0,.12);background-color:rgba(var(--color-black),.12)}.bg-brand-bold{--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.bg-brand-boldest{--tw-bg-opacity:1;background-color:#c48404;background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.bg-brand-default{--tw-bg-opacity:1;background-color:#facc15;background-color:rgba(var(--color-brand-default),var(--tw-bg-opacity))}.bg-brand-subtler{--tw-bg-opacity:1;background-color:#fef08a;background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))}.bg-brand-subtlest{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.bg-brand-sunken{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))}.bg-content-bolder{--tw-bg-opacity:1;background-color:#d19507;background-color:rgba(var(--color-bg-content-bolder),var(--tw-bg-opacity))}.bg-content-default{--tw-bg-opacity:1;background-color:#facc15;background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.bg-content-inverse-subtler{--tw-bg-opacity:1;background-color:#a86a07;background-color:rgba(var(--color-bg-content-inverse-subtler),var(--tw-bg-opacity))}.bg-content-subtle{--tw-bg-opacity:1;background-color:#fde047;background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.bg-content-subtler{--tw-bg-opacity:1;background-color:#fef08a;background-color:rgba(var(--color-bg-content-subtler),var(--tw-bg-opacity))}.bg-content-subtlest{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-bg-content-subtlest),var(--tw-bg-opacity))}.bg-content-sunken{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.bg-error-bold{--tw-bg-opacity:1;background-color:#e11900;background-color:rgba(var(--color-bg-error-bold),var(--tw-bg-opacity))}.bg-error-subtlest{--tw-bg-opacity:1;background-color:#ffdad4;background-color:rgba(var(--color-bg-error-subtlest),var(--tw-bg-opacity))}.bg-error-sunken{--tw-bg-opacity:1;background-color:#fffbff;background-color:rgba(var(--color-bg-error-sunken),var(--tw-bg-opacity))}.bg-info-bold{--tw-bg-opacity:1;background-color:#59baf0;background-color:rgba(var(--color-bg-info-bold),var(--tw-bg-opacity))}.bg-info-subtlest{--tw-bg-opacity:1;background-color:#dcf3ff;background-color:rgba(var(--color-bg-info-subtlest),var(--tw-bg-opacity))}.bg-info-sunken{--tw-bg-opacity:1;background-color:#f5fbff;background-color:rgba(var(--color-bg-info-sunken),var(--tw-bg-opacity))}.bg-inherit{background-color:inherit}.bg-success-bold{--tw-bg-opacity:1;background-color:#05944f;background-color:rgba(var(--color-bg-success-bold),var(--tw-bg-opacity))}.bg-success-subtlest{--tw-bg-opacity:1;background-color:#bfeed7;background-color:rgba(var(--color-bg-success-subtlest),var(--tw-bg-opacity))}.bg-success-sunken{--tw-bg-opacity:1;background-color:#f1fef8;background-color:rgba(var(--color-bg-success-sunken),var(--tw-bg-opacity))}.bg-surface-default{--tw-bg-opacity:1;background-color:#fff;background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.bg-surface-disabled{--tw-bg-opacity:1;background-color:#f1f2f4;background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))}.bg-surface-inverse{--tw-bg-opacity:1;background-color:#000;background-color:rgba(var(--color-surface-inverse),var(--tw-bg-opacity))}.bg-surface-selected{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.bg-surface-subtle{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.bg-transparent{background-color:transparent}.bg-warning-bold{--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-bg-warning-bold),var(--tw-bg-opacity))}.bg-warning-subtlest{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-bg-warning-subtlest),var(--tw-bg-opacity))}.bg-warning-sunken{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-bg-warning-sunken),var(--tw-bg-opacity))}.bg-white{--tw-bg-opacity:1;background-color:#fff;background-color:rgba(var(--color-white),var(--tw-bg-opacity))}.bg-opacity-25{--tw-bg-opacity:0.25}.bg-opacity-75{--tw-bg-opacity:0.75}.bg-\[url\(\'\/img\/homepage\.png\'\)\]{background-image:url(/img/homepage.png)}.bg-gradient-to-r{background-image:linear-gradient(to right,var(--tw-gradient-stops))}.bg-none{background-image:none}.from-black\/70{--tw-gradient-from:rgba(var(--color-black),0.7) var(--tw-gradient-from-position);--tw-gradient-to:rgba(var(--color-black),0) var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to)}.from-transparent{--tw-gradient-from:transparent var(--tw-gradient-from-position);--tw-gradient-to:transparent var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to)}.to-black\/5{--tw-gradient-to:rgba(var(--color-black),0.05) var(--tw-gradient-to-position)}.to-white{--tw-gradient-to:rgba(var(--color-white),1) var(--tw-gradient-to-position)}.bg-cover{background-size:cover}.bg-fixed{background-attachment:fixed}.bg-center{background-position:50%}.bg-no-repeat{background-repeat:no-repeat}.fill-brand-bold{fill:#eab308;fill:rgba(var(--color-brand-bold),1)}.fill-brand-sunken{fill:#fefce8;fill:rgba(var(--color-brand-sunken),1)}.object-cover{-o-object-fit:cover;object-fit:cover}.\!p-0{padding:0!important}.\!p-sm{padding:.5rem!important;padding:var(--spacing-sm)!important}.\!p-xs{padding:.25rem!important;padding:var(--spacing-xs)!important}.p-0{padding:0}.p-0\.5{padding:.125rem}.p-4{padding:1rem}.p-5{padding:1.25rem}.p-8{padding:2rem}.p-\[\.75rem\]{padding:.75rem}.p-lg{padding:1.5rem;padding:var(--spacing-lg)}.p-md{padding:1rem;padding:var(--spacing-md)}.p-px{padding:1px}.p-sm{padding:.5rem;padding:var(--spacing-sm)}.p-xl{padding:2rem;padding:var(--spacing-xl)}.\!px-0{padding-left:0!important;padding-right:0!important}.\!px-sm{padding-left:.5rem!important;padding-left:var(--spacing-sm)!important;padding-right:.5rem!important;padding-right:var(--spacing-sm)!important}.px-0{padding-left:0;padding-right:0}.px-10{padding-left:2.5rem;padding-right:2.5rem}.px-2{padding-left:.5rem;padding-right:.5rem}.px-4{padding-left:1rem;padding-right:1rem}.px-5{padding-left:1.25rem;padding-right:1.25rem}.px-8{padding-left:2rem;padding-right:2rem}.px-\[\.625rem\]{padding-left:.625rem;padding-right:.625rem}.px-\[\.9375rem\]{padding-left:.9375rem;padding-right:.9375rem}.px-\[0\.2rem\]{padding-left:.2rem;padding-right:.2rem}.px-\[0\.625rem\]{padding-left:.625rem;padding-right:.625rem}.px-lg{padding-left:1.5rem;padding-left:var(--spacing-lg);padding-right:1.5rem;padding-right:var(--spacing-lg)}.px-md{padding-left:1rem;padding-left:var(--spacing-md);padding-right:1rem;padding-right:var(--spacing-md)}.px-sm{padding-left:.5rem;padding-left:var(--spacing-sm);padding-right:.5rem;padding-right:var(--spacing-sm)}.px-xl{padding-left:2rem;padding-left:var(--spacing-xl);padding-right:2rem;padding-right:var(--spacing-xl)}.px-xs{padding-left:.25rem;padding-left:var(--spacing-xs);padding-right:.25rem;padding-right:var(--spacing-xs)}.py-0{padding-bottom:0;padding-top:0}.py-0\.5{padding-bottom:.125rem;padding-top:.125rem}.py-10{padding-bottom:2.5rem;padding-top:2.5rem}.py-2{padding-bottom:.5rem;padding-top:.5rem}.py-2xl{padding-bottom:2.5rem;padding-bottom:var(--spacing-2xl);padding-top:2.5rem;padding-top:var(--spacing-2xl)}.py-3{padding-bottom:.75rem;padding-top:.75rem}.py-3xl{padding-bottom:3rem;padding-bottom:var(--spacing-3xl);padding-top:3rem;padding-top:var(--spacing-3xl)}.py-4{padding-bottom:1rem;padding-top:1rem}.py-5xl{padding-bottom:4rem;padding-bottom:var(--spacing-5xl);padding-top:4rem;padding-top:var(--spacing-5xl)}.py-6{padding-bottom:1.5rem;padding-top:1.5rem}.py-7xl{padding-bottom:5rem;padding-bottom:var(--spacing-7xl);padding-top:5rem;padding-top:var(--spacing-7xl)}.py-\[\.3125rem\]{padding-bottom:.3125rem;padding-top:.3125rem}.py-\[0\.625rem\],.py-\[\.625rem\]{padding-bottom:.625rem;padding-top:.625rem}.py-\[1\.5rem\],.py-lg{padding-bottom:1.5rem;padding-top:1.5rem}.py-lg{padding-bottom:var(--spacing-lg);padding-top:var(--spacing-lg)}.py-md{padding-bottom:1rem;padding-bottom:var(--spacing-md);padding-top:1rem;padding-top:var(--spacing-md)}.py-sm{padding-bottom:.5rem;padding-bottom:var(--spacing-sm);padding-top:.5rem;padding-top:var(--spacing-sm)}.py-xl{padding-bottom:2rem;padding-bottom:var(--spacing-xl);padding-top:2rem;padding-top:var(--spacing-xl)}.py-xs{padding-bottom:.25rem;padding-bottom:var(--spacing-xs);padding-top:.25rem;padding-top:var(--spacing-xs)}.\!pl-0{padding-left:0!important}.\!pl-sm{padding-left:.5rem!important;padding-left:var(--spacing-sm)!important}.\!pr-sm{padding-right:.5rem!important;padding-right:var(--spacing-sm)!important}.pb-0{padding-bottom:0}.pb-2xl{padding-bottom:2.5rem;padding-bottom:var(--spacing-2xl)}.pb-3{padding-bottom:.75rem}.pb-6{padding-bottom:1.5rem}.pb-7xl{padding-bottom:5rem;padding-bottom:var(--spacing-7xl)}.pb-\[\.5rem\]{padding-bottom:.5rem}.pb-\[1\.875rem\]{padding-bottom:1.875rem}.pb-lg{padding-bottom:1.5rem;padding-bottom:var(--spacing-lg)}.pb-md{padding-bottom:1rem;padding-bottom:var(--spacing-md)}.pb-sm{padding-bottom:.5rem;padding-bottom:var(--spacing-sm)}.pb-xl{padding-bottom:2rem;padding-bottom:var(--spacing-xl)}.pb-xs{padding-bottom:.25rem;padding-bottom:var(--spacing-xs)}.pl-0{padding-left:0}.pl-10,.pl-2xl{padding-left:2.5rem}.pl-2xl{padding-left:var(--spacing-2xl)}.pl-3{padding-left:.75rem}.pl-5{padding-left:1.25rem}.pl-8{padding-left:2rem}.pl-lg{padding-left:1.5rem;padding-left:var(--spacing-lg)}.pl-md{padding-left:1rem;padding-left:var(--spacing-md)}.pl-sm{padding-left:.5rem;padding-left:var(--spacing-sm)}.pl-xl{padding-left:2rem;padding-left:var(--spacing-xl)}.pl-xs{padding-left:.25rem;padding-left:var(--spacing-xs)}.pr-0{padding-right:0}.pr-2xl{padding-right:2.5rem;padding-right:var(--spacing-2xl)}.pr-3{padding-right:.75rem}.pr-lg{padding-right:1.5rem;padding-right:var(--spacing-lg)}.pr-md{padding-right:1rem;padding-right:var(--spacing-md)}.pr-sm{padding-right:.5rem;padding-right:var(--spacing-sm)}.pr-xl{padding-right:2rem;padding-right:var(--spacing-xl)}.pr-xs{padding-right:.25rem;padding-right:var(--spacing-xs)}.pt-12{padding-top:3rem}.pt-14{padding-top:3.5rem}.pt-2xl{padding-top:2.5rem;padding-top:var(--spacing-2xl)}.pt-3xl{padding-top:3rem;padding-top:var(--spacing-3xl)}.pt-5xl{padding-top:4rem;padding-top:var(--spacing-5xl)}.pt-6{padding-top:1.5rem}.pt-7xl{padding-top:5rem;padding-top:var(--spacing-7xl)}.pt-\[\.625rem\]{padding-top:.625rem}.pt-\[\.75rem\]{padding-top:.75rem}.pt-\[0\.125rem\]{padding-top:.125rem}.pt-\[1\.25rem\]{padding-top:1.25rem}.pt-\[1\.875rem\]{padding-top:1.875rem}.pt-\[1rem\]{padding-top:1rem}.pt-\[2rem\]{padding-top:2rem}.pt-\[5rem\]{padding-top:5rem}.pt-lg{padding-top:1.5rem;padding-top:var(--spacing-lg)}.pt-md{padding-top:1rem;padding-top:var(--spacing-md)}.pt-sm{padding-top:.5rem;padding-top:var(--spacing-sm)}.pt-xl{padding-top:2rem;padding-top:var(--spacing-xl)}.pt-xs{padding-top:.25rem;padding-top:var(--spacing-xs)}.text-left{text-align:left}.text-center{text-align:center}.text-right{text-align:right}.\!align-middle{vertical-align:middle!important}.align-middle{vertical-align:middle}.\!align-text-bottom{vertical-align:text-bottom!important}.\!text-base{font-size:1rem!important;line-height:1.5rem!important}.\!text-lg{font-size:1.125rem!important;line-height:1.75rem!important}.\!text-xs{font-size:.75rem!important;line-height:1rem!important}.text-2xl{font-size:1.5rem;line-height:2rem}.text-3xl{font-size:1.875rem;line-height:2.25rem}.text-4xl{font-size:2.25rem;line-height:2.5rem}.text-5xl{font-size:3rem;line-height:1}.text-\[\.4rem\]{font-size:.4rem}.text-\[\.75rem\]{font-size:.75rem}.text-\[\.875rem\]{font-size:.875rem}.text-\[0\.4rem\]{font-size:.4rem}.text-\[0\.575rem\]{font-size:.575rem}.text-\[1\.875rem\]{font-size:1.875rem}.text-\[2\.5rem\]{font-size:2.5rem}.text-base{font-size:1rem;line-height:1.5rem}.text-lg{font-size:1.125rem;line-height:1.75rem}.text-sm{font-size:.875rem;line-height:1.25rem}.text-xl{font-size:1.25rem;line-height:1.75rem}.text-xs{font-size:.75rem;line-height:1rem}.font-bold{font-weight:700}.font-light{font-weight:300}.font-medium{font-weight:500}.font-normal{font-weight:400}.font-semibold{font-weight:600}.uppercase{text-transform:uppercase}.lowercase{text-transform:lowercase}.italic{font-style:italic}.\!leading-\[0\]{line-height:0!important}.leading-10{line-height:2.5rem}.leading-6{line-height:1.5rem}.leading-\[0\]{line-height:0}.leading-\[1\.125rem\]{line-height:1.125rem}.leading-\[1\.1\]{line-height:1.1}.leading-\[1\.875rem\]{line-height:1.875rem}.leading-\[140\%\]{line-height:140%}.leading-none{line-height:1}.leading-normal{line-height:1.5}.\!text-color-black{--tw-text-opacity:1!important;color:#000!important;color:rgba(var(--color-black),var(--tw-text-opacity))!important}.\!text-color-brand-bold{--tw-text-opacity:1!important;color:#eab308!important;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))!important}.\!text-color-default{--tw-text-opacity:1!important;color:#000!important;color:rgba(var(--color-text-default),var(--tw-text-opacity))!important}.\!text-color-disabled{--tw-text-opacity:1!important;color:#b3b9c4!important;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))!important}.\!text-color-link-bold{--tw-text-opacity:1!important;color:#0156ce!important;color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))!important}.\!text-color-subtle{--tw-text-opacity:1!important;color:#626f86!important;color:rgba(var(--color-text-subtle),var(--tw-text-opacity))!important}.\!text-color-white{--tw-text-opacity:1!important;color:#fff!important;color:rgba(var(--color-white),var(--tw-text-opacity))!important}.text-\[\#000\]{--tw-text-opacity:1;color:#000;color:rgb(0 0 0/var(--tw-text-opacity))}.text-\[\#0156CE\]{--tw-text-opacity:1;color:#0156ce;color:rgb(1 86 206/var(--tw-text-opacity))}.text-\[\#172B4D\]{--tw-text-opacity:1;color:#172b4d;color:rgb(23 43 77/var(--tw-text-opacity))}.text-\[\#626F86\]{--tw-text-opacity:1;color:#626f86;color:rgb(98 111 134/var(--tw-text-opacity))}.text-\[\#758195\]{--tw-text-opacity:1;color:#758195;color:rgb(117 129 149/var(--tw-text-opacity))}.text-\[\#EAB308\]{--tw-text-opacity:1;color:#eab308;color:rgb(234 179 8/var(--tw-text-opacity))}.text-\[\#F1F2F4\]{--tw-text-opacity:1;color:#f1f2f4;color:rgb(241 242 244/var(--tw-text-opacity))}.text-\[\#FACC15\]{--tw-text-opacity:1;color:#facc15;color:rgb(250 204 21/var(--tw-text-opacity))}.text-\[\#FFFFFF\]{--tw-text-opacity:1;color:#fff;color:rgb(255 255 255/var(--tw-text-opacity))}.text-\[\#b3b9c4\]{--tw-text-opacity:1;color:#b3b9c4;color:rgb(179 185 196/var(--tw-text-opacity))}.text-\[\#f00\]{--tw-text-opacity:1;color:red;color:rgb(255 0 0/var(--tw-text-opacity))}.text-\[\#fff\]{--tw-text-opacity:1;color:#fff;color:rgb(255 255 255/var(--tw-text-opacity))}.text-color-black{--tw-text-opacity:1;color:#000;color:rgba(var(--color-black),var(--tw-text-opacity))}.text-color-border-bold{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-border-bold),var(--tw-text-opacity))}.text-color-brand-bold{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.text-color-brand-bolder{--tw-text-opacity:1;color:#d19507;color:rgba(var(--color-text-brand-bolder),var(--tw-text-opacity))}.text-color-current{color:currentColor}.text-color-default{--tw-text-opacity:1;color:#000;color:rgba(var(--color-text-default),var(--tw-text-opacity))}.text-color-disabled{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.text-color-error{--tw-text-opacity:1;color:#d31c04;color:rgba(var(--color-text-error),var(--tw-text-opacity))}.text-color-info{--tw-text-opacity:1;color:#2c9acf;color:rgba(var(--color-text-info),var(--tw-text-opacity))}.text-color-inherit{color:inherit}.text-color-inverse{--tw-text-opacity:1;color:#fff;color:rgba(var(--color-white),var(--tw-text-opacity))}.text-color-link-bold{--tw-text-opacity:1;color:#0156ce;color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.text-color-link-bolder{--tw-text-opacity:1;color:#014bb5;color:rgba(var(--color-text-link-bolder),var(--tw-text-opacity))}.text-color-link-subtle{--tw-text-opacity:1;color:#626f86;color:rgba(var(--color-text-link-subtle),var(--tw-text-opacity))}.text-color-on-brand{--tw-text-opacity:1;color:rgba(var(--color-text-on-brand),1);color:rgba(var(--color-text-on-brand),var(--tw-text-opacity))}.text-color-subtle{--tw-text-opacity:1;color:#626f86;color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.text-color-subtlest{--tw-text-opacity:1;color:#758195;color:rgba(var(--color-text-subtlest),var(--tw-text-opacity))}.text-color-success{--tw-text-opacity:1;color:#098549;color:rgba(var(--color-text-success),var(--tw-text-opacity))}.text-color-warning{--tw-text-opacity:1;color:#d19507;color:rgba(var(--color-text-warning),var(--tw-text-opacity))}.text-color-white{--tw-text-opacity:1;color:#fff;color:rgba(var(--color-white),var(--tw-text-opacity))}.underline{text-decoration-line:underline}.\!no-underline{text-decoration-line:none!important}.no-underline{text-decoration-line:none}.antialiased{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.placeholder-text-color-subtle::-moz-placeholder{--tw-placeholder-opacity:1;color:#626f86;color:rgba(var(--color-text-subtle),var(--tw-placeholder-opacity))}.placeholder-text-color-subtle::placeholder{--tw-placeholder-opacity:1;color:#626f86;color:rgba(var(--color-text-subtle),var(--tw-placeholder-opacity))}.opacity-0{opacity:0}.opacity-100{opacity:1}.opacity-25{opacity:.25}.opacity-40{opacity:.4}.shadow{--tw-shadow:0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px -1px rgba(0,0,0,.1);--tw-shadow-colored:0 1px 3px 0 var(--tw-shadow-color),0 1px 2px -1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px -1px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-\[4px_8px_10px_rgba\(214\2c 217\2c 222\2c 0\.8\)\]{--tw-shadow:4px 8px 10px rgba(214,217,222,.8);--tw-shadow-colored:4px 8px 10px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,4px 8px 10px rgba(214,217,222,.8);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-lg{--tw-shadow:0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -4px rgba(0,0,0,.1);--tw-shadow-colored:0 10px 15px -3px var(--tw-shadow-color),0 4px 6px -4px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -4px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-md{--tw-shadow:0 4px 6px -1px rgba(0,0,0,.1),0 2px 4px -2px rgba(0,0,0,.1);--tw-shadow-colored:0 4px 6px -1px var(--tw-shadow-color),0 2px 4px -2px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 4px 6px -1px rgba(0,0,0,.1),0 2px 4px -2px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-slider{--tw-shadow:0.5px 0.5px 2px 1px rgba(0,0,0,.32);--tw-shadow-colored:0.5px 0.5px 2px 1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,.5px .5px 2px 1px rgba(0,0,0,.32);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-slider-active{--tw-shadow:0.5px 0.5px 2px 1px rgba(0,0,0,.42);--tw-shadow-colored:0.5px 0.5px 2px 1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,.5px .5px 2px 1px rgba(0,0,0,.42);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-sm{--tw-shadow:0 1px 2px 0 rgba(0,0,0,.05);--tw-shadow-colored:0 1px 2px 0 var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 2px 0 rgba(0,0,0,.05);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-xl{--tw-shadow:0 20px 25px -5px rgba(0,0,0,.1),0 8px 10px -6px rgba(0,0,0,.1);--tw-shadow-colored:0 20px 25px -5px var(--tw-shadow-color),0 8px 10px -6px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 20px 25px -5px rgba(0,0,0,.1),0 8px 10px -6px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.outline-none{outline:2px solid transparent;outline-offset:2px}.outline{outline-style:solid}.outline-2{outline-width:2px}.outline-offset-2{outline-offset:2px}.outline-\[\#EAB308\]{outline-color:#eab308}.outline-color-bold{outline-color:#b3b9c4;outline-color:rgba(var(--color-border-bold),1)}.outline-color-brand{outline-color:#eab308;outline-color:rgba(var(--color-border-brand),1)}.ring-0{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.blur{--tw-blur:blur(8px);filter:blur(8px) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.grayscale{--tw-grayscale:grayscale(100%);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) grayscale(100%) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.filter,.grayscale{filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.transition{transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,-webkit-backdrop-filter;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,backdrop-filter;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,backdrop-filter,-webkit-backdrop-filter;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-all{transition-duration:.15s;transition-property:all;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-colors{transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-height{transition-duration:.15s;transition-property:height;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-opacity{transition-duration:.15s;transition-property:opacity;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-transform{transition-duration:.15s;transition-property:transform;transition-timing-function:cubic-bezier(.4,0,.2,1)}.duration-100{transition-duration:.1s}.duration-150{transition-duration:.15s}.duration-200{transition-duration:.2s}.duration-300{transition-duration:.3s}.duration-75{transition-duration:75ms}.duration-\[350ms\]{transition-duration:.35s}.ease-in{transition-timing-function:cubic-bezier(.4,0,1,1)}.ease-in-out{transition-timing-function:cubic-bezier(.4,0,.2,1)}.ease-out{transition-timing-function:cubic-bezier(0,0,.2,1)}.content-\[\'\'\]{--tw-content:"";content:"";content:var(--tw-content)}.cursor-grab{cursor:grab}.cursor-grabbing{cursor:grabbing}.touch-none{touch-action:none}.tap-highlight-transparent{-webkit-tap-highlight-color:rgba(0,0,0,0)}.touch-callout-none{-webkit-touch-callout:none}.transform-origin-0{transform-origin:0 0}.transform-style-flat{transform-style:flat}.cursor-ew-resize{cursor:ew-resize}.arrow-left:before{border:5px solid transparent;border-right-color:inherit;left:-10px}.arrow-left:before,.arrow-right:before{content:"";height:0;position:absolute;top:50%;transform:translateY(-50%);width:0}.arrow-right:before{border:5px solid transparent;border-left-color:inherit;right:-10px}.text-body{font-size:.875rem;line-height:1.25rem}@media (min-width:768px){.text-body{font-size:1rem;line-height:1.5rem}}.\[appearance\:textfield\]{-webkit-appearance:textfield;-moz-appearance:textfield;appearance:textfield}@media (max-width:64rem){.phone-drawer{z-index:20}.phone-drawer .w-screen{padding:0;width:75vw}.phone-drawer .user-info-nav li{line-height:1.5rem;margin-bottom:.9375rem;padding:.5rem 0 .5rem 2.375rem}.phone-drawer .user-info-nav li:hover{cursor:pointer}.phone-drawer .user-info-nav .active-nav{background-color:#f7f8f9}}.comment-drawer .m-drawer__panel{padding:1rem;padding:var(--spacing-md)}@media (min-width:1024px){.comment-drawer .m-drawer__panel{max-width:none;padding:1.5rem;padding:var(--spacing-lg);width:50.25rem}}.m-checkbox:active,.m-checkbox:target{--tw-text-opacity:1;color:#eab308;color:rgb(234 179 8/var(--tw-text-opacity))}body,html{scroll-behavior:auto!important}.mfp-mask{-webkit-backface-visibility:hidden;background-color:rgba(0,0,0,.85);display:none;outline:0!important;overflow:hidden auto;position:fixed;z-index:99}.mfp-mask,.mfp-mask .mfp-dialog{height:100%;left:0;top:0;width:100%}.mfp-mask .mfp-dialog{box-sizing:border-box;padding:0 8px;position:absolute;text-align:center}.mfp-mask .mfp-dialog .mfp-dialog-content{align-items:center;display:inline-block;display:flex;justify-content:center;margin:0 auto;min-height:100vh;position:relative;text-align:left;vertical-align:middle;z-index:100}.mfp-mask .mfp-dialog .mfp-dialog-content .html-fig_show{background:#fff;max-width:600px;overflow:auto;padding:20px;position:relative;width:auto}.mfp-mask .mfp-dialog .mfp-dialog-content .html-table_show{background:#fff;margin-bottom:40px;margin-top:40px;overflow:auto;padding:20px;position:relative;width:auto}@media (max-width:64rem){.mfp-mask .mfp-dialog .mfp-dialog-content .html-table_show{background:#fff;margin-bottom:40px;margin-top:40px;overflow:auto;padding:20px;position:relative;width:100%}}.mfp-mask .mfp-dialog .mfp-dialog-content .html-table_foot{max-width:650px}.mfp-mask .mfp-close{background:none;border:none;color:#000;cursor:pointer;font-size:16px;overflow:hidden;padding:10px 20px;position:absolute;right:10px;top:10px;z-index:999}.mfp-mask .mfp-close:before{bottom:0;content:"✖";height:20px;left:0;margin:auto;position:absolute;right:0;top:0;width:20px}.heading-with-anchor{scroll-margin-top:4rem}.global-search .m-drawer__panel{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.global-search .m-drawer__body,.global-search .m-drawer__header{margin-left:auto;margin-right:auto;width:90%}.MJX-TEX{font-family:Suisse Int\'l,ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji!important}mark{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.before\:absolute:before{content:var(--tw-content);position:absolute}.before\:-inset-2:before{content:var(--tw-content);inset:-.5rem}.after\:absolute:after{content:var(--tw-content);position:absolute}.after\:hidden:after{content:var(--tw-content);display:none}.after\:h-1\/2:after{content:var(--tw-content);height:50%}.after\:w-1\/2:after{content:var(--tw-content);width:50%}.after\:rounded-full:after{border-radius:9999px;content:var(--tw-content)}.after\:bg-brand-bold:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.after\:bg-content-default:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:#facc15;background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.first\:pt-0:first-child{padding-top:0}.focus-within\:outline-none:focus-within{outline:2px solid transparent;outline-offset:2px}.focus-within\:outline:focus-within{outline-style:solid}.hover\:rounded-2xl:hover{border-radius:1rem}.hover\:border-2:hover{border-width:2px}.hover\:border-\[\#0156CE\]:hover{--tw-border-opacity:1;border-color:#0156ce;border-color:rgb(1 86 206/var(--tw-border-opacity))}.hover\:border-\[\#F8F9FD\]:hover{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.hover\:border-color-brand:hover{--tw-border-opacity:1;border-color:#eab308;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))}.hover\:\!bg-surface-selected:hover{--tw-bg-opacity:1!important;background-color:#f8f9fd!important;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))!important}.hover\:\!bg-transparent:hover{background-color:transparent!important}.hover\:bg-brand-bolder:hover{--tw-bg-opacity:1;background-color:#d19507;background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.hover\:bg-brand-subtlest:hover{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.hover\:bg-brand-sunken:hover{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))}.hover\:bg-content-bold:hover{--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-bg-content-bold),var(--tw-bg-opacity))}.hover\:bg-content-sunken:hover{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.hover\:bg-surface-default:hover{--tw-bg-opacity:1;background-color:#fff;background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.hover\:bg-surface-selected:hover{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.hover\:pl-sm:hover{padding-left:.5rem;padding-left:var(--spacing-sm)}.hover\:font-semibold:hover{font-weight:600}.hover\:\!text-color-black:hover{--tw-text-opacity:1!important;color:#000!important;color:rgba(var(--color-black),var(--tw-text-opacity))!important}.hover\:text-color-black:hover{--tw-text-opacity:1;color:#000;color:rgba(var(--color-black),var(--tw-text-opacity))}.hover\:text-color-brand-bold:hover{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.hover\:text-color-link-bold:hover{--tw-text-opacity:1;color:#0156ce;color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.hover\:text-color-link-bolder:hover{--tw-text-opacity:1;color:#014bb5;color:rgba(var(--color-text-link-bolder),var(--tw-text-opacity))}.hover\:text-color-subtle:hover{--tw-text-opacity:1;color:#626f86;color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.hover\:underline:hover{text-decoration-line:underline}.hover\:grayscale-0:hover{--tw-grayscale:grayscale(0);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) grayscale(0) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.focus\:bg-brand-strong:focus{--tw-bg-opacity:1;background-color:#a86a07;background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.focus\:outline-none:focus{outline:2px solid transparent;outline-offset:2px}.focus\:outline-color-brand:focus{outline-color:#eab308;outline-color:rgba(var(--color-border-brand),1)}.focus\:ring-2:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.focus\:ring-text-color-border-selected:focus{--tw-ring-opacity:1;--tw-ring-color:rgba(var(--color-border-selected),var(--tw-ring-opacity))}.focus-visible\:bg-brand-bold:focus-visible{--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.focus-visible\:bg-brand-boldest:focus-visible{--tw-bg-opacity:1;background-color:#c48404;background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.focus-visible\:bg-error-bold:focus-visible{--tw-bg-opacity:1;background-color:#e11900;background-color:rgba(var(--color-bg-error-bold),var(--tw-bg-opacity))}.focus-visible\:bg-surface-default:focus-visible{--tw-bg-opacity:1;background-color:#fff;background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.focus-visible\:bg-surface-selected:focus-visible{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.focus-visible\:outline-none:focus-visible{outline:2px solid transparent;outline-offset:2px}.focus-visible\:outline:focus-visible{outline-style:solid}.focus-visible\:outline-2:focus-visible{outline-width:2px}.focus-visible\:outline-color-selected:focus-visible{outline-color:#eab308;outline-color:rgba(var(--color-border-selected),1)}.focus-visible\:ring-2:focus-visible{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.focus-visible\:ring-offset-2:focus-visible{--tw-ring-offset-width:2px}.focus-visible\:ring-offset-brand-bold:focus-visible{--tw-ring-offset-color:rgba(var(--color-brand-bold),1)}.focus-visible\:ring-offset-white:focus-visible{--tw-ring-offset-color:rgba(var(--color-white),1)}.active\:\!bg-brand-subtlest:active{--tw-bg-opacity:1!important;background-color:#fef9c3!important;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))!important}.active\:\!bg-inherit:active{background-color:inherit!important}.active\:\!bg-transparent:active{background-color:transparent!important}.active\:bg-brand-boldest:active{--tw-bg-opacity:1;background-color:#c48404;background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.active\:bg-brand-strong:active{--tw-bg-opacity:1;background-color:#a86a07;background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.active\:bg-brand-subtler:active{--tw-bg-opacity:1;background-color:#fef08a;background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))}.active\:bg-brand-subtlest:active{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.active\:bg-content-bolder:active{--tw-bg-opacity:1;background-color:#d19507;background-color:rgba(var(--color-bg-content-bolder),var(--tw-bg-opacity))}.active\:bg-content-subtlest:active{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-bg-content-subtlest),var(--tw-bg-opacity))}.active\:text-color-brand-boldest:active{--tw-text-opacity:1;color:#c48404;color:rgba(var(--color-text-brand-boldest),var(--tw-text-opacity))}.disabled\:border-color-default:disabled{--tw-border-opacity:1;border-color:#dcdfe4;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.disabled\:bg-surface-subtle:disabled{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.disabled\:text-color-disabled:disabled{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.group:hover .group-hover\:after\:bg-brand-bolder:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:#d19507;background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.group:active .group-active\:after\:bg-brand-boldest:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:#c48404;background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.aria-disabled\:pointer-events-none[aria-disabled=true]{pointer-events:none}.aria-disabled\:cursor-default[aria-disabled=true]{cursor:default}.aria-disabled\:text-color-disabled[aria-disabled=true]{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.ui-open\:text-color-brand-bold[data-headlessui-state~=open]{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}:where([data-headlessui-state~=open]) .ui-open\:text-color-brand-bold{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.ui-disabled\:pointer-events-none[data-headlessui-state~=disabled]{pointer-events:none}.ui-disabled\:cursor-default[data-headlessui-state~=disabled]{cursor:default}.ui-disabled\:text-color-disabled[data-headlessui-state~=disabled]{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}:where([data-headlessui-state~=disabled]) .ui-disabled\:pointer-events-none{pointer-events:none}:where([data-headlessui-state~=disabled]) .ui-disabled\:cursor-default{cursor:default}:where([data-headlessui-state~=disabled]) .ui-disabled\:text-color-disabled{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}:where([data-headlessui-focus-visible]) .ui-focus-visible\:outline-color-brand:focus{outline-color:#eab308;outline-color:rgba(var(--color-border-brand),1)}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-2:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-brand-bold:focus{--tw-ring-opacity:1;--tw-ring-color:rgba(var(--color-brand-bold),var(--tw-ring-opacity))}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-opacity-75:focus{--tw-ring-opacity:0.75}.slider-horizontal .h\:-right-2{right:-.5rem}.slider-horizontal .h\:-top-1{top:-.25rem}.slider-horizontal .h\:-top-1\.5{top:-.375rem}.slider-horizontal .h\:left-1\/2{left:50%}.slider-horizontal .h\:h-0{height:0}.slider-horizontal .h\:h-4{height:1rem}.slider-horizontal .h\:w-4{width:1rem}.slider-horizontal .h\:-translate-x-1\/2{--tw-translate-x:-50%;transform:translate(-50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-horizontal .h\:arrow-bottom:before{border:5px solid transparent;border-top-color:inherit;bottom:-10px}.slider-horizontal .h\:arrow-bottom:before,.slider-horizontal .h\:arrow-top:before{content:"";height:0;left:50%;position:absolute;transform:translate(-50%);width:0}.slider-horizontal .h\:arrow-top:before{border:5px solid transparent;border-bottom-color:inherit;top:-10px}.slider-vertical .v\:-right-1{right:-.25rem}.slider-vertical .v\:-right-1\.25{right:-.3125rem}.slider-vertical .v\:-top-2{top:-.5rem}.slider-vertical .v\:-top-full{top:-100%}.slider-vertical .v\:top-1\/2{top:50%}.slider-vertical .v\:h-4{height:1rem}.slider-vertical .v\:w-0{width:0}.slider-vertical .v\:w-4{width:1rem}.slider-vertical .v\:-translate-y-1\/2{--tw-translate-y:-50%;transform:translate(var(--tw-translate-x),-50%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-vertical .v\:cursor-ns-resize{cursor:ns-resize}.slider-vertical .v\:arrow-left:before{border:5px solid transparent;border-right-color:inherit;left:-10px}.slider-vertical .v\:arrow-left:before,.slider-vertical .v\:arrow-right:before{content:"";height:0;position:absolute;top:50%;transform:translateY(-50%);width:0}.slider-vertical .v\:arrow-right:before{border:5px solid transparent;border-left-color:inherit;right:-10px}.slider-horizontal .slider-origin>.merge-h\:bottom-3{bottom:.75rem}.slider-horizontal .slider-origin>.merge-h\:bottom-3\.5{bottom:.875rem}.slider-horizontal .slider-origin>.merge-h\:left-auto{left:auto}.slider-horizontal .slider-origin>.merge-h\:top-5{top:1.25rem}.slider-horizontal .slider-origin>.merge-h\:translate-x-1\/2{--tw-translate-x:50%;transform:translate(50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-vertical .slider-origin>.merge-v\:left-7{left:1.75rem}.slider-vertical .slider-origin>.merge-v\:right-1{right:.25rem}.slider-vertical .slider-origin>.merge-v\:top-auto{top:auto}.slider-vertical .slider-origin>.merge-v\:-translate-x-4{--tw-translate-x:-1rem;transform:translate(-1rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:-left-2{left:-.5rem}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:left-0{left:0}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:right-auto{right:auto}.slider-tap .tap\:transition-transform{transition-duration:.15s;transition-property:transform;transition-timing-function:cubic-bezier(.4,0,.2,1)}.slider-tap .tap\:duration-300{transition-duration:.3s}.slider-tooltip-focus:not(.slider-focused) .tt-focus\:hidden{display:none!important}.slider-tooltip-focus.slider-focused:not(.slider-tooltip-hidden) .tt-focused\:block{display:block!important}.slider-tooltip-drag:not(.slider-state-drag) .tt-drag\:hidden{display:none!important}.slider-tooltip-drag.slider-state-drag .tt-dragging\:block\:not\(\.slider-tooltip-hidden\){display:block!important}@media not all and (min-width:1280px){.max-xl\:w-full{width:100%}}@media not all and (min-width:1024px){.max-lg\:items-center{align-items:center}.max-lg\:gap-x-6{-moz-column-gap:1.5rem;column-gap:1.5rem}.max-lg\:pt-lg{padding-top:1.5rem;padding-top:var(--spacing-lg)}}@media (min-width:576px){.sm\:sticky{position:sticky}.sm\:top-20{top:5rem}.sm\:w-20{width:5rem}.sm\:w-2xl{width:2.5rem;width:var(--spacing-2xl)}.sm\:w-\[100\%\]{width:100%}.sm\:w-\[50\%\]{width:50%}.sm\:\!max-w-\[20\%\]{max-width:20%!important}.sm\:max-w-\[33\%\]{max-width:33%}.sm\:grid-cols-2{grid-template-columns:repeat(2,minmax(0,1fr))}.sm\:border-0{border-width:0}.sm\:border-t{border-top-width:1px}.sm\:border-\[\#000\]{--tw-border-opacity:1;border-color:#000;border-color:rgb(0 0 0/var(--tw-border-opacity))}.sm\:pr-md{padding-right:1rem;padding-right:var(--spacing-md)}.sm\:pt-0{padding-top:0}.sm\:pt-\[\.625rem\]{padding-top:.625rem}}@media (min-width:768px){.md\:h-9{height:2.25rem}.md\:w-9{width:2.25rem}.md\:w-\[100\%\]{width:100%}.md\:w-\[50\%\]{width:50%}.md\:flex-row{flex-direction:row}.md\:flex-row-reverse{flex-direction:row-reverse}}@media (min-width:1024px){.lg\:absolute{position:absolute}.lg\:sticky{position:sticky}.lg\:\!bottom-\[50vh\]{bottom:50vh!important}.lg\:bottom-xl{bottom:2rem;bottom:var(--spacing-xl)}.lg\:left-xl{left:2rem;left:var(--spacing-xl)}.lg\:top-7xl{top:5rem;top:var(--spacing-7xl)}.lg\:top-\[10\%\]{top:10%}.lg\:top-\[20\%\]{top:20%}.lg\:top-\[30\%\]{top:30%}.lg\:top-\[4\.5rem\]{top:4.5rem}.lg\:top-\[40\%\]{top:40%}.lg\:top-\[50\%\]{top:50%}.lg\:top-\[60\%\]{top:60%}.lg\:top-\[70\%\]{top:70%}.lg\:order-first{order:-9999}.lg\:m-0{margin:0}.lg\:m-lg{margin:1.5rem;margin:var(--spacing-lg)}.lg\:mx-auto{margin-left:auto;margin-right:auto}.lg\:my-0{margin-bottom:0;margin-top:0}.lg\:my-12{margin-bottom:3rem;margin-top:3rem}.lg\:my-7xl{margin-bottom:5rem;margin-bottom:var(--spacing-7xl);margin-top:5rem;margin-top:var(--spacing-7xl)}.lg\:my-\[18\.75rem\]{margin-bottom:18.75rem;margin-top:18.75rem}.lg\:-mt-4xl{margin-top:-3.5rem;margin-top:calc(var(--spacing-4xl)*-1)}.lg\:mb-0{margin-bottom:0}.lg\:mb-10xl{margin-bottom:6.5rem;margin-bottom:var(--spacing-10xl)}.lg\:mb-lg{margin-bottom:1.5rem;margin-bottom:var(--spacing-lg)}.lg\:ml-3xl{margin-left:3rem;margin-left:var(--spacing-3xl)}.lg\:ml-lg{margin-left:1.5rem;margin-left:var(--spacing-lg)}.lg\:ml-sm{margin-left:.5rem;margin-left:var(--spacing-sm)}.lg\:mr-8xl{margin-right:5.5rem;margin-right:var(--spacing-8xl)}.lg\:mr-\[4\.6875rem\]{margin-right:4.6875rem}.lg\:mr-lg{margin-right:1.5rem;margin-right:var(--spacing-lg)}.lg\:mr-xl{margin-right:2rem;margin-right:var(--spacing-xl)}.lg\:mt-0{margin-top:0}.lg\:mt-\[-3rem\]{margin-top:-3rem}.lg\:mt-lg{margin-top:1.5rem;margin-top:var(--spacing-lg)}.lg\:mt-md{margin-top:1rem;margin-top:var(--spacing-md)}.lg\:\!block{display:block!important}.lg\:block{display:block}.lg\:flex{display:flex}.lg\:\!inline-flex{display:inline-flex!important}.lg\:grid{display:grid}.lg\:\!hidden{display:none!important}.lg\:hidden{display:none}.lg\:aspect-\[1\/1\.414\]{aspect-ratio:1/1.414}.lg\:aspect-square{aspect-ratio:1/1}.lg\:h-12{height:3rem}.lg\:h-\[296px\]{height:296px}.lg\:h-\[7\.5rem\]{height:7.5rem}.lg\:max-h-\[100\%\]{max-height:100%}.lg\:max-h-\[30\%\]{max-height:30%}.lg\:max-h-\[40\%\]{max-height:40%}.lg\:max-h-\[50\%\]{max-height:50%}.lg\:max-h-\[60\%\]{max-height:60%}.lg\:max-h-\[70\%\]{max-height:70%}.lg\:max-h-\[80\%\]{max-height:80%}.lg\:max-h-\[90\%\]{max-height:90%}.lg\:min-h-screen{min-height:100vh}.lg\:\!w-\[20\%\]{width:20%!important}.lg\:\!w-\[75\%\]{width:75%!important}.lg\:\!w-fit{width:-moz-fit-content!important;width:fit-content!important}.lg\:w-1\/2{width:50%}.lg\:w-1\/4{width:25%}.lg\:w-1\/5{width:20%}.lg\:w-12{width:3rem}.lg\:w-2\/3{width:66.666667%}.lg\:w-4\/5{width:80%}.lg\:w-\[100\%\]{width:100%}.lg\:w-\[19\.0625rem\]{width:19.0625rem}.lg\:w-\[22\.5rem\]{width:22.5rem}.lg\:w-\[25\%\]{width:25%}.lg\:w-\[31\.25rem\]{width:31.25rem}.lg\:w-\[315px\]{width:315px}.lg\:w-\[32rem\]{width:32rem}.lg\:w-\[33\%\]{width:33%}.lg\:w-\[333px\]{width:333px}.lg\:w-\[360px\]{width:360px}.lg\:w-\[50\%\]{width:50%}.lg\:w-fit{width:-moz-fit-content;width:fit-content}.lg\:w-full{width:100%}.lg\:w-max{width:-moz-max-content;width:max-content}.lg\:\!min-w-\[40\%\]{min-width:40%!important}.lg\:max-w-2xl{max-width:42rem}.lg\:max-w-3xl{max-width:48rem}.lg\:max-w-4xl{max-width:56rem}.lg\:max-w-5xl{max-width:64rem}.lg\:max-w-6xl{max-width:72rem}.lg\:max-w-7xl{max-width:80rem}.lg\:max-w-\[28\.5rem\]{max-width:28.5rem}.lg\:max-w-\[30\%\]{max-width:30%}.lg\:max-w-\[32\%\]{max-width:32%}.lg\:max-w-\[80\%\]{max-width:80%}.lg\:max-w-lg{max-width:32rem}.lg\:max-w-md{max-width:28rem}.lg\:max-w-sm{max-width:24rem}.lg\:max-w-xl{max-width:36rem}.lg\:max-w-xs{max-width:20rem}.lg\:flex-1{flex:1 1 0%}.lg\:flex-auto{flex:1 1 auto}.lg\:flex-none{flex:none}.lg\:basis-1\/2{flex-basis:50%}.lg\:basis-1\/4{flex-basis:25%}.lg\:basis-\[15\.625rem\]{flex-basis:15.625rem}.lg\:list-disc{list-style-type:disc}.lg\:grid-cols-3{grid-template-columns:repeat(3,minmax(0,1fr))}.lg\:flex-row{flex-direction:row}.lg\:flex-row-reverse{flex-direction:row-reverse}.lg\:flex-col{flex-direction:column}.lg\:flex-wrap{flex-wrap:wrap}.lg\:flex-nowrap{flex-wrap:nowrap}.lg\:items-center{align-items:center}.lg\:justify-end{justify-content:flex-end}.lg\:justify-between{justify-content:space-between}.lg\:gap-0{gap:0}.lg\:gap-2xl{gap:2.5rem;gap:var(--spacing-2xl)}.lg\:gap-lg{gap:1.5rem;gap:var(--spacing-lg)}.lg\:gap-xl{gap:2rem;gap:var(--spacing-xl)}.lg\:gap-x-lg{-moz-column-gap:1.5rem;column-gap:1.5rem;-moz-column-gap:var(--spacing-lg);column-gap:var(--spacing-lg)}.lg\:gap-y-lg{row-gap:1.5rem;row-gap:var(--spacing-lg)}.lg\:\!space-y-0>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0!important;margin-bottom:0!important;margin-bottom:calc(0px*var(--tw-space-y-reverse))!important;margin-top:0!important;margin-top:calc(0px*(1 - var(--tw-space-y-reverse)))!important}.lg\:space-x-lg>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:1.5rem;margin-left:calc(var(--spacing-lg)*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(var(--spacing-lg)*var(--tw-space-x-reverse))}.lg\:space-x-xl>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:2rem;margin-left:calc(var(--spacing-xl)*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(var(--spacing-xl)*var(--tw-space-x-reverse))}.lg\:space-y-0>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(0px*var(--tw-space-y-reverse));margin-top:0;margin-top:calc(0px*(1 - var(--tw-space-y-reverse)))}.lg\:space-y-2xl>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-2xl)*var(--tw-space-y-reverse));margin-top:2.5rem;margin-top:calc(var(--spacing-2xl)*(1 - var(--tw-space-y-reverse)))}.lg\:rounded-2xl{border-radius:1rem}.lg\:rounded-3xl{border-radius:1.5rem}.lg\:border{border-width:1px}.lg\:border-0{border-width:0}.lg\:border-b{border-bottom-width:1px}.lg\:border-l{border-left-width:1px}.lg\:border-t-0{border-top-width:0}.lg\:border-none{border-style:none}.lg\:bg-surface-subtle{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.lg\:p-0{padding:0}.lg\:p-2xl{padding:2.5rem;padding:var(--spacing-2xl)}.lg\:p-lg{padding:1.5rem;padding:var(--spacing-lg)}.lg\:px-0{padding-left:0;padding-right:0}.lg\:px-10{padding-left:2.5rem;padding-right:2.5rem}.lg\:px-4{padding-left:1rem;padding-right:1rem}.lg\:px-4xl{padding-left:3.5rem;padding-left:var(--spacing-4xl);padding-right:3.5rem;padding-right:var(--spacing-4xl)}.lg\:px-\[\.9375rem\]{padding-left:.9375rem;padding-right:.9375rem}.lg\:px-lg{padding-left:1.5rem;padding-left:var(--spacing-lg);padding-right:1.5rem;padding-right:var(--spacing-lg)}.lg\:py-0{padding-bottom:0;padding-top:0}.lg\:py-10xl{padding-bottom:6.5rem;padding-bottom:var(--spacing-10xl);padding-top:6.5rem;padding-top:var(--spacing-10xl)}.lg\:py-12{padding-bottom:3rem;padding-top:3rem}.lg\:py-2xl{padding-bottom:2.5rem;padding-bottom:var(--spacing-2xl);padding-top:2.5rem;padding-top:var(--spacing-2xl)}.lg\:py-32{padding-bottom:8rem;padding-top:8rem}.lg\:py-3xl{padding-bottom:3rem;padding-bottom:var(--spacing-3xl);padding-top:3rem;padding-top:var(--spacing-3xl)}.lg\:py-4xl{padding-bottom:3.5rem;padding-bottom:var(--spacing-4xl);padding-top:3.5rem;padding-top:var(--spacing-4xl)}.lg\:py-5xl{padding-bottom:4rem;padding-bottom:var(--spacing-5xl);padding-top:4rem;padding-top:var(--spacing-5xl)}.lg\:py-7xl{padding-bottom:5rem;padding-bottom:var(--spacing-7xl);padding-top:5rem;padding-top:var(--spacing-7xl)}.lg\:py-lg{padding-bottom:1.5rem;padding-bottom:var(--spacing-lg);padding-top:1.5rem;padding-top:var(--spacing-lg)}.lg\:py-xl{padding-bottom:2rem;padding-bottom:var(--spacing-xl);padding-top:2rem;padding-top:var(--spacing-xl)}.lg\:pb-0{padding-bottom:0}.lg\:pb-2xl{padding-bottom:2.5rem;padding-bottom:var(--spacing-2xl)}.lg\:pb-3xl{padding-bottom:3rem;padding-bottom:var(--spacing-3xl)}.lg\:pb-5xl{padding-bottom:4rem;padding-bottom:var(--spacing-5xl)}.lg\:pb-7xl{padding-bottom:5rem;padding-bottom:var(--spacing-7xl)}.lg\:pb-\[12\.5rem\]{padding-bottom:12.5rem}.lg\:pb-\[6\.3125rem\]{padding-bottom:6.3125rem}.lg\:pb-lg{padding-bottom:1.5rem;padding-bottom:var(--spacing-lg)}.lg\:pb-md{padding-bottom:1rem;padding-bottom:var(--spacing-md)}.lg\:pb-sm{padding-bottom:.5rem;padding-bottom:var(--spacing-sm)}.lg\:pl-10,.lg\:pl-2xl{padding-left:2.5rem}.lg\:pl-2xl{padding-left:var(--spacing-2xl)}.lg\:pl-lg{padding-left:1.5rem;padding-left:var(--spacing-lg)}.lg\:pl-sm{padding-left:.5rem;padding-left:var(--spacing-sm)}.lg\:pl-xl{padding-left:2rem;padding-left:var(--spacing-xl)}.lg\:pr-0{padding-right:0}.lg\:pr-lg{padding-right:1.5rem;padding-right:var(--spacing-lg)}.lg\:pr-xl{padding-right:2rem;padding-right:var(--spacing-xl)}.lg\:pt-0{padding-top:0}.lg\:pt-2xl{padding-top:2.5rem;padding-top:var(--spacing-2xl)}.lg\:pt-3xl{padding-top:3rem;padding-top:var(--spacing-3xl)}.lg\:pt-5xl{padding-top:4rem;padding-top:var(--spacing-5xl)}.lg\:pt-7xl{padding-top:5rem;padding-top:var(--spacing-7xl)}.lg\:pt-\[5rem\]{padding-top:5rem}.lg\:pt-\[7\.5rem\]{padding-top:7.5rem}.lg\:pt-\[8\.125rem\]{padding-top:8.125rem}.lg\:pt-lg{padding-top:1.5rem;padding-top:var(--spacing-lg)}.lg\:pt-md{padding-top:1rem;padding-top:var(--spacing-md)}.lg\:pt-xl{padding-top:2rem;padding-top:var(--spacing-xl)}.lg\:text-center{text-align:center}.lg\:\!text-3xl{font-size:1.875rem!important;line-height:2.25rem!important}}@media (min-width:1280px){.xl\:mr-7xl{margin-right:5rem;margin-right:var(--spacing-7xl)}.xl\:mr-lg{margin-right:1.5rem;margin-right:var(--spacing-lg)}.xl\:h-16{height:4rem}.xl\:w-16{width:4rem}.xl\:w-4{width:1rem}.xl\:w-\[100\%\]{width:100%}.xl\:w-\[25\%\]{width:25%}.xl\:w-\[27\.6875rem\]{width:27.6875rem}.xl\:w-\[33\%\]{width:33%}.xl\:w-\[50\%\]{width:50%}.xl\:space-x-3xl>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:3rem;margin-left:calc(var(--spacing-3xl)*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(var(--spacing-3xl)*var(--tw-space-x-reverse))}}@media (min-width:1440px){.xxl\:w-\[33\%\]{width:33%}}.\[\&\:\:-webkit-inner-spin-button\]\:appearance-none::-webkit-inner-spin-button,.\[\&\:\:-webkit-outer-spin-button\]\:appearance-none::-webkit-outer-spin-button{-webkit-appearance:none;appearance:none}.\[\&\>a\]\:block>a{display:block}.\[\&\>a\]\:w-full>a{width:100%}.\[\&\>a\]\:px-2>a{padding-left:.5rem;padding-right:.5rem}.\[\&\>a\]\:px-4>a{padding-left:1rem;padding-right:1rem}.\[\&\>a\]\:py-md>a{padding-bottom:1rem;padding-bottom:var(--spacing-md);padding-top:1rem;padding-top:var(--spacing-md)}.\[\&\>div\]\:z-1>div{z-index:1}.\[\&\>div\]\:z-10>div{z-index:10}.\[\&\>div\]\:w-fit>div{width:-moz-fit-content;width:fit-content}.\[\&\>ol\>li\]\:truncate>ol>li{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.\[\&\>span\]\:overflow-hidden>span{overflow:hidden}.\[\&\>span\]\:truncate>span{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.\[\&_input\]\:\!w-\[1\.15em\] input{width:1.15em!important}.\[\&_input\]\:text-center input{text-align:center}.\[\&_span\]\:hover\:text-color-brand-bold:hover span,.\[\&_span\]\:text-color-brand-bold span{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}</style> <style>html{scroll-behavior:smooth}.common-field{display:flex;flex-direction:column;font-size:.875rem;gap:.25rem;line-height:1.25rem;position:relative;width:100%}.common-field--success .common-field__dropdown-input,.common-field--success .common-field__input,.common-field--success .common-field__textarea{--tw-text-opacity:1;color:rgba(var(--color-text-success),1);color:rgba(var(--color-text-success),var(--tw-text-opacity));outline-color:rgba(var(--color-border-success),1);outline-style:solid}.common-field--success>.common-field__hint{--tw-text-opacity:1;color:rgba(var(--color-text-success),1);color:rgba(var(--color-text-success),var(--tw-text-opacity))}.common-field--error .common-field__dropdown-input,.common-field--error .common-field__input,.common-field--error .common-field__textarea{--tw-text-opacity:1;color:rgba(var(--color-text-error),1);color:rgba(var(--color-text-error),var(--tw-text-opacity));outline-color:rgba(var(--color-border-error),1);outline-style:solid}.common-field--error>.common-field__hint{--tw-text-opacity:1;color:rgba(var(--color-text-error),1);color:rgba(var(--color-text-error),var(--tw-text-opacity))}.common-field.common-field--readonly .common-field__dropdown-input,.common-field.common-field--readonly .common-field__input,.common-field.common-field--readonly .common-field__textarea,.common-field.common-field--readonly input,.common-field.common-field--readonly textarea{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.common-field input::-moz-placeholder,.common-field textarea::-moz-placeholder{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.common-field input::placeholder,.common-field textarea::placeholder{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.common-field__wrapper{width:100%}.common-field__label{display:block;font-size:.75rem;line-height:1rem;margin-bottom:var(--spacing-xs);white-space:nowrap}.common-field__hint{font-size:.75rem;line-height:1rem;--tw-text-opacity:1;color:rgba(var(--color-text-subtlest),1);color:rgba(var(--color-text-subtlest),var(--tw-text-opacity));margin-top:var(--spacing-xs)}.common-field__options{border-radius:.25rem;border-width:1px;max-height:15rem;min-width:-moz-fit-content;min-width:fit-content;overflow:auto;position:absolute;width:100%;z-index:20;--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity));--tw-bg-opacity:1;background-color:rgba(var(--color-white),1);background-color:rgba(var(--color-white),var(--tw-bg-opacity));font-size:.875rem;line-height:1.25rem;padding:.25rem;--tw-shadow:0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -4px rgba(0,0,0,.1);--tw-shadow-colored:0 10px 15px -3px var(--tw-shadow-color),0 4px 6px -4px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -4px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.common-field__options:focus{outline:2px solid transparent;outline-offset:2px}.common-field__input{width:100%;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));outline-color:rgba(var(--color-border-brand),1);outline-offset:-1px;outline-width:2px}.common-field__dropdown-input{align-items:center;border-radius:.25rem;display:flex;gap:.5rem;justify-content:space-between;margin-bottom:2px;padding-right:var(--spacing-sm);white-space:nowrap}.common-field__dropdown-input,.common-field__textarea{width:100%;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));outline-color:rgba(var(--color-border-brand),1);outline-offset:-1px;outline-width:2px;padding-left:var(--spacing-md)}.common-field__textarea{padding-right:var(--spacing-md)}.common-field input,.common-field textarea{width:100%;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.common-field--outlined .common-field__dropdown-input,.common-field--outlined .common-field__input,.common-field--outlined .common-field__textarea{border-width:1px;--tw-border-opacity:1;background-color:transparent;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.common-field--outlined input,.common-field--outlined textarea{background-color:transparent}.common-field--fit-content{max-width:-moz-fit-content;max-width:fit-content}.common-field--inline .common-field__wrapper{align-items:center;display:flex;flex-direction:row;gap:.5rem}.common-field--inline .common-field__wrapper .common-field__label{margin-bottom:0}.common-field--disabled,.common-field--disabled .common-field__dropdown-input,.common-field--disabled .common-field__hint,.common-field--disabled .common-field__placeholder,.common-field--disabled input,.common-field--disabled textarea{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.common-field--disabled input::-moz-placeholder,.common-field--disabled textarea::-moz-placeholder{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.common-field--disabled input::placeholder,.common-field--disabled textarea::placeholder{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.m-button-group .m-button.m-button--primary:not(.m-button--active){--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-default),1);color:rgba(var(--color-text-default),var(--tw-text-opacity))}.m-button-group .m-button.m-button--primary:not(.m-button--active):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.m-button-group .m-button.m-button--active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.m-button{align-items:center;display:flex;font-size:.875rem;font-weight:400;line-height:1.25rem;outline-color:rgba(var(--color-border-brand),1);position:relative;transition-duration:.1s;transition-timing-function:cubic-bezier(0,0,.2,1);width:-moz-fit-content;width:fit-content}.m-button--sm{height:var(--spacing-lg)}.m-button--md,.m-button--sm{padding-left:var(--spacing-md);padding-right:var(--spacing-md)}.m-button--md{height:var(--spacing-xl)}.m-button--lg{height:var(--spacing-2xl);padding-left:var(--spacing-md);padding-right:var(--spacing-md)}.m-button--disabled{pointer-events:none;--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.m-button--tonal{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-sunken),1);background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.m-button--tonal:not(.m-button--disabled):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtler),1);background-color:rgba(var(--color-bg-content-subtler),var(--tw-bg-opacity))}.m-button--tonal:not(.m-button--disabled).m-button--active,.m-button--tonal:not(.m-button--disabled):active{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtle),1);background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.m-button--tonal.m-button--disabled,.m-button--tonal:disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-disabled),1);background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))}.m-button--primary{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-on-brand),1);color:rgba(var(--color-text-on-brand),var(--tw-text-opacity))}.m-button--primary:not(.m-button--disabled):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bolder),1);background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.m-button--primary:not(.m-button--disabled).m-button--active,.m-button--primary:not(.m-button--disabled):active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-strong),1);background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.m-button--primary.m-button--disabled,.m-button--primary:disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.m-button--accent{--tw-bg-opacity:1;background-color:rgba(var(--color-accent-bold),1);background-color:rgba(var(--color-accent-bold),var(--tw-bg-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-on-accent),1);color:rgba(var(--color-text-on-accent),var(--tw-text-opacity));outline-color:rgba(var(--color-border-accent),1)}.m-button--accent:not(.m-button--disabled):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-accent-bolder),1);background-color:rgba(var(--color-accent-bolder),var(--tw-bg-opacity))}.m-button--accent:not(.m-button--disabled).m-button--active,.m-button--accent:not(.m-button--disabled):active{--tw-bg-opacity:1;background-color:rgba(var(--color-accent-strong),1);background-color:rgba(var(--color-accent-strong),var(--tw-bg-opacity))}.m-button--accent.m-button--disabled,.m-button--accent:disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.m-button--secondary{border-width:1px;--tw-border-opacity:1;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))}.m-button--secondary:not(.m-button--disabled):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.m-button--secondary:not(.m-button--disabled).m-button--active,.m-button--secondary:not(.m-button--disabled):active{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.m-button--secondary.m-button--disabled,.m-button--secondary:disabled{--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.m-button--tertiary{position:relative;--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity));height:var(--spacing-lg);outline-offset:2px;padding:0}.m-button--tertiary:after{background-image:linear-gradient(to right,rgba(var(--color-text-link-bold),1) var(--tw-gradient-from-position),rgba(var(--color-text-link-bold),1) var(--tw-gradient-to-position));background-image:linear-gradient(to right,var(--tw-gradient-stops));bottom:-.125rem;content:"";height:.125rem;left:0;position:absolute;right:0;--tw-gradient-from:rgba(var(--color-text-link-bold),1) var(--tw-gradient-from-position);--tw-gradient-to:rgba(var(--color-text-link-bold),0) var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to);--tw-gradient-to:rgba(var(--color-text-link-bold),1) var(--tw-gradient-to-position);opacity:0;transition-duration:.15s;transition-timing-function:cubic-bezier(0,0,.2,1)}.m-button--tertiary:not(.m-button--disabled):hover:after{content:var(--tw-content);opacity:1}.m-button--tertiary:not(.m-button--disabled):active{--tw-text-opacity:1;color:rgba(var(--color-text-link-boldest),1);color:rgba(var(--color-text-link-boldest),var(--tw-text-opacity))}.m-button--tertiary:not(.m-button--disabled).m-button--active{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.m-button--tertiary:not(.m-button--disabled).m-button--active:after{--tw-gradient-from:rgba(var(--color-text-link-bold),1) var(--tw-gradient-from-position);--tw-gradient-to:rgba(var(--color-text-link-bold),0) var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to);--tw-gradient-to:rgba(var(--color-text-link-bold),1) var(--tw-gradient-to-position);opacity:1}.m-button--tertiary.m-button--disabled,.m-button--tertiary:disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity));opacity:.6}.m-button--tertiary-subtle{position:relative;--tw-text-opacity:1;color:rgba(var(--color-text-link-subtle),1);color:rgba(var(--color-text-link-subtle),var(--tw-text-opacity));height:var(--spacing-lg);outline-offset:2px;padding:0}.m-button--tertiary-subtle:not(.m-button--disabled):active,.m-button--tertiary-subtle:not(.m-button--disabled):hover{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.m-button--tertiary-subtle:not(.m-button--disabled).m-button--active{--tw-text-opacity:1;color:rgba(var(--color-text-link-boldest),1);color:rgba(var(--color-text-link-boldest),var(--tw-text-opacity))}.m-button--tertiary-subtle.m-button--disabled,.m-button--tertiary-subtle:disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity));opacity:.6}.m-button--full-width{width:100%}.m-button--full-width.m-button--link a{text-align:center;width:100%}.m-button--link{padding:0}.m-button--link a{align-items:center;color:inherit;display:flex;font-size:.875rem;gap:.5rem;height:100%;justify-content:center;line-height:1.25rem;width:100%}.m-button--link.m-button--lg a,.m-button--link.m-button--md a,.m-button--link.m-button--sm a{padding-left:var(--spacing-md);padding-right:var(--spacing-md)}.m-button--link.m-button--is-icon a{font-size:.875rem;line-height:1.25rem;padding-left:var(--spacing-sm);padding-right:var(--spacing-sm)}.m-button--link.m-button--tertiary a,.m-button--link.m-button--tertiary-subtle a{padding:0}.m-button--link.m-button--is-link-icon a{padding-left:var(--spacing-sm);padding-right:var(--spacing-sm)}.m-button--link.m-button--disabled a{pointer-events:none;--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.m-button--is-icon{padding-left:var(--spacing-sm);padding-right:var(--spacing-sm)}.m-rich-text a{text-decoration-line:underline;transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke;transition-timing-function:cubic-bezier(.4,0,.2,1)}.m-rich-text a:hover{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.m-rich-text ul{list-style-position:inside;list-style-type:disc;text-align:left}.m-rich-text ul li{margin-left:1.6em;text-indent:-1.35em}.m-rich-text ol{list-style-position:inside;list-style-type:decimal;text-align:left}@media screen and (max-width:768px){.m-rich-text ol li{margin-left:1.25em;text-indent:-1.22em}}.m-h1{font-size:var(--h1-sm-size);line-height:var(--h1-sm-line-height)}@media (min-width:768px){.m-h1{font-size:var(--h1-md-size);line-height:var(--h1-md-line-height)}}@media (min-width:1024px){.m-h1{font-size:var(--h1-lg-size);line-height:var(--h1-lg-line-height)}}.m-h2{font-size:var(--h2-sm-size);line-height:var(--h2-sm-line-height)}@media (min-width:768px){.m-h2{font-size:var(--h2-md-size);line-height:var(--h2-md-line-height)}}@media (min-width:1024px){.m-h2{font-size:var(--h2-lg-size);line-height:var(--h2-lg-line-height)}}.m-h3{font-size:var(--h3-sm-size);line-height:var(--h3-sm-line-height)}@media (min-width:768px){.m-h3{font-size:var(--h3-md-size);line-height:var(--h3-md-line-height)}}@media (min-width:1024px){.m-h3{font-size:var(--h3-lg-size);line-height:var(--h3-lg-line-height)}}.m-h4{font-size:var(--h4-sm-size);line-height:var(--h4-sm-line-height)}@media (min-width:768px){.m-h4{font-size:var(--h4-md-size);line-height:var(--h4-md-line-height)}}@media (min-width:1024px){.m-h4{font-size:var(--h4-lg-size);line-height:var(--h4-lg-line-height)}}.m-h5{font-size:var(--h5-sm-size);line-height:var(--h5-sm-line-height)}@media (min-width:768px){.m-h5{font-size:var(--h5-md-size);line-height:var(--h5-md-line-height)}}@media (min-width:1024px){.m-h5{font-size:var(--h5-lg-size);line-height:var(--h5-lg-line-height)}}.m-h6{font-size:var(--h6-sm-size);line-height:var(--h6-sm-line-height)}@media (min-width:768px){.m-h6{font-size:var(--h6-md-size);line-height:var(--h6-md-line-height)}}@media (min-width:1024px){.m-h6{font-size:var(--h6-lg-size);line-height:var(--h6-lg-line-height)}}.m-tabs__header:after{bottom:-.125rem;content:"";height:.125rem;left:0;position:absolute;right:0;z-index:-1;--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtle),1);background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.m-icon-button{align-items:center;display:inline-flex;font-size:1rem;font-weight:400;gap:.5rem;justify-content:center;line-height:1.5rem;padding:.5rem;transition-duration:.1s;transition-timing-function:cubic-bezier(0,0,.2,1);white-space:nowrap;width:-moz-fit-content;width:fit-content}.m-icon-button:hover{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.m-icon-button:active{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.m-icon-button--disabled{color:rgba(var(--color-black),.5);pointer-events:none}.m-icon-button.m-icon-button--link{padding:0}.m-icon-button a{align-items:center;display:flex;justify-content:center;padding:.5rem}.m-card:hover .image-container{--tw-scale-x:1.1;--tw-scale-y:1.1;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(1.1) scaleY(1.1);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.m-card .image-container{transition-duration:.2s;transition-property:all;transition-timing-function:cubic-bezier(.4,0,.2,1)}.m-tabs__tab.m-button{align-items:center;display:flex;font-size:.875rem;font-weight:400;line-height:1.25rem;outline:2px solid transparent;outline-offset:2px;position:relative;transition-duration:.1s;transition-timing-function:cubic-bezier(0,0,.2,1);width:-moz-fit-content;width:fit-content}:where([data-headlessui-focus-visible]) .m-tabs__tab.m-button:focus{outline-color:rgba(var(--color-border-brand),1)}.m-tabs__tab.m-button:after{bottom:-.125rem;content:"";height:.125rem;left:0;position:absolute;right:0;--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity));opacity:0;transition-duration:.15s;transition-timing-function:cubic-bezier(0,0,.2,1)}.m-tabs__tab.m-button.m-button--active{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.m-tabs__tab.m-button.m-button--active:after{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity));opacity:1}.m-checkbox__control:focus-visible{outline:max(1px,.1em) solid rgba(var(--color-brand-default));outline-offset:max(2px,.15em)}.m-checkbox__control:checked:before{--tw-scale-x:1;--tw-scale-y:1;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(1) scaleY(1);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.m-checkbox__control:before{background-color:CanvasText;clip-path:polygon(16% 55%,24% 47%,38% 60%,73% 25%,81% 33%,38% 75%);content:"";height:1.2em;width:1.2em;--tw-scale-x:0;--tw-scale-y:0;background-color:currentColor;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(0) scaleY(0);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.m-search-select__select[data-v-8ebcb524]{border-bottom-left-radius:.25rem;border-top-left-radius:.25rem}.m-search-select__select[data-v-8ebcb524] button{margin-bottom:0;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-selected),1);background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}@media (min-width:1024px){.m-search-select__select[data-v-8ebcb524] button{border-bottom-right-radius:0;border-top-right-radius:0}.m-search-select__input[data-v-8ebcb524] .common-field__input{border-bottom-left-radius:0;border-left-width:0;border-top-left-radius:0}}.m-range-slider--disabled .m-range-slider__base{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtle),1);background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.m-range-slider--disabled .m-range-slider__connect,.m-range-slider--disabled .m-range-slider__handle{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-default),1);background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.m-input__done-icon,.m-input__reset-button{display:none}.m-input__left-icon,.m-input__right-icon{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.m-input--filled:not(.m-input--filled.common-field--error):not(:focus-within) .m-input__done-icon{display:flex}.m-input--filled:focus-within .m-input__reset-button{display:flex}.m-input--filled .m-input__left-icon,.m-input--filled .m-input__right-icon{--tw-text-opacity:1;color:rgba(var(--color-text-default),1);color:rgba(var(--color-text-default),var(--tw-text-opacity))}.m-skeleton-item:after{height:100%;left:0;position:absolute;top:0;width:100%;--tw-translate-x:-100%;animation:shimmer 1.5s infinite;background-image:linear-gradient(90deg,hsla(0,0%,100%,0),hsla(0,0%,100%,.3),rgba(37,22,22,0));content:"";transform:translate(-100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}@keyframes shimmer{to{transform:translate(100%)}}.vc-mui-brand{--vc-accent-50:rgba(var(--color-brand-sunken));--vc-accent-100:rgba(var(--color-brand-sunken));--vc-accent-200:rgba(var(--color-brand-subtlest));--vc-accent-300:rgba(var(--color-brand-subtle));--vc-accent-400:rgba(var(--color-brand-default));--vc-accent-500:rgba(var(--color-brand-bold));--vc-accent-600:rgba(var(--color-brand-bolder));--vc-accent-700:rgba(var(--color-brand-boldest));--vc-accent-800:rgba(var(--color-brand-strong));--vc-accent-900:rgba(var(--color-brand-stronger))}.m-date-picker-input-wrapper{display:flex;flex-direction:column;gap:.5rem;justify-content:space-between}.m-date-picker-input-wrapper__inline{align-items:center;flex-direction:row}.m-date-picker-input-wrapper__label{font-size:.75rem;line-height:1rem}.m-date-picker .vc-header{flex-grow:1;margin-bottom:.75rem;margin-top:.75rem}.m-date-picker .vc-title:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.m-date-picker .vc-title:focus-visible{--tw-ring-offset-width:2px;--tw-ring-offset-color:rgba(var(--color-brand-bold),1)}.m-date-picker .vc-arrow{border-style:solid;border-width:1px;--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.m-date-picker .vc-pane{min-width:21.875rem}.m-date-picker .vc-popover-content{border-width:0}.m-date-picker .vc-popover-content .vc-nav-popover-container{min-width:13rem}.m-table--fixed-header th{position:sticky;top:0}.m-table--striped tr:nth-child(2n){--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.m-table--border-bottom tr{border-bottom-width:1px;--tw-border-opacity:1;border-bottom-color:rgba(var(--color-border-bold),var(--tw-border-opacity))}.m-table--hover-bg tr:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.m-table th{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity));font-size:.75rem;font-weight:400;line-height:1rem;--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity));padding:.75rem 1rem}.m-table td{padding:.5rem 1rem}@media (min-width:1280px){.m-table td{padding-bottom:1rem;padding-top:1rem}}.m-container{--container-max-width:90rem;--container-ideal-width:94vw;max-width:90rem;max-width:var(--container-max-width);min-width:16rem;width:94vw;width:var(--container-ideal-width);width:clamp(16rem,94vw,90rem);width:clamp(16rem,var(--container-ideal-width),var(--container-max-width))}@media screen and (min-width:768px){.m-container{--container-ideal-width:92.5vw}}.m-container--percentages{--container-ideal-width:94%;min-width:10rem;width:clamp(10rem,94%,var(--container-max-width));width:clamp(10rem,var(--container-ideal-width),var(--container-max-width))}@media screen and (min-width:768px){.m-container--percentages{--container-ideal-width:92.5%}}.m-calendar{border-style:none}.m-calendar .vc-header{flex-grow:1;margin-bottom:.75rem;margin-top:.75rem}.m-calendar .vc-title:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.m-calendar .vc-title:focus-visible{--tw-ring-offset-width:2px;--tw-ring-offset-color:rgba(var(--color-brand-bold),1)}.m-calendar .vc-arrow{border-style:solid;border-width:1px;--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity));padding:.75rem}.m-calendar .vc-arrows-container{padding-left:0;padding-right:0}.m-calendar .vc-pane,.m-calendar .vc-popover-content{min-width:350px}.vc-base-icon{display:inline-block;stroke:currentColor;stroke-width:2;fill:none}.vc-header{display:grid;grid-gap:4px;align-items:center;height:30px;margin-top:10px;padding-left:10px;padding-right:10px}.vc-header.is-lg{font-size:18px;font-size:var(--vc-text-lg)}.vc-header.is-xl{font-size:20px;font-size:var(--vc-text-xl)}.vc-header.is-2xl{font-size:24px;font-size:var(--vc-text-2xl)}.vc-header .vc-next,.vc-header .vc-prev,.vc-header .vc-title{align-items:center;border:0;border-radius:.25rem;border-radius:var(--vc-rounded);cursor:pointer;display:flex;grid-row:1;pointer-events:auto;-webkit-user-select:none;-moz-user-select:none;user-select:none}.vc-header .vc-title{color:var(--vc-header-title-color);font-weight:600;font-weight:var(--vc-font-semibold);grid-column:title;line-height:30px;margin:0;padding:0 8px;white-space:nowrap}.vc-header .vc-title:hover{opacity:.75}.vc-header .vc-arrow{align-items:center;color:var(--vc-header-arrow-color);display:flex;height:30px;justify-content:center;margin:0;padding:0;width:28px}.vc-header .vc-arrow:hover{background:var(--vc-header-arrow-hover-bg)}.vc-header .vc-arrow:disabled{opacity:.25;pointer-events:none}.vc-header .vc-prev{grid-column:prev}.vc-header .vc-next{grid-column:next}.vc-day{min-height:32px;position:relative;z-index:1}.vc-monthly .is-not-in-month *{opacity:0;pointer-events:none}.vc-day-layer{bottom:0;left:0;pointer-events:none;position:absolute;right:0;top:0}.vc-day-box-center-center{align-items:center;display:flex;justify-content:center;transform-origin:50% 50%}.vc-day-box-left-center{align-items:center;display:flex;justify-content:flex-start;transform-origin:0 50%}.vc-day-box-right-center{align-items:center;display:flex;justify-content:flex-end;transform-origin:100% 50%}.vc-day-box-center-bottom{align-items:flex-end;display:flex;justify-content:center}.vc-day-content{align-items:center;border-radius:9999px;border-radius:var(--vc-rounded-full);cursor:pointer;display:flex;font-size:14px;font-size:var(--vc-text-sm);font-weight:500;font-weight:var(--vc-font-medium);height:28px;justify-content:center;line-height:28px;-webkit-user-select:none;-moz-user-select:none;user-select:none;width:28px}.vc-day-content:hover{background-color:var(--vc-day-content-hover-bg)}.vc-day-content.vc-disabled{color:var(--vc-day-content-disabled-color)}.vc-content:not(.vc-base){color:var(--vc-content-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-highlights{overflow:hidden;pointer-events:none;z-index:-1}.vc-highlight{height:28px;width:28px}.vc-highlight.vc-highlight-base-start{border-radius:0!important;border-right-width:0!important;width:50%!important}.vc-highlight.vc-highlight-base-end{border-left-width:0!important;border-radius:0!important;width:50%!important}.vc-highlight.vc-highlight-base-middle{border-left-width:0!important;border-radius:0!important;border-right-width:0!important;margin:0 -1px;width:100%}.vc-highlight-bg-none,.vc-highlight-bg-outline{background-color:var(--vc-highlight-outline-bg);border:2px solid;border-color:var(--vc-highlight-outline-border);border-radius:9999px;border-radius:var(--vc-rounded-full)}.vc-highlight-bg-light{background-color:var(--vc-highlight-light-bg)}.vc-highlight-bg-light,.vc-highlight-bg-solid{border-radius:9999px;border-radius:var(--vc-rounded-full)}.vc-highlight-bg-solid{background-color:var(--vc-highlight-solid-bg)}.vc-highlight-content-none,.vc-highlight-content-outline{color:var(--vc-highlight-outline-content-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-highlight-content-light{color:var(--vc-highlight-light-content-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-highlight-content-solid{color:var(--vc-highlight-solid-content-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-dots{align-items:center;display:flex;justify-content:center}.vc-dot{border-radius:9999px;height:5px;transition:all .13s ease-in;transition:var(--vc-day-content-transition);width:5px}.vc-dot:not(:last-child){margin-right:3px}.vc-bars{align-items:center;display:flex;justify-content:flex-start;width:75%}.vc-bar{flex-grow:1;height:3px;transition:all .13s ease-in;transition:var(--vc-day-content-transition)}.vc-dot{background-color:var(--vc-dot-bg)}.vc-bar{background-color:var(--vc-bar-bg)}.vc-pane{min-width:250px}.vc-weeknumber{align-items:center;display:flex;justify-content:center;position:absolute}.vc-weeknumber.is-left{left:-26px;left:calc(var(--vc-weeknumber-offset-inside)*-1)}.vc-weeknumber.is-right{right:-26px;right:calc(var(--vc-weeknumber-offset-inside)*-1)}.vc-weeknumber.is-left-outside{left:-34px;left:calc(var(--vc-weeknumber-offset-outside)*-1)}.vc-weeknumber.is-right-outside{right:-34px;right:calc(var(--vc-weeknumber-offset-outside)*-1)}.vc-weeknumber-content{align-items:center;color:var(--vc-weeknumber-color);display:flex;font-size:12px;font-size:var(--vc-text-xs);font-style:italic;font-weight:500;font-weight:var(--vc-font-medium);height:28px;justify-content:center;margin-top:2px;-webkit-user-select:none;-moz-user-select:none;user-select:none;width:28px}.vc-weeks{position:relative;-webkit-overflow-scrolling:touch;min-width:232px;padding:6px}.vc-weeks.vc-show-weeknumbers-left{margin-left:26px;margin-left:var(--vc-weeknumber-offset-inside)}.vc-weeks.vc-show-weeknumbers-right{margin-right:26px;margin-right:var(--vc-weeknumber-offset-inside)}.vc-weekday{color:var(--vc-weekday-color);cursor:default;font-size:14px;font-size:var(--vc-text-sm);font-weight:700;font-weight:var(--vc-font-bold);line-height:14px;padding-bottom:8px;padding-top:4px;text-align:center;-webkit-user-select:none;-moz-user-select:none;user-select:none}.vc-week,.vc-weekdays{display:grid;grid-template-columns:repeat(7,1fr);position:relative}.vc-popover-content-wrapper{--popover-horizontal-content-offset:8px;--popover-vertical-content-offset:10px;--popover-caret-horizontal-offset:18px;--popover-caret-vertical-offset:8px;display:block;outline:none;position:absolute;z-index:10}.vc-popover-content-wrapper:not(.is-interactive){pointer-events:none}.vc-popover-content{background-color:var(--vc-popover-content-bg);border:1px solid;border-color:var(--vc-popover-content-border);border-radius:.5rem;border-radius:var(--vc-rounded-lg);box-shadow:0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -2px rgba(0,0,0,.05);box-shadow:var(--vc-shadow-lg);color:var(--vc-popover-content-color);font-weight:500;font-weight:var(--vc-font-medium);outline:none;padding:4px;position:relative;z-index:10}.vc-popover-content.direction-bottom{margin-top:var(--popover-vertical-content-offset)}.vc-popover-content.direction-top{margin-bottom:var(--popover-vertical-content-offset)}.vc-popover-content.direction-left{margin-right:var(--popover-horizontal-content-offset)}.vc-popover-content.direction-right{margin-left:var(--popover-horizontal-content-offset)}.vc-popover-caret{background-color:inherit;border-left:inherit;border-top:inherit;content:"";display:block;height:12px;position:absolute;width:12px;z-index:-1}.vc-popover-caret.direction-bottom{top:0}.vc-popover-caret.direction-bottom.align-left{transform:translateY(-50%) rotate(45deg)}.vc-popover-caret.direction-bottom.align-center{transform:translate(-50%) translateY(-50%) rotate(45deg)}.vc-popover-caret.direction-bottom.align-right{transform:translateY(-50%) rotate(45deg)}.vc-popover-caret.direction-top{top:100%}.vc-popover-caret.direction-top.align-left{transform:translateY(-50%) rotate(-135deg)}.vc-popover-caret.direction-top.align-center{transform:translate(-50%) translateY(-50%) rotate(-135deg)}.vc-popover-caret.direction-top.align-right{transform:translateY(-50%) rotate(-135deg)}.vc-popover-caret.direction-left{left:100%}.vc-popover-caret.direction-left.align-top{transform:translate(-50%) rotate(135deg)}.vc-popover-caret.direction-left.align-middle{transform:translateY(-50%) translate(-50%) rotate(135deg)}.vc-popover-caret.direction-left.align-bottom{transform:translate(-50%) rotate(135deg)}.vc-popover-caret.direction-right{left:0}.vc-popover-caret.direction-right.align-top{transform:translate(-50%) rotate(-45deg)}.vc-popover-caret.direction-right.align-middle{transform:translateY(-50%) translate(-50%) rotate(-45deg)}.vc-popover-caret.direction-right.align-bottom{transform:translate(-50%) rotate(-45deg)}.vc-popover-caret.align-left{left:var(--popover-caret-horizontal-offset)}.vc-popover-caret.align-center{left:50%}.vc-popover-caret.align-right{right:var(--popover-caret-horizontal-offset)}.vc-popover-caret.align-top{top:var(--popover-caret-vertical-offset)}.vc-popover-caret.align-middle{top:50%}.vc-popover-caret.align-bottom{bottom:var(--popover-caret-vertical-offset)}.vc-nav-header{display:flex;justify-content:space-between}.vc-nav-arrow,.vc-nav-item,.vc-nav-title{border:0;border-radius:.25rem;border-radius:var(--vc-rounded);cursor:pointer;font-size:14px;font-size:var(--vc-text-sm);margin:0;-webkit-user-select:none;-moz-user-select:none;user-select:none;white-space:nowrap}.vc-nav-arrow:hover,.vc-nav-item:hover,.vc-nav-title:hover{background-color:var(--vc-nav-hover-bg)}.vc-nav-arrow:disabled,.vc-nav-item:disabled,.vc-nav-title:disabled{opacity:.25;pointer-events:none}.vc-nav-title{color:var(--vc-nav-title-color);font-weight:700;font-weight:var(--vc-font-bold);height:30px;line-height:1.375;line-height:var(--vc-leading-snug);padding:0 6px}.vc-nav-arrow{align-items:center;color:var(--vc-header-arrow-color);display:flex;height:30px;justify-content:center;padding:0;width:26px}.vc-nav-items{display:grid;grid-template-columns:repeat(3,1fr);grid-row-gap:2px;grid-column-gap:5px;margin-top:2px}.vc-nav-item{font-weight:600;font-weight:var(--vc-font-semibold);line-height:1.375;line-height:var(--vc-leading-snug);padding:6px 0;text-align:center;width:48px}.vc-nav-item.is-active{background-color:var(--vc-nav-item-active-bg);color:var(--vc-nav-item-active-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-nav-item.is-active:not(:focus){box-shadow:var(--vc-nav-item-active-box-shadow)}.vc-nav-item.is-current{color:var(--vc-nav-item-current-color)}.vc-day-popover-row{align-items:center;display:flex;transition:all .13s ease-in;transition:var(--vc-day-content-transition)}.vc-day-popover-row-indicator{align-items:center;display:flex;flex-grow:0;justify-content:center;width:15px}.vc-day-popover-row-indicator span{transition:all .13s ease-in;transition:var(--vc-day-content-transition)}.vc-day-popover-row-label{align-items:center;display:flex;flex-grow:1;flex-wrap:none;font-size:12px;font-size:var(--vc-text-xs);line-height:1.5;line-height:var(--vc-leading-normal);margin-left:4px;margin-right:4px;width:-moz-max-content;width:max-content}.vc-day-popover-row-highlight{border-radius:3px;height:5px;width:8px}.vc-day-popover-row-bar{height:3px;width:10px}.vc-pane-container{position:relative;width:100%}.vc-pane-container.in-transition{overflow:hidden}.vc-pane-layout{display:grid}.vc-pane-header-wrapper{pointer-events:none;position:absolute;top:0;width:100%}.vc-day-popover-container{font-size:12px;font-size:var(--vc-text-xs);font-weight:500;font-weight:var(--vc-font-medium)}.vc-day-popover-header{color:var(--vc-day-popover-header-color);font-size:12px;font-size:var(--vc-text-xs);font-weight:600;font-weight:var(--vc-font-semibold);text-align:center}.vc-base-select{position:relative}.vc-base-select select{-webkit-appearance:none;-moz-appearance:none;appearance:none;background-color:transparent;background-image:none;border-radius:.25rem;border-radius:var(--vc-rounded);color:var(--vc-select-color);cursor:pointer;display:block;font-size:16px;font-size:var(--vc-text-base);font-weight:500;font-weight:var(--vc-font-medium);height:30px;line-height:var(--leading-none);margin:0;padding:0 4px;text-align:center;text-indent:0;width:-moz-max-content;width:max-content}.vc-base-select select:hover{background-color:var(--vc-select-hover-bg)}.vc-base-select select.vc-has-icon{padding:0 24px 0 10px}.vc-base-select select.vc-small{font-size:14px;font-size:var(--vc-text-sm)}.vc-base-select select.vc-small.vc-has-icon{padding:0 20px 0 8}.vc-base-select select.vc-align-left{text-align:left}.vc-base-select select.vc-align-right{text-align:right}.vc-base-select .vc-base-icon{opacity:.6;pointer-events:none;position:absolute;right:4px;top:6px}.vc-time-picker{align-items:center;display:flex;flex-direction:column;padding:8px 4px}.vc-time-picker.vc-invalid{opacity:.5;pointer-events:none}.vc-time-picker.vc-attached{border-top:1px solid var(--vc-time-picker-border)}.vc-time-picker>*+*{margin-top:4px}.vc-time-header{align-items:center;display:flex;font-size:14px;font-size:var(--vc-text-sm);font-weight:600;font-weight:var(--vc-font-semibold);line-height:21px;margin-top:-4px;padding-left:4px;padding-right:4px;text-transform:uppercase}.vc-time-select-group{align-items:center;background:var(--vc-time-select-group-bg);border:1px solid var(--vc-time-select-group-border);border-radius:.375rem;border-radius:var(--vc-rounded-md);display:inline-flex;padding:0 4px}.vc-time-select-group .vc-base-icon{color:var(--vc-time-select-group-icon-color);margin-right:4px}.vc-time-weekday{color:var(--vc-time-weekday-color);letter-spacing:var(--tracking-wide)}.vc-time-month{color:var(--vc-time-month-color);margin-left:8px}.vc-time-day{color:var(--vc-time-day-color);margin-left:4px}.vc-time-year{color:var(--vc-time-year-color);margin-left:8px}.vc-time-colon{margin:0 1px 2px 2px}.vc-time-decimal{margin:0 0 0 1px}.vc-none-enter-active,.vc-none-leave-active{transition-duration:0s}.vc-fade-enter-active,.vc-fade-leave-active,.vc-slide-down-enter-active,.vc-slide-down-leave-active,.vc-slide-fade-enter-active,.vc-slide-fade-leave-active,.vc-slide-left-enter-active,.vc-slide-left-leave-active,.vc-slide-right-enter-active,.vc-slide-right-leave-active,.vc-slide-up-enter-active,.vc-slide-up-leave-active{backface-visibility:hidden;pointer-events:none;transition:transform .15s ease,opacity .15s ease;transition:transform var(--vc-slide-duration) var(--vc-slide-timing),opacity var(--vc-slide-duration) var(--vc-slide-timing)}.vc-fade-leave-active,.vc-none-leave-active,.vc-slide-down-leave-active,.vc-slide-left-leave-active,.vc-slide-right-leave-active,.vc-slide-up-leave-active{position:absolute!important;width:100%}.vc-fade-enter-from,.vc-fade-leave-to,.vc-none-enter-from,.vc-none-leave-to,.vc-slide-down-enter-from,.vc-slide-down-leave-to,.vc-slide-fade-enter-from,.vc-slide-fade-leave-to,.vc-slide-left-enter-from,.vc-slide-left-leave-to,.vc-slide-right-enter-from,.vc-slide-right-leave-to,.vc-slide-up-enter-from,.vc-slide-up-leave-to{opacity:0}.vc-slide-fade-enter-from.direction-left,.vc-slide-fade-leave-to.direction-left,.vc-slide-left-enter-from,.vc-slide-right-leave-to{transform:translate(22px);transform:translate(var(--vc-slide-translate))}.vc-slide-fade-enter-from.direction-right,.vc-slide-fade-leave-to.direction-right,.vc-slide-left-leave-to,.vc-slide-right-enter-from{transform:translate(-22px);transform:translate(calc(var(--vc-slide-translate)*-1))}.vc-slide-down-leave-to,.vc-slide-fade-enter-from.direction-top,.vc-slide-fade-leave-to.direction-top,.vc-slide-up-enter-from{transform:translateY(22px);transform:translateY(var(--vc-slide-translate))}.vc-slide-down-enter-from,.vc-slide-fade-enter-from.direction-bottom,.vc-slide-fade-leave-to.direction-bottom,.vc-slide-up-leave-to{transform:translateY(-22px);transform:translateY(calc(var(--vc-slide-translate)*-1))}:root{--vc-white:#fff;--vc-black:#000;--vc-gray-50:#f8fafc;--vc-gray-100:#f1f5f9;--vc-gray-200:#e2e8f0;--vc-gray-300:#cbd5e1;--vc-gray-400:#94a3b8;--vc-gray-500:#64748b;--vc-gray-600:#475569;--vc-gray-700:#334155;--vc-gray-800:#1e293b;--vc-gray-900:#0f172a;--vc-font-family:BlinkMacSystemFont,-apple-system,"Segoe UI","Roboto","Oxygen","Ubuntu","Cantarell","Fira Sans","Droid Sans","Helvetica Neue","Helvetica","Arial",sans-serif;--vc-font-normal:400;--vc-font-medium:500;--vc-font-semibold:600;--vc-font-bold:700;--vc-text-2xs:10px;--vc-text-xs:12px;--vc-text-sm:14px;--vc-text-base:16px;--vc-text-lg:18px;--vc-text-xl:20px;--vc-text-2xl:24px;--vc-leading-none:1;--vc-leading-tight:1.25;--vc-leading-snug:1.375;--vc-leading-normal:1.5;--vc-rounded:.25rem;--vc-rounded-md:.375rem;--vc-rounded-lg:.5rem;--vc-rounded-full:9999px;--vc-shadow:0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px 0 rgba(0,0,0,.06);--vc-shadow-lg:0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -2px rgba(0,0,0,.05);--vc-shadow-inner:inset 0 2px 4px 0 rgba(0,0,0,.06);--vc-slide-translate:22px;--vc-slide-duration:.15s;--vc-slide-timing:ease;--vc-day-content-transition:all .13s ease-in;--vc-weeknumber-offset-inside:26px;--vc-weeknumber-offset-outside:34px}.vc-gray{--vc-accent-50:var(--vc-gray-50);--vc-accent-100:var(--vc-gray-100);--vc-accent-200:var(--vc-gray-200);--vc-accent-300:var(--vc-gray-300);--vc-accent-400:var(--vc-gray-400);--vc-accent-500:var(--vc-gray-500);--vc-accent-600:var(--vc-gray-600);--vc-accent-700:var(--vc-gray-700);--vc-accent-800:var(--vc-gray-800);--vc-accent-900:var(--vc-gray-900)}.vc-red{--vc-accent-50:#fef2f2;--vc-accent-100:#fee2e2;--vc-accent-200:#fecaca;--vc-accent-300:#fca5a5;--vc-accent-400:#f87171;--vc-accent-500:#ef4444;--vc-accent-600:#dc2626;--vc-accent-700:#b91c1c;--vc-accent-800:#991b1b;--vc-accent-900:#7f1d1d}.vc-orange{--vc-accent-50:#fff7ed;--vc-accent-100:#ffedd5;--vc-accent-200:#fed7aa;--vc-accent-300:#fdba74;--vc-accent-400:#fb923c;--vc-accent-500:#f97316;--vc-accent-600:#ea580c;--vc-accent-700:#c2410c;--vc-accent-800:#9a3412;--vc-accent-900:#7c2d12}.vc-yellow{--vc-accent-50:#fefce8;--vc-accent-100:#fef9c3;--vc-accent-200:#fef08a;--vc-accent-300:#fde047;--vc-accent-400:#facc15;--vc-accent-500:#eab308;--vc-accent-600:#ca8a04;--vc-accent-700:#a16207;--vc-accent-800:#854d0e;--vc-accent-900:#713f12}.vc-green{--vc-accent-50:#f0fdf4;--vc-accent-100:#dcfce7;--vc-accent-200:#bbf7d0;--vc-accent-300:#86efac;--vc-accent-400:#4ade80;--vc-accent-500:#22c55e;--vc-accent-600:#16a34a;--vc-accent-700:#15803d;--vc-accent-800:#166534;--vc-accent-900:#14532d}.vc-teal{--vc-accent-50:#f0fdfa;--vc-accent-100:#ccfbf1;--vc-accent-200:#99f6e4;--vc-accent-300:#5eead4;--vc-accent-400:#2dd4bf;--vc-accent-500:#14b8a6;--vc-accent-600:#0d9488;--vc-accent-700:#0f766e;--vc-accent-800:#115e59;--vc-accent-900:#134e4a}.vc-blue{--vc-accent-50:#eff6ff;--vc-accent-100:#dbeafe;--vc-accent-200:#bfdbfe;--vc-accent-300:#93c5fd;--vc-accent-400:#60a5fa;--vc-accent-500:#3b82f6;--vc-accent-600:#2563eb;--vc-accent-700:#1d4ed8;--vc-accent-800:#1e40af;--vc-accent-900:#1e3a8a}.vc-indigo{--vc-accent-50:#eef2ff;--vc-accent-100:#e0e7ff;--vc-accent-200:#c7d2fe;--vc-accent-300:#a5b4fc;--vc-accent-400:#818cf8;--vc-accent-500:#6366f1;--vc-accent-600:#4f46e5;--vc-accent-700:#4338ca;--vc-accent-800:#3730a3;--vc-accent-900:#312e81}.vc-purple{--vc-accent-50:#faf5ff;--vc-accent-100:#f3e8ff;--vc-accent-200:#e9d5ff;--vc-accent-300:#d8b4fe;--vc-accent-400:#c084fc;--vc-accent-500:#a855f7;--vc-accent-600:#9333ea;--vc-accent-700:#7e22ce;--vc-accent-800:#6b21a8;--vc-accent-900:#581c87}.vc-pink{--vc-accent-50:#fdf2f8;--vc-accent-100:#fce7f3;--vc-accent-200:#fbcfe8;--vc-accent-300:#f9a8d4;--vc-accent-400:#f472b6;--vc-accent-500:#ec4899;--vc-accent-600:#db2777;--vc-accent-700:#be185d;--vc-accent-800:#9d174d;--vc-accent-900:#831843}.vc-focus:focus-within{box-shadow:var(--vc-focus-ring);outline:0}.vc-light{--vc-color:var(--vc-gray-900);--vc-bg:var(--vc-white);--vc-border:var(--vc-gray-300);--vc-hover-bg:rgba(204,214,224,.3);--vc-focus-ring:0 0 0 2px rgba(59,131,246,.4);--vc-header-arrow-color:var(--vc-gray-500);--vc-header-arrow-hover-bg:var(--vc-gray-200);--vc-header-title-color:var(--vc-gray-900);--vc-weekday-color:var(--vc-gray-500);--vc-weeknumber-color:var(--vc-gray-400);--vc-nav-hover-bg:var(--vc-gray-200);--vc-nav-title-color:var(--vc-gray-900);--vc-nav-item-hover-box-shadow:none;--vc-nav-item-active-color:var(--vc-white);--vc-nav-item-active-bg:var(--vc-accent-500);--vc-nav-item-active-box-shadow:var(--vc-shadow);--vc-nav-item-current-color:var(--vc-accent-600);--vc-day-popover-container-color:var(--vc-white);--vc-day-popover-container-bg:var(--vc-gray-800);--vc-day-popover-container-border:var(--vc-gray-700);--vc-day-popover-header-color:var(--vc-gray-700);--vc-popover-content-color:var(--vc-gray-900);--vc-popover-content-bg:var(--vc-gray-50);--vc-popover-content-border:var(--vc-gray-300);--vc-time-picker-border:var(--vc-gray-300);--vc-time-weekday-color:var(--vc-gray-700);--vc-time-month-color:var(--vc-accent-600);--vc-time-day-color:var(--vc-accent-600);--vc-time-year-color:var(--vc-gray-500);--vc-time-select-group-bg:var(--vc-gray-50);--vc-time-select-group-border:var(--vc-gray-300);--vc-time-select-group-icon-color:var(--vc-accent-500);--vc-select-color:var(--vc-gray-900);--vc-select-bg:var(--vg-gray-50);--vc-select-hover-bg:var(--vc-gray-100);--vc-select-border:var(--vc-gray-300);--vc-day-content-hover-bg:var(--vc-hover-bg);--vc-day-content-disabled-color:var(--vc-gray-400)}.vc-light .vc-attr,.vc-light.vc-attr{--vc-content-color:var(--vc-accent-600);--vc-highlight-outline-bg:var(--vc-white);--vc-highlight-outline-border:var(--vc-accent-600);--vc-highlight-outline-content-color:var(--vc-accent-700);--vc-highlight-light-bg:var(--vc-accent-200);--vc-highlight-light-content-color:var(--vc-accent-900);--vc-highlight-solid-bg:var(--vc-accent-600);--vc-highlight-solid-content-color:var(--vc-white);--vc-dot-bg:var(--vc-accent-600);--vc-bar-bg:var(--vc-accent-600)}.vc-dark{--vc-color:var(--vc-white);--vc-bg:var(--vc-gray-900);--vc-border:var(--vc-gray-700);--vc-hover-bg:rgba(114,129,151,.3);--vc-focus-ring:0 0 0 2px rgba(59,130,246,.7);--vc-header-arrow-color:var(--vc-gray-300);--vc-header-arrow-hover-bg:var(--vc-gray-800);--vc-header-title-color:var(--vc-gray-100);--vc-weekday-color:var(--vc-accent-200);--vc-weeknumber-color:var(--vc-gray-500);--vc-nav-hover-bg:var(--vc-gray-700);--vc-nav-title-color:var(--vc-gray-100);--vc-nav-item-hover-box-shadow:none;--vc-nav-item-active-color:var(--vc-white);--vc-nav-item-active-bg:var(--vc-accent-500);--vc-nav-item-active-box-shadow:none;--vc-nav-item-current-color:var(--vc-accent-400);--vc-day-popover-container-color:var(--vc-gray-800);--vc-day-popover-container-bg:var(--vc-white);--vc-day-popover-container-border:var(--vc-gray-100);--vc-day-popover-header-color:var(--vc-gray-300);--vc-popover-content-color:var(--vc-white);--vc-popover-content-bg:var(--vc-gray-800);--vc-popover-content-border:var(--vc-gray-700);--vc-time-picker-border:var(--vc-gray-700);--vc-time-weekday-color:var(--vc-gray-400);--vc-time-month-color:var(--vc-accent-400);--vc-time-day-color:var(--vc-accent-400);--vc-time-year-color:var(--vc-gray-500);--vc-time-select-group-bg:var(--vc-gray-700);--vc-time-select-group-border:var(--vc-gray-500);--vc-time-select-group-icon-color:var(--vc-accent-400);--vc-select-color:var(--vc-gray-200);--vc-select-bg:var(--vc-gray-700);--vc-select-hover-bg:var(--vc-gray-600);--vc-select-border:var(--vc-gray-500);--vc-day-content-hover-bg:var(--vc-hover-bg);--vc-day-content-disabled-color:var(--vc-gray-600)}.vc-dark .vc-attr,.vc-dark.vc-attr{--vc-content-color:var(--vc-accent-500);--vc-highlight-outline-bg:var(--vc-gray-900);--vc-highlight-outline-border:var(--vc-accent-300);--vc-highlight-outline-content-color:var(--vc-accent-200);--vc-highlight-light-bg:var(--vc-accent-800);--vc-highlight-light-content-color:var(--vc-accent-100);--vc-highlight-solid-bg:var(--vc-accent-500);--vc-highlight-solid-content-color:var(--vc-white);--vc-dot-bg:var(--vc-accent-500);--vc-bar-bg:var(--vc-accent-500)}.vc-container{background-color:var(--vc-bg);color:var(--vc-color);display:inline-flex;font-family:BlinkMacSystemFont,-apple-system,Segoe UI,Roboto,Oxygen,Ubuntu,Cantarell,Fira Sans,Droid Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-family:var(--vc-font-family);height:-moz-max-content;height:max-content;position:relative;width:-moz-max-content;width:max-content;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;-webkit-tap-highlight-color:transparent}.vc-container,.vc-container *{box-sizing:border-box}.vc-container :focus,.vc-container:focus{outline:none}.vc-container .vc-container{border:none}.vc-bordered{border:1px solid;border-color:var(--vc-border);border-radius:.5rem;border-radius:var(--vc-rounded-lg)}.vc-expanded{min-width:100%}.vc-transparent{background-color:transparent}.vc-date-picker-content{background-color:var(--vc-bg);padding:0}.vc-date-picker-content .vc-container{border:0}</style> <style>@font-face{font-family:swiper-icons;font-style:normal;font-weight:400;src:url("data:application/font-woff;charset=utf-8;base64, d09GRgABAAAAAAZgABAAAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAGRAAAABoAAAAci6qHkUdERUYAAAWgAAAAIwAAACQAYABXR1BPUwAABhQAAAAuAAAANuAY7+xHU1VCAAAFxAAAAFAAAABm2fPczU9TLzIAAAHcAAAASgAAAGBP9V5RY21hcAAAAkQAAACIAAABYt6F0cBjdnQgAAACzAAAAAQAAAAEABEBRGdhc3AAAAWYAAAACAAAAAj//wADZ2x5ZgAAAywAAADMAAAD2MHtryVoZWFkAAABbAAAADAAAAA2E2+eoWhoZWEAAAGcAAAAHwAAACQC9gDzaG10eAAAAigAAAAZAAAArgJkABFsb2NhAAAC0AAAAFoAAABaFQAUGG1heHAAAAG8AAAAHwAAACAAcABAbmFtZQAAA/gAAAE5AAACXvFdBwlwb3N0AAAFNAAAAGIAAACE5s74hXjaY2BkYGAAYpf5Hu/j+W2+MnAzMYDAzaX6QjD6/4//Bxj5GA8AuRwMYGkAPywL13jaY2BkYGA88P8Agx4j+/8fQDYfA1AEBWgDAIB2BOoAeNpjYGRgYNBh4GdgYgABEMnIABJzYNADCQAACWgAsQB42mNgYfzCOIGBlYGB0YcxjYGBwR1Kf2WQZGhhYGBiYGVmgAFGBiQQkOaawtDAoMBQxXjg/wEGPcYDDA4wNUA2CCgwsAAAO4EL6gAAeNpj2M0gyAACqxgGNWBkZ2D4/wMA+xkDdgAAAHjaY2BgYGaAYBkGRgYQiAHyGMF8FgYHIM3DwMHABGQrMOgyWDLEM1T9/w8UBfEMgLzE////P/5//f/V/xv+r4eaAAeMbAxwIUYmIMHEgKYAYjUcsDAwsLKxc3BycfPw8jEQA/gZBASFhEVExcQlJKWkZWTl5BUUlZRVVNXUNTQZBgMAAMR+E+gAEQFEAAAAKgAqACoANAA+AEgAUgBcAGYAcAB6AIQAjgCYAKIArAC2AMAAygDUAN4A6ADyAPwBBgEQARoBJAEuATgBQgFMAVYBYAFqAXQBfgGIAZIBnAGmAbIBzgHsAAB42u2NMQ6CUAyGW568x9AneYYgm4MJbhKFaExIOAVX8ApewSt4Bic4AfeAid3VOBixDxfPYEza5O+Xfi04YADggiUIULCuEJK8VhO4bSvpdnktHI5QCYtdi2sl8ZnXaHlqUrNKzdKcT8cjlq+rwZSvIVczNiezsfnP/uznmfPFBNODM2K7MTQ45YEAZqGP81AmGGcF3iPqOop0r1SPTaTbVkfUe4HXj97wYE+yNwWYxwWu4v1ugWHgo3S1XdZEVqWM7ET0cfnLGxWfkgR42o2PvWrDMBSFj/IHLaF0zKjRgdiVMwScNRAoWUoH78Y2icB/yIY09An6AH2Bdu/UB+yxopYshQiEvnvu0dURgDt8QeC8PDw7Fpji3fEA4z/PEJ6YOB5hKh4dj3EvXhxPqH/SKUY3rJ7srZ4FZnh1PMAtPhwP6fl2PMJMPDgeQ4rY8YT6Gzao0eAEA409DuggmTnFnOcSCiEiLMgxCiTI6Cq5DZUd3Qmp10vO0LaLTd2cjN4fOumlc7lUYbSQcZFkutRG7g6JKZKy0RmdLY680CDnEJ+UMkpFFe1RN7nxdVpXrC4aTtnaurOnYercZg2YVmLN/d/gczfEimrE/fs/bOuq29Zmn8tloORaXgZgGa78yO9/cnXm2BpaGvq25Dv9S4E9+5SIc9PqupJKhYFSSl47+Qcr1mYNAAAAeNptw0cKwkAAAMDZJA8Q7OUJvkLsPfZ6zFVERPy8qHh2YER+3i/BP83vIBLLySsoKimrqKqpa2hp6+jq6RsYGhmbmJqZSy0sraxtbO3sHRydnEMU4uR6yx7JJXveP7WrDycAAAAAAAH//wACeNpjYGRgYOABYhkgZgJCZgZNBkYGLQZtIJsFLMYAAAw3ALgAeNolizEKgDAQBCchRbC2sFER0YD6qVQiBCv/H9ezGI6Z5XBAw8CBK/m5iQQVauVbXLnOrMZv2oLdKFa8Pjuru2hJzGabmOSLzNMzvutpB3N42mNgZGBg4GKQYzBhYMxJLMlj4GBgAYow/P/PAJJhLM6sSoWKfWCAAwDAjgbRAAB42mNgYGBkAIIbCZo5IPrmUn0hGA0AO8EFTQAA")}:root{--swiper-theme-color:#007aff}:host{display:block;margin-left:auto;margin-right:auto;position:relative;z-index:1}.swiper{display:block;list-style:none;margin-left:auto;margin-right:auto;overflow:hidden;overflow:clip;padding:0;position:relative;z-index:1}.swiper-vertical>.swiper-wrapper{flex-direction:column}.swiper-wrapper{box-sizing:content-box;display:flex;height:100%;position:relative;transition-property:transform;transition-timing-function:ease;transition-timing-function:var(--swiper-wrapper-transition-timing-function,initial);width:100%;z-index:1}.swiper-android .swiper-slide,.swiper-ios .swiper-slide,.swiper-wrapper{transform:translateZ(0)}.swiper-horizontal{touch-action:pan-y}.swiper-vertical{touch-action:pan-x}.swiper-slide{display:block;flex-shrink:0;height:100%;position:relative;transition-property:transform;width:100%}.swiper-slide-invisible-blank{visibility:hidden}.swiper-autoheight,.swiper-autoheight .swiper-slide{height:auto}.swiper-autoheight .swiper-wrapper{align-items:flex-start;transition-property:transform,height}.swiper-backface-hidden .swiper-slide{backface-visibility:hidden;transform:translateZ(0)}.swiper-3d.swiper-css-mode .swiper-wrapper{perspective:1200px}.swiper-3d .swiper-wrapper{transform-style:preserve-3d}.swiper-3d{perspective:1200px}.swiper-3d .swiper-cube-shadow,.swiper-3d .swiper-slide{transform-style:preserve-3d}.swiper-css-mode>.swiper-wrapper{overflow:auto;scrollbar-width:none;-ms-overflow-style:none}.swiper-css-mode>.swiper-wrapper::-webkit-scrollbar{display:none}.swiper-css-mode>.swiper-wrapper>.swiper-slide{scroll-snap-align:start start}.swiper-css-mode.swiper-horizontal>.swiper-wrapper{scroll-snap-type:x mandatory}.swiper-css-mode.swiper-vertical>.swiper-wrapper{scroll-snap-type:y mandatory}.swiper-css-mode.swiper-free-mode>.swiper-wrapper{scroll-snap-type:none}.swiper-css-mode.swiper-free-mode>.swiper-wrapper>.swiper-slide{scroll-snap-align:none}.swiper-css-mode.swiper-centered>.swiper-wrapper:before{content:"";flex-shrink:0;order:9999}.swiper-css-mode.swiper-centered>.swiper-wrapper>.swiper-slide{scroll-snap-align:center center;scroll-snap-stop:always}.swiper-css-mode.swiper-centered.swiper-horizontal>.swiper-wrapper>.swiper-slide:first-child{margin-inline-start:var(--swiper-centered-offset-before)}.swiper-css-mode.swiper-centered.swiper-horizontal>.swiper-wrapper:before{height:100%;min-height:1px;width:var(--swiper-centered-offset-after)}.swiper-css-mode.swiper-centered.swiper-vertical>.swiper-wrapper>.swiper-slide:first-child{margin-block-start:var(--swiper-centered-offset-before)}.swiper-css-mode.swiper-centered.swiper-vertical>.swiper-wrapper:before{height:var(--swiper-centered-offset-after);min-width:1px;width:100%}.swiper-3d .swiper-slide-shadow,.swiper-3d .swiper-slide-shadow-bottom,.swiper-3d .swiper-slide-shadow-left,.swiper-3d .swiper-slide-shadow-right,.swiper-3d .swiper-slide-shadow-top{height:100%;left:0;pointer-events:none;position:absolute;top:0;width:100%;z-index:10}.swiper-3d .swiper-slide-shadow{background:rgba(0,0,0,.15)}.swiper-3d .swiper-slide-shadow-left{background-image:linear-gradient(270deg,rgba(0,0,0,.5),transparent)}.swiper-3d .swiper-slide-shadow-right{background-image:linear-gradient(90deg,rgba(0,0,0,.5),transparent)}.swiper-3d .swiper-slide-shadow-top{background-image:linear-gradient(0deg,rgba(0,0,0,.5),transparent)}.swiper-3d .swiper-slide-shadow-bottom{background-image:linear-gradient(180deg,rgba(0,0,0,.5),transparent)}.swiper-lazy-preloader{border:4px solid #007aff;border:4px solid var(--swiper-preloader-color,var(--swiper-theme-color));border-radius:50%;border-top:4px solid transparent;box-sizing:border-box;height:42px;left:50%;margin-left:-21px;margin-top:-21px;position:absolute;top:50%;transform-origin:50%;width:42px;z-index:10}.swiper-watch-progress .swiper-slide-visible .swiper-lazy-preloader,.swiper:not(.swiper-watch-progress) .swiper-lazy-preloader{animation:swiper-preloader-spin 1s linear infinite}.swiper-lazy-preloader-white{--swiper-preloader-color:#fff}.swiper-lazy-preloader-black{--swiper-preloader-color:#000}@keyframes swiper-preloader-spin{0%{transform:rotate(0deg)}to{transform:rotate(1turn)}}</style> <style>.swiper .swiper-notification{left:0;opacity:0;pointer-events:none;position:absolute;top:0;z-index:-1000}</style> <style>.swiper-cards{overflow:visible}.swiper-cards .swiper-slide{backface-visibility:hidden;overflow:hidden;transform-origin:center bottom}</style> <style>.swiper-creative .swiper-slide{backface-visibility:hidden;overflow:hidden;transition-property:transform,opacity,height}</style> <style>.swiper-cube{overflow:visible}.swiper-cube .swiper-slide{backface-visibility:hidden;height:100%;pointer-events:none;transform-origin:0 0;visibility:hidden;width:100%;z-index:1}.swiper-cube .swiper-slide .swiper-slide{pointer-events:none}.swiper-cube.swiper-rtl .swiper-slide{transform-origin:100% 0}.swiper-cube .swiper-slide-active,.swiper-cube .swiper-slide-active .swiper-slide-active{pointer-events:auto}.swiper-cube .swiper-slide-active,.swiper-cube .swiper-slide-next,.swiper-cube .swiper-slide-prev{pointer-events:auto;visibility:visible}.swiper-cube .swiper-cube-shadow{bottom:0;height:100%;left:0;opacity:.6;position:absolute;width:100%;z-index:0}.swiper-cube .swiper-cube-shadow:before{background:#000;bottom:0;content:"";filter:blur(50px);left:0;position:absolute;right:0;top:0}.swiper-cube .swiper-slide-next+.swiper-slide{pointer-events:auto;visibility:visible}.swiper-cube .swiper-slide-shadow-cube.swiper-slide-shadow-bottom,.swiper-cube .swiper-slide-shadow-cube.swiper-slide-shadow-left,.swiper-cube .swiper-slide-shadow-cube.swiper-slide-shadow-right,.swiper-cube .swiper-slide-shadow-cube.swiper-slide-shadow-top{backface-visibility:hidden;z-index:0}</style> <style>.swiper-fade.swiper-free-mode .swiper-slide{transition-timing-function:ease-out}.swiper-fade .swiper-slide{pointer-events:none;transition-property:opacity}.swiper-fade .swiper-slide .swiper-slide{pointer-events:none}.swiper-fade .swiper-slide-active,.swiper-fade .swiper-slide-active .swiper-slide-active{pointer-events:auto}</style> <style>.swiper-flip{overflow:visible}.swiper-flip .swiper-slide{backface-visibility:hidden;pointer-events:none;z-index:1}.swiper-flip .swiper-slide .swiper-slide{pointer-events:none}.swiper-flip .swiper-slide-active,.swiper-flip .swiper-slide-active .swiper-slide-active{pointer-events:auto}.swiper-flip .swiper-slide-shadow-flip.swiper-slide-shadow-bottom,.swiper-flip .swiper-slide-shadow-flip.swiper-slide-shadow-left,.swiper-flip .swiper-slide-shadow-flip.swiper-slide-shadow-right,.swiper-flip .swiper-slide-shadow-flip.swiper-slide-shadow-top{backface-visibility:hidden;z-index:0}</style> <style>.swiper-free-mode>.swiper-wrapper{margin:0 auto;transition-timing-function:ease-out}</style> <style>.swiper-grid>.swiper-wrapper{flex-wrap:wrap}.swiper-grid-column>.swiper-wrapper{flex-direction:column;flex-wrap:wrap}</style> <style>:root{--swiper-navigation-size:44px}.swiper-button-next,.swiper-button-prev{align-items:center;color:var(--swiper-navigation-color,var(--swiper-theme-color));cursor:pointer;display:flex;height:44px;height:var(--swiper-navigation-size);justify-content:center;margin-top:-22px;margin-top:calc(0px - var(--swiper-navigation-size)/2);position:absolute;top:50%;top:var(--swiper-navigation-top-offset,50%);width:27px;width:calc(var(--swiper-navigation-size)/44*27);z-index:10}.swiper-button-next.swiper-button-disabled,.swiper-button-prev.swiper-button-disabled{cursor:auto;opacity:.35;pointer-events:none}.swiper-button-next.swiper-button-hidden,.swiper-button-prev.swiper-button-hidden{cursor:auto;opacity:0;pointer-events:none}.swiper-navigation-disabled .swiper-button-next,.swiper-navigation-disabled .swiper-button-prev{display:none!important}.swiper-button-next svg,.swiper-button-prev svg{height:100%;-o-object-fit:contain;object-fit:contain;transform-origin:center;width:100%}.swiper-rtl .swiper-button-next svg,.swiper-rtl .swiper-button-prev svg{transform:rotate(180deg)}.swiper-button-prev,.swiper-rtl .swiper-button-next{left:10px;left:var(--swiper-navigation-sides-offset,10px);right:auto}.swiper-button-lock{display:none}.swiper-button-next:after,.swiper-button-prev:after{font-family:swiper-icons;font-size:44px;font-size:var(--swiper-navigation-size);font-variant:normal;letter-spacing:0;line-height:1;text-transform:none!important}.swiper-button-prev:after,.swiper-rtl .swiper-button-next:after{content:"prev"}.swiper-button-next,.swiper-rtl .swiper-button-prev{left:auto;right:10px;right:var(--swiper-navigation-sides-offset,10px)}.swiper-button-next:after,.swiper-rtl .swiper-button-prev:after{content:"next"}</style> <style>.swiper-pagination{position:absolute;text-align:center;transform:translateZ(0);transition:opacity .3s;z-index:10}.swiper-pagination.swiper-pagination-hidden{opacity:0}.swiper-pagination-disabled>.swiper-pagination,.swiper-pagination.swiper-pagination-disabled{display:none!important}.swiper-horizontal>.swiper-pagination-bullets,.swiper-pagination-bullets.swiper-pagination-horizontal,.swiper-pagination-custom,.swiper-pagination-fraction{bottom:8px;bottom:var(--swiper-pagination-bottom,8px);left:0;top:auto;top:var(--swiper-pagination-top,auto);width:100%}.swiper-pagination-bullets-dynamic{font-size:0;overflow:hidden}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet{position:relative;transform:scale(.33)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active,.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-main{transform:scale(1)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-prev{transform:scale(.66)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-prev-prev{transform:scale(.33)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-next{transform:scale(.66)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-next-next{transform:scale(.33)}.swiper-pagination-bullet{background:#000;background:var(--swiper-pagination-bullet-inactive-color,#000);border-radius:50%;border-radius:var(--swiper-pagination-bullet-border-radius,50%);display:inline-block;height:8px;height:var(--swiper-pagination-bullet-height,var(--swiper-pagination-bullet-size,8px));opacity:.2;opacity:var(--swiper-pagination-bullet-inactive-opacity,.2);width:8px;width:var(--swiper-pagination-bullet-width,var(--swiper-pagination-bullet-size,8px))}button.swiper-pagination-bullet{-webkit-appearance:none;-moz-appearance:none;appearance:none;border:none;box-shadow:none;margin:0;padding:0}.swiper-pagination-clickable .swiper-pagination-bullet{cursor:pointer}.swiper-pagination-bullet:only-child{display:none!important}.swiper-pagination-bullet-active{background:var(--swiper-pagination-color,var(--swiper-theme-color));opacity:1;opacity:var(--swiper-pagination-bullet-opacity,1)}.swiper-pagination-vertical.swiper-pagination-bullets,.swiper-vertical>.swiper-pagination-bullets{left:auto;left:var(--swiper-pagination-left,auto);right:8px;right:var(--swiper-pagination-right,8px);top:50%;transform:translate3d(0,-50%,0)}.swiper-pagination-vertical.swiper-pagination-bullets .swiper-pagination-bullet,.swiper-vertical>.swiper-pagination-bullets .swiper-pagination-bullet{display:block;margin:6px 0;margin:var(--swiper-pagination-bullet-vertical-gap,6px) 0}.swiper-pagination-vertical.swiper-pagination-bullets.swiper-pagination-bullets-dynamic,.swiper-vertical>.swiper-pagination-bullets.swiper-pagination-bullets-dynamic{top:50%;transform:translateY(-50%);width:8px}.swiper-pagination-vertical.swiper-pagination-bullets.swiper-pagination-bullets-dynamic .swiper-pagination-bullet,.swiper-vertical>.swiper-pagination-bullets.swiper-pagination-bullets-dynamic .swiper-pagination-bullet{display:inline-block;transition:transform .2s,top .2s}.swiper-horizontal>.swiper-pagination-bullets .swiper-pagination-bullet,.swiper-pagination-horizontal.swiper-pagination-bullets .swiper-pagination-bullet{margin:0 4px;margin:0 var(--swiper-pagination-bullet-horizontal-gap,4px)}.swiper-horizontal>.swiper-pagination-bullets.swiper-pagination-bullets-dynamic,.swiper-pagination-horizontal.swiper-pagination-bullets.swiper-pagination-bullets-dynamic{left:50%;transform:translateX(-50%);white-space:nowrap}.swiper-horizontal>.swiper-pagination-bullets.swiper-pagination-bullets-dynamic .swiper-pagination-bullet,.swiper-pagination-horizontal.swiper-pagination-bullets.swiper-pagination-bullets-dynamic .swiper-pagination-bullet{transition:transform .2s,left .2s}.swiper-horizontal.swiper-rtl>.swiper-pagination-bullets-dynamic .swiper-pagination-bullet{transition:transform .2s,right .2s}.swiper-pagination-fraction{color:inherit;color:var(--swiper-pagination-fraction-color,inherit)}.swiper-pagination-progressbar{background:rgba(0,0,0,.25);background:var(--swiper-pagination-progressbar-bg-color,rgba(0,0,0,.25));position:absolute}.swiper-pagination-progressbar .swiper-pagination-progressbar-fill{background:var(--swiper-pagination-color,var(--swiper-theme-color));height:100%;left:0;position:absolute;top:0;transform:scale(0);transform-origin:left top;width:100%}.swiper-rtl .swiper-pagination-progressbar .swiper-pagination-progressbar-fill{transform-origin:right top}.swiper-horizontal>.swiper-pagination-progressbar,.swiper-pagination-progressbar.swiper-pagination-horizontal,.swiper-pagination-progressbar.swiper-pagination-vertical.swiper-pagination-progressbar-opposite,.swiper-vertical>.swiper-pagination-progressbar.swiper-pagination-progressbar-opposite{height:4px;height:var(--swiper-pagination-progressbar-size,4px);left:0;top:0;width:100%}.swiper-horizontal>.swiper-pagination-progressbar.swiper-pagination-progressbar-opposite,.swiper-pagination-progressbar.swiper-pagination-horizontal.swiper-pagination-progressbar-opposite,.swiper-pagination-progressbar.swiper-pagination-vertical,.swiper-vertical>.swiper-pagination-progressbar{height:100%;left:0;top:0;width:4px;width:var(--swiper-pagination-progressbar-size,4px)}.swiper-pagination-lock{display:none}</style> <style>.swiper-scrollbar{background:rgba(0,0,0,.1);background:var(--swiper-scrollbar-bg-color,rgba(0,0,0,.1));border-radius:10px;border-radius:var(--swiper-scrollbar-border-radius,10px);position:relative;touch-action:none}.swiper-scrollbar-disabled>.swiper-scrollbar,.swiper-scrollbar.swiper-scrollbar-disabled{display:none!important}.swiper-horizontal>.swiper-scrollbar,.swiper-scrollbar.swiper-scrollbar-horizontal{bottom:4px;bottom:var(--swiper-scrollbar-bottom,4px);height:4px;height:var(--swiper-scrollbar-size,4px);left:1%;left:var(--swiper-scrollbar-sides-offset,1%);position:absolute;top:auto;top:var(--swiper-scrollbar-top,auto);width:98%;width:calc(100% - var(--swiper-scrollbar-sides-offset, 1%)*2);z-index:50}.swiper-scrollbar.swiper-scrollbar-vertical,.swiper-vertical>.swiper-scrollbar{height:98%;height:calc(100% - var(--swiper-scrollbar-sides-offset, 1%)*2);left:auto;left:var(--swiper-scrollbar-left,auto);position:absolute;right:4px;right:var(--swiper-scrollbar-right,4px);top:1%;top:var(--swiper-scrollbar-sides-offset,1%);width:4px;width:var(--swiper-scrollbar-size,4px);z-index:50}.swiper-scrollbar-drag{background:rgba(0,0,0,.5);background:var(--swiper-scrollbar-drag-bg-color,rgba(0,0,0,.5));border-radius:10px;border-radius:var(--swiper-scrollbar-border-radius,10px);height:100%;left:0;position:relative;top:0;width:100%}.swiper-scrollbar-cursor-drag{cursor:move}.swiper-scrollbar-lock{display:none}</style> <style>.swiper-virtual .swiper-slide{-webkit-backface-visibility:hidden;transform:translateZ(0)}.swiper-virtual.swiper-css-mode .swiper-wrapper:after{content:"";left:0;pointer-events:none;position:absolute;top:0}.swiper-virtual.swiper-css-mode.swiper-horizontal .swiper-wrapper:after{height:1px;width:var(--swiper-virtual-size)}.swiper-virtual.swiper-css-mode.swiper-vertical .swiper-wrapper:after{height:var(--swiper-virtual-size);width:1px}</style> <style>.swiper-zoom-container{align-items:center;display:flex;height:100%;justify-content:center;text-align:center;width:100%}.swiper-zoom-container>canvas,.swiper-zoom-container>img,.swiper-zoom-container>svg{max-height:100%;max-width:100%;-o-object-fit:contain;object-fit:contain}.swiper-slide-zoomed{cursor:move;touch-action:none}</style> <style>.router-link-exact-active[data-v-ae15e636]{border-bottom-width:2px;--tw-border-opacity:1;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-default),1);color:rgba(var(--color-text-default),var(--tw-text-opacity))}</style> <style>.download-btn[data-v-ffd1b8fd]{gap:var(--spacing-lg);width:100%}@media (min-width:1024px){.download-btn[data-v-ffd1b8fd]{width:-moz-fit-content;width:fit-content}}</style> <style>[data-v-4f3fc9a4] h2{font-size:revert;font-weight:600}[data-v-4f3fc9a4] h1{font-size:revert;font-weight:600}[data-v-4f3fc9a4] .publication-text ol{list-style-type:decimal;padding-left:var(--spacing-lg)}[data-v-4f3fc9a4] .publication-text ul{list-style-type:disc;padding-left:var(--spacing-lg)}</style> <style>[data-v-0016287f] .m-accordion__item span{font-size:.875rem;font-weight:600;line-height:1.25rem}</style> <style>.clamp-1{-webkit-line-clamp:1}.clamp-1,.clamp-2{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical}.clamp-2{-webkit-line-clamp:2}.clamp-3{-webkit-line-clamp:3}.clamp-3,.clamp-4{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical}.clamp-4{-webkit-line-clamp:4}.clamp-5{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical;-webkit-line-clamp:5}</style> <style>.m-tooltip[data-v-d8c082ee] .text-color-white{font-size:.75rem;font-weight:400;line-height:1rem;width:10rem;--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}</style> <style>.m-input[data-v-03f1a75d]{height:2.5rem;width:100%;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));font-size:.875rem;line-height:1.25rem;padding-left:var(--spacing-md);padding-right:var(--spacing-md)}</style> <style>.m-tag[data-v-3ce94018]{border-radius:.25rem;height:1.5rem;margin-right:var(--spacing-xs);--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));font-size:.75rem;padding-left:var(--spacing-sm);--tw-text-opacity:1;color:rgba(var(--color-black),1);color:rgba(var(--color-black),var(--tw-text-opacity))}</style> <style>[data-v-da90062a] h2{font-size:1.125rem;font-weight:600;line-height:1.75rem;margin-top:-3rem;padding-bottom:var(--spacing-sm);padding-top:var(--spacing-7xl)}[data-v-da90062a] h4{font-size:1rem;font-weight:600;line-height:1.5rem;padding-bottom:var(--spacing-sm)}[data-v-da90062a] .html-p{font-size:1rem;line-height:1.5rem;padding-bottom:var(--spacing-lg)}[data-v-da90062a] .html-fig_img img,[data-v-da90062a] .html-table_wrap_td img{cursor:pointer;height:auto;margin:0 auto;width:100%}@media (min-width:1024px){[data-v-da90062a] .html-fig_img img,[data-v-da90062a] .html-table_wrap_td img{max-width:28.5rem}}[data-v-da90062a] .html-fig-wrap{padding-bottom:var(--spacing-lg);padding-top:var(--spacing-sm)}[data-v-da90062a] .html-fig_description,[data-v-da90062a] .html-table_wrap_discription{text-align:center}[data-v-da90062a] .html-disp-formula-info{display:flex;padding-bottom:var(--spacing-md);padding-top:var(--spacing-sm);width:100%}[data-v-da90062a] .html-disp-formula-info .f{width:80%}[data-v-da90062a] .html-disp-formula-info .l{text-align:right;width:20%}[data-v-da90062a] menu,[data-v-da90062a] ol,[data-v-da90062a] ul{list-style-type:decimal;padding-left:var(--spacing-md)}[data-v-da90062a] .mfp-content{display:none}[data-v-da90062a] .html-figpopup{margin:0 auto;max-width:28.5rem;position:relative}[data-v-da90062a] .html-bibr{position:relative}[data-v-da90062a] .mfp-popover{border-radius:1rem;height:auto;overflow-wrap:break-word;position:absolute;top:-5.875rem;width:24rem;z-index:10;--tw-bg-opacity:1;background-color:rgba(var(--color-white),1);background-color:rgba(var(--color-white),var(--tw-bg-opacity));font-size:.875rem;font-weight:400;line-height:1.25rem;padding:var(--spacing-md);--tw-shadow:0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px -1px rgba(0,0,0,.1);--tw-shadow-colored:0 1px 3px 0 var(--tw-shadow-color),0 1px 2px -1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px -1px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}[data-v-da90062a] .html-p dt{clear:left;float:left;padding-right:var(--spacing-md);text-align:right}[data-v-da90062a] .html-bullet .html-p{padding-bottom:0}.m-tag[data-v-da90062a]{border-radius:.25rem;height:1.5rem;margin-right:var(--spacing-xs);--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));font-size:.75rem;padding-left:var(--spacing-sm);--tw-text-opacity:1;color:rgba(var(--color-black),1);color:rgba(var(--color-black),var(--tw-text-opacity))}.container[data-v-da90062a]{margin-top:var(--spacing-lg)!important;--tw-bg-opacity:1!important;background-color:rgba(var(--color-white),1)!important;background-color:rgba(var(--color-white),var(--tw-bg-opacity))!important;padding-bottom:var(--spacing-sm)!important;padding-top:var(--spacing-sm)!important}.container[data-v-da90062a] svg{display:none!important}.container[data-v-da90062a] .m-button{height:1.8125rem}[data-v-da90062a] .html-fig_show{display:none}[data-v-da90062a] .html-table_show{display:none}.cite-container[data-v-da90062a]{--tw-bg-opacity:1!important;background-color:rgba(var(--color-white),1)!important;background-color:rgba(var(--color-white),var(--tw-bg-opacity))!important;padding-bottom:var(--spacing-sm)!important;padding-top:var(--spacing-sm)!important}.cite-container[data-v-da90062a] svg{display:none!important}[data-v-da90062a] .m-accordion__item span{font-size:.875rem;font-weight:600;line-height:1.25rem}[data-v-da90062a] .heading-with-anchor{word-break:break-all}[data-v-da90062a] #html-copyright{display:none}[data-v-da90062a] .cross-ref,[data-v-da90062a] .google-scholar,[data-v-da90062a] .html-fig,[data-v-da90062a] .html-table{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}[data-v-da90062a] .cross-ref:hover,[data-v-da90062a] .google-scholar:hover,[data-v-da90062a] .html-fig:hover,[data-v-da90062a] .html-table:hover{text-decoration-line:underline}[data-v-da90062a] a.html-bibr{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}[data-v-da90062a] a.html-bibr:hover{text-decoration-line:underline}</style> <style>[data-v-694159ae] .m-accordion__item span{font-size:.875rem;font-weight:600;line-height:1.25rem}</style> <link rel="stylesheet" href="/_nuxt/swiper-vue.B8Qtp0_B.css"> <link rel="stylesheet" href="/_nuxt/page.ChZXZrEc.css"> <link rel="stylesheet" href="/_nuxt/CommonReadmore.Cfzbs3YM.css"> <link rel="stylesheet" href="/_nuxt/imagePreview.BhKeW-wZ.css"> <link rel="stylesheet" href="/_nuxt/ScrollLoading.CtBH3zbC.css"> <link rel="stylesheet" href="/_nuxt/AppTurnstileWidget.BrwyvPaT.css"> <link rel="stylesheet" href="/_nuxt/ScrollTop.B6N0Xde5.css"> <link rel="preload" as="style" href="https://pub.mdpi-res.com/assets/fonts/suisse/fonts.css"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/C27HaHQc.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/4rkk1glR.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/OU_lvVvo.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/MELp_9y7.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DJ_2xEbf.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DlAUqK2U.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BzbGl42-.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/bRFCaPyp.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/Bq-k6d50.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BaC8YmpO.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CsnXxeeo.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/Sr7NgQmL.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CJtxWM-4.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D15uM1gO.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D3XMzgcc.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/Bp32iicF.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BVnInYB2.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CT_MnTdM.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/C2t5_0WB.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BenGTscT.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/YuxR3Pu0.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/Dnb9tpsV.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/B3frQi_Q.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DvALqv7A.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/vv2Rmwly.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BACJKBe0.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D3_cLRFw.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D4jAlUYG.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/C88fzhO7.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D3jZIeS7.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CO7npeQl.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BtWxVOE2.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CPniVYxA.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BrnKO0a8.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CXj84r_J.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BjFvKq7p.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BfP5Yj9h.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BCHjbcVH.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DF1xWhrB.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CSftCEdt.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BUG3EtXz.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/VRsIP4ye.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DWlQ7dfc.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/h5QvUJzN.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D9M9y3zY.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DBJwQKo_.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DJGN3rr3.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/Dg_sg7_-.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BTCqNyt1.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BlIUE5gg.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D64oYWtW.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BkYV1aS-.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/B79UeM0F.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CgwdhZu1.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BHDep5Fd.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/B1WVniK0.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/UIFFOgeC.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D2qdJ5wO.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/vRa2jP_-.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CVOIiGAr.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/YbQyBXQk.js"> <script src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js" id="shenembed" defer></script> <script src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js" defer></script> <link rel="prefetch" as="image" type="image/png" href="/_nuxt/error.BAMwz5-m.png"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BICt5lEk.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/C_7JoYtI.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BQ8VW0UK.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Ccci8845.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CkuUyBkI.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Cuo3bhE5.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BDkYyAbu.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/D0OoxKuM.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DcrixLdV.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BhBO-Kc3.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DnPbqzsC.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Dy33lEfh.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/w6QCel6Y.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DPpMCftk.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DDd-OE0i.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CSqnbcsA.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CaOeis0O.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/COF9GGY2.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/K08Ei7DG.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/EctWdbgJ.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BI-xnQ7w.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BTzD6Mkk.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/300XsdT0.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CJjj_ExW.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/C4Aq_-0L.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DgIKUgP-.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BHnT5fTp.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DG3nBRT1.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Cc08nYod.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/C1MSWdJj.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/D3Q2qhlM.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DE7mHYmK.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BFguvHUo.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DCTbMpoV.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BYolaAY_.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Rw14-rL_.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CgOid6gM.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DpzONys6.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DPOWjGPB.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DfhgFNlI.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Di81R11W.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BU8JUNi1.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/humBfqf4.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BvXbeU5U.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/cO8boWAA.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/4wO3PQLb.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CDOCVby7.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DFPnb23O.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CBfN9KOs.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DjwPEAHj.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BlnoRm-J.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/D3TjGg_5.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DbuP4Er7.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Btm5aAIe.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CNt80UN-.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CnYjD6y0.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Lhw1vk9W.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/C_UTzjh5.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Bg_lpcMp.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/IlH6o1Jh.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/AzIJCIsq.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/kXd3pXrK.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DMuDThNb.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Drgz-R_C.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/COsaROqB.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/jKG2QKjb.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/D_AqDHVt.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BSsPjorf.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/D6pyfHxW.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BtlE8llv.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CsZfyd4s.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BG3hnnwA.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/D3Pg72e7.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/I2gzi7nk.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/7FoSU0FK.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/_nBJwZwe.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/piZhExQU.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BmanIOt3.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/D1165OEy.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/eMP0HJlR.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/n5xr6Ozy.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/A7zJygdy.js"> <link rel="prefetch" as="image" type="image/png" href="/_nuxt/preprints.C_f_-Qxj.png"> <link rel="prefetch" as="image" type="image/png" href="/_nuxt/publicAccount.3LRUWsx7.png"> <meta name="robots" content="index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1"> <script>window.loadTurnstile = new Promise(resolve => { window.onloadTurnstileCallback = function () { resolve(); delete window.onloadTurnstileCallback; delete window.loadTurnstile; } })</script> <script type="module" src="/_nuxt/C27HaHQc.js" crossorigin></script></head><body class="antialiased duration-300 transition-colors text-gray-800 dark:text-gray-200 bg-white dark:bg-gray-900"><!----><!--teleport anchor--><div id="__nuxt"><!--[--><div class="nuxt-loading-indicator" style="position:fixed;top:0;right:0;left:0;pointer-events:none;width:auto;height:3px;opacity:0;background:rgb(var(--color-brand-default));background-size:Infinity% auto;transform:scaleX(0%);transform-origin:left;transition:transform 0.1s, height 0.4s, opacity 0.4s;z-index:999999;"></div><div class="page-warpper"><header class="sticky top-0 w-full bg-[#fff] border-b border-color-default" style="z-index:10;"><div class="mx-auto flex max-w-mobile-fluid items-center justify-between lg:max-w-desktop-fluid max-w-[96%] py-sm lg:py-0"><div class="flex items-center"><a href="/" class="font-bold text-lg text-primary-500 py-2 lg:mr-xl xl:mr-7xl"><div class="w-36 h-auto"><img src="/_nuxt/preprints.C_f_-Qxj.png" alt="Prerpints.org logo" class="w-36 h-auto"></div></a><nav class="hidden lg:flex" data-v-ae15e636><ul class="flex flex-row lg:space-x-xl xl:space-x-3xl text-sm" data-v-ae15e636><!--[--><li class="flex h-full items-center" data-v-ae15e636><a href="/instructions-for-authors" class="py-lg" data-v-ae15e636>Instructions for Authors</a></li><li class="flex h-full items-center" data-v-ae15e636><a href="/about" class="py-lg" data-v-ae15e636>About</a></li><li class="flex h-full items-center" data-v-ae15e636><a href="/faq" class="py-lg" data-v-ae15e636>FAQ</a></li><li class="flex h-full items-center" data-v-ae15e636><a href="/blog" class="py-lg" data-v-ae15e636>Blog and News</a></li><!--]--></ul></nav></div><div class="flex"><span></span></div></div></header><div class="w-full" style="min-height:var(--layout-page-content-min-height);"><!--[--><!--[--><div data-v-ffd1b8fd><div data-v-ffd1b8fd><div data-v-ffd1b8fd><div class="bg-surface-subtle" data-v-ffd1b8fd><div class="m-container mx-auto w-full pb-xl lg:pb-3xl" style="--container-ideal-width:92.5vw;" data-v-ffd1b8fd><!--[--><nav aria-label="Breadcrumbs" class="m-breadcrumb py-sm my-md lg:my-0 lg:py-xl lg:pt-3xl lg:pb-2xl overflow-x-auto" data-v-ffd1b8fd><ol class="m-breadcrumb__items flex items-center space-x-1 whitespace-pre text-xs text-color-subtle"><li class="flex items-center gap-1"><!--[--><a href="/" class="m-breadcrumb__item hover:text-color-link-bolder flex text-color-black lg:hidden" data-v-ffd1b8fd><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="home" class="lg:hidden" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a><a href="/" class="m-breadcrumb__item hover:text-color-link-bolder hidden lg:block" data-v-ffd1b8fd>Home</a><!--]--><!----><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="chevron_right" style="" width="16" height="16" viewBox="0 0 16 16"></svg></li><li class="flex items-center gap-1"><!----><a href="/subject" class="m-breadcrumb__item hover:text-color-link-bolder" data-v-ffd1b8fd>Engineering</a><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="chevron_right" style="" width="16" height="16" viewBox="0 0 16 16"></svg></li><li class="flex items-center gap-1"><!----><a href="/subject/browse/Bioengineering?name=Engineering&amp;id=94" class="m-breadcrumb__item hover:text-color-link-bolder" data-v-ffd1b8fd>Bioengineering</a><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="chevron_right" style="" width="16" height="16" viewBox="0 0 16 16"></svg></li><li class="flex items-center gap-1"><!----><a aria-current="page" href="/manuscript/202402.0464/v1" class="router-link-active router-link-exact-active m-breadcrumb__item text-color-link-bold hover:text-color-link-bolder" data-v-ffd1b8fd>DOI:10.20944/preprints202402.0464.v1 <!----></a><!----></li></ol></nav><div class="lg:flex justify-between pt-sm" data-v-ffd1b8fd><div data-v-ffd1b8fd><div class="flex items-center" data-v-ffd1b8fd><div class="m-tag flex items-center gap-2 rounded py-0.5 h-6 bg-content-inverse-subtler text-color-inverse px-2 mr-sm px-md !bg-surface-disabled !text-xs !text-color-default" data-v-ffd1b8fd><!--[--><!----><!--]--><span class="flex items-center whitespace-nowrap text-xs leading-normal"><!--[-->Preprint<!--]--></span><!--[--><!----><!--]--><!----></div><div class="m-tag flex items-center gap-2 rounded py-0.5 h-6 bg-content-inverse-subtler text-color-inverse px-2 mr-sm px-md !bg-surface-disabled !text-xs !text-color-default" data-v-ffd1b8fd>Review</div></div><div class="flex items-center pt-sm" data-v-ffd1b8fd><!----><h4 class="m-heading text-inherit m-h4 font-normal" data-v-ffd1b8fd>Algorithms for Liver Segmentation in Computed Tomography Scans: A Historical Perspective</h4></div></div><div class="w-full max-w-xs lg:ml-3xl flex-none" data-v-ffd1b8fd><div class="flex justify-between items-end border-b border-color-default" data-v-ffd1b8fd><p class="m-text text-sm py-sm" data-v-ffd1b8fd><!--[-->Altmetrics<!--]--></p><div class="altmetric-embed" data-badge-type="donut" data-badge-popover="left" data-link-target="_blank" data-doi="10.20944/preprints202402.0464.v1" data-v-ffd1b8fd></div></div><div class="flex justify-between py-sm border-b border-color-default" data-v-ffd1b8fd><p class="m-text text-sm" data-v-ffd1b8fd><!--[-->Downloads<!--]--></p><p class="m-text text-sm" data-v-ffd1b8fd><!--[-->116<!--]--></p></div><div class="flex justify-between py-sm border-b border-color-default" data-v-ffd1b8fd><p class="m-text text-sm" data-v-ffd1b8fd><!--[-->Views<!--]--></p><p class="m-text text-sm" data-v-ffd1b8fd><!--[-->44<!--]--></p></div><div class="flex justify-between py-sm border-b border-color-default" data-v-ffd1b8fd><p class="m-text text-sm" data-v-ffd1b8fd><!--[-->Comments<!--]--></p><p class="m-text text-sm" data-v-ffd1b8fd><!--[-->0<!--]--></p></div></div></div><!--]--></div></div><div class="m-container mx-auto w-full py-section-mobile pb-7xl max-w-mobile-fluid lg:max-w-desktop-fluid" style="--container-ideal-width:92.5vw;" data-v-ffd1b8fd><!--[--><!----><div class="lg:hidden" data-v-ffd1b8fd><div class="w-full lg:ml-lg flex-none lg:hidden" data-v-ffd1b8fd><div class="pt-md"><div class="flex justify-end mb-md"><button class="m-button m-button--md m-button--tonal rounded mr-sm !bg-surface-subtle !text-color-default" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="format_quote" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--><!--[--><span class="hidden lg:block">Cite</span><!--]--><!----><!----><!--[--><!----><!--]--></span></button><button class="m-button m-button--md m-button--tonal rounded mr-sm !bg-surface-subtle !text-color-default" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="mode_comment" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--><!--[--> <span class="hidden lg:block">Comments</span><!--]--><!----><!----><!--[--><!----><!--]--></span></button><button class="m-button m-button--md m-button--tonal rounded !bg-surface-subtle !text-color-default" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="share" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--><!--[--><span class="hidden lg:block">Share</span><!--]--><!----><!----><!--[--><!----><!--]--></span></button></div><div data-v-4f3fc9a4><!----></div><div><!----></div></div><div role="status" class="m-notification relative isolate flex w-full items-center border-l-[3px] py-md pl-md pr-sm border-color-success bg-success-sunken text-color-success mb-sm"><div class="flex w-full items-center"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="info" class="mr-4 h-6 w-6" style="" width="24" height="24" viewBox="0 0 16 16"></svg><div class="flex w-full flex-wrap justify-between gap-x-4"><p class="text-sm text-color-default"><!--[-->A <a href="https://www.mdpi.com/1424-8220/24/6/1752"><span class="text-color-link-bold cursor-pointer hover:underline">peer-reviewed</span></a> article of this preprint also exists.<!--]--></p><!----></div></div><!----><!----><!----></div><div class="w-ull"><button class="m-button m-button--lg m-button--primary m-button--full-width rounded" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="download" style="" width="24" height="24" viewBox="0 0 16 16"></svg><!--]--><!--[-->Download PDF<!--]--><!----><!----><!--[--><!----><!--]--></span></button></div><!----><div><!----><div class="pb-md border-b border-color-default pt-sm"><div class="w-full relative overflow-hidden"><div><div class="clamp-3"><!--[--><!--[--><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/img/user_image/3401568/Stephanie_Batista_Niño.jpeg"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/3401568" target="_blank" rel="noopener noreferrer">Stephanie Batista Niño</a></span><!----><!----><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/img/user_image/274546/Jorge_Bernardino.png"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/274546" target="_blank" rel="noopener noreferrer">Jorge Bernardino</a></span><!----><div class="m-icon-custom text-color-inherit pl-xs inline-block"><!--[--><a href="https://orcid.org/0000-0001-9660-2011" rel="noopener noreferrer" target="_blank"><img src="/_ipx/_/img/articleorcid.webp" onerror="this.setAttribute(&#39;data-error&#39;, 1)" data-nuxt-img srcset="/_ipx/_/img/articleorcid.webp 1x, /_ipx/_/img/articleorcid.webp 2x" class="w-4"></a><!--]--></div><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/img/user_image/402033/Inês_Domingues.jpg"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/402033" target="_blank" rel="noopener noreferrer">Inês Domingues</a></span><sup>  *</sup><div class="m-icon-custom text-color-inherit pl-xs inline-block"><!--[--><a href="https://orcid.org/0000-0002-2334-7280" rel="noopener noreferrer" target="_blank"><img src="/_ipx/_/img/articleorcid.webp" onerror="this.setAttribute(&#39;data-error&#39;, 1)" data-nuxt-img srcset="/_ipx/_/img/articleorcid.webp 1x, /_ipx/_/img/articleorcid.webp 2x" class="w-4"></a><!--]--></div><!----><!--]--></span></span><!--]--><!--]--></div><div class="invisible absolute"><!--[--><!--[--><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/img/user_image/3401568/Stephanie_Batista_Niño.jpeg"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/3401568" target="_blank" rel="noopener noreferrer">Stephanie Batista Niño</a></span><!----><!----><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/img/user_image/274546/Jorge_Bernardino.png"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/274546" target="_blank" rel="noopener noreferrer">Jorge Bernardino</a></span><!----><div class="m-icon-custom text-color-inherit pl-xs inline-block"><!--[--><a href="https://orcid.org/0000-0001-9660-2011" rel="noopener noreferrer" target="_blank"><img src="/_ipx/_/img/articleorcid.webp" onerror="this.setAttribute(&#39;data-error&#39;, 1)" data-nuxt-img srcset="/_ipx/_/img/articleorcid.webp 1x, /_ipx/_/img/articleorcid.webp 2x" class="w-4"></a><!--]--></div><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/img/user_image/402033/Inês_Domingues.jpg"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/402033" target="_blank" rel="noopener noreferrer">Inês Domingues</a></span><sup>  *</sup><div class="m-icon-custom text-color-inherit pl-xs inline-block"><!--[--><a href="https://orcid.org/0000-0002-2334-7280" rel="noopener noreferrer" target="_blank"><img src="/_ipx/_/img/articleorcid.webp" onerror="this.setAttribute(&#39;data-error&#39;, 1)" data-nuxt-img srcset="/_ipx/_/img/articleorcid.webp 1x, /_ipx/_/img/articleorcid.webp 2x" class="w-4"></a><!--]--></div><!----><!--]--></span></span><!--]--><!--]--></div></div><div style="display:none;" class="mt-sm"><!----><button class="m-button m-button--sm m-button--tertiary rounded !inline-flex after:hidden bg-white" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><!----><!--]--><!--[-->Show more <!--]--><!----><!----><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="keyboard_arrow_down" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--></span></button></div></div><!----><p class="m-text text-sm text-color-error pt-sm"><!--[-->This version is not peer-reviewed<!--]--></p></div><!----><!----></div><div class="py-md border-b border-color-default"><div class="m-select common-field bg-white"><!--[--><div class="common-field__wrapper" data-headlessui-state><!----><div class="relative w-full cursor-default"><div class="flex items-center"><button id="headlessui-listbox-button-mui-70068" type="button" aria-haspopup="listbox" aria-expanded="false" data-headlessui-state data-testid="select-activator" class="common-field__dropdown-input [&amp;&gt;span]:overflow-hidden h-10"><span class="flex w-full items-center gap-1 [&amp;&gt;span]:truncate"><!----><span>Version 1</span></span><div class="flex"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="keyboard_arrow_down" class="duration-400 transition-transform" style="" width="24" height="24" viewBox="0 0 16 16"></svg></div></button><!----></div><!----></div></div><!--]--><!----></div><div class="pt-sm"><div class="flex"><p class="m-text text-xs"><!--[-->Submitted:<!--]--></p><p class="m-text text-xs pl-xs"><!--[-->07 February 2024<!--]--></p></div><div class="flex pt-sm"><p class="m-text text-xs"><!--[-->Posted: <!--]--></p><p class="m-text text-xs pl-xs"><!--[-->08 February 2024<!--]--></p></div><!----></div><div class="pt-sm"><div><p class="m-text text-xs"><!--[-->You are already at the latest version <!--]--></p></div></div><div><!----></div></div><!--[--><div class="py-md border-b border-color-default flex items-center justify-between" data-v-d8c082ee><div class="flex-none flex items-center" data-v-d8c082ee><span class="m-text text-xs pr-xs font-semibold flex-none" data-v-d8c082ee><!--[-->Alerts<!--]--></span><span data-v-d8c082ee></span></div><div class="m-switch flex items-center gap-2" data-v-d8c082ee><!----><!--[--><!----><button class="relative inline-flex h-[1.4rem] w-[2.75rem] shrink-0 cursor-pointer items-center rounded-full border-2 border-color-transparent transition-colors duration-150 ease-out ui-focus-visible:ring-2 ui-focus-visible:ring-brand-bold ui-focus-visible:ring-opacity-75 bg-content-default hover:bg-content-bold active:bg-content-bolder" aria-label="Switch on" id="headlessui-switch-mui-70069" role="switch" type="button" tabindex="0" aria-checked="false" data-headlessui-state><span aria-hidden="true" class="pointer-events-none inline-block h-[1rem] w-[1rem] transform rounded-full bg-white shadow-lg ring-0 transition duration-200 ease-in-out translate-x-0.5"></span></button><!--]--></div></div><div data-v-d8c082ee data-v-03f1a75d><!----></div><!--]--><div><h6 class="m-heading text-inherit m-h6 font-semibold pt-lg"><!--[-->Abstract<!--]--></h6><div class="">Oncology has emerged as a crucial field of study and treatment in the domain of medicine. Computed tomography has gained widespread adoption as a radiological modality for the identification and characterisation of pathologies, particularly in oncology, enabling precise identification of affected organs and tissues. However, achieving accurate liver segmentation in computed tomography scans remains a challenge due to the presence of artefacts and the varying densities of soft tissues and adjacent organs. This paper compares artificial intelligence algorithms and traditional medical image processing techniques to assist radiologists in liver segmentation on computed tomography scans, and evaluates their accuracy and efficiency. It is noteworthy that although studies have been conducted on liver segmentation in computed tomography scans, they often lack an intuitive and visual component that allows healthcare professionals to manipulate and observe the results obtained, thereby limiting interaction with the outcomes. From the literature review, challenges such as under-segmentation, over-segmentation, and poor boundary detection, as well as the selection of methods to improve the accuracy and efficiency of liver segmentation in computed tomography scanners, are highlighted as needs to be addressed. The importance of future research in understanding the essential features for the study, generating more datasets, improving segmentation efficiency, and developing lightweight artificial intelligence frameworks for liver segmentation is outlined.</div><!--[--><div class="pt-md"><img src="https://www.preprints.org/frontend/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/download_pub/figure/png" onerror="this.setAttribute(&#39;data-error&#39;, 1)" data-nuxt-img srcset="https://www.preprints.org/frontend/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/download_pub/figure/png 1x, https://www.preprints.org/frontend/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/download_pub/figure/png 2x" class="w-3/5 object-cover mx-auto"></div><!--]--></div><div data-v-3ce94018><div class="pt-lg" data-v-3ce94018><span class="m-text text-body font-semibold" data-v-3ce94018><!--[-->Keywords: <!--]--></span><span class="m-text text-body pt-sm" data-v-3ce94018><!--[--><!--]--></span></div></div><div class="flex-1 pt-lg mr-lg lg:pt-0" data-v-da90062a><div class="pt-md" data-v-da90062a><div class="flex flex-wrap lg:flex-nowrap items-center" data-v-da90062a><span class="m-text text-body font-semibold" data-v-da90062a><!--[-->Subject: <!--]--></span><span class="m-text text-body" data-v-da90062a><!--[-->Engineering<!--]--></span><span class="" data-v-da90062a>  -   </span><span class="m-text text-body" data-v-da90062a><!--[-->Bioengineering<!--]--></span></div></div><div class="content-container" id="articleRef" data-v-da90062a><script type="text/x-mathjax-config"> MathJax.Hub.Config({ menuSettings: { CHTMLpreview: false }, "CHTML-preview":{ disabled: true }, "HTML-CSS": { scale: 90, availableFonts: [], preferredFont: null, preferredFonts: null, webFont:"Gyre-Pagella", imageFont:'TeX', undefinedFamily:"'Arial Unicode MS',serif", linebreaks: { automatic: false } }, "TeX": { extensions: ["noErrors.js"], noErrors: { inlineDelimiters: ["",""], multiLine: true, style: { "font-size": "90%", "text-align": "left", "color": "black", "padding": "1px 3px", "border": "1px solid" } } } }); </script><script type="text/javascript" async="" src="https://www.mdpi.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <section id="sec1-preprints-98444" type="intro"><h2 data-nested="1" id="preprints-h2-1"> 1. Introduction</h2> <div class="html-p">As one of the most important organs in the digestive system, the liver performs critical functions such as breaking down nutrients, producing bile and eliminating toxic substances. However, liver-related diseases, particularly oncological diseases, pose health risks, and liver cancer is a leading cause of cancer-related mortality worldwide [<a href="#B1-preprints-98444" class="html-bibr">1</a>,<a href="#B2-preprints-98444" class="html-bibr">2</a>]. Computed tomography (CT) has become an integral part of the diagnosis, treatment planning and monitoring the progress of oncological diseases [<a href="#B3-preprints-98444" class="html-bibr">3</a>,<a href="#B4-preprints-98444" class="html-bibr">4</a>], providing detailed cross-sectional images for accurate visualisation of internal structures, including liver tumours [<a href="#B5-preprints-98444" class="html-bibr">5</a>,<a href="#B6-preprints-98444" class="html-bibr">6</a>].</div> <div class="html-p">With the advancement of technology and artificial intelligence (AI) in medicine, there is a growing need to optimise the identification of oncological diseases [<a href="#B7-preprints-98444" class="html-bibr">7</a>]. Medical image segmentation is emerging as a fundamental step in the pipeline [<a href="#B8-preprints-98444" class="html-bibr">8</a>,<a href="#B9-preprints-98444" class="html-bibr">9</a>,<a href="#B10-preprints-98444" class="html-bibr">10</a>,<a href="#B11-preprints-98444" class="html-bibr">11</a>]. Liver segmentation in CT scans has emerged as a critical area, requiring accurate identification and delimitation of the liver region for treatment planning and progress monitoring, as well as for early detection of liver lesions and metastases to other organs [<a href="#B12-preprints-98444" class="html-bibr">12</a>,<a href="#B13-preprints-98444" class="html-bibr">13</a>,<a href="#B14-preprints-98444" class="html-bibr">14</a>]. However, accurate liver segmentation on CT scans is challenging due to factors such as artefacts, varying soft tissue densities, and the complexity of adjacent organ proximity [<a href="#B15-preprints-98444" class="html-bibr">15</a>,<a href="#B16-preprints-98444" class="html-bibr">16</a>].</div> <div class="html-p">The aim of this paper is to provide an overview of the state of the art in the application of AI, as well as traditional methods and techniques for liver segmentation in CT scans, to enable an understanding of which factors most influence the performance of the models and methods used by the selected studies and lead them to perform differently for the same objective.</div> <div class="html-p">Some of the aspects that will be compared include datasets considerations, algorithm used, robustness, performance, and evaluation. Specifically, we aim to answer the following research questions (RQ):</div> <div class="html-p"><ul class="html-bullet"> <li><div class="html-p"> <b>RQ1</b>—What are the challenges and limitations associated with accurate liver segmentation in CT scans?</div></li> <li><div class="html-p"> <b>RQ2</b> — How does the choice of the method impact the accuracy and efficiency of liver segmentation in CT scans?</div></li> <li><div class="html-p"> <b>RQ3</b> — What are the evaluation metrics commonly used to assess the performance of AI models and traditional methods for liver segmentation in CT scans?</div></li> </ul></div> <div class="html-p">A systematic review of the literature was conducted to address these research questions. Google Scholar was used for document retrieval, and the most representative documents from each year were selected. It is worth noting that only few studies were found that provided an intuitive and visual approach for healthcare professionals to manipulate and interpret the segmentation results.</div> <div class="html-p">This paper reviews studies on liver segmentation from CT scans, organised according to the methods used. The papers selection methodology is detailed in <a href="#sec2-preprints-98444" class="html-sec">Section 2</a>, followed by a categorisation of AI models and medical image processing methods in <a href="#sec3-preprints-98444" class="html-sec">Section 3</a>. <a href="#sec4-preprints-98444" class="html-sec">Section 4</a> summarises the main findings, while <a href="#sec5-preprints-98444" class="html-sec">Section 5</a> provides a discussion of the results of the methods used. The paper concludes in <a href="#sec6-preprints-98444" class="html-sec">Section 6</a> with the conclusions and the directions for future work.</div></section><section id="sec2-preprints-98444" type="methods"><h2 data-nested="1" id="preprints-h2-2"> 2. Methodology</h2> <div class="html-p">This section outlines the approach taken in conducting the literature review, which involved synthesising existing knowledge, critically assessing methodologies, and analysing results to compare the performance of each AI model and traditional methods for liver segmentation in CT scans.</div> <section id="sec2dot1-preprints-98444" type><h4 class="html-italic" data-nested="2"> 2.1. Data Sources</h4> <div class="html-p">Google Scholar (<a href="https://scholar.google.com/" target="_blank">https://scholar.google.com/</a>) has developed over the years and has become a robust database for scientific literature [<a href="#B17-preprints-98444" class="html-bibr">17</a>]. It was therefore chosen as the research tool for the present study.</div></section><section id="sec2dot2-preprints-98444" type><h4 class="html-italic" data-nested="2"> 2.2. Search Queries</h4> <div class="html-p">A search performed on January 30, 2024, with the query “intitle:Liver + intitle:segmentation + (intitle:CT OR + intitle:tomography)” returned approximately 980 results in just 0.04 seconds.</div></section><section id="sec2dot3-preprints-98444" type><h4 class="html-italic" data-nested="2"> 2.3. Inclusion Criteria</h4> <div class="html-p">The most relevant papers from each year have been included in the this historical overview. In the context of Google Scholar, relevance refers to the degree to which the search results match the criteria or context of the query. The sorting algorithm takes into account several factors to determine the order of the results, including the presence of search terms and citation counts. In addition, the review papers were all included in the current state of the art, which amounted to a further five documents.</div></section><section id="sec2dot4-preprints-98444" type><h4 class="html-italic" data-nested="2"> 2.4. Exclusion Criteria</h4> <div class="html-p">Papers that did not meet the criteria defined in <a href="#sec2dot3-preprints-98444" class="html-sec">Section 2.3</a> were not included. Papers written in languages other than English, Portuguese and Spanish were also excluded. As a final exclusion criterion, papers were excluded if the full document was not publicly available.</div></section><section id="sec2dot5-preprints-98444" type><h4 class="html-italic" data-nested="2"> 2.5. Characterisation of Selected Papers</h4> <div class="html-p">The earliest paper dates from 1990, and thus, potentially total of 35 papers could be selected (the most relevant per year between the years 1990 and 2024). A distribution of the total number of papers retrieved per year is given in <a href="#preprints-98444-f001" class="html-fig">Figure 1</a>. As can be seen, some years do not have any papers, and thus a total of 30 documents were finally included in the historical review. It is also clear that interest in the topic has increased over the years.</div> <div class="html-p">A Word Cloud constructed from the titles of the selected papers is shown on the left side of <a href="#preprints-98444-f002" class="html-fig">Figure 2</a>. On the right side is a pie chart showing the number of journals, conference proceedings and reports.</div> <div class="html-p"> <a href="#preprints-98444-f003" class="html-fig">Figure 3</a> provides the chosen papers by category of image segmentation techniques, according to the categories presented by Sakshi and Kukreja (2023).</div></section></section><section id="sec3-preprints-98444" type><h2 data-nested="1" id="preprints-h2-3"> 3. Literature Review</h2> <div class="html-p">Based on the selected papers, this literature review provides a historical overview of different methods and approaches for liver segmentation in medical imaging (<a href="#sec3dot1-preprints-98444" class="html-sec">Section 3.1</a>). It covers neuronal network-based segmentation, region-based segmentation, edge-based segmentation, threshold segmentation, semantic segmentation, and cluster-based segmentation techniques. The review includes a comparison of the results and discusses the potential applications and strengths of each method. <a href="#sec3dot2-preprints-98444" class="html-sec">Section 3.2</a> compares this review with other existing summaries of the state of the art.</div> <section id="sec3dot1-preprints-98444" type><h4 class="html-italic" data-nested="2"> 3.1. Historical Overview</h4> <div class="html-p">As mentioned in <a href="#sec2-preprints-98444" class="html-sec">Section 2</a>, one paper per year between the years 1990 and 2024 was selected, summing to a total of 35 documents. For five years the search retrieved no results (see <a href="#preprints-98444-f001" class="html-fig">Figure 1</a>) resulting in 30 documents. Unfortunately, the full text of two works was not available. The remaining 28 documents are briefly described below.</div> <div class="html-p">The oldest work found to tackle liver segmentation is the one of Bae <span class="html-italic">et al</span>. (1993) [<a href="#B19-preprints-98444" class="html-bibr">19</a>] present a similar sequential image-by-image segmentation technique using a reference image, where the liver occupies a significant portion of the abdomen cross-section. Image processing techniques, including grey-level thresholding, Gaussian smoothing, and connectivity tracking, are employed to extract the liver boundaries. The resulting boundaries are then smoothed using mathematical morphology techniques and B-splines. The study focuses on a living-donor liver transplant program, and the computer-determined boundaries are compared with those drawn by a radiologist, showing agreement within 10% of the calculated areas.</div> <div class="html-p">Gao <span class="html-italic">et al</span>. (1996) [<a href="#B20-preprints-98444" class="html-bibr">20</a>] focus on facilitating 3D visualisation for surgical planning. The method employs global histogram analysis, morphologic operations, and a parametrically deformable contour model to delineate the liver boundary. Ten cases were used to validate the approach and promising results were found with minimal operator intervention required.</div> <div class="html-p">Soler <span class="html-italic">et al</span>. (1997) [<a href="#B21-preprints-98444" class="html-bibr">21</a>] propose an automatic method for segmenting the portal vein, with the primary objective of achieving accurate segmentation with detailed branching and topological information, facilitating the localisation of liver tumours concerning Couinaud’s anatomical segmentation. The approach involves the initial detection of liver contours using 3D deformable models, followed by limiting the CT images to a liver mask containing hepatic tissue, vascular trees, and potential tumours. Classification of anatomical structures is performed using Gaussian curves fitted to the intensity histogram. The vascular trees and tumours are segmented through a hysteresis thresholding technique based on a distance map, considering the Gaussian parameters. An isotropic image is obtained through shape-based interpolation, and the portal vein is reconstructed using skeletonization, eliminating short branches and correcting errors. Results demonstrate that the algorithm automatically extracts the first three main bifurcations of the portal vein, comparable to manual segmentations.</div> <div class="html-p">Yoo <span class="html-italic">et al</span>. (2000) [<a href="#B22-preprints-98444" class="html-bibr">22</a>] focus on the use of pixel ratios. By analysing the grey value range of a normal liver in CT images, a binary image is generated and then processed into four mesh images based on hole ratios to eliminate noise. A template representing the general outline of the liver is generated from the union image of these mesh images and subtracted from the binary image to accurately represent the organ boundary. The pixel ratio, which takes into account the distribution of organ pixels, was used to discriminate between the organ and noise, especially in cases where organs have similar grey value ranges. The proposed method reduced processing time compared to existing methods and was validated against manual segmentation by medical experts.</div> <div class="html-p">Pan and Dawant (2001) [<a href="#B23-preprints-98444" class="html-bibr">23</a>] introduce a level-set approach, which addresses the challenge of defining appropriate speed functions for contour propagation. A speed function is proposed to stop the propagation of the contour at organ boundaries with weak edges by incorporating accumulative speed based on the path of the contour, enhancing the robustness of segmentation in noisy images. The method also leverages a-priori anatomical information to improve accuracy. Tested on five CT datasets, including cases with abnormal livers, the method demonstrates good agreement with manual delineations.</div> <div class="html-p">Saitoh <span class="html-italic">et al</span>. (2002) [<a href="#B24-preprints-98444" class="html-bibr">24</a>] present an automated method for segmenting the liver region from the third phase of abdominal CT scans. The approach involves the extraction of blood vessels using a threshold, followed by morphological dilation to define an approximate liver region useful for removal of adjacent organs. The final liver region is then extracted using a threshold. The method is thus based on mathematical morphology and thresholding techniques, using the unique characteristics of blood vessels to functionally identify the liver region. The experiments performed on eight CT datasets show a good agreement between the automatically and manually detected liver regions.</div> <div class="html-p">Masumoto <span class="html-italic">et al</span>. (2003) [<a href="#B25-preprints-98444" class="html-bibr">25</a>] use multislice CT images. The method uses two time-varying images acquired during the contrast medium circulation phase, highlighting the liver region through CT value changes. The proposed scheme involves generating a liver likelihood image by analysing CT value changes and subsequently extracting the liver region while considering the geometric characteristics of blood vessels and tumours. The evaluation, based on Receiver Operating Characteristic (ROC) analyses, demonstrates the superiority of the proposed method over other approaches, especially when using information from both phases.</div> <div class="html-p">The scheme proposed by Lim <span class="html-italic">et al</span>. (2004) [<a href="#B26-preprints-98444" class="html-bibr">26</a>] uses a ROI approach to optimise computational efficiency. Morphological filters, incorporating a priori knowledge of liver location and intensity, detect the initial boundary. The algorithm then generates a gradient image using the weighted initial boundary and employs an immersion-based watershed algorithm for segmentation. Post-processing includes region merging based on statistical information to refine the segmentation.</div> <div class="html-p">Liu <span class="html-italic">et al</span>. (2005) [<a href="#B27-preprints-98444" class="html-bibr">27</a>] present a Gradient Vector Flow (GVF) snake-based method for the semiautomatic segmentation of liver volumes in contrast-enhanced CT images. The algorithm follows a stepwise approach, starting with the computation of an initial edge map using the Canny edge detector and the estimation of a liver template. The edge map is then modified to suppress edges within the liver using the liver template, and a concavity removal algorithm is applied to refine the liver boundary. The GVF field is computed based on the modified edge map, and the initial liver contour is determined by considering the candidate initial contour and the computed GVF field. The final liver contour is obtained by deforming the initial contour using the snake. The method is evaluated on 20 contrast-enhanced volumetric liver images, and the results are compared with a radiologist’s manual delineation. The median difference ratio between the computer-generated results and manual results is 5.3%, with a range of 2.9% to 7.6%.</div> <div class="html-p">A three-stage approach is used by Lim <span class="html-italic">et al</span>. (2006) [<a href="#B28-preprints-98444" class="html-bibr">28</a>]. The first stage involves image simplification as preprocessing, where a ROI is identified and thresholds are determined using multilevel thresholding. The second stage detects a search range using multiscale morphological filtering, region-labelling, and partition clustering. The third stage uses a contour-based segmentation approach with a labelling-based search algorithm to refine the initial liver boundary. The effectiveness of the algorithm is demonstrated through experimental results on contrast-enhanced abdominal CT images, with an average segmentation accuracy of 96%. Volume measurement is performed based on the segmented liver regions, with an average error rate of 3%.</div> <div class="html-p">Beichel <span class="html-italic">et al</span>. (2007) [<a href="#B29-preprints-98444" class="html-bibr">29</a>] introduce a two-step process. First, an initial segmentation is generated using graph cuts, overcoming challenges such as the high variability in liver shape and grey-value appearance. Second, an interactive refinement step is introduced, allowing users to correct segmentation errors in a 3D environment. The refinement is facilitated by a hybrid desktop/virtual reality (VR) user interface. This approach is demonstrated on ten contrast-enhanced liver CT scans, demonstrating robustness to variations in patient data. The results also indicate improved segmentation quality with low interaction times.</div> <div class="html-p">The authors Massoptier and Casciaro (2008) [<a href="#B30-preprints-98444" class="html-bibr">30</a>] present a fully automated method that uses a statistical model-based approach to distinguish liver tissue from other abdominal organs. An active contour technique using gradient vector flow is used for smoother segmentation of the liver surface segmentation. Automatic classification is performed to isolate hepatic lesions from liver parenchyma. The method is evaluated on 21 datasets and demonstrates robust and efficient liver and lesion segmentations close to the ground truth, with an average processing time of 11.4 seconds per 512x512-pixel slice. Volume overlap for liver surface segmentation is 94.2%, and accuracy is 3.7 mm. Tumour detection achieved a sensitivity and specificity of 82.6% and 87.5%, respectively.</div> <div class="html-p">Heimann <span class="html-italic">et al</span>. (2009) [<a href="#B31-preprints-98444" class="html-bibr">31</a>] focus on the comparison and evaluation of different methods. The image data, acquired from different CT scanners, consisted of contrast-dye-enhanced scans showing pathological conditions like tumours and cysts. Radiology experts manually delineated the liver contours in transversal slices to create reference segmentations. A total of 40 images were divided into training and test sets for algorithm evaluation. Evaluation measures included volumetric overlap, relative volume difference, and surface distances. Fully automated and interactive segmentation methods were employed, with the former showing discernible performance differences. The best performing automated approaches used statistical shape models. Interactive methods achieved higher scores with more user interaction. A combined approach using majority voting from the best performing methods outperformed individual automated and interactive results.</div> <div class="html-p">A three-step procedure is outlined by Akram <span class="html-italic">et al</span>. (2010) [<a href="#B32-preprints-98444" class="html-bibr">32</a>]. Firstly, a pre-processing step involves converting the image to greyscale and applying a 3x3 median filter to reduce noise. The second step focuses on liver segmentation, with a global threshold and morphological operations to obtain the final segmented liver region. Finally, post-processing steps include adaptive histogram equalisation, Gaussian smoothing, and grey-level transformations to enhance the segmented liver region. Experimental tests on 100 CT images demonstrate the accuracy of the proposed method by comparing automated segmentation results with manually segmented images by hepatologists and oncologists.</div> <div class="html-p">The approach of Oliveira <span class="html-italic">et al</span>. (2011) [<a href="#B33-preprints-98444" class="html-bibr">33</a>] involves a sequence of four steps. First, the liver is segmented using level sets with parameters optimised by a genetic algorithm (GA). A Gaussian fit is employed to define the speed image for level set propagation. Secondly, vessels and nodules are segmented using a Gaussian mixture model, focusing on adipose nodules. A region-growing method with information from the Gaussian model is applied. Thirdly, vessels are classified into portal vein or hepatic vein using a vein tracking method. Finally, a geometric approach based on the identified veins is used to segment the liver into different Couinaud regions. The liver segmentation is based on the assumption that the liver parenchyma homogeneity and veins being mainly inside the liver. The parameters are estimated using a GA, and fitness evaluation involves comparing the segmentation with a reference using five disparity metrics. The proposed method shows good performance, ranking among the top methods in the MICCAI-SLiver07 conference evaluation.</div> <div class="html-p">The method developed by Linguraru <span class="html-italic">et al</span>. (2012) [<a href="#B34-preprints-98444" class="html-bibr">34</a>] uses a robust parameterisation of 3-D surfaces for point-to-point correspondence overcoming challenges such as inconsistent contrast enhancement and imaging artefacts. A shape descriptor that is invariant, invariant under rotation and scale is used to compare local shape features of organs. An initial liver segmentation is refined using a shape-driven geodesic active contour, and hepatic tumours are detected and segmented using graph cuts and support vector machines (SVMs). The technique is evaluated on a dataset of 101 CT scans and shows improvements in liver segmentation accuracy, particularly in cases with large tumours and segmentation errors. Furthermore, the method identifies liver tumours with a low rate of false positives.</div> <div class="html-p">Li <span class="html-italic">et al</span>. (2013) [<a href="#B35-preprints-98444" class="html-bibr">35</a>] discuss a method that makes use of fuzzy clustering and level set techniques. The fuzzy c-Mean (FCM) clustering algorithm is employed, which assigns pixels to different categories based on fuzzy memberships, considering both grey level intensity and spatial information. The FCM algorithm is iteratively optimised by minimising a cost function, allowing for the fuzziness of the resulting partition. To overcome the limitations of standard FCM, a spatial FCM algorithm is introduced that incorporates spatial information into fuzzy membership functions. The paper also introduces the level set method, a continuous deformable model for segmentation. A distance regularised level set evolution (DRLSE) is proposed to address reinitialisation issues and improve efficiency. The proposed method is evaluated using accuracy, sensitivity, and specificity metrics and demonstrates high performance in liver segmentation, especially in cases with unclear boundaries.</div> <div class="html-p">Platero <span class="html-italic">et al</span>. (2014) [<a href="#B36-preprints-98444" class="html-bibr">36</a>] integrate a multi-atlas segmentation approach with graph cuts. The method includes several steps: (1) obtain an initial solution using low-level operations to define the ROI around the liver; (2) construct a fast probabilistic atlas for the ROI and compute a coarse binary segmentation using segmentation-affine registration; (3) rank the atlases based on segmentation similarity and propagating selected atlases to the target image; (4) improve segmentation accuracy through label fusion, minimising a discrete energy function; (5) evaluate the approach using a public liver segmentation database. The experimental results show high accuracy, competitive with human expert segmentation.</div> <div class="html-p">Artificial Bee Colony (ABC) optimisation is used by Mostafa <span class="html-italic">et al</span>. (2015) [<a href="#B37-preprints-98444" class="html-bibr">37</a>]. Their algorithm use ABC to cluster different intensity values in abdominal CT images, followed by mathematical morphological operations to manipulate and separate the clusters. The process eliminates small and thin regions, such as flesh regions or organ edges. The extracted regions form an initial estimate of the liver area, which is further enhanced using a region-growing technique. The proposed approach demonstrates a segmentation accuracy of 93.73% on a test dataset of 38 CT images, taken in the pre-contrast phase.</div> <div class="html-p">A 3D Deeply Supervised Network (DSN) is introduced by Dou <span class="html-italic">et al</span>. (2016) [<a href="#B38-preprints-98444" class="html-bibr">38</a>]. The proposed architecture consists of 11 layers, including 6 convolutional layers, 2 max-pooling layers, 2 deconvolution layers, and 1 softmax layer. The network is designed in a 3D format to effectively capture spatial information. The 3D DSN employs deep supervision via additional deconvolutional layers to counteract vanishing gradients, thus improving the training process. The learning objective is to minimise per-voxel-wise binary classification errors, with deep supervision injected at specific layers. The MICCAI-SLiver07 dataset is used for evaluation, demonstrating that the 3D DSN has a faster convergence and lower errors when compared to traditional 3D Convolutional Neuronal Networks (CNNs).</div> <div class="html-p">Christ <span class="html-italic">et al</span>. (2017) [<a href="#B14-preprints-98444" class="html-bibr">14</a>] propose a Cascaded Fully CNN (CFCN) on CT slices that sequentially segments the liver and lesions. First, various preprocessing steps, including Hounsfield unit windowing and contrast enhancement are applied. Then, the cascaded approach involving two U-Net architectures is used for liver and lesion segmentation. Finally, 3D conditional random fields (CRF) are used to refine the segmentation results. Generalisation and scalability to different modalities and real-life datasets, including a diffusion-weighted Magnetic Resonance Imaging (MRI) dataset and a large multi-centre CT dataset, are shown.</div> <div class="html-p">Hiraman (2018) [<a href="#B39-preprints-98444" class="html-bibr">39</a>] presents a slice alignment method that addresses the challenges through optimal threshold selection, skeletonization, and Enhanced Correlation Coefficient (ECC) alignment. Next, a CNN-based liver region of interest detection method is proposed to classify 2D slices for focused processing.</div> <div class="html-p">The study presented by Wang <span class="html-italic">et al</span>. (2019) [<a href="#B40-preprints-98444" class="html-bibr">40</a>] investigates the application of a Generalised CNN for automated liver segmentation and biometry using cross-sectional data from abdominal CT and MRI scans. The retrospective study included a sample of 563 abdominal scans from 530 adults, covering different imaging modalities. The CNN was initially trained on 300 unenhanced multiecho 2D SPGR MRI sets and then subjected to transfer learning for generalisation across different imaging methods. The accuracy of the CNN was evaluated using internal and external validation datasets. The study also investigates the impact of training data size on segmentation accuracy and explores the feasibility of using automated liver segmentation for volumetry and hepatic PDFF quantification.</div> <div class="html-p">Almotairi <span class="html-italic">et al</span>. (2020) [<a href="#B41-preprints-98444" class="html-bibr">41</a>] explore the application of the SegNet architecture. The proposed modified SegNet model uses the VGG-16 network as an encoder. Tests were performed on a standard dataset for liver CT scans (3D-IRCADb01 [<a href="#B42-preprints-98444" class="html-bibr">42</a>]) and achieved tumour accuracy of up to 99.9% in the training phase and 86% for tumour identification.</div> <div class="html-p">Ayalew <span class="html-italic">et al</span>. (2021) [<a href="#B43-preprints-98444" class="html-bibr">43</a>] present a modified U-Net architecture and introduce a new class balancing method. To address the class imbalance between liver and tumour, a weighting factor is applied and slices without tumour are removed during data preparation. The U-Net based network architecture includes batch normalisation, dropout layers, and filter size reduction. Training involves tuning hyperparameters, such as learning rate and batch size. The datasets used are derived from the 3D-IRCADb01 [<a href="#B42-preprints-98444" class="html-bibr">42</a>] and LiTS [<a href="#B44-preprints-98444" class="html-bibr">44</a>] databases and the results achieve Dice Similarity Coefficient (DSC) of 0.96 and 0.74, respectively. The algorithm also introduces a novel approach for direct tumour segmentation from abdominal CT scan images, with comparable performance to existing two-step methods.</div> <div class="html-p">The study of Scicluna (2022) [<a href="#B45-preprints-98444" class="html-bibr">45</a>] is motivated by challenges such as the Combined Healthy Abdominal Organ Segmentation (CHAOS) Challenge [<a href="#B46-preprints-98444" class="html-bibr">46</a>], which focuses on healthy abdominal organs. The study focuses on replicating the v16pUNet1.1C model, which demonstrated superior performance in Task 2 of the CHAOS Challenge. Results from the v16pUNet1.1C model are presented and compared with variations in the loss function and scaling transformation. The application of a 3D largest-connected-component filter is discussed, showing improvements in mean scores.</div> <div class="html-p">A deep semantic segmentation CNN is used by Ezzat <span class="html-italic">et al</span>. (2023) [<a href="#B47-preprints-98444" class="html-bibr">47</a>]. A three-stage architecture is proposed, including pre-processing with data augmentation, deep CNN training, and testing. The CNN-based semantic segmentation model is shown to be robust, achieving a test accuracy of 98.8%. The approach does not require user input, making it accessible to non-experts.</div> <div class="html-p">Shao <span class="html-italic">et al</span>. (2024) [<a href="#B48-preprints-98444" class="html-bibr">48</a>] present the Attention Connect Network (AC-Net) for liver tumour segmentation in CT and MRI images. The AC-Net consists of two main modules: the Axial Attention Module (AAM) and the Vision Transformer Module (VTM). The AAM uses an axial attention mechanism to merge features of matching dimensions, maximising the use of spatial features extracted by a CNN. The VTM processes high-level semantic features extracted by the CNN using a methodology similar to Vision Transformers (ViT) [<a href="#B49-preprints-98444" class="html-bibr">49</a>]. The network achieves a DSC of 0.90, a Jaccard Coefficient (JC) of 0.82, a recall of 0.92, a precision of 0.89, a Hausdorff Distance (HD) of 11.96, and an Average Symmetric Surface Distance (ASD) of 4.59.</div></section><section id="sec3dot2-preprints-98444" type><h4 class="html-italic" data-nested="2"> 3.2. Other Review Papers</h4> <div class="html-p">The search described in <a href="#sec2-preprints-98444" class="html-sec">Section 2</a> retrieved six literature review documents. For one of the works, however, the full document was not available. The remaining five are briefly presented next.</div> <div class="html-p">A comparative analysis of various available techniques, focusing on their advantages and disadvantages, is given in [<a href="#B50-preprints-98444" class="html-bibr">50</a>]. Recognising the challenges posed by the variable shape of the liver and the weak edges in adjacent organ regions, the survey covers approaches such as Threshold, Model, Level Set, Region, Active Contour, and Clustering. The paper also divides its investigation into sections, covering both image pre-processing and segmentation techniques, providing an overview of the current landscape in liver segmentation from CT images.</div> <div class="html-p">The study [<a href="#B51-preprints-98444" class="html-bibr">51</a>] provides a survey of 3D image segmentation methods, focusing on selected binarization and segmentation techniques suitable for processing volume images. For thresholding methods, both global and local techniques are considered, and challenges such as hysteresis in dealing with voxel value distributions are addressed. The region growing section explores voxel-based procedures, including growing by grey value and adaptive region growing. In addition, deformable surfaces and level set methods are discussed, before other segmentation concepts such as fuzzy connectedness and watershed algorithms are introduced. The concluding remarks underline the complexity of image segmentation, emphasising the absence of a universal solution and the need to carefully evaluate and select methods based on specific tasks and dataset characteristics. The challenges posed by 3D data, including the data volume and issues of interactivity and visualisation, are also acknowledged.</div> <div class="html-p">The study [<a href="#B52-preprints-98444" class="html-bibr">52</a>] reviews and proposes a literature survey on methods for segmenting liver images, distinguishing between semi-automatic and fully automated techniques. The challenges of liver image segmentation, such as low contrast, blurred edges, and the complexity of liver morphology, are discussed. Different approaches are reviewed, including neuronal network based methods, support vector machine based methods, clustering based methods and hybrid methods. It is concluded that, despite progress, liver image segmentation remains a challenging task, and the paper encourages further development of hybrid approaches for more accurate segmentation.</div> <div class="html-p">Various segmentation methods, including statistical shape models, probabilistic atlas-based approaches, geometric deformable models, and machine learning-based methods, are reviewed in [<a href="#B53-preprints-98444" class="html-bibr">53</a>]. The review includes information on avaliable databases and challenges in liver tumour segmentation, highlighting the scarcity of public datasets and the need for improved segmentation methods. Liver blood vessel segmentation and computer-assisted diagnosis (CAD) systems are also reviewed. The conclusion highlights the importance of the segmentation, particularly in pathological cases, and the need for improved CAD systems with accurate segmentation for comprehensive analysis of liver treatment.</div> <div class="html-p">The survey paper [<a href="#B54-preprints-98444" class="html-bibr">54</a>] provides a comparative analysis of various available techniques, focusing on their advantages and disadvantages. Grey level-based techniques, such as region growing and active contour methods, are highlighted as effective for liver segmentation. The survey acknowledges the challenges of detecting early-phase liver lesions and emphasises the need for a combination of methods to achieve seamless segmentation, with region growing and active contour methods considered more efficient than other segmentation techniques.</div> <div class="html-p">This survey differs from the other documents in this section in a number of ways. Firstly, the most recent of the review papers found dates from 2022. One of the contributions of this work is to present a more up-to-date view of the works published since then. In addition, none of the other works presents a historical perspective on the subject, starting from 1990, as is the case with the present review.</div></section></section><section id="sec4-preprints-98444" type><h2 data-nested="1" id="preprints-h2-4"> 4. Findings</h2> <div class="html-p">A summary of the papers reviewed in <a href="#sec3dot1-preprints-98444" class="html-sec">Section 3.1</a> is given in <a href="#preprints-98444-t001" class="html-table">Table 1</a>. The columns of the table contain the following information: identification of each study (column <span class="html-italic">Authors</span>); publication year (column <span class="html-italic">Year</span>); general category or approach used in the segmentation method as defined in [<a href="#B18-preprints-98444" class="html-bibr">18</a>] (column <span class="html-italic">Segmentation Category</span>); the specific segmentation technique or algorithm (column <span class="html-italic">Method</span>); whether the method is <span class="html-italic">fully</span>-automatic or <span class="html-italic">semi</span>-automatic (column <span class="html-italic">Autom. Level</span> for Automation Level); whether the segmentation is performed in 2D or 3D (column <span class="html-italic">Dim.</span> for Dimensionality); the dataset or database used for evaluation (column <span class="html-italic">Database</span>); and the key results of the best segmentation method in each paper (column <span class="html-italic">Results</span>).</div> <div class="html-p">It is clear from this table that prior to 2016 there was no predominant category. Region-based Segmentation, Edge-based Segmentation, Threshold Segmentation, Semantic Segmentation, Cluster-based Segmentation and even combinations of several methods were tried. However, since 2016, Neuronal network-based techniques have dominated the field. Remembering the huge impact that AlexNet [<a href="#B55-preprints-98444" class="html-bibr">55</a>] had in winning the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [<a href="#B56-preprints-98444" class="html-bibr">56</a>], it is clear that Liver Segmentation in CT scans took a few years to catch up with the state of the art research. This is probably due to the arrival of U-Net [<a href="#B57-preprints-98444" class="html-bibr">57</a>], which was proposed in 2015, and is specifically designed for biomedical image segmentation.</div> <div class="html-p">In terms of automation, both fully automated and semi-automated techniques have been explored. While it is nice to have fully-automatic, accurate and fast techniques, the final decision should always belong to the specialist. Thus, we advocate fully automatic methods for contour initialisation, together with the development of intuitive tools that allow specialists to modify the fully-automatically generated contour if they feel the need to do so.</div> <div class="html-p">Both slice-based (2D) and volume-based (3D) methods have been developed. As an anatomical structure, we believe that liver segmentation methods should be inherently three-dimensional. This would have two main advantages. On the one hand, fully 3D methods would make use of more contextual information and thus potentially provide better segmentations. On the other hand, the development of fully three-dimensional techniques would avoid the need of the slice-based methods to aggregate all of the segmentations into a coherent volume. This aggregation could not only lead to errors and anatomically incorrect structures, but would also increase computational time.</div> <div class="html-p">Data availability is a major concern, as most methods use private datasets. This inhibits reproducibility of the results. In addition, researchers who do not have access to hospitals or other facilities with CT scanners, cannot develop new techniques for this particular problem. We advocate making the data available, while respecting all the ethical that are important when dealing with medical data and properly anonymising any sensitive information. Some notable exceptions to publicly available datasets are listed in <a href="#sec5dot1-preprints-98444" class="html-sec">Section 5.1</a>.</div></section><section id="sec5-preprints-98444" type="discussion"><h2 data-nested="1" id="preprints-h2-5"> 5. Discussion</h2> <div class="html-p">As seen in the previous section, significant advances in liver segmentation techniques have been presented, with particular impact due to the adoption of AI methods, more specifically neuronal network techniques. In this section, we provide some considerations on publicly available databases (<a href="#sec5dot1-preprints-98444" class="html-sec">Section 5.1</a>), the impact of the widespread adoption of neuronal networks since 2017 (<a href="#sec5dot2-preprints-98444" class="html-sec">Section 5.2</a>), a comparison between 2D and 3D implementations (<a href="#sec5dot3-preprints-98444" class="html-sec">Section 5.3</a>), and <a href="#sec5dot4-preprints-98444" class="html-sec">Section 5.4</a> present answers to the research questions posed in the introductory section.</div> <section id="sec5dot1-preprints-98444" type><h4 class="html-italic" data-nested="2"> 5.1. Public Datasets Analysis</h4> <div class="html-p">The most common public datasets used in studies of liver segmentation on CT scans include 3D-IRCADb01, LiTS17 and MICCAI-SLiver07. According to the dataset’s comparison provided by Al-Saeed <span class="html-italic">et al</span>. [<a href="#B58-preprints-98444" class="html-bibr">58</a>] (shown in <a href="#preprints-98444-t002" class="html-table">Table 2</a>), it is possible to identify several key differences that may have implications for data processing and analysis, as different formats and significant differences in resolution between datasets may require different approaches to processing and interpretation.</div></section><section id="sec5dot2-preprints-98444" type><h4 class="html-italic" data-nested="2"> 5.2. Impact of the Adoption of Neuronal Network-based Methods</h4> <div class="html-p">The growth of neuronal network-based approaches has led to remarkable progress in liver segmentation, particularly with respect to CT scans. These models have led to a new era of accuracy and efficiency, significantly outperforming traditional methods [<a href="#B55-preprints-98444" class="html-bibr">55</a>,<a href="#B57-preprints-98444" class="html-bibr">57</a>]. This improved accuracy has become critical in the field of medical imaging, where the correct interpretation of CT scans can directly affect the diagnosis and treatment plans of patients. Furthermore, the efficiency of these neuronal network models translates into faster processing times, allowing for more agile decision making in clinical settings.</div> <div class="html-p">Another positive aspect of neuronal networks in liver segmentation is their ability to cope with the complexity of liver anatomy. Neuronal networks, with their systematic and complex pattern recognition capabilities, are able to navigate these anatomical variations. As a result, they are better able to deal with the variety of appearances that liver tissue can have on CT scans. This ability to handle complex datasets ensures that neuronal networks can provide consistent and accurate segmentation in a wide range of cases.</div></section><section id="sec5dot3-preprints-98444" type><h4 class="html-italic" data-nested="2"> 5.3. Comparison between 2D and 3D Methods for Liver Segmentation</h4> <ul class="html-bullet"> <li> <div class="html-p">Importance of Choosing between 2D and 3D Methods</div> <dl class="html-bullet"> <dt id>–</dt> <dd><div class="html-p">In medical imaging, and in particular liver segmentation, the choice between slice-based 2D and volume-based 3D segmentation methods is crucial. This decision is highly dependent on the anatomical structure of the liver. Given the complex, three-dimensional nature of the liver, 3D segmentation techniques often prove to be the most appropriate choice [<a href="#B21-preprints-98444" class="html-bibr">21</a>] [<a href="#B39-preprints-98444" class="html-bibr">39</a>]. These methods are inherently designed to understand and process the volumetric characteristics of the liver, which is a critical consideration for accurate segmentation results.</div></dd> </dl> </li> <li> <div class="html-p">2D Segmentation Limitations</div> <dl class="html-bullet"> <dt id>–</dt> <dd><div class="html-p">Although 2D slice-based segmentation is widely used, it has limitations, particularly when it comes to dealing with complex organs such as the liver. The main challenge with 2D methods is their inability to fully capture all the regions of the liver. They involve working with individual slices, which can provide a fragmented understanding of the organ structure, but this fragmentation can lead to inconsistencies and errors when these individual slices are aggregated to form a complete image [<a href="#B40-preprints-98444" class="html-bibr">40</a>].</div></dd> </dl> </li> <li> <div class="html-p">3D Segmentation Advantages</div> <dl class="html-bullet"> <dt id>–</dt> <dd><div class="html-p">In order to overcome the limitations of 2D segmentation, 3D segmentation has the ability to use more contextual information. Unlike 2D methods, which visualise the liver in individual slices, 3D techniques consider the organ in its integrity, as they have the ability to ensure anatomical correctness by processing the liver as a single, continuous volume, avoiding errors that can arise from the aggregation of 2D slices [<a href="#B14-preprints-98444" class="html-bibr">14</a>] [<a href="#B38-preprints-98444" class="html-bibr">38</a>]. In 2D segmentation, inconsistencies can occur when individual slices are combined, leading to inaccuracies in the representation of liver anatomy. The holistic view provided by the 3D segmentation, results in more accurate segmentation, as it takes into account the spatial relationships and continuity between the different sections of the liver. The inclusion of this additional contextual information can potentially lead to segmentation results, especially in complex cases where the shape and size of the liver can vary considerably.</div></dd> </dl> </li> </ul></section><section id="sec5dot4-preprints-98444" type><h4 class="html-italic" data-nested="2"> 5.4. Exploring Research Questions</h4> <div class="html-p">Following the specific analysis of the studies presented and their main findings, the questions raised in <a href="#sec1-preprints-98444" class="html-sec">Section 1</a> are answered as follows.</div> <ul class="html-bullet"> <li> <div class="html-p"><b>RQ1—What are the challenges and limitations associated with accurate liver segmentation in CT scans?</b></div> <dl class="html-bullet"> <dt id>–</dt> <dd><div class="html-p">Challenges and limitations associated with accurate liver segmentation in CT images include under-segmentation, over-segmentation, low contrast, poor boundary detection and background segmentation due to noise. In addition, liver segmentation in CT scans is further challenged by the presence of artefacts, such as partial volumes, noise, and low sharpness and contrast between organs, making it difficult to identify the boundaries between different tissues.</div></dd> </dl> </li> <li> <div class="html-p"><b>RQ2 — How does the choice of the method impact the accuracy and efficiency of liver segmentation in CT scans?</b></div> <dl class="html-bullet"> <dt id>–</dt> <dd><div class="html-p">The choice of the method has a significant impact on the accuracy and efficiency of liver segmentation in CT scans. Traditional techniques such as image processing and region-growing approaches have shown varying degrees of sensitivity and specificity, with some challenges in dealing with large injuries. In contrast, newer methods such as FCN, DBN-DNN, and techniques like ResU-Net and SegNet showed higher accuracy, with some reaching up the highest accuracy levels. Notably, advances in methods have also led to significant improvements in processing times, with strategies such as using GPU over CPU leading to significant time reductions, indicating a trend towards more efficient and accurate liver segmentation techniques.</div></dd> </dl> </li> <li> <div class="html-p"><b>RQ3 — What are the evaluation metrics commonly used to assess the performance of AI models and traditional methods for liver segmentation in CT scans?</b></div> <dl class="html-bullet"> <dt id>–</dt> <dd><div class="html-p">Some of the key metrics used to measure the outcome of segmentation techniques include Dice Similarity Coefficient (DSC), accuracy, precision, sensitivity, specificity, and segmentation speed. There is not much consistency in the metrics presented by the various studies except for DSC.</div></dd> </dl> </li> </ul></section></section><section id="sec6-preprints-98444" type="conclusions"><h2 data-nested="1" id="preprints-h2-6"> 6. Conclusions and Future Work</h2> <div class="html-p">The evolution of liver segmentation techniques throughout history reflects the broad impact of AI technologies across a wide range of disciplines. The transition to fully automated segmentation methods has been an important breakthrough in the process, although the indispensable involvement of medical experts continues to play a key role in ensuring the accuracy and clinical relevance of these techniques. The emerging prevalence of 3D segmentation methods, which follow the structure of the liver, promises more accurate and anatomically consistent results.</div> <div class="html-p">However, there are a number of challenges that need to be addressed in order to advance the field. The lack of public datasets is one of the main barriers to the advancement of liver segmentation technologies. Research has mainly been conducted on private datasets, often restricted to specific medical centres, which limits wider participation in research and makes it difficult to replicate.</div> <div class="html-p">In terms of future developments, the outlook for the evolution of liver segmentation is unfolding in several core areas that promise to have a significant impact on research and application in this field. The increasing availability of public datasets is key to fostering innovation, enabling the contribution of researchers from diverse backgrounds and promoting a dynamic research environment. In addition, the definition of specific standardised evaluation metrics is crucial to allow meaningful comparisons between segmentation methods and to guide the development towards more efficient, accurate and user-friendly solutions, such as contour and region-based metrics, performance metrics and user intervention metrics.</div> <div class="html-p">The further application of 3D segmentation techniques may be a good investment, as they can provide more anatomically accurate and consistent anatomical results, overcoming the limitations of 2D segmentations. Furthermore, the effective integration of medical expertise in segmentation automation is indeed essential, with the aim of developing interfaces that allow specialists to interact with automated segmentation results, ensuring that liver segmentation tools are both technically advanced and clinically relevant and feasible. Collaboration between cutting-edge technology and human expertise is a good approach, combining the efficiency of automation with the refined understanding of healthcare professionals, whose oversight remains critical to maintain the accuracy and reliability of the final results.</div></section> <section class="html-notes"><h2 id="preprints-h2-7">Author Contributions</h2> <div class="html-p">Conceptualisation, J.B.; Methodology, S.B.N. and J.B.; Software, S.B.N.; Validation, S.B.N., I.D. and J.B.; Formal analysis, S.B.N., I.D. and J.B.; Investigation, S.B.N.; Resources, S.B.N.; Data curation, S.B.N.; Writing—original draft preparation, S.B.N.; Writing—review and editing, S.B.N., I.D. and J.B.; Supervision, J.B. and I.D.; Project administration, J.B. and I.D.; Funding acquisition, I.D. All authors have read and agreed to the published version of the manuscript.</div></section><section class="html-notes"><h2 id="preprints-h2-8">Funding</h2> <div class="html-p">This research received no external funding.</div></section><section class="html-notes"><h2 id="preprints-h2-9">Data Availability Statement</h2> <div class="html-p">Data sharing is not applicable to this article.</div></section><section class="html-notes"><h2 id="preprints-h2-10">Conflicts of Interest</h2> <div class="html-p">The authors declare no conflict of interest.</div></section><section id="html-references_list"><h2 id="preprints-h2-11">References</h2> <ol class="html-xx"> <li id="B1-preprints-98444" class="html-x" data-content="1.">Francque, S. The Liver and the Cardiovascular System: Two of a Kind? <span class="html-italic">Journal of the American Heart Association</span> <b>2021</b>, <span class="html-italic">10</span>, e020286. [<a href="https://scholar.google.com/scholar_lookup?title=The+Liver+and+the+Cardiovascular+System:+Two+of+a+Kind?&amp;author=Francque,+S.&amp;publication_year=2021&amp;journal=Journal+of+the+American+Heart+Association&amp;volume=10&amp;pages=e020286&amp;doi=10.1161/JAHA.121.020286" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1161/JAHA.121.020286" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B2-preprints-98444" class="html-x" data-content="2.">Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. <span class="html-italic">Current Biology</span> <b>2017</b>, <span class="html-italic">27</span>, R1147–R1151. [<a href="https://scholar.google.com/scholar_lookup?title=The+liver&amp;author=Trefts,+E.&amp;author=Gannon,+M.&amp;author=Wasserman,+D.H.&amp;publication_year=2017&amp;journal=Current+Biology&amp;volume=27&amp;pages=R1147%E2%80%93R1151&amp;doi=10.1016/j.cub.2017.09.019" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cub.2017.09.019" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B3-preprints-98444" class="html-x" data-content="3.">Mendes, B.; Domingues, I.; Silva, A.; Santos, J. Prostate Cancer Aggressiveness Prediction Using CT Images. <span class="html-italic">Life</span> <b>2021</b>, <span class="html-italic">11</span>, 1164. [<a href="https://scholar.google.com/scholar_lookup?title=Prostate+Cancer+Aggressiveness+Prediction+Using+CT+Images&amp;author=Mendes,+B.&amp;author=Domingues,+I.&amp;author=Silva,+A.&amp;author=Santos,+J.&amp;publication_year=2021&amp;journal=Life&amp;volume=11&amp;pages=1164&amp;doi=10.3390/life11111164" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.3390/life11111164" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B4-preprints-98444" class="html-x" data-content="4.">Pereira, G.; Domingues, I.; Martins, P.; Abreu, P.H.; Duarte, H.; Santos, J. Registration of CT with PET: A Comparison of Intensity-Based Approaches. In <span class="html-italic">International Workshop on Combinatorial Image Analysis (IWCIA)</span>; Springer, 2018; pp. 134–149. [<a href="https://scholar.google.com/scholar_lookup?title=Registration+of+CT+with+PET:+A+Comparison+of+Intensity-Based+Approaches&amp;author=Pereira,+G.&amp;author=Domingues,+I.&amp;author=Martins,+P.&amp;author=Abreu,+P.H.&amp;author=Duarte,+H.&amp;author=Santos,+J.&amp;publication_year=2018&amp;pages=134%E2%80%93149" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1007/978-3-030-05288-1_11" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B5-preprints-98444" class="html-x" data-content="5.">Zhang, H.; Luo, K.; Deng, R.; Li, S.; Duan, S. Deep Learning-Based CT Imaging for the Diagnosis of Liver Tumor. <span class="html-italic">Computational Intelligence and Neuroscience</span> <b>2022</b>, <span class="html-italic">2022</span>, 1–7. [<a href="https://scholar.google.com/scholar_lookup?title=Deep+Learning-Based+CT+Imaging+for+the+Diagnosis+of+Liver+Tumor&amp;author=Zhang,+H.&amp;author=Luo,+K.&amp;author=Deng,+R.&amp;author=Li,+S.&amp;author=Duan,+S.&amp;publication_year=2022&amp;journal=Computational+Intelligence+and+Neuroscience&amp;volume=2022&amp;pages=1%E2%80%937&amp;doi=10.1155/2022/3045370" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1155/2022/3045370" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B6-preprints-98444" class="html-x" data-content="6.">Vernuccio, F.; Cannella, R.; Bartolotta, T.V.; Galia, M.; Tang, A.; Brancatelli, G. Advances in liver US, CT, and MRI: moving toward the future. <span class="html-italic">European Radiology Experimental</span> <b>2021</b>, <span class="html-italic">5</span>, 52. [<a href="https://scholar.google.com/scholar_lookup?title=Advances+in+liver+US,+CT,+and+MRI:+moving+toward+the+future&amp;author=Vernuccio,+F.&amp;author=Cannella,+R.&amp;author=Bartolotta,+T.V.&amp;author=Galia,+M.&amp;author=Tang,+A.&amp;author=Brancatelli,+G.&amp;publication_year=2021&amp;journal=European+Radiology+Experimental&amp;volume=5&amp;pages=52&amp;doi=10.1186/s41747-021-00250-0" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1186/s41747-021-00250-0" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B7-preprints-98444" class="html-x" data-content="7.">Domingues, I.; Cardoso, J.S. Using Bayesian surprise to detect calcifications in mammogram images. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 1091–1094. [<a href="https://doi.org/10.1109/EMBC.2014.6943784" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B8-preprints-98444" class="html-x" data-content="8.">Mendes, B.; Domingues, I.; Santos, J. Multi-class Semantic Segmentation for Prostate Cancer Radiotherapy Treatment Optimization. International Conference on Mathematical Analysis and Applications in Science and Engineering (ICMA2SC), 2022.</li> <li id="B9-preprints-98444" class="html-x" data-content="9.">Bechar, M.E.A.; Settouti, N.; Domingues, I. Deep Learning vs. Super Pixel Classification for Breast Masses Segmentation. In <span class="html-italic">Deep Learning for Biomedical Applications</span>; CRC Press, 2021; pp. 121–156. [<a href="https://scholar.google.com/scholar_lookup?title=Deep+Learning+vs.+Super+Pixel+Classification+for+Breast+Masses+Segmentation&amp;author=Bechar,+M.E.A.&amp;author=Settouti,+N.&amp;author=Domingues,+I.&amp;publication_year=2021&amp;pages=121%E2%80%93156" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B10-preprints-98444" class="html-xx" data-content="10.">Oliveira, A.C.; Domingues, I.; Duarte, H.; Santos, J.; Abreu, P.H. Going Back to Basics on Volumetric Segmentation of the Lungs in CT: A Fully Image Processing Based Technique. In <span class="html-italic">Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)</span>; Springer, 2019; Vol. 11868 LNCS, pp. 322–334. [<a href="https://scholar.google.com/scholar_lookup?title=Going+Back+to+Basics+on+Volumetric+Segmentation+of+the+Lungs+in+CT:+A+Fully+Image+Processing+Based+Technique&amp;author=Oliveira,+A.C.&amp;author=Domingues,+I.&amp;author=Duarte,+H.&amp;author=Santos,+J.&amp;author=Abreu,+P.H.&amp;publication_year=2019&amp;pages=322%E2%80%93334" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B11-preprints-98444" class="html-xx" data-content="11.">Carbone, I.; Martins, P.; Teixeira, A.; Silva, A. A Vocal Tract Segmentation and Analysis over a European Portuguese MRI Database. <span class="html-italic">Revista do Departamento de Electrónica e Telecomunicações, Universidade de Aveiro</span> <b>2008</b>, <span class="html-italic">4</span>, 1050–1053. [<a href="https://scholar.google.com/scholar_lookup?title=A+Vocal+Tract+Segmentation+and+Analysis+over+a+European+Portuguese+MRI+Database&amp;author=Carbone,+I.&amp;author=Martins,+P.&amp;author=Teixeira,+A.&amp;author=Silva,+A.&amp;publication_year=2008&amp;journal=Revista+do+Departamento+de+Electr%C3%B3nica+e+Telecomunica%C3%A7%C3%B5es,+Universidade+de+Aveiro&amp;volume=4&amp;pages=1050%E2%80%931053" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B12-preprints-98444" class="html-xx" data-content="12.">Zhou, L.Q.; Wang, J.Y.; Yu, S.Y.; Wu, G.G.; Wei, Q.; Deng, Y.B.; Wu, X.L.; Cui, X.W.; Dietrich, C.F. Artificial intelligence in medical imaging of the liver. <span class="html-italic">World Journal of Gastroenterology</span> <b>2019</b>, <span class="html-italic">25</span>, 672–682. [<a href="https://scholar.google.com/scholar_lookup?title=Artificial+intelligence+in+medical+imaging+of+the+liver&amp;author=Zhou,+L.Q.&amp;author=Wang,+J.Y.&amp;author=Yu,+S.Y.&amp;author=Wu,+G.G.&amp;author=Wei,+Q.&amp;author=Deng,+Y.B.&amp;author=Wu,+X.L.&amp;author=Cui,+X.W.&amp;author=Dietrich,+C.F.&amp;publication_year=2019&amp;journal=World+Journal+of+Gastroenterology&amp;volume=25&amp;pages=672%E2%80%93682&amp;doi=10.3748/wjg.v25.i6.672&amp;pmid=30783371" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.3748/wjg.v25.i6.672" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30783371" class="cross-ref pub_med" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li> <li id="B13-preprints-98444" class="html-xx" data-content="13.">Chlebus, G.; Schenk, A.; Moltz, J.H.; van Ginneken, B.; Hahn, H.K.; Meine, H. Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. <span class="html-italic">Scientific Reports</span> <b>2018</b>, <span class="html-italic">8</span>, 15497. [<a href="https://scholar.google.com/scholar_lookup?title=Automatic+liver+tumor+segmentation+in+CT+with+fully+convolutional+neural+networks+and+object-based+postprocessing&amp;author=Chlebus,+G.&amp;author=Schenk,+A.&amp;author=Moltz,+J.H.&amp;author=van+Ginneken,+B.&amp;author=Hahn,+H.K.&amp;author=Meine,+H.&amp;publication_year=2018&amp;journal=Scientific+Reports&amp;volume=8&amp;pages=15497&amp;doi=10.1038/s41598-018-33860-7&amp;pmid=30341319" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1038/s41598-018-33860-7" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30341319" class="cross-ref pub_med" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li> <li id="B14-preprints-98444" class="html-xx" data-content="14.">Christ, P.F.; Ettlinger, F.; Grün, F.; Elshaera, M.E.A.; Lipkova, J.; Schlecht, S.; Ahmaddy, F.; Tatavarty, S.; Bickel, M.; Bilic, P.; Rempfler, M.; Hofmann, F.; Anastasi, M.D.; Ahmadi, S.A.; Kaissis, G.; Holch, J.; Sommer, W.; Braren, R.; Heinemann, V.; Menze, B. Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks. <span class="html-italic">arXiv 1702.05970</span> <b>2017</b>, [1702.05970].</li> <li id="B15-preprints-98444" class="html-xx" data-content="15.">Ansari, M.Y.; Abdalla, A.; Ansari, M.Y.; Ansari, M.I.; Malluhi, B.; Mohanty, S.; Mishra, S.; Singh, S.S.; Abinahed, J.; Al-Ansari, A.; Balakrishnan, S.; Dakua, S.P. Practical utility of liver segmentation methods in clinical surgeries and interventions. <span class="html-italic">BMC Medical Imaging</span> <b>2022</b>, <span class="html-italic">22</span>, 97. [<a href="https://scholar.google.com/scholar_lookup?title=Practical+utility+of+liver+segmentation+methods+in+clinical+surgeries+and+interventions&amp;author=Ansari,+M.Y.&amp;author=Abdalla,+A.&amp;author=Ansari,+M.Y.&amp;author=Ansari,+M.I.&amp;author=Malluhi,+B.&amp;author=Mohanty,+S.&amp;author=Mishra,+S.&amp;author=Singh,+S.S.&amp;author=Abinahed,+J.&amp;author=Al-Ansari,+A.&amp;publication_year=2022&amp;journal=BMC+Medical+Imaging&amp;volume=22&amp;pages=97&amp;doi=10.1186/s12880-022-00825-2" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1186/s12880-022-00825-2" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B16-preprints-98444" class="html-xx" data-content="16.">Le, D.C.; Chinnasarn, K.; Chansangrat, J.; Keeratibharat, N.; Horkaew, P. Semi-automatic liver segmentation based on probabilistic models and anatomical constraints. <span class="html-italic">Scientific Reports</span> <b>2021</b>, <span class="html-italic">11</span>, 6106. [<a href="https://scholar.google.com/scholar_lookup?title=Semi-automatic+liver+segmentation+based+on+probabilistic+models+and+anatomical+constraints&amp;author=Le,+D.C.&amp;author=Chinnasarn,+K.&amp;author=Chansangrat,+J.&amp;author=Keeratibharat,+N.&amp;author=Horkaew,+P.&amp;publication_year=2021&amp;journal=Scientific+Reports&amp;volume=11&amp;pages=6106&amp;doi=10.1038/s41598-021-85436-7&amp;pmid=33731736" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1038/s41598-021-85436-7" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33731736" class="cross-ref pub_med" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li> <li id="B17-preprints-98444" class="html-xx" data-content="17.">Halevi, G.; Moed, H.; Bar-Ilan, J. Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature. <span class="html-italic">Journal of Informetrics</span> <b>2017</b>, <span class="html-italic">11</span>, 823–834. [<a href="https://scholar.google.com/scholar_lookup?title=Suitability+of+Google+Scholar+as+a+source+of+scientific+information+and+as+a+source+of+data+for+scientific+evaluation%E2%80%94Review+of+the+Literature&amp;author=Halevi,+G.&amp;author=Moed,+H.&amp;author=Bar-Ilan,+J.&amp;publication_year=2017&amp;journal=Journal+of+Informetrics&amp;volume=11&amp;pages=823%E2%80%93834&amp;doi=10.1016/j.joi.2017.06.005" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1016/j.joi.2017.06.005" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B18-preprints-98444" class="html-xx" data-content="18.">Sakshi.; Kukreja, V. Image Segmentation Techniques: Statistical, Comprehensive, Semi-Automated Analysis and an Application Perspective Analysis of Mathematical Expressions. <span class="html-italic">Archives of Computational Methods in Engineering</span> <b>2023</b>, <span class="html-italic">30</span>, 457–495. [<a href="https://doi.org/10.1007/s11831-022-09805-9" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B19-preprints-98444" class="html-xx" data-content="19.">Bae, K.T.; Giger, M.L.; Chen, C.T.; Kahn Jr, C.E. Automatic segmentation of liver structure in CT images. <span class="html-italic">Medical physics</span> <b>1993</b>, <span class="html-italic">20</span>, 71–78. [<a href="https://scholar.google.com/scholar_lookup?title=Automatic+segmentation+of+liver+structure+in+CT+images&amp;author=Bae,+K.T.&amp;author=Giger,+M.L.&amp;author=Chen,+C.T.&amp;author=Kahn+Jr,+C.E.&amp;publication_year=1993&amp;journal=Medical+physics&amp;volume=20&amp;pages=71%E2%80%9378&amp;doi=10.1118/1.597064" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1118/1.597064" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B20-preprints-98444" class="html-xx" data-content="20.">Gao, L.; Heath, D.G.; Kuszyk, B.S.; Fishman, E.K. Automatic liver segmentation technique for three-dimensional visualization of CT data. <span class="html-italic">Radiology</span> <b>1996</b>, <span class="html-italic">201</span>, 359–364. [<a href="https://scholar.google.com/scholar_lookup?title=Automatic+liver+segmentation+technique+for+three-dimensional+visualization+of+CT+data&amp;author=Gao,+L.&amp;author=Heath,+D.G.&amp;author=Kuszyk,+B.S.&amp;author=Fishman,+E.K.&amp;publication_year=1996&amp;journal=Radiology&amp;volume=201&amp;pages=359%E2%80%93364&amp;doi=10.1148/radiology.201.2.8888223&amp;pmid=8888223" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1148/radiology.201.2.8888223" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/8888223" class="cross-ref pub_med" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li> <li id="B21-preprints-98444" class="html-xx" data-content="21.">Soler, L.; Malandain, G.; Montagnat, J.; Delingette, H.; Ayache, N.; Clément, J.M.; Roy, C.; Russier, Y.; Tassetti, V.; Marescaux, J. Automatic Segmentation of Portal Vein in CT-Scans of the Liver. World Congress on Medical Physics and Biomedical Engineering (MPBE), 1997, p. 788.</li> <li id="B22-preprints-98444" class="html-xx" data-content="22.">Yoo, S.W.; Cho, J.S.; Noh, S.M.; Shin, K.S.; Park, J.W. Advanced Liver Segmentation by Using Pixel Ratio in Abdominal CT Image. IEEK Conference. The Institute of Electronics and Information Engineers, 2000, pp. 39–42.</li> <li id="B23-preprints-98444" class="html-xx" data-content="23.">Pan, S.; Dawant, B.M. Automatic 3D segmentation of the liver from abdominal CT images: a level-set approach. Medical Imaging: Image Processing. SPIE, 2001, Vol. 4322, pp. 128–138. [<a href="https://doi.org/10.1117/12.431019" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B24-preprints-98444" class="html-xx" data-content="24.">Saitoh, T.; Tamura, Y.; Kaneko, T. Automatic segmentation of liver region through blood vessels on multi-phase CT. International Conference on Pattern Recognition. IEEE, 2002, Vol. 1, pp. 735–738. [<a href="https://doi.org/10.1109/ICPR.2002.1044863" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B25-preprints-98444" class="html-xx" data-content="25.">Masumoto, J.; Hori, M.; Sato, Y.; Murakami, T.; Johkoh, T.; Nakamura, H.; Tamura, S. Automated liver segmentation using multislice CT images. <span class="html-italic">Systems and Computers in Japan</span> <b>2003</b>, <span class="html-italic">34</span>, 71–82. [<a href="https://scholar.google.com/scholar_lookup?title=Automated+liver+segmentation+using+multislice+CT+images&amp;author=Masumoto,+J.&amp;author=Hori,+M.&amp;author=Sato,+Y.&amp;author=Murakami,+T.&amp;author=Johkoh,+T.&amp;author=Nakamura,+H.&amp;author=Tamura,+S.&amp;publication_year=2003&amp;journal=Systems+and+Computers+in+Japan&amp;volume=34&amp;pages=71%E2%80%9382&amp;doi=10.1002/scj.10210" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1002/scj.10210" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B26-preprints-98444" class="html-xx" data-content="26.">Lim, S.J.; Jeong, Y.Y.; Lee, C.W.; Ho, Y.S. Automatic segmentation of the liver in CT images using the watershed algorithm based on morphological filtering. Medical Imaging: Image Processing. SPIE, 2004, Vol. 5370, pp. 1658–1666. [<a href="https://doi.org/10.1117/12.533586" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B27-preprints-98444" class="html-xx" data-content="27.">Liu, F.; Zhao, B.; Kijewski, P.K.; Wang, L.; Schwartz, L.H. Liver segmentation for CT images using GVF snake. <span class="html-italic">Medical physics</span> <b>2005</b>, <span class="html-italic">32</span>, 3699–3706. [<a href="https://scholar.google.com/scholar_lookup?title=Liver+segmentation+for+CT+images+using+GVF+snake&amp;author=Liu,+F.&amp;author=Zhao,+B.&amp;author=Kijewski,+P.K.&amp;author=Wang,+L.&amp;author=Schwartz,+L.H.&amp;publication_year=2005&amp;journal=Medical+physics&amp;volume=32&amp;pages=3699%E2%80%933706&amp;doi=10.1118/1.2132573&amp;pmid=16475769" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1118/1.2132573" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/16475769" class="cross-ref pub_med" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li> <li id="B28-preprints-98444" class="html-xx" data-content="28.">Lim, S.J.; Jeong, Y.Y.; Ho, Y.S. Automatic liver segmentation for volume measurement in CT Images. <span class="html-italic">Journal of Visual Communication and Image Representation</span> <b>2006</b>, <span class="html-italic">17</span>, 860–875. [<a href="https://scholar.google.com/scholar_lookup?title=Automatic+liver+segmentation+for+volume+measurement+in+CT+Images&amp;author=Lim,+S.J.&amp;author=Jeong,+Y.Y.&amp;author=Ho,+Y.S.&amp;publication_year=2006&amp;journal=Journal+of+Visual+Communication+and+Image+Representation&amp;volume=17&amp;pages=860%E2%80%93875&amp;doi=10.1016/j.jvcir.2005.07.001" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jvcir.2005.07.001" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B29-preprints-98444" class="html-xx" data-content="29.">Beichel, R.; Bauer, C.; Bornik, A.; Sorantin, E.; Bischof, H. Liver segmentation in CT data: A segmentation refinement approach. 3D Segmentation in The Clinic: A Grand Challenge, 2007, pp. 235–245.</li> <li id="B30-preprints-98444" class="html-xx" data-content="30.">Massoptier, L.; Casciaro, S. A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans. <span class="html-italic">European radiology</span> <b>2008</b>, <span class="html-italic">18</span>, 1658–1665. [<a href="https://scholar.google.com/scholar_lookup?title=A+new+fully+automatic+and+robust+algorithm+for+fast+segmentation+of+liver+tissue+and+tumors+from+CT+scans&amp;author=Massoptier,+L.&amp;author=Casciaro,+S.&amp;publication_year=2008&amp;journal=European+radiology&amp;volume=18&amp;pages=1658%E2%80%931665&amp;doi=10.1007/s00330-008-0924-y" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1007/s00330-008-0924-y" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B31-preprints-98444" class="html-xx" data-content="31.">Heimann, T.; Van Ginneken, B.; Styner, M.A.; Arzhaeva, Y.; Aurich, V.; Bauer, C.; Beck, A.; Becker, C.; Beichel, R.; Bekes, G.; others. Comparison and evaluation of methods for liver segmentation from CT datasets. <span class="html-italic">IEEE transactions on medical imaging</span> <b>2009</b>, <span class="html-italic">28</span>, 1251–1265. [<a href="https://doi.org/10.1109/TMI.2009.2013851" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B32-preprints-98444" class="html-xx" data-content="32.">Akram, M.U.; Khanum, A.; Iqbal, K. An automated system for liver CT enhancement and segmentation. <span class="html-italic">ICGST Journal of Graphics, Vision and Image Processing (ICGST-GVIP)</span> <b>2010</b>, <span class="html-italic">10</span>, 17–22. [<a href="https://scholar.google.com/scholar_lookup?title=An+automated+system+for+liver+CT+enhancement+and+segmentation&amp;author=Akram,+M.U.&amp;author=Khanum,+A.&amp;author=Iqbal,+K.&amp;publication_year=2010&amp;journal=ICGST+Journal+of+Graphics,+Vision+and+Image+Processing+(ICGST-GVIP)&amp;volume=10&amp;pages=17%E2%80%9322" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B33-preprints-98444" class="html-xx" data-content="33.">Oliveira, D.A.; Feitosa, R.Q.; Correia, M.M. Segmentation of liver, its vessels and lesions from CT images for surgical planning. <span class="html-italic">Biomedical engineering online</span> <b>2011</b>, <span class="html-italic">10</span>, 1–23. [<a href="https://scholar.google.com/scholar_lookup?title=Segmentation+of+liver,+its+vessels+and+lesions+from+CT+images+for+surgical+planning&amp;author=Oliveira,+D.A.&amp;author=Feitosa,+R.Q.&amp;author=Correia,+M.M.&amp;publication_year=2011&amp;journal=Biomedical+engineering+online&amp;volume=10&amp;pages=1%E2%80%9323&amp;doi=10.1186/1475-925X-10-30&amp;pmid=21507229" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1186/1475-925X-10-30" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/21507229" class="cross-ref pub_med" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li> <li id="B34-preprints-98444" class="html-xx" data-content="34.">Linguraru, M.G.; Richbourg, W.J.; Jianfei Liu.; Watt, J.M.; Pamulapati, V.; Shijun Wang.; Summers, R.M. Tumor Burden Analysis on Computed Tomography by Automated Liver and Tumor Segmentation. <span class="html-italic">IEEE Transactions on Medical Imaging</span> <b>2012</b>, <span class="html-italic">31</span>, 1965–1976. [<a href="https://doi.org/10.1109/TMI.2012.2211887" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B35-preprints-98444" class="html-xx" data-content="35.">Li, X.; Luo, S.; Li, J. Liver Segmentation from CT Image Using Fuzzy Clustering and Level Set. <span class="html-italic">Journal of Signal and Information Processing</span> <b>2013</b>, <span class="html-italic">04</span>, 36–42. [<a href="https://scholar.google.com/scholar_lookup?title=Liver+Segmentation+from+CT+Image+Using+Fuzzy+Clustering+and+Level+Set&amp;author=Li,+X.&amp;author=Luo,+S.&amp;author=Li,+J.&amp;publication_year=2013&amp;journal=Journal+of+Signal+and+Information+Processing&amp;volume=04&amp;pages=36%E2%80%9342&amp;doi=10.4236/jsip.2013.43B007" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.4236/jsip.2013.43B007" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B36-preprints-98444" class="html-xx" data-content="36.">Platero, C.; Tobar, M.C.; others. A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans. <span class="html-italic">Computational and mathematical methods in medicine</span> <b>2014</b>, <span class="html-italic">2014</span>. [<a href="https://doi.org/10.1155/2014/182909" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B37-preprints-98444" class="html-xx" data-content="37.">Mostafa, A.; Fouad, A.; Abd Elfattah, M.; Hassanien, A.E.; Hefny, H.; Zhu, S.Y.; Schaefer, G. CT liver segmentation using artificial bee colony optimisation. <span class="html-italic">Procedia Computer Science</span> <b>2015</b>, <span class="html-italic">60</span>, 1622–1630. [<a href="https://scholar.google.com/scholar_lookup?title=CT+liver+segmentation+using+artificial+bee+colony+optimisation&amp;author=Mostafa,+A.&amp;author=Fouad,+A.&amp;author=Abd+Elfattah,+M.&amp;author=Hassanien,+A.E.&amp;author=Hefny,+H.&amp;author=Zhu,+S.Y.&amp;author=Schaefer,+G.&amp;publication_year=2015&amp;journal=Procedia+Computer+Science&amp;volume=60&amp;pages=1622%E2%80%931630&amp;doi=10.1016/j.procs.2015.08.272" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1016/j.procs.2015.08.272" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B38-preprints-98444" class="html-xx" data-content="38.">Dou, Q.; Chen, H.; Jin, Y.; Yu, L.; Qin, J.; Heng, P.A. 3D deeply supervised network for automatic liver segmentation from CT volumes. 19th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, 2016, pp. 149–157. [<a href="https://doi.org/10.1007/978-3-319-46723-8_18" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B39-preprints-98444" class="html-xx" data-content="39.">Hiraman, A. Liver segmentation using 3D CT scans. PhD thesis, University of Kwazulu-Natal, 2018.</li> <li id="B40-preprints-98444" class="html-xx" data-content="40.">Wang, K.; Mamidipalli, A.; Retson, T.; Bahrami, N.; Hasenstab, K.; Blansit, K.; Bass, E.; Delgado, T.; Cunha, G.; Middleton, M.S.; others. Automated CT and MRI liver segmentation and biometry using a generalized convolutional neural network. <span class="html-italic">Radiology: Artificial Intelligence</span> <b>2019</b>, <span class="html-italic">1</span>, 180022. [<a href="https://doi.org/10.1148/ryai.2019180022" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B41-preprints-98444" class="html-xx" data-content="41.">Almotairi, S.; Kareem, G.; Aouf, M.; Almutairi, B.; Salem, M.A.M. Liver tumor segmentation in CT scans using modified SegNet. <span class="html-italic">Sensors</span> <b>2020</b>, <span class="html-italic">20</span>, 1516. [<a href="https://scholar.google.com/scholar_lookup?title=Liver+tumor+segmentation+in+CT+scans+using+modified+SegNet&amp;author=Almotairi,+S.&amp;author=Kareem,+G.&amp;author=Aouf,+M.&amp;author=Almutairi,+B.&amp;author=Salem,+M.A.M.&amp;publication_year=2020&amp;journal=Sensors&amp;volume=20&amp;pages=1516&amp;doi=10.3390/s20051516" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.3390/s20051516" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B42-preprints-98444" class="html-xx" data-content="42.">Soler, L.; Hostettler, A.; Agnus, V.; Charnoz, A.; Fasquel, J.; Moreau, J.; Osswald, A.; Bouhadjar, M.; Marescaux, J. 3D Image Reconstruction for Comparison of Algorithm Database: A Patient Specific Anatomical and Medical Image Database. Tech. rep, IRCAD, Strasbourg, France, 2010.</li> <li id="B43-preprints-98444" class="html-xx" data-content="43.">Ayalew, Y.A.; Fante, K.A.; Mohammed, M.A. Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method. <span class="html-italic">BMC Biomedical Engineering</span> <b>2021</b>, <span class="html-italic">3</span>, 4. [<a href="https://scholar.google.com/scholar_lookup?title=Modified+U-Net+for+liver+cancer+segmentation+from+computed+tomography+images+with+a+new+class+balancing+method&amp;author=Ayalew,+Y.A.&amp;author=Fante,+K.A.&amp;author=Mohammed,+M.A.&amp;publication_year=2021&amp;journal=BMC+Biomedical+Engineering&amp;volume=3&amp;pages=4&amp;doi=10.1186/s42490-021-00050-y" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1186/s42490-021-00050-y" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B44-preprints-98444" class="html-xx" data-content="44.">LiTS Challenge Dataset. <a href="https://competitions.codalab.org/competitions/17094" target="_blank">https://competitions.codalab.org/competitions/17094</a>. Accessed: Nov. 27, 2023.</li> <li id="B45-preprints-98444" class="html-xx" data-content="45.">Scicluna, D. Automatic segmentation of healthy liver in abdominal computed tomography scans. Master’s thesis, University of Malta, 2022.</li> <li id="B46-preprints-98444" class="html-xx" data-content="46.">Kavur, A.E.; Gezer, N.S.; Barış, M.; Aslan, S.; Conze, P.H.; Groza, V.; Pham, D.D.; Chatterjee, S.; Ernst, P.; Özkan, S.; Baydar, B.; Lachinov, D.; Han, S.; Pauli, J.; Isensee, F.; Perkonigg, M.; Sathish, R.; Rajan, R.; Sheet, D.; Dovletov, G.; Speck, O.; Nürnberger, A.; Maier-Hein, K.H.; Bozdağı Akar, G.; Ünal, G.; Dicle, O.; Selver, M.A. CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation. <span class="html-italic">Medical Image Analysis</span> <b>2021</b>, <span class="html-italic">69</span>, 101950. [<a href="https://scholar.google.com/scholar_lookup?title=CHAOS+Challenge+-+combined+(CT-MR)+healthy+abdominal+organ+segmentation&amp;author=Kavur,+A.E.&amp;author=Gezer,+N.S.&amp;author=Bar%C4%B1%C5%9F,+M.&amp;author=Aslan,+S.&amp;author=Conze,+P.H.&amp;author=Groza,+V.&amp;author=Pham,+D.D.&amp;author=Chatterjee,+S.&amp;author=Ernst,+P.&amp;author=%C3%96zkan,+S.&amp;publication_year=2021&amp;journal=Medical+Image+Analysis&amp;volume=69&amp;pages=101950&amp;doi=10.1016/j.media.2020.101950&amp;pmid=33421920" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1016/j.media.2020.101950" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33421920" class="cross-ref pub_med" data-typ="pmid" target="_blank" rel="noopener noreferrer">PubMed</a>]</li> <li id="B47-preprints-98444" class="html-xx" data-content="47.">Ezzat, K.A.; Omran, L.N.; El Seddawy, A.I.B. Automatic liver segmentation in computed tomography scans using deep semantic segmentation. <span class="html-italic">Bulletin of Electrical Engineering and Informatics</span> <b>2023</b>, <span class="html-italic">12</span>, 250–256. [<a href="https://scholar.google.com/scholar_lookup?title=Automatic+liver+segmentation+in+computed+tomography+scans+using+deep+semantic+segmentation&amp;author=Ezzat,+K.A.&amp;author=Omran,+L.N.&amp;author=El+Seddawy,+A.I.B.&amp;publication_year=2023&amp;journal=Bulletin+of+Electrical+Engineering+and+Informatics&amp;volume=12&amp;pages=250%E2%80%93256&amp;doi=10.11591/eei.v12i1.4022" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.11591/eei.v12i1.4022" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B48-preprints-98444" class="html-xx" data-content="48.">Shao, J.; Luan, S.; Ding, Y.; Xue, X.; Zhu, B.; Wei, W. Attention Connect Network for Liver Tumor Segmentation from CT and MRI Images. <span class="html-italic">Technology in Cancer Research &amp; Treatment</span> <b>2024</b>, <span class="html-italic">23</span>, 15330338231219366. [<a href="https://scholar.google.com/scholar_lookup?title=Attention+Connect+Network+for+Liver+Tumor+Segmentation+from+CT+and+MRI+Images&amp;author=Shao,+J.&amp;author=Luan,+S.&amp;author=Ding,+Y.&amp;author=Xue,+X.&amp;author=Zhu,+B.&amp;author=Wei,+W.&amp;publication_year=2024&amp;journal=Technology+in+Cancer+Research+&amp;+Treatment&amp;volume=23&amp;pages=15330338231219366&amp;doi=10.1177/1533033823121936" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1177/1533033823121936" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B49-preprints-98444" class="html-xx" data-content="49.">Maurício, J.; Domingues, I.; Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review. <span class="html-italic">Applied Sciences</span> <b>2023</b>, <span class="html-italic">13</span>. [<a href="https://scholar.google.com/scholar_lookup?title=Comparing+Vision+Transformers+and+Convolutional+Neural+Networks+for+Image+Classification:+A+Literature+Review&amp;author=Maur%C3%ADcio,+J.&amp;author=Domingues,+I.&amp;author=Bernardino,+J.&amp;publication_year=2023&amp;journal=Applied+Sciences&amp;volume=13&amp;doi=10.3390/app13095521" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.3390/app13095521" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B50-preprints-98444" class="html-xx" data-content="50.">Priyadarsini, S.; Selvathi, D. Survey on segmentation of liver from CT images. IEEE international conference on advanced communication control and computing technologies (ICACCCT), 2012, pp. 234–238. [<a href="https://doi.org/10.1109/ICACCCT.2012.6320777" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B51-preprints-98444" class="html-xx" data-content="51.">Mharib, A.M.; Ramli, A.R.; Mashohor, S.; Mahmood, R.B. Survey on liver CT image segmentation methods. <span class="html-italic">Artificial Intelligence Review</span> <b>2012</b>, <span class="html-italic">37</span>, 83–95. [<a href="https://scholar.google.com/scholar_lookup?title=Survey+on+liver+CT+image+segmentation+methods&amp;author=Mharib,+A.M.&amp;author=Ramli,+A.R.&amp;author=Mashohor,+S.&amp;author=Mahmood,+R.B.&amp;publication_year=2012&amp;journal=Artificial+Intelligence+Review&amp;volume=37&amp;pages=83%E2%80%9395&amp;doi=10.1007/s10462-011-9220-3" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1007/s10462-011-9220-3" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B52-preprints-98444" class="html-xx" data-content="52.">Khan, F. Automated segmentation of CT liver images: a review. <span class="html-italic">Journal of Communications Technology, Electronics and Computer Science</span> <b>2018</b>, <span class="html-italic">19</span>, 5–9. [<a href="https://scholar.google.com/scholar_lookup?title=Automated+segmentation+of+CT+liver+images:+a+review&amp;author=Khan,+F.&amp;publication_year=2018&amp;journal=Journal+of+Communications+Technology,+Electronics+and+Computer+Science&amp;volume=19&amp;pages=5%E2%80%939" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="B53-preprints-98444" class="html-xx" data-content="53.">Moghbel, M.; Mashohor, S.; Mahmud, R.; Saripan, M.I.B. Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography. <span class="html-italic">Artificial Intelligence Review</span> <b>2018</b>, <span class="html-italic">50</span>, 497–537. [<a href="https://scholar.google.com/scholar_lookup?title=Review+of+liver+segmentation+and+computer+assisted+detection/diagnosis+methods+in+computed+tomography&amp;author=Moghbel,+M.&amp;author=Mashohor,+S.&amp;author=Mahmud,+R.&amp;author=Saripan,+M.I.B.&amp;publication_year=2018&amp;journal=Artificial+Intelligence+Review&amp;volume=50&amp;pages=497%E2%80%93537&amp;doi=10.1007/s10462-017-9550-x" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1007/s10462-017-9550-x" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B54-preprints-98444" class="html-xx" data-content="54.">Vanmore, S.V.; Chougule, S.R. Survey on automatic liver segmentation techniques from abdominal CT images. International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, 2019, pp. 1030–1035. [<a href="https://doi.org/10.1109/ICCS45141.2019.9065850" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B55-preprints-98444" class="html-xx" data-content="55.">Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. <span class="html-italic">Advances in neural information processing systems</span> <b>2012</b>, <span class="html-italic">25</span>. [<a href="https://scholar.google.com/scholar_lookup?title=Imagenet+classification+with+deep+convolutional+neural+networks&amp;author=Krizhevsky,+A.&amp;author=Sutskever,+I.&amp;author=Hinton,+G.E.&amp;publication_year=2012&amp;journal=Advances+in+neural+information+processing+systems&amp;volume=25&amp;doi=10.1145/3065386" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1145/3065386" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B56-preprints-98444" class="html-xx" data-content="56.">Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.C.; Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge. <span class="html-italic">International Journal of Computer Vision (IJCV)</span> <b>2015</b>, <span class="html-italic">115</span>, 211–252. [<a href="https://scholar.google.com/scholar_lookup?title=ImageNet+Large+Scale+Visual+Recognition+Challenge&amp;author=Russakovsky,+O.&amp;author=Deng,+J.&amp;author=Su,+H.&amp;author=Krause,+J.&amp;author=Satheesh,+S.&amp;author=Ma,+S.&amp;author=Huang,+Z.&amp;author=Karpathy,+A.&amp;author=Khosla,+A.&amp;author=Bernstein,+M.&amp;publication_year=2015&amp;journal=International+Journal+of+Computer+Vision+(IJCV)&amp;volume=115&amp;pages=211%E2%80%93252&amp;doi=10.1007/s11263-015-0816-y" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.1007/s11263-015-0816-y" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B57-preprints-98444" class="html-xx" data-content="57.">Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. <span class="html-italic">CoRR</span> <b>2015</b>, <span class="html-italic">abs/1505.04597</span>, [1505.04597].</li> <li id="B58-preprints-98444" class="html-xx" data-content="58.">Al-Saeed, Y.; Gab-Allah, W.; Elmogy, M. Hepatic tumors diagnosis system based on fuzzy c-means using computed tomography images. <span class="html-italic">Research Square Preprint</span> <b>2022</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Hepatic+tumors+diagnosis+system+based+on+fuzzy+c-means+using+computed+tomography+images&amp;author=Al-Saeed,+Y.&amp;author=Gab-Allah,+W.&amp;author=Elmogy,+M.&amp;publication_year=2022&amp;journal=Research+Square+Preprint&amp;doi=10.21203/rs.3.rs-1746728/v1" class="google-scholar" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="https://doi.org/10.21203/rs.3.rs-1746728/v1" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B59-preprints-98444" class="html-xx" data-content="59.">MICCAI-Sliver07. <a href="https://sliver07.grand-challenge.org/" target="_blank">https://sliver07.grand-challenge.org/</a>. Accessed: Nov. 27, 2023.</li> </ol></section><section id="Figures" type="display-objects"><div class="html-fig-wrap" id="preprints-98444-f001"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-98444-f001"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png" alt="Preprints 98444 g001" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-98444-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> Distribution of the retrieved papers over the years <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-98444-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-98444-f001"> <div class="html-caption"> <b>Figure 1.</b> Distribution of the retrieved papers over the years</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png" alt="Preprints 98444 g001" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png"></div> </div> <div class="html-fig-wrap" id="preprints-98444-f002"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-98444-f002"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png" alt="Preprints 98444 g002" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-98444-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Characterisation of the selected papers <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-98444-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-98444-f002"> <div class="html-caption"> <b>Figure 2.</b> Characterisation of the selected papers</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png" alt="Preprints 98444 g002" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png"></div> </div> <div class="html-fig-wrap" id="preprints-98444-f003"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-98444-f003"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png" alt="Preprints 98444 g003" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-98444-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> Selected papers distribution according to the categories of image segmentation techniques <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-98444-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-98444-f003"> <div class="html-caption"> <b>Figure 3.</b> Selected papers distribution according to the categories of image segmentation techniques</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png" alt="Preprints 98444 g003" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png"></div> </div> <div class="html-table-wrap" id="preprints-98444-t001"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-98444-t001"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-98444-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Summary of reviewed documents. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-98444-t001"> <div class="html-caption"> <b>Table 1.</b> Summary of reviewed documents.</div> <table> <tbody> <tr> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Authors</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Year</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Segmentation Category</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Method</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Autom. Level</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Dim.</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Database</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Results</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Bae <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">1993</td> <td align="left" valign="top" class="html-align-left">Threshold</td> <td align="left" valign="top" class="html-align-left">Gray-level Thresholding</td> <td align="left" valign="top" class="html-align-left">Semi</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">0.985 DSC with mean percent error within 10%.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Gao <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">1996</td> <td align="left" valign="top" class="html-align-left">Edge</td> <td align="left" valign="top" class="html-align-left">Parametrically deformable contour model</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">13.2% of the results required user modifications.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Soler <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">1997</td> <td align="left" valign="top" class="html-align-left">Region</td> <td align="left" valign="top" class="html-align-left">Deformable models</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">Claimed to be comparable to manual segmentations.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Yoo <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2000</td> <td align="left" valign="top" class="html-align-left">Threshold</td> <td align="left" valign="top" class="html-align-left">Threshold</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">3.41% error.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Pan and Dawant</td> <td align="left" valign="top" class="html-align-left">2001</td> <td align="left" valign="top" class="html-align-left">Edge</td> <td align="left" valign="top" class="html-align-left">Level sets</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">Both</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">[0.874,0.963] average similarities.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Saitoh <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2002</td> <td align="left" valign="top" class="html-align-left">Threshold</td> <td align="left" valign="top" class="html-align-left">Threshold</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">∼20 minutes computation time.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Masumoto <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2003</td> <td align="left" valign="top" class="html-align-left">Region</td> <td align="left" valign="top" class="html-align-left">Differences between time-phase images</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">67% Volume ratio average; 32% in the worst cases.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Lim <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2004</td> <td align="left" valign="top" class="html-align-left">Region</td> <td align="left" valign="top" class="html-align-left">Watershed</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">Only qualitative.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Liu <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2005</td> <td align="left" valign="top" class="html-align-left">Edge</td> <td align="left" valign="top" class="html-align-left">GVF snake</td> <td align="left" valign="top" class="html-align-left">Semi</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">5.3% median value of the difference ratios.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Lim <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2006</td> <td align="left" valign="top" class="html-align-left">Semantic</td> <td align="left" valign="top" class="html-align-left">Labeling-based search</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">96% average correctness; 3% average error rate.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Beichel <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2007</td> <td align="left" valign="top" class="html-align-left">Region</td> <td align="left" valign="top" class="html-align-left">Graph cuts</td> <td align="left" valign="top" class="html-align-left">Semi</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">5.2% average overlap error.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Massoptier and Casciaro</td> <td align="left" valign="top" class="html-align-left">2008</td> <td align="left" valign="top" class="html-align-left">Edge</td> <td align="left" valign="top" class="html-align-left">Active contour</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">94.2% mean DSC.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Heimann <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2009</td> <td align="left" valign="top" class="html-align-left">Several</td> <td align="left" valign="top" class="html-align-left">Majority Voting</td> <td align="left" valign="top" class="html-align-left">Both</td> <td align="left" valign="top" class="html-align-left">Both</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">5% Overlap error; -0.7 Volume difference; 0.8 Average Distance; 1.7 RMS distance; 19.1 Max Distance.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Akram <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2010</td> <td align="left" valign="top" class="html-align-left">Threshold</td> <td align="left" valign="top" class="html-align-left">Global Threshold</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">0.96 Average accuracy; 0.0017 std; 96% Accurately Segmented; 4% Poorly Segmented.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Oliveira <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2011</td> <td align="left" valign="top" class="html-align-left">Edge</td> <td align="left" valign="top" class="html-align-left">Level sets</td> <td align="left" valign="top" class="html-align-left">Semi</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">SLiver07</td> <td align="left" valign="top" class="html-align-left">82.05 overall score.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Linguraru <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2012</td> <td align="left" valign="top" class="html-align-left">Region</td> <td align="left" valign="top" class="html-align-left">Graph cuts</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">Private; SLiver07</td> <td align="left" valign="top" class="html-align-left">2.2 VOE.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Li <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2013</td> <td align="left" valign="top" class="html-align-left">Edge</td> <td align="left" valign="top" class="html-align-left">Fuzzy clust. and level set</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">0.9986 average accuracy; 0.9989 average specificity.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Platero <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2014</td> <td align="left" valign="top" class="html-align-left">Region</td> <td align="left" valign="top" class="html-align-left">Graph cuts</td> <td align="left" valign="top" class="html-align-left">Semi</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">SLiver07</td> <td align="left" valign="top" class="html-align-left">76.3 maximum score; 0.973 DSC.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Mostafa <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2015</td> <td align="left" valign="top" class="html-align-left">Cluster</td> <td align="left" valign="top" class="html-align-left">ABC optimization</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">93.73% accuracy; 84.82% average SI.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Dou <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2016</td> <td align="left" valign="top" class="html-align-left">NN</td> <td align="left" valign="top" class="html-align-left">3D DSN</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">SLiver07</td> <td align="left" valign="top" class="html-align-left">5.42% VOE; 0.79mm ASD.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Christ <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2017</td> <td align="left" valign="top" class="html-align-left">NN</td> <td align="left" valign="top" class="html-align-left">CFCN</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">3Dircadb</td> <td align="left" valign="top" class="html-align-left">94.3% mean DSC.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Hiraman</td> <td align="left" valign="top" class="html-align-left">2018</td> <td align="left" valign="top" class="html-align-left">NN</td> <td align="left" valign="top" class="html-align-left">CNN</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">SLiver07</td> <td align="left" valign="top" class="html-align-left">12.07% average VOE; -1.96% RVD; 2.25mm ASD; 2.60mm RMSD; 43.01mm MSSD.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Wang <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2019</td> <td align="left" valign="top" class="html-align-left">NN</td> <td align="left" valign="top" class="html-align-left">CNN</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">0.94 ± 0.06 DSC.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Almotairi <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2020</td> <td align="left" valign="top" class="html-align-left">NN</td> <td align="left" valign="top" class="html-align-left">SegNet</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">3D</td> <td align="left" valign="top" class="html-align-left">3D-IRCADb01</td> <td align="left" valign="top" class="html-align-left">94.57% overall accuracy.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Ayalew <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2021</td> <td align="left" valign="top" class="html-align-left">NN</td> <td align="left" valign="top" class="html-align-left">U-Net</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">3D-IRCADb01; LiTS</td> <td align="left" valign="top" class="html-align-left">0.9612 DSC.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Scicluna</td> <td align="left" valign="top" class="html-align-left">2022</td> <td align="left" valign="top" class="html-align-left">NN</td> <td align="left" valign="top" class="html-align-left">UNet; VGG16UNetC</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">CHAOS</td> <td align="left" valign="top" class="html-align-left">85.84 mean score; 97.85 DSC; 80.33 RAVD; 94.80 ASD; 70.38 MSSD.</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Ezzat <span class="html-italic">et al</span>.</td> <td align="left" valign="top" class="html-align-left">2023</td> <td align="left" valign="top" class="html-align-left">NN</td> <td align="left" valign="top" class="html-align-left">CNN</td> <td align="left" valign="top" class="html-align-left">Fully</td> <td align="left" valign="top" class="html-align-left">2D</td> <td align="left" valign="top" class="html-align-left">Private</td> <td align="left" valign="top" class="html-align-left">98.80% accuracy.</td> </tr> <tr> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">Shao <span class="html-italic">et al</span>.</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">2024</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">NN</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">AC-Net</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">Fully</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">3D</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">LiTS; Private</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">0.90 DSC; 0.82 JC; 0.92 recall; 0.89 precision; 11.96 HD; 4.59 ASD.</td> </tr> </tbody> </table> <div class="html-table_foot html-p"> <div class="html-p" style="text-indent:0em;"><span class="html-fn-content">ABC: Artificial Bee Colony  AC-Net: Attention Connect Network  ASD: Average Symmetric Surface Distance  CFCN: Cascaded fully CNN  CNN: Convolutional Neuronal Network  DSC: Dice Similarity Coefficient  DSN: Deeply Supervised Network  GVF: Gradient Vector Flow  HD: Hausdorff Distance  JC: Jaccard Coefficient  MSSD: Maximum Symmetric Surface Distance  NN: Neuronal Network  r: Correlation Coefficient  RAVD: Relative Absolute Volume Difference  RMS: Root Mean Square  RMSD: Root Mean Square Symmetric Surface Distance  RVD: Relative Volume Difference  SI: Similarity Index  std: standard deviation  VOE: Volumetric Overlap Error</span></div> <div style="clear:both;"></div> </div> </div> <div class="html-table-wrap" id="preprints-98444-t002"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-98444-t002"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-98444-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> Characteristics of each dataset used by the main studies analysed (based in [<a href="#B58-preprints-98444" class="html-bibr">58</a>]). </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-98444-t002"> <div class="html-caption"> <b>Table 2.</b> Characteristics of each dataset used by the main studies analysed (based in [<a href="#B58-preprints-98444" class="html-bibr">58</a>]).</div> <table> <tbody> <tr> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Dataset</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Date</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Format</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Number of subjects</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Slices per subject</td> <td align="left" valign="top" style="border-bottom:solid thin;border-top:solid thin" class="html-align-left">Resolution</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">MICCAI-SLiver07&nbsp;[<a href="#B59-preprints-98444" class="html-bibr">59</a>]</td> <td align="left" valign="top" class="html-align-left">2007</td> <td align="left" valign="top" class="html-align-left">RAW</td> <td align="left" valign="top" class="html-align-left">30</td> <td align="left" valign="top" class="html-align-left">74 to 260</td> <td align="left" valign="top" class="html-align-left">512x512</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">3D-IRCADb01&nbsp;[<a href="#B42-preprints-98444" class="html-bibr">42</a>]</td> <td align="left" valign="top" class="html-align-left">2010</td> <td align="left" valign="top" class="html-align-left">DICOM</td> <td align="left" valign="top" class="html-align-left">20</td> <td align="left" valign="top" class="html-align-left">74 to 260</td> <td align="left" valign="top" class="html-align-left">512x512</td> </tr> <tr> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">LiTS17&nbsp;[<a href="#B44-preprints-98444" class="html-bibr">44</a>]</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">2017</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">RAW</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">200</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">42 to 1024</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">Variable</td> </tr> </tbody> </table> </div> </section><section class="html-fn_group"><table><tr id> <td></td> <td><div class="html-p"> <b>Disclaimer/Publisher’s Note:</b> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</div></td> </tr></table></section> <section id="html-copyright"><br>© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href="http://creativecommons.org/licenses/by/4.0/" target="_blank">http://creativecommons.org/licenses/by/4.0/</a>).</section> </div><div class="pt-lg" data-v-da90062a><span class="m-text text-body font-semibold" data-v-da90062a><!--[-->Copyright: <!--]--></span><span class="m-text text-body" data-v-da90062a><!--[-->This open access article is published under a <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" data-v-da90062a><span class="hover:underline cursor-pointer text-color-link-bold" data-v-da90062a>Creative Commons CC BY 4.0 license</span></a>, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.<!--]--></span></div></div><div class="pt-md"><div class="swiper"><!--[--><!--]--><div class="swiper-wrapper"><!--[--><!--]--><!--[--><div class="swiper-slide" data-swiper-slide-index="0"><!--[--><a href="https://www.mdpi.com/authors/english?utm_source=preprintsweb&amp;utm_medium=banner&amp;utm_campaign=AS_High-quality" target="_blank"><img src="https://www.preprints.org/media/cache/resolve/webp/upload/banner/2024-10-30/c8ecd3b8b0ebf1abcd96d37f5ee4a609.jpeg" class="w-full h-auto"></a><!--]--><!----></div><div class="swiper-slide" data-swiper-slide-index="1"><!--[--><a href="https://www.preprints.org/activity/award/announcement?utm_source=ArticlePage&amp;utm_medium=Banner&amp;utm_campaign=award" target="_blank"><img src="https://www.preprints.org/media/cache/resolve/webp/upload/banner/2024-10-30/58bbc3b8f7c90f2eab7ce32d00691421.jpeg" class="w-full h-auto"></a><!--]--><!----></div><!--]--><!--[--><!--]--></div><!----><!----><div class="swiper-pagination"></div><!--[--><!--]--></div></div><div class="pt-md lg:pt-lg" data-v-694159ae><div class="m-accordion mx-auto flex w-full flex-col gap-3 rounded-2xl bg-white" data-v-694159ae><!--[--><div class="m-accordion__item border-b border-color-default" data-v-694159ae><button id="accordion-button-expand-0" aria-controls="accordion-panel-0" class="relative mb-xs flex w-full cursor-pointer py-md text-sm outline-offset-2" aria-expanded="true"><!--[--><span class="text-sm">Recommended Articles</span><!--]--><div class="absolute right-0 top-1/2 -translate-y-1/2"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="keyboard_arrow_down" class="origin-center transition duration-150 rotate-180" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--></div></button><div id="accordion-panel-0" aria-labelledby="accordion-button-expand-0" role="region" class="m-accordion__body overflow-hidden transition-height duration-150"><div class="break-words pb-md"><!--[--><div class="w-full" data-v-694159ae><!--[--><div class="mb-md"><a href="https://doi.org/10.20944/preprints202308.0888.v1" target="_blank"><div class="m-rich-text text-body font-semibold">Optimizing Inference Distribution for Efficient Kidney Tumor Segmentation using a UNet-PWP Deep Learning Model on CT Scan Images</div></a><div class="pt-xs flex"><div class="flex items-center pr-sm flex-wrap"><p class="m-text text-sm"><!--[-->Patike Kiran Rao<!--]--></p><p class="m-text text-xs pl-xs"><!--[-->et al.<!--]--></p><p class="m-text text-xs pl-xs italic"><!--[-->,<!--]--></p><p class="m-text text-sm ml-xs font-semibold"><!--[-->2023<!--]--></p></div></div></div><div class="mb-md"><a href="https://doi.org/10.20944/preprints202401.0042.v1" target="_blank"><div class="m-rich-text text-body font-semibold">Advanced Medical Image Segmentation Enhancement: A Particle Swarm Optimization-Based Histogram Equalization Approach</div></a><div class="pt-xs flex"><div class="flex items-center pr-sm flex-wrap"><p class="m-text text-sm"><!--[-->Shoffan Saifullah<!--]--></p><p class="m-text text-xs pl-xs"><!--[-->et al.<!--]--></p><p class="m-text text-xs pl-xs italic"><!--[-->,<!--]--></p><p class="m-text text-sm ml-xs font-semibold"><!--[-->2024<!--]--></p></div></div></div><div class="mb-md"><a href="https://doi.org/10.20944/preprints202011.0023.v1" target="_blank"><div class="m-rich-text text-body font-semibold">Investigation of Loss Functions for Improving Deep Segmentation of Abdominal Organs from MRI</div></a><div class="pt-xs flex"><div class="flex items-center pr-sm flex-wrap"><p class="m-text text-sm"><!--[-->Pedro Furtado<!--]--></p><!----><p class="m-text text-xs pl-xs italic"><!--[-->,<!--]--></p><p class="m-text text-sm ml-xs font-semibold"><!--[-->2020<!--]--></p></div></div></div><!--]--><!----></div><!--]--></div></div></div><!--]--></div></div></div></div><!--]--></div></div></div><!----></div><!--]--><!--]--><span></span></div><div class="border-t-[.0625rem] border-solid border-color-default"><div class="m-container mx-auto w-full flex-col-reverse py-section-mobile py-2xl lg:py-10xl bg-white" style="--container-ideal-width:92.5vw;"><!--[--><div class="h-[auto]"><div class="flex flex-wrap"><div class="w-[100%] lg:w-[25%] xl:w-[25%] lg:px-[.9375rem] pb-lg"><div class="w-36 h-auto mb-lg cursor-pointer"><a href="/"><img src="/_nuxt/preprints.C_f_-Qxj.png" alt="Prerpints.org logo" class="w-36 h-auto"></a></div><p class="m-text text-sm mb-lg"><!--[-->Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.<!--]--></p><div class="flex lg:items-center lg:block pb-0 items-start justify-between"><div class="flex lg:mb-lg"><!--[--><a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"><img src="/img/footerImg/facebook.svg" alt="facebook logo" class="w-6 h-6 mr-md"></a><a href="https://twitter.com/Preprints_org" target="_blank" rel="noopener noreferrer"><img src="/img/footerImg/twitter.svg" alt="twitter logo" class="w-6 h-6 mr-md"></a><a href="https://www.linkedin.com/showcase/preprints" target="_blank" rel="noopener noreferrer"><img src="/img/footerImg/linkedin.svg" alt="linkedin logo" class="w-6 h-6 mr-md"></a><!--]--><div class="w-40"><!--[--><!--[--><div class="relative" data-headlessui-state><!--[--><button id="headlessui-popover-button-mui-70063" type="button" aria-expanded="false" data-headlessui-state><!--[--><img src="data:image/svg+xml,%3csvg%20width=&#39;22&#39;%20height=&#39;19&#39;%20viewBox=&#39;0%200%2022%2019&#39;%20fill=&#39;none&#39;%20xmlns=&#39;http://www.w3.org/2000/svg&#39;%3e%3cg%20id=&#39;Group&#39;%3e%3cpath%20id=&#39;Vector&#39;%20d=&#39;M15.0641%206.7834C13.1271%206.8846%2011.4427%207.4718%2010.0751%208.79844C8.69347%2010.1388%208.06283%2011.7812%208.23515%2013.8172C7.47803%2013.7234%206.78843%2013.6202%206.09491%2013.5618C5.85539%2013.5416%205.57115%2013.5703%205.36827%2013.6848C4.69483%2014.0648%204.04931%2014.4938%203.28403%2014.9722C3.42443%2014.3372%203.51531%2013.781%203.67619%2013.2462C3.79451%2012.8531%203.73971%2012.6344%203.37755%2012.3782C1.05227%2010.7365%200.0721108%208.27972%200.805631%205.7502C1.48427%203.4102%203.15083%201.99108%205.41531%201.25132C8.50619%200.241717%2011.9797%201.27156%2013.8591%203.72548C14.5379%204.61188%2014.9541%205.60676%2015.0641%206.7834ZM6.14915%205.99524C6.16699%205.5326%205.76611%205.1158%205.28995%205.10188C4.80243%205.08756%204.40147%205.46012%204.38723%205.94052C4.37283%206.4274%204.74523%206.81756%205.23627%206.83004C5.72307%206.84236%206.13115%206.46932%206.14915%205.99524ZM10.8004%205.10156C10.3225%205.11036%209.91867%205.5174%209.92715%205.98188C9.93587%206.46332%2010.332%206.83996%2010.8235%206.83404C11.3162%206.82812%2011.6899%206.44748%2011.6852%205.95588C11.6811%205.47332%2011.2868%205.09268%2010.8004%205.10156Z&#39;%20fill=&#39;white&#39;/%3e%3cpath%20id=&#39;Vector_2&#39;%20d=&#39;M19.4168%2018.8594C18.8034%2018.5863%2018.2408%2018.1765%2017.6417%2018.114C17.045%2018.0516%2016.4177%2018.3959%2015.7934%2018.4597C13.8917%2018.6543%2012.188%2018.1243%2010.7832%2016.8252C8.11148%2014.3539%208.49324%2010.5648%2011.5844%208.53972C14.3316%206.73988%2018.3607%207.33988%2020.2976%209.83724C21.988%2012.0164%2021.7893%2014.9092%2019.7258%2016.74C19.1287%2017.2698%2018.9139%2017.7058%2019.297%2018.4043C19.3676%2018.5332%2019.3757%2018.6965%2019.4168%2018.8594ZM12.4348%2012.0995C12.8253%2012.0999%2013.1468%2011.7943%2013.1616%2011.4086C13.1772%2011.0003%2012.8488%2010.6578%2012.44%2010.6561C12.0351%2010.6543%2011.696%2011.0016%2011.7101%2011.4038C11.7234%2011.7881%2012.0472%2012.099%2012.4348%2012.0995ZM16.9357%2010.6577C16.5569%2010.6551%2016.2349%2010.9652%2016.2195%2011.348C16.2031%2011.7574%2016.5212%2012.0936%2016.9264%2012.0946C17.3182%2012.096%2017.6279%2011.7996%2017.642%2011.4096C17.6572%2010.9993%2017.3389%2010.6605%2016.9357%2010.6577Z&#39;%20fill=&#39;white&#39;/%3e%3c/g%3e%3c/svg%3e" class="w-6 h-6 bg-black rounded cursor-pointer" alt="weChat logo"><!--]--></button><!----><!--]--><!----></div><!--]--><div hidden style="position:fixed;top:1;left:1;width:1;height:0;padding:0;margin:-1;overflow:hidden;clip:rect(0, 0, 0, 0);white-space:nowrap;border-width:0;display:none;"></div><!--]--></div></div><div class="flex items-center flex-col w-min lg:gap-y-lg gap-y-md"><a class="inline-block" href="mailto:info@preprints.org"><button class="m-button m-button--md m-button--secondary rounded" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><!----><!--]--><!--[-->Contact Us<!--]--><!----><!----><!--[--><!----><!--]--></span></button></a><button class="m-button m-button--md m-button--secondary rounded !w-full" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="rss_feed" weight="400" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--><!--[-->RSS<!--]--><!----><!----><!--[--><!----><!--]--></span></button></div></div></div><div class="w-[100%] lg:w-[25%] xl:w-[25%] px-md pt-sm border-t border-color-black sm:pt-0 sm:border-0 sm:border-white"><div class="flex items-center justify-between lg:block"><h5 class="m-heading text-inherit m-h5 font-semibold pt-md lg:pt-0 pb-lg"><!--[--> MDPI Initiatives <!--]--></h5><div class="block lg:hidden"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="expand_more" weight="400" style="" width="24" height="24" viewBox="0 0 16 16"></svg></div></div><ul class="hidden lg:block"><!--[--><li class="pb-lg"><a target="_blank" href="https://sciprofiles.com/" class="flex items-center"><p class="m-text text-sm"><!--[-->SciProfiles<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://sciforum.net/" class="flex items-center"><p class="m-text text-sm"><!--[-->Sciforum<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://encyclopedia.pub/" class="flex items-center"><p class="m-text text-sm"><!--[-->Encyclopedia<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://www.mdpi.com/books" class="flex items-center"><p class="m-text text-sm"><!--[-->MDPI Books<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://www.scilit.net/" class="flex items-center"><p class="m-text text-sm"><!--[-->Scilit<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://www.mdpi.com/about/proceedings" class="flex items-center"><p class="m-text text-sm"><!--[-->Proceedings<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://jams.pub/" class="flex items-center"><p class="m-text text-sm"><!--[-->JAMS<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><!--]--></ul></div><div class="w-[100%] lg:w-[25%] xl:w-[25%] px-[.9375rem] pt-[.625rem] border-t border-[#000] sm:pt-[.625rem] sm:border-t sm:border-[#000] lg:pt-0 lg:border-0 lg:border-white"><div class="flex items-center justify-between lg:block"><h5 class="m-heading text-inherit m-h5 font-semibold pt-md lg:pt-0 pb-lg"><!--[--> Important Links <!--]--></h5><div class="block lg:hidden"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="expand_more" weight="400" class="block lg:hidden" style="" width="24" height="24" viewBox="0 0 16 16"></svg></div></div><ul class="cursor-pointer hidden lg:block"><!--[--><li class="pb-lg"><a href="/advisory-board" class=""><p class="m-text text-sm"><!--[-->Advisory Board<!--]--></p></a></li><li class="pb-lg"><a href="/activity/award/announcement" class=""><p class="m-text text-sm"><!--[-->Award<!--]--></p></a></li><li class="pb-lg"><a href="/collection" class=""><p class="m-text text-sm"><!--[-->Collections<!--]--></p></a></li><li class="pb-lg"><a href="/friendly-journals" class=""><p class="m-text text-sm"><!--[-->Friendly Journals<!--]--></p></a></li><li class="pb-lg"><a href="/about?scrollTo=works" class=""><p class="m-text text-sm"><!--[-->How It Works<!--]--></p></a></li><li class="pb-lg"><a href="/topics" class=""><p class="m-text text-sm"><!--[-->MDPI Topics<!--]--></p></a></li><li class="pb-lg"><a href="/statistics" class=""><p class="m-text text-sm"><!--[-->Statistics<!--]--></p></a></li><!--]--></ul></div><div class="w-[100%] lg:w-[25%] xl:w-[25%] px-[.9375rem] pt-[.625rem] border-t border-[#000] sm:pt-[.625rem] sm:border-t sm:border-[#000] lg:pt-0 lg:border-0 lg:border-white"><div class="flex items-center justify-between lg:block"><h5 class="m-heading text-inherit m-h5 font-semibold pt-md lg:pt-0 pb-lg"><!--[--> Subscribe <!--]--></h5><div class="block lg:hidden"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="expand_more" weight="400" class="block lg:hidden" style="" width="24" height="24" viewBox="0 0 16 16"></svg></div></div><div class="hidden lg:block"><div class="pb-lg"><p class="m-text text-sm"><!--[-->Choose an area of interest and we will send you notifications of new preprints at your preferred frequency.<!--]--></p></div><a href="/user/notification/settings?scrollTo=subscribe" class=""><button class="m-button m-button--md m-button--tonal rounded !text-color-white !bg-black mr-5" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><!----><!--]--><!--[-->Subscribe<!--]--><!----><!----><!--[--><!----><!--]--></span></button></a></div></div></div></div><!--]--></div><div class="bg-black"><div class="m-container mx-auto w-full flex-col-reverse py-section-mobile" style="--container-ideal-width:92.5vw;"><!--[--><div class="text-color-white"><div class="flex justify-between items-center flex-wrap cursor-pointer"><p class="m-text text-sm py-lg hidden lg:block"><!--[-->© 2024 MDPI (Basel, Switzerland) unless otherwise stated<!--]--></p><div class="lg:flex items-center py-xl"><div class="flex items-center pr-xl pb-md lg:pb-0"><p class="m-text text-sm pr-xs"><!--[-->Disclaimer<!--]--></p><span></span></div><p class="m-text text-sm pr-xl pb-md lg:pb-0"><!--[--><a href="/terms-of-use?scrollTo=term-use" class="">Terms of Use</a><!--]--></p><p class="m-text text-sm"><!--[--><a href="/terms-of-use?scrollTo=privacy-policy" class="">Privacy Policy</a><!--]--></p></div><p class="m-text text-sm py-lg block lg:hidden"><!--[-->© 2024 MDPI (Basel, Switzerland) unless otherwise stated<!--]--></p></div></div><!--]--></div></div><!----></div></div><!----><!--teleport start--><!--teleport end--><!--]--></div><div id="teleports"></div><script type="application/json" id="__NUXT_DATA__" data-ssr="true">[["ShallowReactive",1],{"data":2,"state":394,"once":403,"_errors":404,"serverRendered":6,"path":406,"pinia":407},["ShallowReactive",3],{"blog-config":4,"strapi-config":39,"mgOlEjP40X":40,"Ya7hZzqdE7":45,"AsqQqtz0uo":123,"JoG0wWOyMK":188,"omFsPcywFl":199,"2FDnLNqt81":391},{"postsPerPage":5,"isInfinite":6,"cacheTime":7,"categories":8},9,true,1,[9,14,19,24,29,34],{"id":10,"title":11,"cacheKey":12,"href":13},288,"Learn about Preprints","288-posts","/blog/category/learn-about-preprints",{"id":15,"title":16,"cacheKey":17,"href":18},1383,"Platform Features","1383-posts","/blog/category/platform-features",{"id":20,"title":21,"cacheKey":22,"href":23},22,"Community Content","22-posts","/blog/category/community-content",{"id":25,"title":26,"cacheKey":27,"href":28},1351,"Featured Preprints","1351-posts","/blog/category/featured-preprints",{"id":30,"title":31,"cacheKey":32,"href":33},1380,"Preprints and Society","1380-posts","/blog/category/preprints-and-society",{"id":35,"title":36,"cacheKey":37,"href":38},1381,"News and Announcements","1381-posts","/blog/category/news-and-announcements",{"cacheTime":7},{"code":41,"msg":42,"data":43},0,"success",{"url":44},"https://www.preprints.org/rss",{"code":41,"msg":42,"data":46},[47,54,61,68,75,82,88,95,102,109,116],{"id":7,"name":48,"name_system":49,"parent_id":50,"image_banner":51,"description":52,"converted_name_system":53},"Arts and Humanities","arts_and_humanities",null,"https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/bb621e164c1f8a2a8bfd78d6ac510e15.jpg","Immerse yourself in a world of creativity and critical thinking with our preprints in arts and humanities. Uncover the depths of human expression, history, and thought across disciplines like archaeology, literature, and philosophy. Explore diverse perspectives that enrich our understanding of cultural heritage and the human experience.","arts-and-humanities",{"id":55,"name":56,"name_system":57,"parent_id":50,"image_banner":58,"description":59,"converted_name_system":60},16,"Biology and Life Sciences","biology_and_life_sciences","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/8d795777f5834c04ac4b98f9c94c4c6b.jpg","Journey into the intricate world of living organisms with our preprints. From molecular mechanisms to ecosystem interactions, discover the wonders of life and the natural world through cutting-edge research. Dive into the forefront of biological discovery and explore the complexities of our living world.","biology-and-life-sciences",{"id":62,"name":63,"name_system":64,"parent_id":50,"image_banner":65,"description":66,"converted_name_system":67},41,"Business, Economics and Management","business_economics_and_management","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/ab197ef385773a30f4650e40ae8f03d5.jpg","Explore the dynamic world of business operations, economic theories, and organizational leadership with our preprints. Uncover insights in business, economics, and management that shape global commerce and innovation. Stay informed on the latest trends and research driving the landscape of business and economics.","business-economics-and-management",{"id":69,"name":70,"name_system":71,"parent_id":50,"image_banner":72,"description":73,"converted_name_system":74},50,"Chemistry and Materials Science","chemistry_and_materials_science","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/cc2a7d5d84540df918315b4feb38028a.jpg","Unravel the mysteries of matter and its transformations with our preprints. From atomic structures to novel material synthesis, stay informed on the latest research in this fascinating field. Explore the diverse properties and applications of chemistry and materials science that shape our world.","chemistry-and-materials-science",{"id":76,"name":77,"name_system":78,"parent_id":50,"image_banner":79,"description":80,"converted_name_system":81},71,"Computer Science and Mathematics","computer_science_and_mathematics","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/5b0a41a25a67d1112cb8833b497bf7be.jpg","Embark on a journey through the foundational principles of algorithms, artificial intelligence, and mathematical theories with our preprints. Explore cutting-edge research in computational mathematics and data analysis that drives innovation in the digital age. Dive into a world of innovation and discovery in this exciting field.","computer-science-and-mathematics",{"id":83,"name":84,"name_system":85,"parent_id":50,"image_banner":86,"description":87,"converted_name_system":85},94,"Engineering","engineering","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/908d2aac5be9f3be128d20cc98154c17.jpg","Explore the diverse realms of engineering with our preprints, where innovation meets expertise across various disciplines. From industrial processes to energy technologies, delve into the forefront of engineering advancements. Stay updated on the latest research shaping the dynamic and ever-evolving field of engineering.",{"id":89,"name":90,"name_system":91,"parent_id":50,"image_banner":92,"description":93,"converted_name_system":94},113,"Environmental and Earth Sciences","environmental_and_earth_sciences","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/427574c3272a512b9412d12b3bfb3f51.jpg","Investigate the dynamic processes shaping our planet with our preprints. From atmospheric phenomena to oceanography, explore the interconnected systems of our planet and the innovative solutions shaping its future. Stay informed on research that impacts our environment and sustainability.","environmental-and-earth-sciences",{"id":96,"name":97,"name_system":98,"parent_id":50,"image_banner":99,"description":100,"converted_name_system":101},130,"Medicine and Pharmacology","medicine_and_pharmacology","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/98c86d1fdf40abfda51ca959f75f3499.jpg","Embark on a journey through the vast world of medicine and pharmacology with our preprints. Explore breakthroughs in healthcare, from cardiology to neurology, which improve human health outcomes. Delve into the frontiers of medical research and pharmaceutical development that enhance quality of life.","medicine-and-pharmacology",{"id":103,"name":104,"name_system":105,"parent_id":50,"image_banner":106,"description":107,"converted_name_system":108},166,"Physical Sciences","physical_sciences","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/c2d6e400b105b8c3d32ec59f26ab969d.jpg","Explore the fundamental laws governing matter and energy in the universe with our preprints. From quantum mechanics to cosmology, stay abreast of research that advances our understanding of the natural world. Dive into a world of scientific discovery that pushes the boundaries of knowledge.","physical-sciences",{"id":110,"name":111,"name_system":112,"parent_id":50,"image_banner":113,"description":114,"converted_name_system":115},185,"Public Health and Healthcare","public_health_and_healthcare","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/ef7c6de55fa117659c3b6090edc7c4ff.jpg","Examine critical issues in public health policy, epidemiology, and healthcare systems with our preprints. Stay updated on research into health disparities, infectious disease control, and healthcare management, which informs public health interventions. Explore the latest trends in healthcare that impact population well-being and equity.","public-health-and-healthcare",{"id":117,"name":118,"name_system":119,"parent_id":50,"image_banner":120,"description":121,"converted_name_system":122},193,"Social Sciences","social_sciences","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-09-12/910c960e3a6808861523728f0f26b2df.png","Gain insights into human behavior, societies, and cultures with our preprints. Explore disciplines like psychology, sociology, and political science, which shape our world and inform public policy. Stay engaged with research that explores social issues, cultural dynamics, and economic systems, enriching our understanding of human interactions.","social-sciences",{"code":41,"msg":42,"data":124},{"temp_id":125,"version":7,"id":126,"hash_key":127,"doi":128,"article_abstract":129,"article_title":130,"keywords":131,"is_registering_doi":132,"mdpi_topic":50,"preprints_collections":133,"subject":134,"top_subject":137,"article_type":138,"submitted_at":140,"published_at":141,"last_edited_at":50,"authors":142,"ethical_approval":132,"ethical_approval_number":50,"ethical_approval_body":50,"ethical_approval_for_publication":132,"article_supplementary":50,"final_file":165,"graphic_abstract":169,"statistics":174,"is_peer_reviewed":6,"peer_reviewed_article_url":177,"almetric":178,"preserved_by_portico":6,"ms_xml":180,"versions":182,"citation":184,"peer_reviewed_citation":185,"version_changes":186,"updating_alert_registered":132,"preprints_process_url":50,"comments_count":41,"latest_version":7,"author_notes":187,"withdrawed_at":50,"is_withdrwan":132},98444,"202402.0464","2e2fbf3a5f42007e47ed45e1d6b0ce24","10.20944/preprints202402.0464.v1","Oncology has emerged as a crucial field of study and treatment in the domain of medicine. Computed tomography has gained widespread adoption as a radiological modality for the identification and characterisation of pathologies, particularly in oncology, enabling precise identification of affected organs and tissues. However, achieving accurate liver segmentation in computed tomography scans remains a challenge due to the presence of artefacts and the varying densities of soft tissues and adjacent organs. This paper compares artificial intelligence algorithms and traditional medical image processing techniques to assist radiologists in liver segmentation on computed tomography scans, and evaluates their accuracy and efficiency. It is noteworthy that although studies have been conducted on liver segmentation in computed tomography scans, they often lack an intuitive and visual component that allows healthcare professionals to manipulate and observe the results obtained, thereby limiting interaction with the outcomes. From the literature review, challenges such as under-segmentation, over-segmentation, and poor boundary detection, as well as the selection of methods to improve the accuracy and efficiency of liver segmentation in computed tomography scanners, are highlighted as needs to be addressed. The importance of future research in understanding the essential features for the study, generating more datasets, improving segmentation efficiency, and developing lightweight artificial intelligence frameworks for liver segmentation is outlined.","Algorithms for Liver Segmentation in Computed Tomography Scans: A Historical Perspective","Artificial intelligence; computed tomography; hepatic pathologies; liver segmentation",false,[],{"id":135,"name":136},98,"Bioengineering",{"id":83,"name":84},{"id":55,"name":139},"Review","2024-02-07 13:10:10","2024-02-08 07:33:32",[143,150,157],{"id":144,"name":145,"email":146,"is_corresponding":132,"orcid_link":50,"author_mark":147,"sp_link":148,"avatar":149},464128,"Stephanie Batista Niño","a2019114900@isec.pt","","https://sciprofiles.com/profile/3401568","/img/user_image/3401568/Stephanie_Batista_Niño.jpeg",{"id":151,"name":152,"email":153,"is_corresponding":132,"orcid_link":154,"author_mark":147,"sp_link":155,"avatar":156},464129,"Jorge Bernardino","jorge@isec.pt","https://orcid.org/0000-0001-9660-2011","https://sciprofiles.com/profile/274546","/img/user_image/274546/Jorge_Bernardino.png",{"id":158,"name":159,"email":160,"is_corresponding":6,"orcid_link":161,"author_mark":162,"sp_link":163,"avatar":164},464130,"Inês Domingues","inesdomingues@gmail.com","https://orcid.org/0000-0002-2334-7280","*","https://sciprofiles.com/profile/402033","/img/user_image/402033/Inês_Domingues.jpg",{"filename":166,"url":167,"filesize":168},"final_file.pdf","/frontend/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/download_pub",630658,[170],{"filename":171,"url":172,"filesize":173},"png","/frontend/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/download_pub/figure/png",525648,{"viewed":175,"downloaded":176},"44","116","https://www.mdpi.com/1424-8220/24/6/1752",{"score":41,"detail_url":179},"https://preprints.altmetric.com/details/doi/10.20944/preprints202402.0464.v1",{"html_content":181},"\u003Cscript type=\"text/x-mathjax-config\">\n MathJax.Hub.Config({\n menuSettings: {\n CHTMLpreview: false\n },\n \"CHTML-preview\":{\n disabled: true\n },\n \"HTML-CSS\": {\n scale: 90,\n availableFonts: [],\n preferredFont: null,\n preferredFonts: null,\n webFont:\"Gyre-Pagella\",\n imageFont:'TeX',\n undefinedFamily:\"'Arial Unicode MS',serif\",\n linebreaks: { automatic: false }\n },\n \"TeX\": {\n extensions: [\"noErrors.js\"],\n noErrors: {\n inlineDelimiters: [\"\",\"\"],\n multiLine: true,\n style: {\n \"font-size\": \"90%\",\n \"text-align\": \"left\",\n \"color\": \"black\",\n \"padding\": \"1px 3px\",\n \"border\": \"1px solid\"\n }\n }\n }\n });\n \u003C/script>\u003Cscript type=\"text/javascript\" async=\"\" src=\"https://www.mdpi.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML\">\u003C/script>\n \u003Csection id=\"sec1-preprints-98444\" type=\"intro\">\u003Ch2 data-nested=\"1\" id=\"preprints-h2-1\"> 1. Introduction\u003C/h2>\n\u003Cdiv class=\"html-p\">As one of the most important organs in the digestive system, the liver performs critical functions such as breaking down nutrients, producing bile and eliminating toxic substances. However, liver-related diseases, particularly oncological diseases, pose health risks, and liver cancer is a leading cause of cancer-related mortality worldwide [\u003Ca href=\"#B1-preprints-98444\" class=\"html-bibr\">1\u003C/a>,\u003Ca href=\"#B2-preprints-98444\" class=\"html-bibr\">2\u003C/a>]. Computed tomography (CT) has become an integral part of the diagnosis, treatment planning and monitoring the progress of oncological diseases [\u003Ca href=\"#B3-preprints-98444\" class=\"html-bibr\">3\u003C/a>,\u003Ca href=\"#B4-preprints-98444\" class=\"html-bibr\">4\u003C/a>], providing detailed cross-sectional images for accurate visualisation of internal structures, including liver tumours [\u003Ca href=\"#B5-preprints-98444\" class=\"html-bibr\">5\u003C/a>,\u003Ca href=\"#B6-preprints-98444\" class=\"html-bibr\">6\u003C/a>].\u003C/div>\n\u003Cdiv class=\"html-p\">With the advancement of technology and artificial intelligence (AI) in medicine, there is a growing need to optimise the identification of oncological diseases [\u003Ca href=\"#B7-preprints-98444\" class=\"html-bibr\">7\u003C/a>]. Medical image segmentation is emerging as a fundamental step in the pipeline [\u003Ca href=\"#B8-preprints-98444\" class=\"html-bibr\">8\u003C/a>,\u003Ca href=\"#B9-preprints-98444\" class=\"html-bibr\">9\u003C/a>,\u003Ca href=\"#B10-preprints-98444\" class=\"html-bibr\">10\u003C/a>,\u003Ca href=\"#B11-preprints-98444\" class=\"html-bibr\">11\u003C/a>]. Liver segmentation in CT scans has emerged as a critical area, requiring accurate identification and delimitation of the liver region for treatment planning and progress monitoring, as well as for early detection of liver lesions and metastases to other organs [\u003Ca href=\"#B12-preprints-98444\" class=\"html-bibr\">12\u003C/a>,\u003Ca href=\"#B13-preprints-98444\" class=\"html-bibr\">13\u003C/a>,\u003Ca href=\"#B14-preprints-98444\" class=\"html-bibr\">14\u003C/a>]. However, accurate liver segmentation on CT scans is challenging due to factors such as artefacts, varying soft tissue densities, and the complexity of adjacent organ proximity [\u003Ca href=\"#B15-preprints-98444\" class=\"html-bibr\">15\u003C/a>,\u003Ca href=\"#B16-preprints-98444\" class=\"html-bibr\">16\u003C/a>].\u003C/div>\n\u003Cdiv class=\"html-p\">The aim of this paper is to provide an overview of the state of the art in the application of AI, as well as traditional methods and techniques for liver segmentation in CT scans, to enable an understanding of which factors most influence the performance of the models and methods used by the selected studies and lead them to perform differently for the same objective.\u003C/div>\n\u003Cdiv class=\"html-p\">Some of the aspects that will be compared include datasets considerations, algorithm used, robustness, performance, and evaluation. Specifically, we aim to answer the following research questions (RQ):\u003C/div>\n\u003Cdiv class=\"html-p\">\u003Cul class=\"html-bullet\">\n\u003Cli>\u003Cdiv class=\"html-p\">\n\u003Cb>RQ1\u003C/b>—What are the challenges and limitations associated with accurate liver segmentation in CT scans?\u003C/div>\u003C/li>\n\u003Cli>\u003Cdiv class=\"html-p\">\n\u003Cb>RQ2\u003C/b> — How does the choice of the method impact the accuracy and efficiency of liver segmentation in CT scans?\u003C/div>\u003C/li>\n\u003Cli>\u003Cdiv class=\"html-p\">\n\u003Cb>RQ3\u003C/b> — What are the evaluation metrics commonly used to assess the performance of AI models and traditional methods for liver segmentation in CT scans?\u003C/div>\u003C/li>\n\u003C/ul>\u003C/div>\n\u003Cdiv class=\"html-p\">A systematic review of the literature was conducted to address these research questions. Google Scholar was used for document retrieval, and the most representative documents from each year were selected. It is worth noting that only few studies were found that provided an intuitive and visual approach for healthcare professionals to manipulate and interpret the segmentation results.\u003C/div>\n\u003Cdiv class=\"html-p\">This paper reviews studies on liver segmentation from CT scans, organised according to the methods used. The papers selection methodology is detailed in \u003Ca href=\"#sec2-preprints-98444\" class=\"html-sec\">Section 2\u003C/a>, followed by a categorisation of AI models and medical image processing methods in \u003Ca href=\"#sec3-preprints-98444\" class=\"html-sec\">Section 3\u003C/a>. \u003Ca href=\"#sec4-preprints-98444\" class=\"html-sec\">Section 4\u003C/a> summarises the main findings, while \u003Ca href=\"#sec5-preprints-98444\" class=\"html-sec\">Section 5\u003C/a> provides a discussion of the results of the methods used. The paper concludes in \u003Ca href=\"#sec6-preprints-98444\" class=\"html-sec\">Section 6\u003C/a> with the conclusions and the directions for future work.\u003C/div>\u003C/section>\u003Csection id=\"sec2-preprints-98444\" type=\"methods\">\u003Ch2 data-nested=\"1\" id=\"preprints-h2-2\"> 2. Methodology\u003C/h2>\n\u003Cdiv class=\"html-p\">This section outlines the approach taken in conducting the literature review, which involved synthesising existing knowledge, critically assessing methodologies, and analysing results to compare the performance of each AI model and traditional methods for liver segmentation in CT scans.\u003C/div>\n\u003Csection id=\"sec2dot1-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.1. Data Sources\u003C/h4>\n\u003Cdiv class=\"html-p\">Google Scholar (\u003Ca href=\"https://scholar.google.com/\" target=\"_blank\">https://scholar.google.com/\u003C/a>) has developed over the years and has become a robust database for scientific literature [\u003Ca href=\"#B17-preprints-98444\" class=\"html-bibr\">17\u003C/a>]. It was therefore chosen as the research tool for the present study.\u003C/div>\u003C/section>\u003Csection id=\"sec2dot2-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.2. Search Queries\u003C/h4>\n\u003Cdiv class=\"html-p\">A search performed on January 30, 2024, with the query “intitle:Liver + intitle:segmentation + (intitle:CT OR + intitle:tomography)” returned approximately 980 results in just 0.04 seconds.\u003C/div>\u003C/section>\u003Csection id=\"sec2dot3-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.3. Inclusion Criteria\u003C/h4>\n\u003Cdiv class=\"html-p\">The most relevant papers from each year have been included in the this historical overview. In the context of Google Scholar, relevance refers to the degree to which the search results match the criteria or context of the query. The sorting algorithm takes into account several factors to determine the order of the results, including the presence of search terms and citation counts. In addition, the review papers were all included in the current state of the art, which amounted to a further five documents.\u003C/div>\u003C/section>\u003Csection id=\"sec2dot4-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.4. Exclusion Criteria\u003C/h4>\n\u003Cdiv class=\"html-p\">Papers that did not meet the criteria defined in \u003Ca href=\"#sec2dot3-preprints-98444\" class=\"html-sec\">Section 2.3\u003C/a> were not included. Papers written in languages other than English, Portuguese and Spanish were also excluded. As a final exclusion criterion, papers were excluded if the full document was not publicly available.\u003C/div>\u003C/section>\u003Csection id=\"sec2dot5-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.5. Characterisation of Selected Papers\u003C/h4>\n\u003Cdiv class=\"html-p\">The earliest paper dates from 1990, and thus, potentially total of 35 papers could be selected (the most relevant per year between the years 1990 and 2024). A distribution of the total number of papers retrieved per year is given in \u003Ca href=\"#preprints-98444-f001\" class=\"html-fig\">Figure 1\u003C/a>. As can be seen, some years do not have any papers, and thus a total of 30 documents were finally included in the historical review. It is also clear that interest in the topic has increased over the years.\u003C/div>\n\u003Cdiv class=\"html-p\">A Word Cloud constructed from the titles of the selected papers is shown on the left side of \u003Ca href=\"#preprints-98444-f002\" class=\"html-fig\">Figure 2\u003C/a>. On the right side is a pie chart showing the number of journals, conference proceedings and reports.\u003C/div>\n\u003Cdiv class=\"html-p\">\n\u003Ca href=\"#preprints-98444-f003\" class=\"html-fig\">Figure 3\u003C/a> provides the chosen papers by category of image segmentation techniques, according to the categories presented by Sakshi and Kukreja (2023).\u003C/div>\u003C/section>\u003C/section>\u003Csection id=\"sec3-preprints-98444\" type>\u003Ch2 data-nested=\"1\" id=\"preprints-h2-3\"> 3. Literature Review\u003C/h2>\n\u003Cdiv class=\"html-p\">Based on the selected papers, this literature review provides a historical overview of different methods and approaches for liver segmentation in medical imaging (\u003Ca href=\"#sec3dot1-preprints-98444\" class=\"html-sec\">Section 3.1\u003C/a>). It covers neuronal network-based segmentation, region-based segmentation, edge-based segmentation, threshold segmentation, semantic segmentation, and cluster-based segmentation techniques. The review includes a comparison of the results and discusses the potential applications and strengths of each method. \u003Ca href=\"#sec3dot2-preprints-98444\" class=\"html-sec\">Section 3.2\u003C/a> compares this review with other existing summaries of the state of the art.\u003C/div>\n\u003Csection id=\"sec3dot1-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 3.1. Historical Overview\u003C/h4>\n\u003Cdiv class=\"html-p\">As mentioned in \u003Ca href=\"#sec2-preprints-98444\" class=\"html-sec\">Section 2\u003C/a>, one paper per year between the years 1990 and 2024 was selected, summing to a total of 35 documents. For five years the search retrieved no results (see \u003Ca href=\"#preprints-98444-f001\" class=\"html-fig\">Figure 1\u003C/a>) resulting in 30 documents. Unfortunately, the full text of two works was not available. The remaining 28 documents are briefly described below.\u003C/div>\n\u003Cdiv class=\"html-p\">The oldest work found to tackle liver segmentation is the one of Bae \u003Cspan class=\"html-italic\">et al\u003C/span>. (1993) [\u003Ca href=\"#B19-preprints-98444\" class=\"html-bibr\">19\u003C/a>] present a similar sequential image-by-image segmentation technique using a reference image, where the liver occupies a significant portion of the abdomen cross-section. Image processing techniques, including grey-level thresholding, Gaussian smoothing, and connectivity tracking, are employed to extract the liver boundaries. The resulting boundaries are then smoothed using mathematical morphology techniques and B-splines. The study focuses on a living-donor liver transplant program, and the computer-determined boundaries are compared with those drawn by a radiologist, showing agreement within 10% of the calculated areas.\u003C/div>\n\u003Cdiv class=\"html-p\">Gao \u003Cspan class=\"html-italic\">et al\u003C/span>. (1996) [\u003Ca href=\"#B20-preprints-98444\" class=\"html-bibr\">20\u003C/a>] focus on facilitating 3D visualisation for surgical planning. The method employs global histogram analysis, morphologic operations, and a parametrically deformable contour model to delineate the liver boundary. Ten cases were used to validate the approach and promising results were found with minimal operator intervention required.\u003C/div>\n\u003Cdiv class=\"html-p\">Soler \u003Cspan class=\"html-italic\">et al\u003C/span>. (1997) [\u003Ca href=\"#B21-preprints-98444\" class=\"html-bibr\">21\u003C/a>] propose an automatic method for segmenting the portal vein, with the primary objective of achieving accurate segmentation with detailed branching and topological information, facilitating the localisation of liver tumours concerning Couinaud’s anatomical segmentation. The approach involves the initial detection of liver contours using 3D deformable models, followed by limiting the CT images to a liver mask containing hepatic tissue, vascular trees, and potential tumours. Classification of anatomical structures is performed using Gaussian curves fitted to the intensity histogram. The vascular trees and tumours are segmented through a hysteresis thresholding technique based on a distance map, considering the Gaussian parameters. An isotropic image is obtained through shape-based interpolation, and the portal vein is reconstructed using skeletonization, eliminating short branches and correcting errors. Results demonstrate that the algorithm automatically extracts the first three main bifurcations of the portal vein, comparable to manual segmentations.\u003C/div>\n\u003Cdiv class=\"html-p\">Yoo \u003Cspan class=\"html-italic\">et al\u003C/span>. (2000) [\u003Ca href=\"#B22-preprints-98444\" class=\"html-bibr\">22\u003C/a>] focus on the use of pixel ratios. By analysing the grey value range of a normal liver in CT images, a binary image is generated and then processed into four mesh images based on hole ratios to eliminate noise. A template representing the general outline of the liver is generated from the union image of these mesh images and subtracted from the binary image to accurately represent the organ boundary. The pixel ratio, which takes into account the distribution of organ pixels, was used to discriminate between the organ and noise, especially in cases where organs have similar grey value ranges. The proposed method reduced processing time compared to existing methods and was validated against manual segmentation by medical experts.\u003C/div>\n\u003Cdiv class=\"html-p\">Pan and Dawant (2001) [\u003Ca href=\"#B23-preprints-98444\" class=\"html-bibr\">23\u003C/a>] introduce a level-set approach, which addresses the challenge of defining appropriate speed functions for contour propagation. A speed function is proposed to stop the propagation of the contour at organ boundaries with weak edges by incorporating accumulative speed based on the path of the contour, enhancing the robustness of segmentation in noisy images. The method also leverages a-priori anatomical information to improve accuracy. Tested on five CT datasets, including cases with abnormal livers, the method demonstrates good agreement with manual delineations.\u003C/div>\n\u003Cdiv class=\"html-p\">Saitoh \u003Cspan class=\"html-italic\">et al\u003C/span>. (2002) [\u003Ca href=\"#B24-preprints-98444\" class=\"html-bibr\">24\u003C/a>] present an automated method for segmenting the liver region from the third phase of abdominal CT scans. The approach involves the extraction of blood vessels using a threshold, followed by morphological dilation to define an approximate liver region useful for removal of adjacent organs. The final liver region is then extracted using a threshold. The method is thus based on mathematical morphology and thresholding techniques, using the unique characteristics of blood vessels to functionally identify the liver region. The experiments performed on eight CT datasets show a good agreement between the automatically and manually detected liver regions.\u003C/div>\n\u003Cdiv class=\"html-p\">Masumoto \u003Cspan class=\"html-italic\">et al\u003C/span>. (2003) [\u003Ca href=\"#B25-preprints-98444\" class=\"html-bibr\">25\u003C/a>] use multislice CT images. The method uses two time-varying images acquired during the contrast medium circulation phase, highlighting the liver region through CT value changes. The proposed scheme involves generating a liver likelihood image by analysing CT value changes and subsequently extracting the liver region while considering the geometric characteristics of blood vessels and tumours. The evaluation, based on Receiver Operating Characteristic (ROC) analyses, demonstrates the superiority of the proposed method over other approaches, especially when using information from both phases.\u003C/div>\n\u003Cdiv class=\"html-p\">The scheme proposed by Lim \u003Cspan class=\"html-italic\">et al\u003C/span>. (2004) [\u003Ca href=\"#B26-preprints-98444\" class=\"html-bibr\">26\u003C/a>] uses a ROI approach to optimise computational efficiency. Morphological filters, incorporating a priori knowledge of liver location and intensity, detect the initial boundary. The algorithm then generates a gradient image using the weighted initial boundary and employs an immersion-based watershed algorithm for segmentation. Post-processing includes region merging based on statistical information to refine the segmentation.\u003C/div>\n\u003Cdiv class=\"html-p\">Liu \u003Cspan class=\"html-italic\">et al\u003C/span>. (2005) [\u003Ca href=\"#B27-preprints-98444\" class=\"html-bibr\">27\u003C/a>] present a Gradient Vector Flow (GVF) snake-based method for the semiautomatic segmentation of liver volumes in contrast-enhanced CT images. The algorithm follows a stepwise approach, starting with the computation of an initial edge map using the Canny edge detector and the estimation of a liver template. The edge map is then modified to suppress edges within the liver using the liver template, and a concavity removal algorithm is applied to refine the liver boundary. The GVF field is computed based on the modified edge map, and the initial liver contour is determined by considering the candidate initial contour and the computed GVF field. The final liver contour is obtained by deforming the initial contour using the snake. The method is evaluated on 20 contrast-enhanced volumetric liver images, and the results are compared with a radiologist’s manual delineation. The median difference ratio between the computer-generated results and manual results is 5.3%, with a range of 2.9% to 7.6%.\u003C/div>\n\u003Cdiv class=\"html-p\">A three-stage approach is used by Lim \u003Cspan class=\"html-italic\">et al\u003C/span>. (2006) [\u003Ca href=\"#B28-preprints-98444\" class=\"html-bibr\">28\u003C/a>]. The first stage involves image simplification as preprocessing, where a ROI is identified and thresholds are determined using multilevel thresholding. The second stage detects a search range using multiscale morphological filtering, region-labelling, and partition clustering. The third stage uses a contour-based segmentation approach with a labelling-based search algorithm to refine the initial liver boundary. The effectiveness of the algorithm is demonstrated through experimental results on contrast-enhanced abdominal CT images, with an average segmentation accuracy of 96%. Volume measurement is performed based on the segmented liver regions, with an average error rate of 3%.\u003C/div>\n\u003Cdiv class=\"html-p\">Beichel \u003Cspan class=\"html-italic\">et al\u003C/span>. (2007) [\u003Ca href=\"#B29-preprints-98444\" class=\"html-bibr\">29\u003C/a>] introduce a two-step process. First, an initial segmentation is generated using graph cuts, overcoming challenges such as the high variability in liver shape and grey-value appearance. Second, an interactive refinement step is introduced, allowing users to correct segmentation errors in a 3D environment. The refinement is facilitated by a hybrid desktop/virtual reality (VR) user interface. This approach is demonstrated on ten contrast-enhanced liver CT scans, demonstrating robustness to variations in patient data. The results also indicate improved segmentation quality with low interaction times.\u003C/div>\n\u003Cdiv class=\"html-p\">The authors Massoptier and Casciaro (2008) [\u003Ca href=\"#B30-preprints-98444\" class=\"html-bibr\">30\u003C/a>] present a fully automated method that uses a statistical model-based approach to distinguish liver tissue from other abdominal organs. An active contour technique using gradient vector flow is used for smoother segmentation of the liver surface segmentation. Automatic classification is performed to isolate hepatic lesions from liver parenchyma. The method is evaluated on 21 datasets and demonstrates robust and efficient liver and lesion segmentations close to the ground truth, with an average processing time of 11.4 seconds per 512x512-pixel slice. Volume overlap for liver surface segmentation is 94.2%, and accuracy is 3.7 mm. Tumour detection achieved a sensitivity and specificity of 82.6% and 87.5%, respectively.\u003C/div>\n\u003Cdiv class=\"html-p\">Heimann \u003Cspan class=\"html-italic\">et al\u003C/span>. (2009) [\u003Ca href=\"#B31-preprints-98444\" class=\"html-bibr\">31\u003C/a>] focus on the comparison and evaluation of different methods. The image data, acquired from different CT scanners, consisted of contrast-dye-enhanced scans showing pathological conditions like tumours and cysts. Radiology experts manually delineated the liver contours in transversal slices to create reference segmentations. A total of 40 images were divided into training and test sets for algorithm evaluation. Evaluation measures included volumetric overlap, relative volume difference, and surface distances. Fully automated and interactive segmentation methods were employed, with the former showing discernible performance differences. The best performing automated approaches used statistical shape models. Interactive methods achieved higher scores with more user interaction. A combined approach using majority voting from the best performing methods outperformed individual automated and interactive results.\u003C/div>\n\u003Cdiv class=\"html-p\">A three-step procedure is outlined by Akram \u003Cspan class=\"html-italic\">et al\u003C/span>. (2010) [\u003Ca href=\"#B32-preprints-98444\" class=\"html-bibr\">32\u003C/a>]. Firstly, a pre-processing step involves converting the image to greyscale and applying a 3x3 median filter to reduce noise. The second step focuses on liver segmentation, with a global threshold and morphological operations to obtain the final segmented liver region. Finally, post-processing steps include adaptive histogram equalisation, Gaussian smoothing, and grey-level transformations to enhance the segmented liver region. Experimental tests on 100 CT images demonstrate the accuracy of the proposed method by comparing automated segmentation results with manually segmented images by hepatologists and oncologists.\u003C/div>\n\u003Cdiv class=\"html-p\">The approach of Oliveira \u003Cspan class=\"html-italic\">et al\u003C/span>. (2011) [\u003Ca href=\"#B33-preprints-98444\" class=\"html-bibr\">33\u003C/a>] involves a sequence of four steps. First, the liver is segmented using level sets with parameters optimised by a genetic algorithm (GA). A Gaussian fit is employed to define the speed image for level set propagation. Secondly, vessels and nodules are segmented using a Gaussian mixture model, focusing on adipose nodules. A region-growing method with information from the Gaussian model is applied. Thirdly, vessels are classified into portal vein or hepatic vein using a vein tracking method. Finally, a geometric approach based on the identified veins is used to segment the liver into different Couinaud regions. The liver segmentation is based on the assumption that the liver parenchyma homogeneity and veins being mainly inside the liver. The parameters are estimated using a GA, and fitness evaluation involves comparing the segmentation with a reference using five disparity metrics. The proposed method shows good performance, ranking among the top methods in the MICCAI-SLiver07 conference evaluation.\u003C/div>\n\u003Cdiv class=\"html-p\">The method developed by Linguraru \u003Cspan class=\"html-italic\">et al\u003C/span>. (2012) [\u003Ca href=\"#B34-preprints-98444\" class=\"html-bibr\">34\u003C/a>] uses a robust parameterisation of 3-D surfaces for point-to-point correspondence overcoming challenges such as inconsistent contrast enhancement and imaging artefacts. A shape descriptor that is invariant, invariant under rotation and scale is used to compare local shape features of organs. An initial liver segmentation is refined using a shape-driven geodesic active contour, and hepatic tumours are detected and segmented using graph cuts and support vector machines (SVMs). The technique is evaluated on a dataset of 101 CT scans and shows improvements in liver segmentation accuracy, particularly in cases with large tumours and segmentation errors. Furthermore, the method identifies liver tumours with a low rate of false positives.\u003C/div>\n\u003Cdiv class=\"html-p\">Li \u003Cspan class=\"html-italic\">et al\u003C/span>. (2013) [\u003Ca href=\"#B35-preprints-98444\" class=\"html-bibr\">35\u003C/a>] discuss a method that makes use of fuzzy clustering and level set techniques. The fuzzy c-Mean (FCM) clustering algorithm is employed, which assigns pixels to different categories based on fuzzy memberships, considering both grey level intensity and spatial information. The FCM algorithm is iteratively optimised by minimising a cost function, allowing for the fuzziness of the resulting partition. To overcome the limitations of standard FCM, a spatial FCM algorithm is introduced that incorporates spatial information into fuzzy membership functions. The paper also introduces the level set method, a continuous deformable model for segmentation. A distance regularised level set evolution (DRLSE) is proposed to address reinitialisation issues and improve efficiency. The proposed method is evaluated using accuracy, sensitivity, and specificity metrics and demonstrates high performance in liver segmentation, especially in cases with unclear boundaries.\u003C/div>\n\u003Cdiv class=\"html-p\">Platero \u003Cspan class=\"html-italic\">et al\u003C/span>. (2014) [\u003Ca href=\"#B36-preprints-98444\" class=\"html-bibr\">36\u003C/a>] integrate a multi-atlas segmentation approach with graph cuts. The method includes several steps: (1) obtain an initial solution using low-level operations to define the ROI around the liver; (2) construct a fast probabilistic atlas for the ROI and compute a coarse binary segmentation using segmentation-affine registration; (3) rank the atlases based on segmentation similarity and propagating selected atlases to the target image; (4) improve segmentation accuracy through label fusion, minimising a discrete energy function; (5) evaluate the approach using a public liver segmentation database. The experimental results show high accuracy, competitive with human expert segmentation.\u003C/div>\n\u003Cdiv class=\"html-p\">Artificial Bee Colony (ABC) optimisation is used by Mostafa \u003Cspan class=\"html-italic\">et al\u003C/span>. (2015) [\u003Ca href=\"#B37-preprints-98444\" class=\"html-bibr\">37\u003C/a>]. Their algorithm use ABC to cluster different intensity values in abdominal CT images, followed by mathematical morphological operations to manipulate and separate the clusters. The process eliminates small and thin regions, such as flesh regions or organ edges. The extracted regions form an initial estimate of the liver area, which is further enhanced using a region-growing technique. The proposed approach demonstrates a segmentation accuracy of 93.73% on a test dataset of 38 CT images, taken in the pre-contrast phase.\u003C/div>\n\u003Cdiv class=\"html-p\">A 3D Deeply Supervised Network (DSN) is introduced by Dou \u003Cspan class=\"html-italic\">et al\u003C/span>. (2016) [\u003Ca href=\"#B38-preprints-98444\" class=\"html-bibr\">38\u003C/a>]. The proposed architecture consists of 11 layers, including 6 convolutional layers, 2 max-pooling layers, 2 deconvolution layers, and 1 softmax layer. The network is designed in a 3D format to effectively capture spatial information. The 3D DSN employs deep supervision via additional deconvolutional layers to counteract vanishing gradients, thus improving the training process. The learning objective is to minimise per-voxel-wise binary classification errors, with deep supervision injected at specific layers. The MICCAI-SLiver07 dataset is used for evaluation, demonstrating that the 3D DSN has a faster convergence and lower errors when compared to traditional 3D Convolutional Neuronal Networks (CNNs).\u003C/div>\n\u003Cdiv class=\"html-p\">Christ \u003Cspan class=\"html-italic\">et al\u003C/span>. (2017) [\u003Ca href=\"#B14-preprints-98444\" class=\"html-bibr\">14\u003C/a>] propose a Cascaded Fully CNN (CFCN) on CT slices that sequentially segments the liver and lesions. First, various preprocessing steps, including Hounsfield unit windowing and contrast enhancement are applied. Then, the cascaded approach involving two U-Net architectures is used for liver and lesion segmentation. Finally, 3D conditional random fields (CRF) are used to refine the segmentation results. Generalisation and scalability to different modalities and real-life datasets, including a diffusion-weighted Magnetic Resonance Imaging (MRI) dataset and a large multi-centre CT dataset, are shown.\u003C/div>\n\u003Cdiv class=\"html-p\">Hiraman (2018) [\u003Ca href=\"#B39-preprints-98444\" class=\"html-bibr\">39\u003C/a>] presents a slice alignment method that addresses the challenges through optimal threshold selection, skeletonization, and Enhanced Correlation Coefficient (ECC) alignment. Next, a CNN-based liver region of interest detection method is proposed to classify 2D slices for focused processing.\u003C/div>\n\u003Cdiv class=\"html-p\">The study presented by Wang \u003Cspan class=\"html-italic\">et al\u003C/span>. (2019) [\u003Ca href=\"#B40-preprints-98444\" class=\"html-bibr\">40\u003C/a>] investigates the application of a Generalised CNN for automated liver segmentation and biometry using cross-sectional data from abdominal CT and MRI scans. The retrospective study included a sample of 563 abdominal scans from 530 adults, covering different imaging modalities. The CNN was initially trained on 300 unenhanced multiecho 2D SPGR MRI sets and then subjected to transfer learning for generalisation across different imaging methods. The accuracy of the CNN was evaluated using internal and external validation datasets. The study also investigates the impact of training data size on segmentation accuracy and explores the feasibility of using automated liver segmentation for volumetry and hepatic PDFF quantification.\u003C/div>\n\u003Cdiv class=\"html-p\">Almotairi \u003Cspan class=\"html-italic\">et al\u003C/span>. (2020) [\u003Ca href=\"#B41-preprints-98444\" class=\"html-bibr\">41\u003C/a>] explore the application of the SegNet architecture. The proposed modified SegNet model uses the VGG-16 network as an encoder. Tests were performed on a standard dataset for liver CT scans (3D-IRCADb01 [\u003Ca href=\"#B42-preprints-98444\" class=\"html-bibr\">42\u003C/a>]) and achieved tumour accuracy of up to 99.9% in the training phase and 86% for tumour identification.\u003C/div>\n\u003Cdiv class=\"html-p\">Ayalew \u003Cspan class=\"html-italic\">et al\u003C/span>. (2021) [\u003Ca href=\"#B43-preprints-98444\" class=\"html-bibr\">43\u003C/a>] present a modified U-Net architecture and introduce a new class balancing method. To address the class imbalance between liver and tumour, a weighting factor is applied and slices without tumour are removed during data preparation. The U-Net based network architecture includes batch normalisation, dropout layers, and filter size reduction. Training involves tuning hyperparameters, such as learning rate and batch size. The datasets used are derived from the 3D-IRCADb01 [\u003Ca href=\"#B42-preprints-98444\" class=\"html-bibr\">42\u003C/a>] and LiTS [\u003Ca href=\"#B44-preprints-98444\" class=\"html-bibr\">44\u003C/a>] databases and the results achieve Dice Similarity Coefficient (DSC) of 0.96 and 0.74, respectively. The algorithm also introduces a novel approach for direct tumour segmentation from abdominal CT scan images, with comparable performance to existing two-step methods.\u003C/div>\n\u003Cdiv class=\"html-p\">The study of Scicluna (2022) [\u003Ca href=\"#B45-preprints-98444\" class=\"html-bibr\">45\u003C/a>] is motivated by challenges such as the Combined Healthy Abdominal Organ Segmentation (CHAOS) Challenge [\u003Ca href=\"#B46-preprints-98444\" class=\"html-bibr\">46\u003C/a>], which focuses on healthy abdominal organs. The study focuses on replicating the v16pUNet1.1C model, which demonstrated superior performance in Task 2 of the CHAOS Challenge. Results from the v16pUNet1.1C model are presented and compared with variations in the loss function and scaling transformation. The application of a 3D largest-connected-component filter is discussed, showing improvements in mean scores.\u003C/div>\n\u003Cdiv class=\"html-p\">A deep semantic segmentation CNN is used by Ezzat \u003Cspan class=\"html-italic\">et al\u003C/span>. (2023) [\u003Ca href=\"#B47-preprints-98444\" class=\"html-bibr\">47\u003C/a>]. A three-stage architecture is proposed, including pre-processing with data augmentation, deep CNN training, and testing. The CNN-based semantic segmentation model is shown to be robust, achieving a test accuracy of 98.8%. The approach does not require user input, making it accessible to non-experts.\u003C/div>\n\u003Cdiv class=\"html-p\">Shao \u003Cspan class=\"html-italic\">et al\u003C/span>. (2024) [\u003Ca href=\"#B48-preprints-98444\" class=\"html-bibr\">48\u003C/a>] present the Attention Connect Network (AC-Net) for liver tumour segmentation in CT and MRI images. The AC-Net consists of two main modules: the Axial Attention Module (AAM) and the Vision Transformer Module (VTM). The AAM uses an axial attention mechanism to merge features of matching dimensions, maximising the use of spatial features extracted by a CNN. The VTM processes high-level semantic features extracted by the CNN using a methodology similar to Vision Transformers (ViT) [\u003Ca href=\"#B49-preprints-98444\" class=\"html-bibr\">49\u003C/a>]. The network achieves a DSC of 0.90, a Jaccard Coefficient (JC) of 0.82, a recall of 0.92, a precision of 0.89, a Hausdorff Distance (HD) of 11.96, and an Average Symmetric Surface Distance (ASD) of 4.59.\u003C/div>\u003C/section>\u003Csection id=\"sec3dot2-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 3.2. Other Review Papers\u003C/h4>\n\u003Cdiv class=\"html-p\">The search described in \u003Ca href=\"#sec2-preprints-98444\" class=\"html-sec\">Section 2\u003C/a> retrieved six literature review documents. For one of the works, however, the full document was not available. The remaining five are briefly presented next.\u003C/div>\n\u003Cdiv class=\"html-p\">A comparative analysis of various available techniques, focusing on their advantages and disadvantages, is given in [\u003Ca href=\"#B50-preprints-98444\" class=\"html-bibr\">50\u003C/a>]. Recognising the challenges posed by the variable shape of the liver and the weak edges in adjacent organ regions, the survey covers approaches such as Threshold, Model, Level Set, Region, Active Contour, and Clustering. The paper also divides its investigation into sections, covering both image pre-processing and segmentation techniques, providing an overview of the current landscape in liver segmentation from CT images.\u003C/div>\n\u003Cdiv class=\"html-p\">The study [\u003Ca href=\"#B51-preprints-98444\" class=\"html-bibr\">51\u003C/a>] provides a survey of 3D image segmentation methods, focusing on selected binarization and segmentation techniques suitable for processing volume images. For thresholding methods, both global and local techniques are considered, and challenges such as hysteresis in dealing with voxel value distributions are addressed. The region growing section explores voxel-based procedures, including growing by grey value and adaptive region growing. In addition, deformable surfaces and level set methods are discussed, before other segmentation concepts such as fuzzy connectedness and watershed algorithms are introduced. The concluding remarks underline the complexity of image segmentation, emphasising the absence of a universal solution and the need to carefully evaluate and select methods based on specific tasks and dataset characteristics. The challenges posed by 3D data, including the data volume and issues of interactivity and visualisation, are also acknowledged.\u003C/div>\n\u003Cdiv class=\"html-p\">The study [\u003Ca href=\"#B52-preprints-98444\" class=\"html-bibr\">52\u003C/a>] reviews and proposes a literature survey on methods for segmenting liver images, distinguishing between semi-automatic and fully automated techniques. The challenges of liver image segmentation, such as low contrast, blurred edges, and the complexity of liver morphology, are discussed. Different approaches are reviewed, including neuronal network based methods, support vector machine based methods, clustering based methods and hybrid methods. It is concluded that, despite progress, liver image segmentation remains a challenging task, and the paper encourages further development of hybrid approaches for more accurate segmentation.\u003C/div>\n\u003Cdiv class=\"html-p\">Various segmentation methods, including statistical shape models, probabilistic atlas-based approaches, geometric deformable models, and machine learning-based methods, are reviewed in [\u003Ca href=\"#B53-preprints-98444\" class=\"html-bibr\">53\u003C/a>]. The review includes information on avaliable databases and challenges in liver tumour segmentation, highlighting the scarcity of public datasets and the need for improved segmentation methods. Liver blood vessel segmentation and computer-assisted diagnosis (CAD) systems are also reviewed. The conclusion highlights the importance of the segmentation, particularly in pathological cases, and the need for improved CAD systems with accurate segmentation for comprehensive analysis of liver treatment.\u003C/div>\n\u003Cdiv class=\"html-p\">The survey paper [\u003Ca href=\"#B54-preprints-98444\" class=\"html-bibr\">54\u003C/a>] provides a comparative analysis of various available techniques, focusing on their advantages and disadvantages. Grey level-based techniques, such as region growing and active contour methods, are highlighted as effective for liver segmentation. The survey acknowledges the challenges of detecting early-phase liver lesions and emphasises the need for a combination of methods to achieve seamless segmentation, with region growing and active contour methods considered more efficient than other segmentation techniques.\u003C/div>\n\u003Cdiv class=\"html-p\">This survey differs from the other documents in this section in a number of ways. Firstly, the most recent of the review papers found dates from 2022. One of the contributions of this work is to present a more up-to-date view of the works published since then. In addition, none of the other works presents a historical perspective on the subject, starting from 1990, as is the case with the present review.\u003C/div>\u003C/section>\u003C/section>\u003Csection id=\"sec4-preprints-98444\" type>\u003Ch2 data-nested=\"1\" id=\"preprints-h2-4\"> 4. Findings\u003C/h2>\n\u003Cdiv class=\"html-p\">A summary of the papers reviewed in \u003Ca href=\"#sec3dot1-preprints-98444\" class=\"html-sec\">Section 3.1\u003C/a> is given in \u003Ca href=\"#preprints-98444-t001\" class=\"html-table\">Table 1\u003C/a>. The columns of the table contain the following information: identification of each study (column \u003Cspan class=\"html-italic\">Authors\u003C/span>); publication year (column \u003Cspan class=\"html-italic\">Year\u003C/span>); general category or approach used in the segmentation method as defined in [\u003Ca href=\"#B18-preprints-98444\" class=\"html-bibr\">18\u003C/a>] (column \u003Cspan class=\"html-italic\">Segmentation Category\u003C/span>); the specific segmentation technique or algorithm (column \u003Cspan class=\"html-italic\">Method\u003C/span>); whether the method is \u003Cspan class=\"html-italic\">fully\u003C/span>-automatic or \u003Cspan class=\"html-italic\">semi\u003C/span>-automatic (column \u003Cspan class=\"html-italic\">Autom. Level\u003C/span> for Automation Level); whether the segmentation is performed in 2D or 3D (column \u003Cspan class=\"html-italic\">Dim.\u003C/span> for Dimensionality); the dataset or database used for evaluation (column \u003Cspan class=\"html-italic\">Database\u003C/span>); and the key results of the best segmentation method in each paper (column \u003Cspan class=\"html-italic\">Results\u003C/span>).\u003C/div>\n\u003Cdiv class=\"html-p\">It is clear from this table that prior to 2016 there was no predominant category. Region-based Segmentation, Edge-based Segmentation, Threshold Segmentation, Semantic Segmentation, Cluster-based Segmentation and even combinations of several methods were tried. However, since 2016, Neuronal network-based techniques have dominated the field. Remembering the huge impact that AlexNet [\u003Ca href=\"#B55-preprints-98444\" class=\"html-bibr\">55\u003C/a>] had in winning the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [\u003Ca href=\"#B56-preprints-98444\" class=\"html-bibr\">56\u003C/a>], it is clear that Liver Segmentation in CT scans took a few years to catch up with the state of the art research. This is probably due to the arrival of U-Net [\u003Ca href=\"#B57-preprints-98444\" class=\"html-bibr\">57\u003C/a>], which was proposed in 2015, and is specifically designed for biomedical image segmentation.\u003C/div>\n\u003Cdiv class=\"html-p\">In terms of automation, both fully automated and semi-automated techniques have been explored. While it is nice to have fully-automatic, accurate and fast techniques, the final decision should always belong to the specialist. Thus, we advocate fully automatic methods for contour initialisation, together with the development of intuitive tools that allow specialists to modify the fully-automatically generated contour if they feel the need to do so.\u003C/div>\n\u003Cdiv class=\"html-p\">Both slice-based (2D) and volume-based (3D) methods have been developed. As an anatomical structure, we believe that liver segmentation methods should be inherently three-dimensional. This would have two main advantages. On the one hand, fully 3D methods would make use of more contextual information and thus potentially provide better segmentations. On the other hand, the development of fully three-dimensional techniques would avoid the need of the slice-based methods to aggregate all of the segmentations into a coherent volume. This aggregation could not only lead to errors and anatomically incorrect structures, but would also increase computational time.\u003C/div>\n\u003Cdiv class=\"html-p\">Data availability is a major concern, as most methods use private datasets. This inhibits reproducibility of the results. In addition, researchers who do not have access to hospitals or other facilities with CT scanners, cannot develop new techniques for this particular problem. We advocate making the data available, while respecting all the ethical that are important when dealing with medical data and properly anonymising any sensitive information. Some notable exceptions to publicly available datasets are listed in \u003Ca href=\"#sec5dot1-preprints-98444\" class=\"html-sec\">Section 5.1\u003C/a>.\u003C/div>\u003C/section>\u003Csection id=\"sec5-preprints-98444\" type=\"discussion\">\u003Ch2 data-nested=\"1\" id=\"preprints-h2-5\"> 5. Discussion\u003C/h2>\n\u003Cdiv class=\"html-p\">As seen in the previous section, significant advances in liver segmentation techniques have been presented, with particular impact due to the adoption of AI methods, more specifically neuronal network techniques. In this section, we provide some considerations on publicly available databases (\u003Ca href=\"#sec5dot1-preprints-98444\" class=\"html-sec\">Section 5.1\u003C/a>), the impact of the widespread adoption of neuronal networks since 2017 (\u003Ca href=\"#sec5dot2-preprints-98444\" class=\"html-sec\">Section 5.2\u003C/a>), a comparison between 2D and 3D implementations (\u003Ca href=\"#sec5dot3-preprints-98444\" class=\"html-sec\">Section 5.3\u003C/a>), and \u003Ca href=\"#sec5dot4-preprints-98444\" class=\"html-sec\">Section 5.4\u003C/a> present answers to the research questions posed in the introductory section.\u003C/div>\n\u003Csection id=\"sec5dot1-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 5.1. Public Datasets Analysis\u003C/h4>\n\u003Cdiv class=\"html-p\">The most common public datasets used in studies of liver segmentation on CT scans include 3D-IRCADb01, LiTS17 and MICCAI-SLiver07. According to the dataset’s comparison provided by Al-Saeed \u003Cspan class=\"html-italic\">et al\u003C/span>. [\u003Ca href=\"#B58-preprints-98444\" class=\"html-bibr\">58\u003C/a>] (shown in \u003Ca href=\"#preprints-98444-t002\" class=\"html-table\">Table 2\u003C/a>), it is possible to identify several key differences that may have implications for data processing and analysis, as different formats and significant differences in resolution between datasets may require different approaches to processing and interpretation.\u003C/div>\u003C/section>\u003Csection id=\"sec5dot2-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 5.2. Impact of the Adoption of Neuronal Network-based Methods\u003C/h4>\n\u003Cdiv class=\"html-p\">The growth of neuronal network-based approaches has led to remarkable progress in liver segmentation, particularly with respect to CT scans. These models have led to a new era of accuracy and efficiency, significantly outperforming traditional methods [\u003Ca href=\"#B55-preprints-98444\" class=\"html-bibr\">55\u003C/a>,\u003Ca href=\"#B57-preprints-98444\" class=\"html-bibr\">57\u003C/a>]. This improved accuracy has become critical in the field of medical imaging, where the correct interpretation of CT scans can directly affect the diagnosis and treatment plans of patients. Furthermore, the efficiency of these neuronal network models translates into faster processing times, allowing for more agile decision making in clinical settings.\u003C/div>\n\u003Cdiv class=\"html-p\">Another positive aspect of neuronal networks in liver segmentation is their ability to cope with the complexity of liver anatomy. Neuronal networks, with their systematic and complex pattern recognition capabilities, are able to navigate these anatomical variations. As a result, they are better able to deal with the variety of appearances that liver tissue can have on CT scans. This ability to handle complex datasets ensures that neuronal networks can provide consistent and accurate segmentation in a wide range of cases.\u003C/div>\u003C/section>\u003Csection id=\"sec5dot3-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 5.3. Comparison between 2D and 3D Methods for Liver Segmentation\u003C/h4>\n\u003Cul class=\"html-bullet\">\n\u003Cli>\n\u003Cdiv class=\"html-p\">Importance of Choosing between 2D and 3D Methods\u003C/div>\n\u003Cdl class=\"html-bullet\">\n\u003Cdt id>–\u003C/dt>\n\u003Cdd>\u003Cdiv class=\"html-p\">In medical imaging, and in particular liver segmentation, the choice between slice-based 2D and volume-based 3D segmentation methods is crucial. This decision is highly dependent on the anatomical structure of the liver. Given the complex, three-dimensional nature of the liver, 3D segmentation techniques often prove to be the most appropriate choice [\u003Ca href=\"#B21-preprints-98444\" class=\"html-bibr\">21\u003C/a>] [\u003Ca href=\"#B39-preprints-98444\" class=\"html-bibr\">39\u003C/a>]. These methods are inherently designed to understand and process the volumetric characteristics of the liver, which is a critical consideration for accurate segmentation results.\u003C/div>\u003C/dd>\n\u003C/dl>\n\u003C/li>\n\u003Cli>\n\u003Cdiv class=\"html-p\">2D Segmentation Limitations\u003C/div>\n\u003Cdl class=\"html-bullet\">\n\u003Cdt id>–\u003C/dt>\n\u003Cdd>\u003Cdiv class=\"html-p\">Although 2D slice-based segmentation is widely used, it has limitations, particularly when it comes to dealing with complex organs such as the liver. The main challenge with 2D methods is their inability to fully capture all the regions of the liver. They involve working with individual slices, which can provide a fragmented understanding of the organ structure, but this fragmentation can lead to inconsistencies and errors when these individual slices are aggregated to form a complete image [\u003Ca href=\"#B40-preprints-98444\" class=\"html-bibr\">40\u003C/a>].\u003C/div>\u003C/dd>\n\u003C/dl>\n\u003C/li>\n\u003Cli>\n\u003Cdiv class=\"html-p\">3D Segmentation Advantages\u003C/div>\n\u003Cdl class=\"html-bullet\">\n\u003Cdt id>–\u003C/dt>\n\u003Cdd>\u003Cdiv class=\"html-p\">In order to overcome the limitations of 2D segmentation, 3D segmentation has the ability to use more contextual information. Unlike 2D methods, which visualise the liver in individual slices, 3D techniques consider the organ in its integrity, as they have the ability to ensure anatomical correctness by processing the liver as a single, continuous volume, avoiding errors that can arise from the aggregation of 2D slices [\u003Ca href=\"#B14-preprints-98444\" class=\"html-bibr\">14\u003C/a>] [\u003Ca href=\"#B38-preprints-98444\" class=\"html-bibr\">38\u003C/a>]. In 2D segmentation, inconsistencies can occur when individual slices are combined, leading to inaccuracies in the representation of liver anatomy. The holistic view provided by the 3D segmentation, results in more accurate segmentation, as it takes into account the spatial relationships and continuity between the different sections of the liver. The inclusion of this additional contextual information can potentially lead to segmentation results, especially in complex cases where the shape and size of the liver can vary considerably.\u003C/div>\u003C/dd>\n\u003C/dl>\n\u003C/li>\n\u003C/ul>\u003C/section>\u003Csection id=\"sec5dot4-preprints-98444\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 5.4. Exploring Research Questions\u003C/h4>\n\u003Cdiv class=\"html-p\">Following the specific analysis of the studies presented and their main findings, the questions raised in \u003Ca href=\"#sec1-preprints-98444\" class=\"html-sec\">Section 1\u003C/a> are answered as follows.\u003C/div>\n\u003Cul class=\"html-bullet\">\n\u003Cli>\n\u003Cdiv class=\"html-p\">\u003Cb>RQ1—What are the challenges and limitations associated with accurate liver segmentation in CT scans?\u003C/b>\u003C/div>\n\u003Cdl class=\"html-bullet\">\n\u003Cdt id>–\u003C/dt>\n\u003Cdd>\u003Cdiv class=\"html-p\">Challenges and limitations associated with accurate liver segmentation in CT images include under-segmentation, over-segmentation, low contrast, poor boundary detection and background segmentation due to noise. In addition, liver segmentation in CT scans is further challenged by the presence of artefacts, such as partial volumes, noise, and low sharpness and contrast between organs, making it difficult to identify the boundaries between different tissues.\u003C/div>\u003C/dd>\n\u003C/dl>\n\u003C/li>\n\u003Cli>\n\u003Cdiv class=\"html-p\">\u003Cb>RQ2 — How does the choice of the method impact the accuracy and efficiency of liver segmentation in CT scans?\u003C/b>\u003C/div>\n\u003Cdl class=\"html-bullet\">\n\u003Cdt id>–\u003C/dt>\n\u003Cdd>\u003Cdiv class=\"html-p\">The choice of the method has a significant impact on the accuracy and efficiency of liver segmentation in CT scans. Traditional techniques such as image processing and region-growing approaches have shown varying degrees of sensitivity and specificity, with some challenges in dealing with large injuries. In contrast, newer methods such as FCN, DBN-DNN, and techniques like ResU-Net and SegNet showed higher accuracy, with some reaching up the highest accuracy levels. Notably, advances in methods have also led to significant improvements in processing times, with strategies such as using GPU over CPU leading to significant time reductions, indicating a trend towards more efficient and accurate liver segmentation techniques.\u003C/div>\u003C/dd>\n\u003C/dl>\n\u003C/li>\n\u003Cli>\n\u003Cdiv class=\"html-p\">\u003Cb>RQ3 — What are the evaluation metrics commonly used to assess the performance of AI models and traditional methods for liver segmentation in CT scans?\u003C/b>\u003C/div>\n\u003Cdl class=\"html-bullet\">\n\u003Cdt id>–\u003C/dt>\n\u003Cdd>\u003Cdiv class=\"html-p\">Some of the key metrics used to measure the outcome of segmentation techniques include Dice Similarity Coefficient (DSC), accuracy, precision, sensitivity, specificity, and segmentation speed. There is not much consistency in the metrics presented by the various studies except for DSC.\u003C/div>\u003C/dd>\n\u003C/dl>\n\u003C/li>\n\u003C/ul>\u003C/section>\u003C/section>\u003Csection id=\"sec6-preprints-98444\" type=\"conclusions\">\u003Ch2 data-nested=\"1\" id=\"preprints-h2-6\"> 6. Conclusions and Future Work\u003C/h2>\n\u003Cdiv class=\"html-p\">The evolution of liver segmentation techniques throughout history reflects the broad impact of AI technologies across a wide range of disciplines. The transition to fully automated segmentation methods has been an important breakthrough in the process, although the indispensable involvement of medical experts continues to play a key role in ensuring the accuracy and clinical relevance of these techniques. The emerging prevalence of 3D segmentation methods, which follow the structure of the liver, promises more accurate and anatomically consistent results.\u003C/div>\n\u003Cdiv class=\"html-p\">However, there are a number of challenges that need to be addressed in order to advance the field. The lack of public datasets is one of the main barriers to the advancement of liver segmentation technologies. Research has mainly been conducted on private datasets, often restricted to specific medical centres, which limits wider participation in research and makes it difficult to replicate.\u003C/div>\n\u003Cdiv class=\"html-p\">In terms of future developments, the outlook for the evolution of liver segmentation is unfolding in several core areas that promise to have a significant impact on research and application in this field. The increasing availability of public datasets is key to fostering innovation, enabling the contribution of researchers from diverse backgrounds and promoting a dynamic research environment. In addition, the definition of specific standardised evaluation metrics is crucial to allow meaningful comparisons between segmentation methods and to guide the development towards more efficient, accurate and user-friendly solutions, such as contour and region-based metrics, performance metrics and user intervention metrics.\u003C/div>\n\u003Cdiv class=\"html-p\">The further application of 3D segmentation techniques may be a good investment, as they can provide more anatomically accurate and consistent anatomical results, overcoming the limitations of 2D segmentations. Furthermore, the effective integration of medical expertise in segmentation automation is indeed essential, with the aim of developing interfaces that allow specialists to interact with automated segmentation results, ensuring that liver segmentation tools are both technically advanced and clinically relevant and feasible. Collaboration between cutting-edge technology and human expertise is a good approach, combining the efficiency of automation with the refined understanding of healthcare professionals, whose oversight remains critical to maintain the accuracy and reliability of the final results.\u003C/div>\u003C/section>\n \n \u003Csection class=\"html-notes\">\u003Ch2 id=\"preprints-h2-7\">Author Contributions\u003C/h2>\n\u003Cdiv class=\"html-p\">Conceptualisation, J.B.; Methodology, S.B.N. and J.B.; Software, S.B.N.; Validation, S.B.N., I.D. and J.B.; Formal analysis, S.B.N., I.D. and J.B.; Investigation, S.B.N.; Resources, S.B.N.; Data curation, S.B.N.; Writing—original draft preparation, S.B.N.; Writing—review and editing, S.B.N., I.D. and J.B.; Supervision, J.B. and I.D.; Project administration, J.B. and I.D.; Funding acquisition, I.D. All authors have read and agreed to the published version of the manuscript.\u003C/div>\u003C/section>\u003Csection class=\"html-notes\">\u003Ch2 id=\"preprints-h2-8\">Funding\u003C/h2>\n\u003Cdiv class=\"html-p\">This research received no external funding.\u003C/div>\u003C/section>\u003Csection class=\"html-notes\">\u003Ch2 id=\"preprints-h2-9\">Data Availability Statement\u003C/h2>\n\u003Cdiv class=\"html-p\">Data sharing is not applicable to this article.\u003C/div>\u003C/section>\u003Csection class=\"html-notes\">\u003Ch2 id=\"preprints-h2-10\">Conflicts of Interest\u003C/h2>\n\u003Cdiv class=\"html-p\">The authors declare no conflict of interest.\u003C/div>\u003C/section>\u003Csection id=\"html-references_list\">\u003Ch2 id=\"preprints-h2-11\">References\u003C/h2>\n\u003Col class=\"html-xx\">\n\u003Cli id=\"B1-preprints-98444\" class=\"html-x\" data-content=\"1.\">Francque, S. The Liver and the Cardiovascular System: Two of a Kind? \u003Cspan class=\"html-italic\">Journal of the American Heart Association\u003C/span> \u003Cb>2021\u003C/b>, \u003Cspan class=\"html-italic\">10\u003C/span>, e020286. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=The+Liver+and+the+Cardiovascular+System:+Two+of+a+Kind?&amp;author=Francque,+S.&amp;publication_year=2021&amp;journal=Journal+of+the+American+Heart+Association&amp;volume=10&amp;pages=e020286&amp;doi=10.1161/JAHA.121.020286\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1161/JAHA.121.020286\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B2-preprints-98444\" class=\"html-x\" data-content=\"2.\">Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. \u003Cspan class=\"html-italic\">Current Biology\u003C/span> \u003Cb>2017\u003C/b>, \u003Cspan class=\"html-italic\">27\u003C/span>, R1147–R1151. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=The+liver&amp;author=Trefts,+E.&amp;author=Gannon,+M.&amp;author=Wasserman,+D.H.&amp;publication_year=2017&amp;journal=Current+Biology&amp;volume=27&amp;pages=R1147%E2%80%93R1151&amp;doi=10.1016/j.cub.2017.09.019\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1016/j.cub.2017.09.019\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B3-preprints-98444\" class=\"html-x\" data-content=\"3.\">Mendes, B.; Domingues, I.; Silva, A.; Santos, J. Prostate Cancer Aggressiveness Prediction Using CT Images. \u003Cspan class=\"html-italic\">Life\u003C/span> \u003Cb>2021\u003C/b>, \u003Cspan class=\"html-italic\">11\u003C/span>, 1164. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Prostate+Cancer+Aggressiveness+Prediction+Using+CT+Images&amp;author=Mendes,+B.&amp;author=Domingues,+I.&amp;author=Silva,+A.&amp;author=Santos,+J.&amp;publication_year=2021&amp;journal=Life&amp;volume=11&amp;pages=1164&amp;doi=10.3390/life11111164\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.3390/life11111164\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B4-preprints-98444\" class=\"html-x\" data-content=\"4.\">Pereira, G.; Domingues, I.; Martins, P.; Abreu, P.H.; Duarte, H.; Santos, J. Registration of CT with PET: A Comparison of Intensity-Based Approaches. In \u003Cspan class=\"html-italic\">International Workshop on Combinatorial Image Analysis (IWCIA)\u003C/span>; Springer, 2018; pp. 134–149. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Registration+of+CT+with+PET:+A+Comparison+of+Intensity-Based+Approaches&amp;author=Pereira,+G.&amp;author=Domingues,+I.&amp;author=Martins,+P.&amp;author=Abreu,+P.H.&amp;author=Duarte,+H.&amp;author=Santos,+J.&amp;publication_year=2018&amp;pages=134%E2%80%93149\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1007/978-3-030-05288-1_11\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B5-preprints-98444\" class=\"html-x\" data-content=\"5.\">Zhang, H.; Luo, K.; Deng, R.; Li, S.; Duan, S. Deep Learning-Based CT Imaging for the Diagnosis of Liver Tumor. \u003Cspan class=\"html-italic\">Computational Intelligence and Neuroscience\u003C/span> \u003Cb>2022\u003C/b>, \u003Cspan class=\"html-italic\">2022\u003C/span>, 1–7. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Deep+Learning-Based+CT+Imaging+for+the+Diagnosis+of+Liver+Tumor&amp;author=Zhang,+H.&amp;author=Luo,+K.&amp;author=Deng,+R.&amp;author=Li,+S.&amp;author=Duan,+S.&amp;publication_year=2022&amp;journal=Computational+Intelligence+and+Neuroscience&amp;volume=2022&amp;pages=1%E2%80%937&amp;doi=10.1155/2022/3045370\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1155/2022/3045370\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B6-preprints-98444\" class=\"html-x\" data-content=\"6.\">Vernuccio, F.; Cannella, R.; Bartolotta, T.V.; Galia, M.; Tang, A.; Brancatelli, G. Advances in liver US, CT, and MRI: moving toward the future. \u003Cspan class=\"html-italic\">European Radiology Experimental\u003C/span> \u003Cb>2021\u003C/b>, \u003Cspan class=\"html-italic\">5\u003C/span>, 52. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Advances+in+liver+US,+CT,+and+MRI:+moving+toward+the+future&amp;author=Vernuccio,+F.&amp;author=Cannella,+R.&amp;author=Bartolotta,+T.V.&amp;author=Galia,+M.&amp;author=Tang,+A.&amp;author=Brancatelli,+G.&amp;publication_year=2021&amp;journal=European+Radiology+Experimental&amp;volume=5&amp;pages=52&amp;doi=10.1186/s41747-021-00250-0\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1186/s41747-021-00250-0\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B7-preprints-98444\" class=\"html-x\" data-content=\"7.\">Domingues, I.; Cardoso, J.S. Using Bayesian surprise to detect calcifications in mammogram images. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 1091–1094. [\u003Ca href=\"https://doi.org/10.1109/EMBC.2014.6943784\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B8-preprints-98444\" class=\"html-x\" data-content=\"8.\">Mendes, B.; Domingues, I.; Santos, J. Multi-class Semantic Segmentation for Prostate Cancer Radiotherapy Treatment Optimization. International Conference on Mathematical Analysis and Applications in Science and Engineering (ICMA2SC), 2022.\u003C/li>\n\u003Cli id=\"B9-preprints-98444\" class=\"html-x\" data-content=\"9.\">Bechar, M.E.A.; Settouti, N.; Domingues, I. Deep Learning vs. Super Pixel Classification for Breast Masses Segmentation. In \u003Cspan class=\"html-italic\">Deep Learning for Biomedical Applications\u003C/span>; CRC Press, 2021; pp. 121–156. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Deep+Learning+vs.+Super+Pixel+Classification+for+Breast+Masses+Segmentation&amp;author=Bechar,+M.E.A.&amp;author=Settouti,+N.&amp;author=Domingues,+I.&amp;publication_year=2021&amp;pages=121%E2%80%93156\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>]\u003C/li>\n\u003Cli id=\"B10-preprints-98444\" class=\"html-xx\" data-content=\"10.\">Oliveira, A.C.; Domingues, I.; Duarte, H.; Santos, J.; Abreu, P.H. Going Back to Basics on Volumetric Segmentation of the Lungs in CT: A Fully Image Processing Based Technique. In \u003Cspan class=\"html-italic\">Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)\u003C/span>; Springer, 2019; Vol. 11868 LNCS, pp. 322–334. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Going+Back+to+Basics+on+Volumetric+Segmentation+of+the+Lungs+in+CT:+A+Fully+Image+Processing+Based+Technique&amp;author=Oliveira,+A.C.&amp;author=Domingues,+I.&amp;author=Duarte,+H.&amp;author=Santos,+J.&amp;author=Abreu,+P.H.&amp;publication_year=2019&amp;pages=322%E2%80%93334\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>]\u003C/li>\n\u003Cli id=\"B11-preprints-98444\" class=\"html-xx\" data-content=\"11.\">Carbone, I.; Martins, P.; Teixeira, A.; Silva, A. A Vocal Tract Segmentation and Analysis over a European Portuguese MRI Database. \u003Cspan class=\"html-italic\">Revista do Departamento de Electrónica e Telecomunicações, Universidade de Aveiro\u003C/span> \u003Cb>2008\u003C/b>, \u003Cspan class=\"html-italic\">4\u003C/span>, 1050–1053. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=A+Vocal+Tract+Segmentation+and+Analysis+over+a+European+Portuguese+MRI+Database&amp;author=Carbone,+I.&amp;author=Martins,+P.&amp;author=Teixeira,+A.&amp;author=Silva,+A.&amp;publication_year=2008&amp;journal=Revista+do+Departamento+de+Electr%C3%B3nica+e+Telecomunica%C3%A7%C3%B5es,+Universidade+de+Aveiro&amp;volume=4&amp;pages=1050%E2%80%931053\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>]\u003C/li>\n\u003Cli id=\"B12-preprints-98444\" class=\"html-xx\" data-content=\"12.\">Zhou, L.Q.; Wang, J.Y.; Yu, S.Y.; Wu, G.G.; Wei, Q.; Deng, Y.B.; Wu, X.L.; Cui, X.W.; Dietrich, C.F. Artificial intelligence in medical imaging of the liver. \u003Cspan class=\"html-italic\">World Journal of Gastroenterology\u003C/span> \u003Cb>2019\u003C/b>, \u003Cspan class=\"html-italic\">25\u003C/span>, 672–682. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Artificial+intelligence+in+medical+imaging+of+the+liver&amp;author=Zhou,+L.Q.&amp;author=Wang,+J.Y.&amp;author=Yu,+S.Y.&amp;author=Wu,+G.G.&amp;author=Wei,+Q.&amp;author=Deng,+Y.B.&amp;author=Wu,+X.L.&amp;author=Cui,+X.W.&amp;author=Dietrich,+C.F.&amp;publication_year=2019&amp;journal=World+Journal+of+Gastroenterology&amp;volume=25&amp;pages=672%E2%80%93682&amp;doi=10.3748/wjg.v25.i6.672&amp;pmid=30783371\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.3748/wjg.v25.i6.672\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>] [\u003Ca href=\"https://www.ncbi.nlm.nih.gov/pubmed/30783371\" class=\"cross-ref pub_med\" data-typ=\"pmid\" target=\"_blank\" rel=\"noopener noreferrer\">PubMed\u003C/a>]\u003C/li>\n\u003Cli id=\"B13-preprints-98444\" class=\"html-xx\" data-content=\"13.\">Chlebus, G.; Schenk, A.; Moltz, J.H.; van Ginneken, B.; Hahn, H.K.; Meine, H. Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. \u003Cspan class=\"html-italic\">Scientific Reports\u003C/span> \u003Cb>2018\u003C/b>, \u003Cspan class=\"html-italic\">8\u003C/span>, 15497. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Automatic+liver+tumor+segmentation+in+CT+with+fully+convolutional+neural+networks+and+object-based+postprocessing&amp;author=Chlebus,+G.&amp;author=Schenk,+A.&amp;author=Moltz,+J.H.&amp;author=van+Ginneken,+B.&amp;author=Hahn,+H.K.&amp;author=Meine,+H.&amp;publication_year=2018&amp;journal=Scientific+Reports&amp;volume=8&amp;pages=15497&amp;doi=10.1038/s41598-018-33860-7&amp;pmid=30341319\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1038/s41598-018-33860-7\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>] [\u003Ca href=\"https://www.ncbi.nlm.nih.gov/pubmed/30341319\" class=\"cross-ref pub_med\" data-typ=\"pmid\" target=\"_blank\" rel=\"noopener noreferrer\">PubMed\u003C/a>]\u003C/li>\n\u003Cli id=\"B14-preprints-98444\" class=\"html-xx\" data-content=\"14.\">Christ, P.F.; Ettlinger, F.; Grün, F.; Elshaera, M.E.A.; Lipkova, J.; Schlecht, S.; Ahmaddy, F.; Tatavarty, S.; Bickel, M.; Bilic, P.; Rempfler, M.; Hofmann, F.; Anastasi, M.D.; Ahmadi, S.A.; Kaissis, G.; Holch, J.; Sommer, W.; Braren, R.; Heinemann, V.; Menze, B. Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks. \u003Cspan class=\"html-italic\">arXiv 1702.05970\u003C/span> \u003Cb>2017\u003C/b>, [1702.05970].\u003C/li>\n\u003Cli id=\"B15-preprints-98444\" class=\"html-xx\" data-content=\"15.\">Ansari, M.Y.; Abdalla, A.; Ansari, M.Y.; Ansari, M.I.; Malluhi, B.; Mohanty, S.; Mishra, S.; Singh, S.S.; Abinahed, J.; Al-Ansari, A.; Balakrishnan, S.; Dakua, S.P. Practical utility of liver segmentation methods in clinical surgeries and interventions. \u003Cspan class=\"html-italic\">BMC Medical Imaging\u003C/span> \u003Cb>2022\u003C/b>, \u003Cspan class=\"html-italic\">22\u003C/span>, 97. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Practical+utility+of+liver+segmentation+methods+in+clinical+surgeries+and+interventions&amp;author=Ansari,+M.Y.&amp;author=Abdalla,+A.&amp;author=Ansari,+M.Y.&amp;author=Ansari,+M.I.&amp;author=Malluhi,+B.&amp;author=Mohanty,+S.&amp;author=Mishra,+S.&amp;author=Singh,+S.S.&amp;author=Abinahed,+J.&amp;author=Al-Ansari,+A.&amp;publication_year=2022&amp;journal=BMC+Medical+Imaging&amp;volume=22&amp;pages=97&amp;doi=10.1186/s12880-022-00825-2\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1186/s12880-022-00825-2\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B16-preprints-98444\" class=\"html-xx\" data-content=\"16.\">Le, D.C.; Chinnasarn, K.; Chansangrat, J.; Keeratibharat, N.; Horkaew, P. Semi-automatic liver segmentation based on probabilistic models and anatomical constraints. \u003Cspan class=\"html-italic\">Scientific Reports\u003C/span> \u003Cb>2021\u003C/b>, \u003Cspan class=\"html-italic\">11\u003C/span>, 6106. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Semi-automatic+liver+segmentation+based+on+probabilistic+models+and+anatomical+constraints&amp;author=Le,+D.C.&amp;author=Chinnasarn,+K.&amp;author=Chansangrat,+J.&amp;author=Keeratibharat,+N.&amp;author=Horkaew,+P.&amp;publication_year=2021&amp;journal=Scientific+Reports&amp;volume=11&amp;pages=6106&amp;doi=10.1038/s41598-021-85436-7&amp;pmid=33731736\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1038/s41598-021-85436-7\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>] [\u003Ca href=\"https://www.ncbi.nlm.nih.gov/pubmed/33731736\" class=\"cross-ref pub_med\" data-typ=\"pmid\" target=\"_blank\" rel=\"noopener noreferrer\">PubMed\u003C/a>]\u003C/li>\n\u003Cli id=\"B17-preprints-98444\" class=\"html-xx\" data-content=\"17.\">Halevi, G.; Moed, H.; Bar-Ilan, J. Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature. \u003Cspan class=\"html-italic\">Journal of Informetrics\u003C/span> \u003Cb>2017\u003C/b>, \u003Cspan class=\"html-italic\">11\u003C/span>, 823–834. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Suitability+of+Google+Scholar+as+a+source+of+scientific+information+and+as+a+source+of+data+for+scientific+evaluation%E2%80%94Review+of+the+Literature&amp;author=Halevi,+G.&amp;author=Moed,+H.&amp;author=Bar-Ilan,+J.&amp;publication_year=2017&amp;journal=Journal+of+Informetrics&amp;volume=11&amp;pages=823%E2%80%93834&amp;doi=10.1016/j.joi.2017.06.005\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1016/j.joi.2017.06.005\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B18-preprints-98444\" class=\"html-xx\" data-content=\"18.\">Sakshi.; Kukreja, V. Image Segmentation Techniques: Statistical, Comprehensive, Semi-Automated Analysis and an Application Perspective Analysis of Mathematical Expressions. \u003Cspan class=\"html-italic\">Archives of Computational Methods in Engineering\u003C/span> \u003Cb>2023\u003C/b>, \u003Cspan class=\"html-italic\">30\u003C/span>, 457–495. [\u003Ca href=\"https://doi.org/10.1007/s11831-022-09805-9\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B19-preprints-98444\" class=\"html-xx\" data-content=\"19.\">Bae, K.T.; Giger, M.L.; Chen, C.T.; Kahn Jr, C.E. Automatic segmentation of liver structure in CT images. \u003Cspan class=\"html-italic\">Medical physics\u003C/span> \u003Cb>1993\u003C/b>, \u003Cspan class=\"html-italic\">20\u003C/span>, 71–78. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Automatic+segmentation+of+liver+structure+in+CT+images&amp;author=Bae,+K.T.&amp;author=Giger,+M.L.&amp;author=Chen,+C.T.&amp;author=Kahn+Jr,+C.E.&amp;publication_year=1993&amp;journal=Medical+physics&amp;volume=20&amp;pages=71%E2%80%9378&amp;doi=10.1118/1.597064\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1118/1.597064\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B20-preprints-98444\" class=\"html-xx\" data-content=\"20.\">Gao, L.; Heath, D.G.; Kuszyk, B.S.; Fishman, E.K. Automatic liver segmentation technique for three-dimensional visualization of CT data. \u003Cspan class=\"html-italic\">Radiology\u003C/span> \u003Cb>1996\u003C/b>, \u003Cspan class=\"html-italic\">201\u003C/span>, 359–364. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Automatic+liver+segmentation+technique+for+three-dimensional+visualization+of+CT+data&amp;author=Gao,+L.&amp;author=Heath,+D.G.&amp;author=Kuszyk,+B.S.&amp;author=Fishman,+E.K.&amp;publication_year=1996&amp;journal=Radiology&amp;volume=201&amp;pages=359%E2%80%93364&amp;doi=10.1148/radiology.201.2.8888223&amp;pmid=8888223\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1148/radiology.201.2.8888223\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>] [\u003Ca href=\"https://www.ncbi.nlm.nih.gov/pubmed/8888223\" class=\"cross-ref pub_med\" data-typ=\"pmid\" target=\"_blank\" rel=\"noopener noreferrer\">PubMed\u003C/a>]\u003C/li>\n\u003Cli id=\"B21-preprints-98444\" class=\"html-xx\" data-content=\"21.\">Soler, L.; Malandain, G.; Montagnat, J.; Delingette, H.; Ayache, N.; Clément, J.M.; Roy, C.; Russier, Y.; Tassetti, V.; Marescaux, J. Automatic Segmentation of Portal Vein in CT-Scans of the Liver. World Congress on Medical Physics and Biomedical Engineering (MPBE), 1997, p. 788.\u003C/li>\n\u003Cli id=\"B22-preprints-98444\" class=\"html-xx\" data-content=\"22.\">Yoo, S.W.; Cho, J.S.; Noh, S.M.; Shin, K.S.; Park, J.W. Advanced Liver Segmentation by Using Pixel Ratio in Abdominal CT Image. IEEK Conference. The Institute of Electronics and Information Engineers, 2000, pp. 39–42.\u003C/li>\n\u003Cli id=\"B23-preprints-98444\" class=\"html-xx\" data-content=\"23.\">Pan, S.; Dawant, B.M. Automatic 3D segmentation of the liver from abdominal CT images: a level-set approach. Medical Imaging: Image Processing. SPIE, 2001, Vol. 4322, pp. 128–138. [\u003Ca href=\"https://doi.org/10.1117/12.431019\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B24-preprints-98444\" class=\"html-xx\" data-content=\"24.\">Saitoh, T.; Tamura, Y.; Kaneko, T. Automatic segmentation of liver region through blood vessels on multi-phase CT. International Conference on Pattern Recognition. IEEE, 2002, Vol. 1, pp. 735–738. [\u003Ca href=\"https://doi.org/10.1109/ICPR.2002.1044863\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B25-preprints-98444\" class=\"html-xx\" data-content=\"25.\">Masumoto, J.; Hori, M.; Sato, Y.; Murakami, T.; Johkoh, T.; Nakamura, H.; Tamura, S. Automated liver segmentation using multislice CT images. \u003Cspan class=\"html-italic\">Systems and Computers in Japan\u003C/span> \u003Cb>2003\u003C/b>, \u003Cspan class=\"html-italic\">34\u003C/span>, 71–82. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Automated+liver+segmentation+using+multislice+CT+images&amp;author=Masumoto,+J.&amp;author=Hori,+M.&amp;author=Sato,+Y.&amp;author=Murakami,+T.&amp;author=Johkoh,+T.&amp;author=Nakamura,+H.&amp;author=Tamura,+S.&amp;publication_year=2003&amp;journal=Systems+and+Computers+in+Japan&amp;volume=34&amp;pages=71%E2%80%9382&amp;doi=10.1002/scj.10210\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1002/scj.10210\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B26-preprints-98444\" class=\"html-xx\" data-content=\"26.\">Lim, S.J.; Jeong, Y.Y.; Lee, C.W.; Ho, Y.S. Automatic segmentation of the liver in CT images using the watershed algorithm based on morphological filtering. Medical Imaging: Image Processing. SPIE, 2004, Vol. 5370, pp. 1658–1666. [\u003Ca href=\"https://doi.org/10.1117/12.533586\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B27-preprints-98444\" class=\"html-xx\" data-content=\"27.\">Liu, F.; Zhao, B.; Kijewski, P.K.; Wang, L.; Schwartz, L.H. Liver segmentation for CT images using GVF snake. \u003Cspan class=\"html-italic\">Medical physics\u003C/span> \u003Cb>2005\u003C/b>, \u003Cspan class=\"html-italic\">32\u003C/span>, 3699–3706. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Liver+segmentation+for+CT+images+using+GVF+snake&amp;author=Liu,+F.&amp;author=Zhao,+B.&amp;author=Kijewski,+P.K.&amp;author=Wang,+L.&amp;author=Schwartz,+L.H.&amp;publication_year=2005&amp;journal=Medical+physics&amp;volume=32&amp;pages=3699%E2%80%933706&amp;doi=10.1118/1.2132573&amp;pmid=16475769\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1118/1.2132573\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>] [\u003Ca href=\"https://www.ncbi.nlm.nih.gov/pubmed/16475769\" class=\"cross-ref pub_med\" data-typ=\"pmid\" target=\"_blank\" rel=\"noopener noreferrer\">PubMed\u003C/a>]\u003C/li>\n\u003Cli id=\"B28-preprints-98444\" class=\"html-xx\" data-content=\"28.\">Lim, S.J.; Jeong, Y.Y.; Ho, Y.S. Automatic liver segmentation for volume measurement in CT Images. \u003Cspan class=\"html-italic\">Journal of Visual Communication and Image Representation\u003C/span> \u003Cb>2006\u003C/b>, \u003Cspan class=\"html-italic\">17\u003C/span>, 860–875. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Automatic+liver+segmentation+for+volume+measurement+in+CT+Images&amp;author=Lim,+S.J.&amp;author=Jeong,+Y.Y.&amp;author=Ho,+Y.S.&amp;publication_year=2006&amp;journal=Journal+of+Visual+Communication+and+Image+Representation&amp;volume=17&amp;pages=860%E2%80%93875&amp;doi=10.1016/j.jvcir.2005.07.001\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1016/j.jvcir.2005.07.001\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B29-preprints-98444\" class=\"html-xx\" data-content=\"29.\">Beichel, R.; Bauer, C.; Bornik, A.; Sorantin, E.; Bischof, H. Liver segmentation in CT data: A segmentation refinement approach. 3D Segmentation in The Clinic: A Grand Challenge, 2007, pp. 235–245.\u003C/li>\n\u003Cli id=\"B30-preprints-98444\" class=\"html-xx\" data-content=\"30.\">Massoptier, L.; Casciaro, S. A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans. \u003Cspan class=\"html-italic\">European radiology\u003C/span> \u003Cb>2008\u003C/b>, \u003Cspan class=\"html-italic\">18\u003C/span>, 1658–1665. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=A+new+fully+automatic+and+robust+algorithm+for+fast+segmentation+of+liver+tissue+and+tumors+from+CT+scans&amp;author=Massoptier,+L.&amp;author=Casciaro,+S.&amp;publication_year=2008&amp;journal=European+radiology&amp;volume=18&amp;pages=1658%E2%80%931665&amp;doi=10.1007/s00330-008-0924-y\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1007/s00330-008-0924-y\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B31-preprints-98444\" class=\"html-xx\" data-content=\"31.\">Heimann, T.; Van Ginneken, B.; Styner, M.A.; Arzhaeva, Y.; Aurich, V.; Bauer, C.; Beck, A.; Becker, C.; Beichel, R.; Bekes, G.; others. Comparison and evaluation of methods for liver segmentation from CT datasets. \u003Cspan class=\"html-italic\">IEEE transactions on medical imaging\u003C/span> \u003Cb>2009\u003C/b>, \u003Cspan class=\"html-italic\">28\u003C/span>, 1251–1265. [\u003Ca href=\"https://doi.org/10.1109/TMI.2009.2013851\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B32-preprints-98444\" class=\"html-xx\" data-content=\"32.\">Akram, M.U.; Khanum, A.; Iqbal, K. An automated system for liver CT enhancement and segmentation. \u003Cspan class=\"html-italic\">ICGST Journal of Graphics, Vision and Image Processing (ICGST-GVIP)\u003C/span> \u003Cb>2010\u003C/b>, \u003Cspan class=\"html-italic\">10\u003C/span>, 17–22. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=An+automated+system+for+liver+CT+enhancement+and+segmentation&amp;author=Akram,+M.U.&amp;author=Khanum,+A.&amp;author=Iqbal,+K.&amp;publication_year=2010&amp;journal=ICGST+Journal+of+Graphics,+Vision+and+Image+Processing+(ICGST-GVIP)&amp;volume=10&amp;pages=17%E2%80%9322\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>]\u003C/li>\n\u003Cli id=\"B33-preprints-98444\" class=\"html-xx\" data-content=\"33.\">Oliveira, D.A.; Feitosa, R.Q.; Correia, M.M. Segmentation of liver, its vessels and lesions from CT images for surgical planning. \u003Cspan class=\"html-italic\">Biomedical engineering online\u003C/span> \u003Cb>2011\u003C/b>, \u003Cspan class=\"html-italic\">10\u003C/span>, 1–23. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Segmentation+of+liver,+its+vessels+and+lesions+from+CT+images+for+surgical+planning&amp;author=Oliveira,+D.A.&amp;author=Feitosa,+R.Q.&amp;author=Correia,+M.M.&amp;publication_year=2011&amp;journal=Biomedical+engineering+online&amp;volume=10&amp;pages=1%E2%80%9323&amp;doi=10.1186/1475-925X-10-30&amp;pmid=21507229\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1186/1475-925X-10-30\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>] [\u003Ca href=\"https://www.ncbi.nlm.nih.gov/pubmed/21507229\" class=\"cross-ref pub_med\" data-typ=\"pmid\" target=\"_blank\" rel=\"noopener noreferrer\">PubMed\u003C/a>]\u003C/li>\n\u003Cli id=\"B34-preprints-98444\" class=\"html-xx\" data-content=\"34.\">Linguraru, M.G.; Richbourg, W.J.; Jianfei Liu.; Watt, J.M.; Pamulapati, V.; Shijun Wang.; Summers, R.M. Tumor Burden Analysis on Computed Tomography by Automated Liver and Tumor Segmentation. \u003Cspan class=\"html-italic\">IEEE Transactions on Medical Imaging\u003C/span> \u003Cb>2012\u003C/b>, \u003Cspan class=\"html-italic\">31\u003C/span>, 1965–1976. [\u003Ca href=\"https://doi.org/10.1109/TMI.2012.2211887\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B35-preprints-98444\" class=\"html-xx\" data-content=\"35.\">Li, X.; Luo, S.; Li, J. Liver Segmentation from CT Image Using Fuzzy Clustering and Level Set. \u003Cspan class=\"html-italic\">Journal of Signal and Information Processing\u003C/span> \u003Cb>2013\u003C/b>, \u003Cspan class=\"html-italic\">04\u003C/span>, 36–42. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Liver+Segmentation+from+CT+Image+Using+Fuzzy+Clustering+and+Level+Set&amp;author=Li,+X.&amp;author=Luo,+S.&amp;author=Li,+J.&amp;publication_year=2013&amp;journal=Journal+of+Signal+and+Information+Processing&amp;volume=04&amp;pages=36%E2%80%9342&amp;doi=10.4236/jsip.2013.43B007\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.4236/jsip.2013.43B007\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B36-preprints-98444\" class=\"html-xx\" data-content=\"36.\">Platero, C.; Tobar, M.C.; others. A multiatlas segmentation using graph cuts with applications to liver segmentation in CT scans. \u003Cspan class=\"html-italic\">Computational and mathematical methods in medicine\u003C/span> \u003Cb>2014\u003C/b>, \u003Cspan class=\"html-italic\">2014\u003C/span>. [\u003Ca href=\"https://doi.org/10.1155/2014/182909\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B37-preprints-98444\" class=\"html-xx\" data-content=\"37.\">Mostafa, A.; Fouad, A.; Abd Elfattah, M.; Hassanien, A.E.; Hefny, H.; Zhu, S.Y.; Schaefer, G. CT liver segmentation using artificial bee colony optimisation. \u003Cspan class=\"html-italic\">Procedia Computer Science\u003C/span> \u003Cb>2015\u003C/b>, \u003Cspan class=\"html-italic\">60\u003C/span>, 1622–1630. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=CT+liver+segmentation+using+artificial+bee+colony+optimisation&amp;author=Mostafa,+A.&amp;author=Fouad,+A.&amp;author=Abd+Elfattah,+M.&amp;author=Hassanien,+A.E.&amp;author=Hefny,+H.&amp;author=Zhu,+S.Y.&amp;author=Schaefer,+G.&amp;publication_year=2015&amp;journal=Procedia+Computer+Science&amp;volume=60&amp;pages=1622%E2%80%931630&amp;doi=10.1016/j.procs.2015.08.272\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1016/j.procs.2015.08.272\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B38-preprints-98444\" class=\"html-xx\" data-content=\"38.\">Dou, Q.; Chen, H.; Jin, Y.; Yu, L.; Qin, J.; Heng, P.A. 3D deeply supervised network for automatic liver segmentation from CT volumes. 19th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, 2016, pp. 149–157. [\u003Ca href=\"https://doi.org/10.1007/978-3-319-46723-8_18\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B39-preprints-98444\" class=\"html-xx\" data-content=\"39.\">Hiraman, A. Liver segmentation using 3D CT scans. PhD thesis, University of Kwazulu-Natal, 2018.\u003C/li>\n\u003Cli id=\"B40-preprints-98444\" class=\"html-xx\" data-content=\"40.\">Wang, K.; Mamidipalli, A.; Retson, T.; Bahrami, N.; Hasenstab, K.; Blansit, K.; Bass, E.; Delgado, T.; Cunha, G.; Middleton, M.S.; others. Automated CT and MRI liver segmentation and biometry using a generalized convolutional neural network. \u003Cspan class=\"html-italic\">Radiology: Artificial Intelligence\u003C/span> \u003Cb>2019\u003C/b>, \u003Cspan class=\"html-italic\">1\u003C/span>, 180022. [\u003Ca href=\"https://doi.org/10.1148/ryai.2019180022\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B41-preprints-98444\" class=\"html-xx\" data-content=\"41.\">Almotairi, S.; Kareem, G.; Aouf, M.; Almutairi, B.; Salem, M.A.M. Liver tumor segmentation in CT scans using modified SegNet. \u003Cspan class=\"html-italic\">Sensors\u003C/span> \u003Cb>2020\u003C/b>, \u003Cspan class=\"html-italic\">20\u003C/span>, 1516. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Liver+tumor+segmentation+in+CT+scans+using+modified+SegNet&amp;author=Almotairi,+S.&amp;author=Kareem,+G.&amp;author=Aouf,+M.&amp;author=Almutairi,+B.&amp;author=Salem,+M.A.M.&amp;publication_year=2020&amp;journal=Sensors&amp;volume=20&amp;pages=1516&amp;doi=10.3390/s20051516\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.3390/s20051516\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B42-preprints-98444\" class=\"html-xx\" data-content=\"42.\">Soler, L.; Hostettler, A.; Agnus, V.; Charnoz, A.; Fasquel, J.; Moreau, J.; Osswald, A.; Bouhadjar, M.; Marescaux, J. 3D Image Reconstruction for Comparison of Algorithm Database: A Patient Specific Anatomical and Medical Image Database. Tech. rep, IRCAD, Strasbourg, France, 2010.\u003C/li>\n\u003Cli id=\"B43-preprints-98444\" class=\"html-xx\" data-content=\"43.\">Ayalew, Y.A.; Fante, K.A.; Mohammed, M.A. Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method. \u003Cspan class=\"html-italic\">BMC Biomedical Engineering\u003C/span> \u003Cb>2021\u003C/b>, \u003Cspan class=\"html-italic\">3\u003C/span>, 4. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Modified+U-Net+for+liver+cancer+segmentation+from+computed+tomography+images+with+a+new+class+balancing+method&amp;author=Ayalew,+Y.A.&amp;author=Fante,+K.A.&amp;author=Mohammed,+M.A.&amp;publication_year=2021&amp;journal=BMC+Biomedical+Engineering&amp;volume=3&amp;pages=4&amp;doi=10.1186/s42490-021-00050-y\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1186/s42490-021-00050-y\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B44-preprints-98444\" class=\"html-xx\" data-content=\"44.\">LiTS Challenge Dataset. \u003Ca href=\"https://competitions.codalab.org/competitions/17094\" target=\"_blank\">https://competitions.codalab.org/competitions/17094\u003C/a>. Accessed: Nov. 27, 2023.\u003C/li>\n\u003Cli id=\"B45-preprints-98444\" class=\"html-xx\" data-content=\"45.\">Scicluna, D. Automatic segmentation of healthy liver in abdominal computed tomography scans. Master’s thesis, University of Malta, 2022.\u003C/li>\n\u003Cli id=\"B46-preprints-98444\" class=\"html-xx\" data-content=\"46.\">Kavur, A.E.; Gezer, N.S.; Barış, M.; Aslan, S.; Conze, P.H.; Groza, V.; Pham, D.D.; Chatterjee, S.; Ernst, P.; Özkan, S.; Baydar, B.; Lachinov, D.; Han, S.; Pauli, J.; Isensee, F.; Perkonigg, M.; Sathish, R.; Rajan, R.; Sheet, D.; Dovletov, G.; Speck, O.; Nürnberger, A.; Maier-Hein, K.H.; Bozdağı Akar, G.; Ünal, G.; Dicle, O.; Selver, M.A. CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation. \u003Cspan class=\"html-italic\">Medical Image Analysis\u003C/span> \u003Cb>2021\u003C/b>, \u003Cspan class=\"html-italic\">69\u003C/span>, 101950. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=CHAOS+Challenge+-+combined+(CT-MR)+healthy+abdominal+organ+segmentation&amp;author=Kavur,+A.E.&amp;author=Gezer,+N.S.&amp;author=Bar%C4%B1%C5%9F,+M.&amp;author=Aslan,+S.&amp;author=Conze,+P.H.&amp;author=Groza,+V.&amp;author=Pham,+D.D.&amp;author=Chatterjee,+S.&amp;author=Ernst,+P.&amp;author=%C3%96zkan,+S.&amp;publication_year=2021&amp;journal=Medical+Image+Analysis&amp;volume=69&amp;pages=101950&amp;doi=10.1016/j.media.2020.101950&amp;pmid=33421920\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1016/j.media.2020.101950\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>] [\u003Ca href=\"https://www.ncbi.nlm.nih.gov/pubmed/33421920\" class=\"cross-ref pub_med\" data-typ=\"pmid\" target=\"_blank\" rel=\"noopener noreferrer\">PubMed\u003C/a>]\u003C/li>\n\u003Cli id=\"B47-preprints-98444\" class=\"html-xx\" data-content=\"47.\">Ezzat, K.A.; Omran, L.N.; El Seddawy, A.I.B. Automatic liver segmentation in computed tomography scans using deep semantic segmentation. \u003Cspan class=\"html-italic\">Bulletin of Electrical Engineering and Informatics\u003C/span> \u003Cb>2023\u003C/b>, \u003Cspan class=\"html-italic\">12\u003C/span>, 250–256. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Automatic+liver+segmentation+in+computed+tomography+scans+using+deep+semantic+segmentation&amp;author=Ezzat,+K.A.&amp;author=Omran,+L.N.&amp;author=El+Seddawy,+A.I.B.&amp;publication_year=2023&amp;journal=Bulletin+of+Electrical+Engineering+and+Informatics&amp;volume=12&amp;pages=250%E2%80%93256&amp;doi=10.11591/eei.v12i1.4022\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.11591/eei.v12i1.4022\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B48-preprints-98444\" class=\"html-xx\" data-content=\"48.\">Shao, J.; Luan, S.; Ding, Y.; Xue, X.; Zhu, B.; Wei, W. Attention Connect Network for Liver Tumor Segmentation from CT and MRI Images. \u003Cspan class=\"html-italic\">Technology in Cancer Research &amp; Treatment\u003C/span> \u003Cb>2024\u003C/b>, \u003Cspan class=\"html-italic\">23\u003C/span>, 15330338231219366. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Attention+Connect+Network+for+Liver+Tumor+Segmentation+from+CT+and+MRI+Images&amp;author=Shao,+J.&amp;author=Luan,+S.&amp;author=Ding,+Y.&amp;author=Xue,+X.&amp;author=Zhu,+B.&amp;author=Wei,+W.&amp;publication_year=2024&amp;journal=Technology+in+Cancer+Research+&amp;+Treatment&amp;volume=23&amp;pages=15330338231219366&amp;doi=10.1177/1533033823121936\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1177/1533033823121936\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B49-preprints-98444\" class=\"html-xx\" data-content=\"49.\">Maurício, J.; Domingues, I.; Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review. \u003Cspan class=\"html-italic\">Applied Sciences\u003C/span> \u003Cb>2023\u003C/b>, \u003Cspan class=\"html-italic\">13\u003C/span>. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Comparing+Vision+Transformers+and+Convolutional+Neural+Networks+for+Image+Classification:+A+Literature+Review&amp;author=Maur%C3%ADcio,+J.&amp;author=Domingues,+I.&amp;author=Bernardino,+J.&amp;publication_year=2023&amp;journal=Applied+Sciences&amp;volume=13&amp;doi=10.3390/app13095521\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.3390/app13095521\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B50-preprints-98444\" class=\"html-xx\" data-content=\"50.\">Priyadarsini, S.; Selvathi, D. Survey on segmentation of liver from CT images. IEEE international conference on advanced communication control and computing technologies (ICACCCT), 2012, pp. 234–238. [\u003Ca href=\"https://doi.org/10.1109/ICACCCT.2012.6320777\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B51-preprints-98444\" class=\"html-xx\" data-content=\"51.\">Mharib, A.M.; Ramli, A.R.; Mashohor, S.; Mahmood, R.B. Survey on liver CT image segmentation methods. \u003Cspan class=\"html-italic\">Artificial Intelligence Review\u003C/span> \u003Cb>2012\u003C/b>, \u003Cspan class=\"html-italic\">37\u003C/span>, 83–95. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Survey+on+liver+CT+image+segmentation+methods&amp;author=Mharib,+A.M.&amp;author=Ramli,+A.R.&amp;author=Mashohor,+S.&amp;author=Mahmood,+R.B.&amp;publication_year=2012&amp;journal=Artificial+Intelligence+Review&amp;volume=37&amp;pages=83%E2%80%9395&amp;doi=10.1007/s10462-011-9220-3\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1007/s10462-011-9220-3\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B52-preprints-98444\" class=\"html-xx\" data-content=\"52.\">Khan, F. Automated segmentation of CT liver images: a review. \u003Cspan class=\"html-italic\">Journal of Communications Technology, Electronics and Computer Science\u003C/span> \u003Cb>2018\u003C/b>, \u003Cspan class=\"html-italic\">19\u003C/span>, 5–9. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Automated+segmentation+of+CT+liver+images:+a+review&amp;author=Khan,+F.&amp;publication_year=2018&amp;journal=Journal+of+Communications+Technology,+Electronics+and+Computer+Science&amp;volume=19&amp;pages=5%E2%80%939\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>]\u003C/li>\n\u003Cli id=\"B53-preprints-98444\" class=\"html-xx\" data-content=\"53.\">Moghbel, M.; Mashohor, S.; Mahmud, R.; Saripan, M.I.B. Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography. \u003Cspan class=\"html-italic\">Artificial Intelligence Review\u003C/span> \u003Cb>2018\u003C/b>, \u003Cspan class=\"html-italic\">50\u003C/span>, 497–537. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Review+of+liver+segmentation+and+computer+assisted+detection/diagnosis+methods+in+computed+tomography&amp;author=Moghbel,+M.&amp;author=Mashohor,+S.&amp;author=Mahmud,+R.&amp;author=Saripan,+M.I.B.&amp;publication_year=2018&amp;journal=Artificial+Intelligence+Review&amp;volume=50&amp;pages=497%E2%80%93537&amp;doi=10.1007/s10462-017-9550-x\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1007/s10462-017-9550-x\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B54-preprints-98444\" class=\"html-xx\" data-content=\"54.\">Vanmore, S.V.; Chougule, S.R. Survey on automatic liver segmentation techniques from abdominal CT images. International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, 2019, pp. 1030–1035. [\u003Ca href=\"https://doi.org/10.1109/ICCS45141.2019.9065850\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B55-preprints-98444\" class=\"html-xx\" data-content=\"55.\">Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. \u003Cspan class=\"html-italic\">Advances in neural information processing systems\u003C/span> \u003Cb>2012\u003C/b>, \u003Cspan class=\"html-italic\">25\u003C/span>. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Imagenet+classification+with+deep+convolutional+neural+networks&amp;author=Krizhevsky,+A.&amp;author=Sutskever,+I.&amp;author=Hinton,+G.E.&amp;publication_year=2012&amp;journal=Advances+in+neural+information+processing+systems&amp;volume=25&amp;doi=10.1145/3065386\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1145/3065386\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B56-preprints-98444\" class=\"html-xx\" data-content=\"56.\">Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.C.; Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge. \u003Cspan class=\"html-italic\">International Journal of Computer Vision (IJCV)\u003C/span> \u003Cb>2015\u003C/b>, \u003Cspan class=\"html-italic\">115\u003C/span>, 211–252. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=ImageNet+Large+Scale+Visual+Recognition+Challenge&amp;author=Russakovsky,+O.&amp;author=Deng,+J.&amp;author=Su,+H.&amp;author=Krause,+J.&amp;author=Satheesh,+S.&amp;author=Ma,+S.&amp;author=Huang,+Z.&amp;author=Karpathy,+A.&amp;author=Khosla,+A.&amp;author=Bernstein,+M.&amp;publication_year=2015&amp;journal=International+Journal+of+Computer+Vision+(IJCV)&amp;volume=115&amp;pages=211%E2%80%93252&amp;doi=10.1007/s11263-015-0816-y\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.1007/s11263-015-0816-y\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B57-preprints-98444\" class=\"html-xx\" data-content=\"57.\">Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. \u003Cspan class=\"html-italic\">CoRR\u003C/span> \u003Cb>2015\u003C/b>, \u003Cspan class=\"html-italic\">abs/1505.04597\u003C/span>, [1505.04597].\u003C/li>\n\u003Cli id=\"B58-preprints-98444\" class=\"html-xx\" data-content=\"58.\">Al-Saeed, Y.; Gab-Allah, W.; Elmogy, M. Hepatic tumors diagnosis system based on fuzzy c-means using computed tomography images. \u003Cspan class=\"html-italic\">Research Square Preprint\u003C/span> \u003Cb>2022\u003C/b>. [\u003Ca href=\"https://scholar.google.com/scholar_lookup?title=Hepatic+tumors+diagnosis+system+based+on+fuzzy+c-means+using+computed+tomography+images&amp;author=Al-Saeed,+Y.&amp;author=Gab-Allah,+W.&amp;author=Elmogy,+M.&amp;publication_year=2022&amp;journal=Research+Square+Preprint&amp;doi=10.21203/rs.3.rs-1746728/v1\" class=\"google-scholar\" target=\"_blank\" rel=\"noopener noreferrer\">Google Scholar\u003C/a>] [\u003Ca href=\"https://doi.org/10.21203/rs.3.rs-1746728/v1\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B59-preprints-98444\" class=\"html-xx\" data-content=\"59.\">MICCAI-Sliver07. \u003Ca href=\"https://sliver07.grand-challenge.org/\" target=\"_blank\">https://sliver07.grand-challenge.org/\u003C/a>. Accessed: Nov. 27, 2023.\u003C/li>\n\u003C/ol>\u003C/section>\u003Csection id=\"Figures\" type=\"display-objects\">\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-98444-f001\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-98444-f001\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png\" alt=\"Preprints 98444 g001\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-98444-f001\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 1.\u003C/b>\n Distribution of the retrieved papers over the years\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-98444-f001\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-98444-f001\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 1.\u003C/b>\n Distribution of the retrieved papers over the years\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png\" alt=\"Preprints 98444 g001\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g001.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-98444-f002\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-98444-f002\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png\" alt=\"Preprints 98444 g002\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-98444-f002\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 2.\u003C/b>\n Characterisation of the selected papers\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-98444-f002\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-98444-f002\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 2.\u003C/b>\n Characterisation of the selected papers\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png\" alt=\"Preprints 98444 g002\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g002.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-98444-f003\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-98444-f003\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png\" alt=\"Preprints 98444 g003\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-98444-f003\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 3.\u003C/b>\n Selected papers distribution according to the categories of image segmentation techniques\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-98444-f003\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-98444-f003\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 3.\u003C/b>\n Selected papers distribution according to the categories of image segmentation techniques\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png\" alt=\"Preprints 98444 g003\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/2e2fbf3a5f42007e47ed45e1d6b0ce24/preprints-98444-g003.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-98444-t001\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-98444-t001\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-98444-t001\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 1.\u003C/b>\n Summary of reviewed documents.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-98444-t001\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 1.\u003C/b>\n Summary of reviewed documents.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Authors\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Year\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Segmentation Category\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Method\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Autom. Level\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Dim.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Database\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Results\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Bae \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">1993\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Threshold\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Gray-level Thresholding\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Semi\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">0.985 DSC with mean percent error within 10%.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Gao \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">1996\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Edge\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Parametrically deformable contour model\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">13.2% of the results required user modifications.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Soler \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">1997\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Region\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Deformable models\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Claimed to be comparable to manual segmentations.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Yoo \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2000\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Threshold\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Threshold\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3.41% error.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Pan and Dawant\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2001\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Edge\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Level sets\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Both\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">[0.874,0.963] average similarities.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Saitoh \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2002\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Threshold\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Threshold\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">∼20 minutes computation time.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Masumoto \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2003\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Region\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Differences between time-phase images\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">67% Volume ratio average; 32% in the worst cases.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Lim \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2004\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Region\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Watershed\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Only qualitative.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Liu \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2005\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Edge\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">GVF snake\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Semi\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">5.3% median value of the difference ratios.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Lim \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2006\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Semantic\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Labeling-based search\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">96% average correctness; 3% average error rate.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Beichel \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2007\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Region\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Graph cuts\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Semi\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">5.2% average overlap error.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Massoptier and Casciaro\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2008\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Edge\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Active contour\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">94.2% mean DSC.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Heimann \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2009\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Several\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Majority Voting\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Both\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Both\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">5% Overlap error; -0.7 Volume difference; 0.8 Average Distance; 1.7 RMS distance; 19.1 Max Distance.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Akram \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2010\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Threshold\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Global Threshold\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">0.96 Average accuracy; 0.0017 std; 96% Accurately Segmented; 4% Poorly Segmented.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Oliveira \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2011\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Edge\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Level sets\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Semi\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">SLiver07\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">82.05 overall score.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Linguraru \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2012\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Region\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Graph cuts\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private; SLiver07\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2.2 VOE.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Li \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2013\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Edge\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fuzzy clust. and level set\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">0.9986 average accuracy; 0.9989 average specificity.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Platero \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2014\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Region\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Graph cuts\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Semi\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">SLiver07\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">76.3 maximum score; 0.973 DSC.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Mostafa \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2015\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Cluster\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">ABC optimization\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">93.73% accuracy; 84.82% average SI.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Dou \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2016\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">NN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D DSN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">SLiver07\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">5.42% VOE; 0.79mm ASD.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Christ \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2017\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">NN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">CFCN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3Dircadb\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">94.3% mean DSC.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Hiraman\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2018\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">NN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">CNN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">SLiver07\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">12.07% average VOE; -1.96% RVD; 2.25mm ASD; 2.60mm RMSD; 43.01mm MSSD.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Wang \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2019\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">NN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">CNN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">0.94 ± 0.06 DSC.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Almotairi \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2020\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">NN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">SegNet\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D-IRCADb01\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">94.57% overall accuracy.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Ayalew \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2021\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">NN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">U-Net\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D-IRCADb01; LiTS\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">0.9612 DSC.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Scicluna\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2022\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">NN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">UNet; VGG16UNetC\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">CHAOS\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">85.84 mean score; 97.85 DSC; 80.33 RAVD; 94.80 ASD; 70.38 MSSD.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Ezzat \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2023\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">NN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">CNN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">98.80% accuracy.\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">Shao \u003Cspan class=\"html-italic\">et al\u003C/span>.\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">2024\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">NN\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">AC-Net\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">Fully\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">3D\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">LiTS; Private\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">0.90 DSC; 0.82 JC; 0.92 recall; 0.89 precision; 11.96 HD; 4.59 ASD.\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\u003Cdiv class=\"html-table_foot html-p\">\n\u003Cdiv class=\"html-p\" style=\"text-indent:0em;\">\u003Cspan class=\"html-fn-content\">ABC: Artificial Bee Colony  AC-Net: Attention Connect Network  ASD: Average Symmetric Surface Distance  CFCN: Cascaded fully CNN  CNN: Convolutional Neuronal Network  DSC: Dice Similarity Coefficient  DSN: Deeply Supervised Network  GVF: Gradient Vector Flow  HD: Hausdorff Distance  JC: Jaccard Coefficient  MSSD: Maximum Symmetric Surface Distance  NN: Neuronal Network  r: Correlation Coefficient  RAVD: Relative Absolute Volume Difference  RMS: Root Mean Square  RMSD: Root Mean Square Symmetric Surface Distance  RVD: Relative Volume Difference  SI: Similarity Index  std: standard deviation  VOE: Volumetric Overlap Error\u003C/span>\u003C/div>\n\u003Cdiv style=\"clear:both;\">\u003C/div>\n\u003C/div>\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-98444-t002\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-98444-t002\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-98444-t002\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 2.\u003C/b>\n Characteristics of each dataset used by the main studies analysed (based in [\u003Ca href=\"#B58-preprints-98444\" class=\"html-bibr\">58\u003C/a>]).\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-98444-t002\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 2.\u003C/b>\n Characteristics of each dataset used by the main studies analysed (based in [\u003Ca href=\"#B58-preprints-98444\" class=\"html-bibr\">58\u003C/a>]).\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Dataset\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Date\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Format\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Number of subjects\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Slices per subject\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin;border-top:solid thin\" class=\"html-align-left\">Resolution\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">MICCAI-SLiver07&nbsp;[\u003Ca href=\"#B59-preprints-98444\" class=\"html-bibr\">59\u003C/a>]\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2007\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">RAW\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">30\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">74 to 260\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">512x512\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">3D-IRCADb01&nbsp;[\u003Ca href=\"#B42-preprints-98444\" class=\"html-bibr\">42\u003C/a>]\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">2010\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">DICOM\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">20\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">74 to 260\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">512x512\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">LiTS17&nbsp;[\u003Ca href=\"#B44-preprints-98444\" class=\"html-bibr\">44\u003C/a>]\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">2017\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">RAW\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">200\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">42 to 1024\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">Variable\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003C/section>\u003Csection class=\"html-fn_group\">\u003Ctable>\u003Ctr id>\n\u003Ctd>\u003C/td>\n\u003Ctd>\u003Cdiv class=\"html-p\">\n\u003Cb>Disclaimer/Publisher’s Note:\u003C/b> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.\u003C/div>\u003C/td>\n\u003C/tr>\u003C/table>\u003C/section>\n \u003Csection id=\"html-copyright\">\u003Cbr>© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (\u003Ca href=\"http://creativecommons.org/licenses/by/4.0/\" target=\"_blank\">http://creativecommons.org/licenses/by/4.0/\u003C/a>).\u003C/section>\n ",[183],{"version":7,"hash_key":127,"id":126,"change":50},"Niño, S. B.; Bernardino, J.; Domingues, I. Algorithms for Liver Segmentation in Computed Tomography Scans: A Historical Perspective. \u003Cem>Preprints\u003C/em> \u003Cb>2024\u003C/b>, 2024020464. https://doi.org/10.20944/preprints202402.0464.v1","Niño, S.B.; Bernardino, J.; Domingues, I. Algorithms for Liver Segmentation in Computed Tomography Scans: A Historical Perspective. \u003Cem>Sensors\u003C/em> \u003Cb>2024\u003C/b>, \u003Cem>24\u003C/em>, 1752.",[],[],{"code":41,"msg":42,"data":189},[190,194],{"id":7,"name":191,"image":192,"url":193,"statistic_type":7},"Author Services","https://www.preprints.org/media/cache/resolve/webp/upload/banner/2024-10-30/c8ecd3b8b0ebf1abcd96d37f5ee4a609.jpeg","https://www.mdpi.com/authors/english?utm_source=preprintsweb&utm_medium=banner&utm_campaign=AS_High-quality",{"id":195,"name":196,"image":197,"url":198,"statistic_type":50},3,"award","https://www.preprints.org/media/cache/resolve/webp/upload/banner/2024-10-30/58bbc3b8f7c90f2eab7ce32d00691421.jpeg","https://www.preprints.org/activity/award/announcement?utm_source=ArticlePage&utm_medium=Banner&utm_campaign=award",{"code":41,"msg":42,"data":200},[201,229,242,252,280,292,317,336,346,374],{"doi":202,"title":203,"url":204,"authors":205,"published_at":227,"journal_name":50,"click_trigger_url_hash":228},"10.20944/preprints202308.0888.v1","Optimizing Inference Distribution for Efficient Kidney Tumor Segmentation using a UNet-PWP Deep Learning Model on CT Scan Images","https://doi.org/10.20944/preprints202308.0888.v1",[206,209,212,215,218,221,224],{"name":207,"email":208},"Patike Kiran Rao","kiranraocse@gpcet.ac.in",{"name":210,"email":211},"Dr Subarna Chatterjee","hodai@recw.ac.in",{"name":213,"email":214},"Dr M Janardhan","m.janardhan0105@gmail.com",{"name":216,"email":217},"Dr Nagaraju K","knagaraju@iiitk.ac.in",{"name":219,"email":220},"Dr. Surbhi Bhatia Khan","surbhibhatia1988@yahoo.com",{"name":222,"email":223},"Dr. Ahlam Almusharraf","aalmusharraf@pnu.edu.sa",{"name":225,"email":226},"Abdullah I Alharbe","amalhare@kau.edu.sa","2023-08-11","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfplZyw-4WOsrxXq96Fkhgwpe8E1av1ol-82me-eoxRof892JNyPzPUOblF8jLznsxw",{"doi":230,"title":231,"url":232,"authors":233,"published_at":240,"journal_name":50,"click_trigger_url_hash":241},"10.20944/preprints202401.0042.v1","Advanced Medical Image Segmentation Enhancement: A Particle Swarm Optimization-Based Histogram Equalization Approach","https://doi.org/10.20944/preprints202401.0042.v1",[234,237],{"name":235,"email":236},"Shoffan Saifullah","shoffans@upnyk.ac.id",{"name":238,"email":239},"Rafał Dreżewski","drezew@agh.edu.pl","2024-01-02","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfm3SJwVXvl4dSypQCmeWvpCbc0FhDWGWhB90BEDG8LetvtYvxoh1-htWi5KGIGEs1g",{"doi":243,"title":244,"url":245,"authors":246,"published_at":250,"journal_name":50,"click_trigger_url_hash":251},"10.20944/preprints202011.0023.v1","Investigation of Loss Functions for Improving Deep Segmentation of Abdominal Organs from MRI","https://doi.org/10.20944/preprints202011.0023.v1",[247],{"name":248,"email":249},"Pedro Furtado","pnf@dei.uc.pt","2020-11-02","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfvOsk6l1w32ehGjvD-cua2kVogFsGXh5fEXQlYYlDwOyo7zR_bak1Ob6_7MVZxTfqA",{"doi":253,"title":254,"url":255,"authors":256,"published_at":278,"journal_name":50,"click_trigger_url_hash":279},"10.20944/preprints202308.2164.v1","Differentiation of Hepatocellular Carcinoma from Intrahepatic Cholangiocarcinoma through MRI Radiomics","https://doi.org/10.20944/preprints202308.2164.v1",[257,260,263,266,269,272,275],{"name":258,"email":259},"Ning Liu","15082765186@163.com",{"name":261,"email":262},"Yao-Kun Wu","yaokunwu777@163.com",{"name":264,"email":265},"Yun-Yun Tao","yunyuntao@163.com",{"name":267,"email":268},"Jing Zheng","15082793282@163.com",{"name":270,"email":271},"Xiao-Hua Huang","harold1966@126.com",{"name":273,"email":274},"Lin Yang","linyangmd@163.com",{"name":276,"email":277},"Xiao-Ming Zhang","zhangxm@nsmc.edu.cn","2023-08-31","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfoBhap04YPkh-qoD2R5hVRYFq49TkSHO-D5eUmtxQ2w7T9fLJh8ogdC4s9gz65JF1A",{"doi":50,"title":281,"url":282,"authors":283,"published_at":290,"journal_name":50,"click_trigger_url_hash":291},"The Active Segmentation Platform for Microscopic Image Classification and Segmentation","https://doi.org/",[284,287],{"name":285,"email":286},"Sumit Vohra","sumit.3203@gmail.com",{"name":288,"email":289},"Dimiter Prodanov","dimiter.prodanov@imec.be","2021-07-05","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfgAXcjEo4bu5vIMl3k2o1jaaSIrxA7TdEazPhmMjvfmo7YDvu1roxsvvCEBPjPI9eA",{"doi":293,"title":294,"url":295,"authors":296,"published_at":315,"journal_name":50,"click_trigger_url_hash":316},"10.20944/preprints202112.0001.v1","Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography","https://doi.org/10.20944/preprints202112.0001.v1",[297,300,303,306,309,312],{"name":298,"email":299},"Natália Alves","natalia.alves@radboudumc.nl",{"name":301,"email":302},"Megan Schuurmans","megan.schuurmans@radboudumc.nl",{"name":304,"email":305},"Geke Litjens","g.litjens@radboudumc.nl",{"name":307,"email":308},"Joeran S. Bosma","joeran.bosma@radboudumc.nl",{"name":310,"email":311},"John Hermans","john.hermans@radboudumc.nl",{"name":313,"email":314},"Henkjan Huisman","henkjan.huisman@radboudumc.nl","2021-12-01","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfuFS-656cgC7Hgm6YcXW7kjrsoWxkeGGmTMDv6mx_CkbAQwH333lkTGYZFChXSb_UQ",{"doi":318,"title":319,"url":320,"authors":321,"published_at":334,"journal_name":50,"click_trigger_url_hash":335},"10.20944/preprints202310.1378.v1","Impact of Voxel Normalization on Machine Learning-Based Method: A Study on Pulmonary Nodule Malignancy Diagnosis Using Low-Dose Computed Tomography (LDCT)","https://doi.org/10.20944/preprints202310.1378.v1",[322,325,328,331],{"name":323,"email":324},"Chia-Chi Hsiao","vghkscchsiao1@gmail.com",{"name":326,"email":327},"Chen-Hao Peng","112202701@365.cmu.edu.tw",{"name":329,"email":330},"Fu-Zong Wu","cmvwu1029@gmail.com",{"name":332,"email":333},"Da-Chuan Cheng","dccheng@mail.cmu.edu.tw","2023-10-23","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPflZ9-4fZF2Q0Suxy_jYIdmKAcPLgoW_YPDwXdso1bjJl_0XIdmGtDaSn4wqVk2igWQ",{"doi":337,"title":338,"url":339,"authors":340,"published_at":344,"journal_name":50,"click_trigger_url_hash":345},"10.20944/preprints201904.0069.v1","3-D Segmentation of Lung Nodules Using Hybrid Levelsets","https://doi.org/10.20944/preprints201904.0069.v1",[341],{"name":342,"email":343},"Hina Shakir","hinashakir.bukc@bahria.edu.pk","2019-04-05","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPftymTanuDoZlIP3avb5vIpe8tVol1YeviiW4kWFPOOufq-NEvgMz3yMpnMtVB_LVEg",{"doi":347,"title":348,"url":349,"authors":350,"published_at":372,"journal_name":50,"click_trigger_url_hash":373},"10.20944/preprints201909.0139.v1","Lungs Nodule Detection Using Semantic Segmentation and Classification with Optimal Features","https://doi.org/10.20944/preprints201909.0139.v1",[351,354,357,360,363,366,369],{"name":352,"email":353},"Talha Meraj","talhameraj32@gmail.com",{"name":355,"email":356},"Arslan Hassan","arslanwarraich223@gmail.com",{"name":358,"email":359},"Saliha Zahoor","saliha.zahoor@uog.edu.pk",{"name":361,"email":362},"Hafiz Tayyab Rauf","hafiztayyabrauf093@gmail.com",{"name":364,"email":365},"M.IkramUllah Lali","ikramullah@uog.edu.pk",{"name":367,"email":368},"Liaqat Ali","engr_liaqat183@yahoo.com",{"name":370,"email":371},"Syed Ahmad Chan Bukhari","bukharis@stjohns.edu","2019-09-14","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfjMkuIxA9BwuZmgN_U7Z1gbn6qcvKEPzV3l4i6zf_vvaP3Kmpw9kW0_ZpYVpxaNvYQ",{"doi":375,"title":376,"url":377,"authors":378,"published_at":389,"journal_name":50,"click_trigger_url_hash":390},"10.20944/preprints202306.1576.v1","Skeleton Segmentation on Bone Scintigraphy for BSI Computation","https://doi.org/10.20944/preprints202306.1576.v1",[379,382,385,388],{"name":380,"email":381},"Po-Nien Yu","lu09200016@gmail.com",{"name":383,"email":384},"Yung-Chi Lai","daniellai999@hotmail.com",{"name":386,"email":387},"Yi-You Chen","nses123789@gmail.com",{"name":332,"email":333},"2023-06-21","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPflnhNOCQh99ZFQmm6m61rEMfxXWOl7CjwQNjoMbtKMb-oXmqDEBL1wyGjMa1Nk6ntQ",{"code":41,"msg":42,"data":392},{"rows":393,"total":41},[],["Reactive",395],{"$scookieConsent":396,"$stoast-ui":397,"$ssite-config":399},{"necessary":6,"functional":132,"statistic":132,"marketing":132,"unclassified":132},{"showToast":132,"toastMessage":147,"toastVariant":398},"neutral",{"env":400,"name":401,"url":402},"production","nuxt-app","http://frontend.preprints.org/",["Set"],["ShallowReactive",405],{"AsqQqtz0uo":50,"mgOlEjP40X":50,"Ya7hZzqdE7":50,"2FDnLNqt81":50,"JoG0wWOyMK":50,"omFsPcywFl":50},"/manuscript/202402.0464/v1",["Reactive",408],{"auth":409,"share-modal":411,"useHeader":412},{"userInfo":410,"isLogin":132},{},{"isShareModalOpen":132,"item":50},{"height":41}]</script> <script>window.__NUXT__={};window.__NUXT__.config={public:{turnstile:{siteKey:"0x4AAAAAAAeRafIKjAzYS6R5"},strapiUrl:"",blog:"https://preprintsblog.wordpress.sciforum.net",envData:{USER:"www-data",SSH_CLIENT:"10.10.0.129 56114 22",npm_config_user_agent:"npm/8.19.2 node/v18.10.0 linux x64 workspaces/false",npm_node_execpath:"/usr/local/node/bin/node",CURRENT_USER:"weijun.yu@mdpi.com",SHLVL:"2",npm_config_noproxy:"",MOTD_SHOWN:"pam",HOME:"/home/www",OLDPWD:"/home/www",npm_package_json:"/var/www/sciprints.net-frontend/package.json",npm_config_userconfig:"/home/www/.npmrc",npm_config_local_prefix:"/var/www/sciprints.net-frontend",COLOR:"0",npm_config_metrics_registry:"https://registry.npmjs.org/",LOGNAME:"www-data",_:"/usr/bin/npm",npm_config_prefix:"/usr/local/node",npm_config_cache:"/home/www/.npm",npm_config_node_gyp:"/usr/local/node/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js",PATH:"/var/www/sciprints.net-frontend/node_modules/.bin:/var/www/node_modules/.bin:/var/node_modules/.bin:/node_modules/.bin:/usr/local/node/lib/node_modules/npm/node_modules/@npmcli/run-script/lib/node-gyp-bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin",NODE:"/usr/local/node/bin/node",npm_package_name:"nuxt-app",LANG:"en_US.UTF-8",PACFILE:".pac/config-prod.sh",npm_lifecycle_script:"nuxt build --logLevel=silent",SHELL:"/bin/bash",npm_lifecycle_event:"build",npm_config_globalconfig:"/usr/local/node/etc/npmrc",npm_config_init_module:"/home/www/.npm-init.js",PWD:"/var/www/sciprints.net-frontend",npm_execpath:"/usr/local/node/lib/node_modules/npm/bin/npm-cli.js",SSH_CONNECTION:"10.10.0.129 56114 10.1.0.124 22",npm_config_global_prefix:"/usr/local/node",npm_command:"run-script",INIT_CWD:"/var/www/sciprints.net-frontend",EDITOR:"vi",NODE_ENV:"production",NUXT_USING_SSR:"true",NUXT_APP_URL:"https://www.preprints.org",NUXT_LOGIN_URL:"/login",NUXT_IDP_URL:"https://login.mdpi.com",NUXT_FIREBASE_API_KEY:"AIzaSyAyKu1mWkkTnfv7HtCQcptOymDZ1w4Jzy0",NUXT_FIREBASE_AUTH_DOMAIN:"preprints-b6f4b.firebaseapp.com",NUXT_FIREBASE_PROJECT_ID:"preprints-b6f4b",NUXT_FIREBASE_STORAGE_BUCKET:"preprints-b6f4b.appspot.com",NUXT_FIREBASE_MESSAGING_SENDER_ID:"369406057228",NUXT_FIREBASE_APP_ID:"1:369406057228:web:4be3e02b94bc45be260729",NUXT_PUBLIC_TURNSTILE_SITE_KEY:"0x4AAAAAAAeRafIKjAzYS6R5",NUXT_PUBLIC_BLOG:"https://preprintsblog.wordpress.sciforum.net",NUXT_BLOG_USER:"lloyd.shu@mdpi.com",NUXT_BLOG_TOKEN:"B0K6 kfJs bPsY gVWZ ELn2 J6yw",NUXT_PUBLIC_SENTRY_DSN:"https://4594052328229da018023f50bcd17eb8@o4506621248798720.ingest.us.sentry.io/4508131538960384",NUXT_PUBLIC_SENTRY_ENVIRONMENT:"production"},gtm:{devtools:true,id:"GTM-NX2CT4D"},sentry:{dsn:"https://4594052328229da018023f50bcd17eb8@o4506621248798720.ingest.us.sentry.io/4508131538960384",environment:"production"},nuxtHighcharts:{pluginOptions:{},hcMods:["accessibility","annotations-advanced","annotations","arc-diagram","arrow-symbols","boost-canvas","boost","broken-axis","bullet","coloraxis","current-date-indicator","cylinder","data-tools","data","datagrouping","debugger","dependency-wheel","dotplot","drag-panes","draggable-points","drilldown","dumbbell","export-data","exporting","flowmap","full-screen","funnel","funnel3d","gantt","geoheatmap","grid-axis","heatmap","heikinashi","histogram-bellcurve","hollowcandlestick","item-series","lollipop","map","marker-clusters","mouse-wheel-zoom","navigator","networkgraph","no-data-to-display","offline-exporting","organization","overlapping-datalabels","parallel-coordinates","pareto","pathfinder","pattern-fill","pictorial","price-indicator","pyramid3d","sankey","series-label","series-on-point","solid-gauge","sonification","static-scale","stock-tools","stock","streamgraph","sunburst","tiledwebmap","tilemap","timeline","treegraph","treegrid","treemap","variable-pie","variwide","vector","venn","windbarb","wordcloud","xrange"]},cookieConsent:{consentMode:true,consentModeDefaults:true,provider:"cookiebot",init:true,dev:false,scripts:{necessary:[],functional:[],statistic:[],marketing:[],unclassified:[]},cbid:"6b5b25c6-89f0-4619-834a-8af9d1157dc1"},strapi:{url:"http://localhost:1337",prefix:"/api",admin:"/admin",version:"v4",cookie:{},auth:{},cookieName:"strapi_jwt",devtools:false}},app:{baseURL:"/",buildId:"665f035c-6c69-41d6-996d-1cf3ec9234e7",buildAssetsDir:"/_nuxt/",cdnURL:""}}</script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10