CINXE.COM

Search results for: Zhuang He

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Zhuang He</title> <meta name="description" content="Search results for: Zhuang He"> <meta name="keywords" content="Zhuang He"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Zhuang He" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Zhuang He"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Zhuang He</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesheng%20Wang">Hesheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoyu%20Wang"> Haoyu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chungang%20Zhuang"> Chungang Zhuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pose%20estimation" title="pose estimation">pose estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud" title=" point cloud"> point cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=bin-picking" title=" bin-picking"> bin-picking</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20computer%20vision" title=" 3D computer vision"> 3D computer vision</a> </p> <a href="https://publications.waset.org/abstracts/132349/deep-learning-based-6d-pose-estimation-for-bin-picking-using-3d-point-clouds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Estimation of Stress Intensity Factors from near Crack Tip Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20He">Zhuang He</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Kotousov"> Andrei Kotousov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All current experimental methods for determination of stress intensity factors are based on the assumption that the state of stress near the crack tip is plane stress. Therefore, these methods rely on strain and displacement measurements made outside the near crack tip region affected by the three-dimensional effects or by process zone. In this paper, we develop and validate an experimental procedure for the evaluation of stress intensity factors from the measurements of the out-of-plane displacements in the surface area controlled by 3D effects. The evaluation of stress intensity factors is possible when the process zone is sufficiently small, and the displacement field generated by the 3D effects is fully encapsulated by K-dominance region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factors" title=" stress intensity factors"> stress intensity factors</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20effects" title=" three-dimensional effects"> three-dimensional effects</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20displacement" title=" transverse displacement"> transverse displacement</a> </p> <a href="https://publications.waset.org/abstracts/32294/estimation-of-stress-intensity-factors-from-near-crack-tip-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Formal Verification of Cache System Using a Novel Cache Memory Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guowei%20Hou">Guowei Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Yu"> Lixin Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhuang"> Wei Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Qin"> Hui Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xue%20Yang"> Xue Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cache%20system" title="cache system">cache system</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20verification" title=" formal verification"> formal verification</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20model" title=" novel model"> novel model</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20on%20chip%20%28SoC%29" title=" system on chip (SoC)"> system on chip (SoC)</a> </p> <a href="https://publications.waset.org/abstracts/26581/formal-verification-of-cache-system-using-a-novel-cache-memory-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee-Ting%20Lee">Yee-Ting Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Rong%20Zhuang"> Jyun-Rong Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Hsin%20Hsieh"> Wen-Hsin Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Shik%20Yang"> An-Shik Yang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS<sup>&reg;</sup> (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20pool%20dimensions" title=" molten pool dimensions"> molten pool dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a> </p> <a href="https://publications.waset.org/abstracts/66793/fem-simulations-to-study-the-effects-of-laser-power-and-scan-speed-on-molten-pool-size-in-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Disease Characteristics of Neurofibromatosis Type II and Cochlear Implantation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boxiang%20Zhuang">Boxiang Zhuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analyzes the clinical manifestations, hearing rehabilitation methods and outcomes of a complex case of neurofibromatosis type II (NF2). Methods: The clinical manifestations, medical history, clinical data, surgical methods and postoperative hearing rehabilitation outcomes of an NF2 patient were analyzed to determine the hearing reconstruction method and postoperative effect for a special type of NF2 acoustic neuroma. Results: The patient had bilateral acoustic neuromas with profound sensorineural hearing loss in both ears. Peripheral blood genetic testing did not reveal pathogenic gene mutations, suggesting mosaicism. The patient had an intracochlear schwannoma in the right ear and severely impaired vision in both eyes. Cochlear implantation with tumor retention was performed in the right ear. After 2 months of family-based auditory and speech rehabilitation, the Categories of Auditory Performance (CAP) score improved from 0 to 5. Conclusion: NF2 has complex clinical manifestations and poor prognosis. For NF2 patients with intracochlear tumors, cochlear implantation with tumor retention can be used to reconstruct hearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NF2" title="NF2">NF2</a>, <a href="https://publications.waset.org/abstracts/search?q=intracochlear%20schwannoma" title=" intracochlear schwannoma"> intracochlear schwannoma</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20reconstruction" title=" hearing reconstruction"> hearing reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=cochlear%20implantation" title=" cochlear implantation"> cochlear implantation</a> </p> <a href="https://publications.waset.org/abstracts/192539/disease-characteristics-of-neurofibromatosis-type-ii-and-cochlear-implantation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Seismic Performance of Micropiles in Sand with Predrilled Oversized Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cui%20Fu">Cui Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Zhou%20Zhuang"> Yi-Zhou Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Zhi%20Wang"> Sheng-Zhi Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Full scale tests of six micropiles with different predrilled-hole parameters under low frequency cyclic lateral loading in-sand were carried out using the MTS hydraulic loading system to analyze the seismic performance of micropiles. Hysteresis curves, skeleton curves, energy dissipation capacity and ductility of micropiles were investigated. The experimental results show the hysteresis curves appear like plump bows in the elastic–plastic stage and failure stage which exhibit good hysteretic characteristics without pinching phenomena and good energy dissipating capacities. The ductility coefficient varies from 2.51 to 3.54 and the depth and loose backfill of oversized holes can improve ductility, but the diameter of predrilled-hole has a limited effect on enhancing its ductility. These findings and conclusions could make contribution to the practical application of the semi-integral abutment bridges and provide a reference for the predrilled oversized hole technology in integral abutment bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility" title="ductility">ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation%20capacity" title=" energy dissipation capacity"> energy dissipation capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=micropile%20with%20predrilled%20oversized%20hole" title=" micropile with predrilled oversized hole"> micropile with predrilled oversized hole</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-integral%20abutment%20bridge" title=" semi-integral abutment bridge"> semi-integral abutment bridge</a> </p> <a href="https://publications.waset.org/abstracts/47731/seismic-performance-of-micropiles-in-sand-with-predrilled-oversized-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renjie%20Liu">Renjie Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junshuai%20Xue"> Junshuai Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Yao"> Jiajia Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanlin%20Wu"> Guanlin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zumao%20L"> Zumao L</a>, <a href="https://publications.waset.org/abstracts/search?q=Xueyan%20Yang"> Xueyan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Liu"> Fang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20Guo"> Zhuang Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN%20bipolar%20resonant%20tunneling%20diode" title="GaN bipolar resonant tunneling diode">GaN bipolar resonant tunneling diode</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20negative%20differential%20resistance%20regions" title=" double negative differential resistance regions"> double negative differential resistance regions</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20to%20valley%20current%20ratio" title=" peak to valley current ratio"> peak to valley current ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-valued%20logic" title=" multi-valued logic"> multi-valued logic</a> </p> <a href="https://publications.waset.org/abstracts/166147/double-negative-differential-resistance-features-in-gan-based-bipolar-resonance-tunneling-diodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Creation of Greater Mekong Subregion Regional Competitiveness through Cluster Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danuvasin%20Charoen">Danuvasin Charoen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates cluster development in the area called the Greater Mekong Subregion (GMS), which consists of Thailand, the People&rsquo;s Republic of China (PRC), the Yunnan Province and Guangxi Zhuang Autonomous Region, Myanmar, the Lao People&rsquo;s Democratic Republic (Lao PDR), Cambodia, and Vietnam. The study utilized Porter&rsquo;s competitiveness theory and the cluster mapping approach to analyze the competitiveness of the region. The data collection consists of interviews, focus groups, and the analysis of secondary data. The findings identify some evidence of cluster development in the GMS; however, there is no clear indication of collaboration among the components in the clusters. GMS clusters tend to be stand-alone. The clusters in Vietnam, Lao PDR, Myanmar, and Cambodia tend to be labor intensive, whereas the clusters in Thailand and the PRC (Yunnan) have the potential to successfully develop into innovative clusters. The collaboration and integration among the clusters in the GMS area are promising, though it could take a long time. The most likely relationship between the GMS countries could be, for example, suppliers of the low-end, labor-intensive products will be located in the low income countries such as Myanmar, Lao PDR, and Cambodia, and these countries will be providing input materials for innovative clusters in the middle income countries such as Thailand and the PRC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster" title="cluster">cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=GMS" title=" GMS"> GMS</a>, <a href="https://publications.waset.org/abstracts/search?q=competitiveness" title=" competitiveness"> competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/55430/creation-of-greater-mekong-subregion-regional-competitiveness-through-cluster-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20Hou">Zhuang Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolei%20Cao"> Xiaolei Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20photoplethysmography" title="remote photoplethysmography">remote photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20saturation" title=" oxygen saturation"> oxygen saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=contactless%20measurement" title=" contactless measurement"> contactless measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=mini%20program" title=" mini program"> mini program</a> </p> <a href="https://publications.waset.org/abstracts/149992/introduction-of-integrated-image-deep-learning-solution-and-how-it-brought-laboratorial-level-heart-rate-and-blood-oxygen-results-to-everyone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20Guo">Zhuang Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN-based%20resonant%20tunneling%20diodes" title="GaN-based resonant tunneling diodes">GaN-based resonant tunneling diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=tsu-esaki%20formalism" title=" tsu-esaki formalism"> tsu-esaki formalism</a>, <a href="https://publications.waset.org/abstracts/search?q=2D-2D%20resonant%20tunneling" title=" 2D-2D resonant tunneling"> 2D-2D resonant tunneling</a>, <a href="https://publications.waset.org/abstracts/search?q=heisenberg%20uncertainty" title=" heisenberg uncertainty"> heisenberg uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/166160/new-analytical-current-voltage-model-for-gan-based-resonant-tunneling-diodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Time Series Simulation by Conditional Generative Adversarial Net</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rao%20Fu">Rao Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Chen"> Jie Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shutian%20Zeng"> Shutian Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiping%20Zhuang"> Yiping Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Agus%20Sudjianto"> Agus Sudjianto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conditional%20generative%20adversarial%20net" title="conditional generative adversarial net">conditional generative adversarial net</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20and%20credit%20risk%20management" title=" market and credit risk management"> market and credit risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/123535/time-series-simulation-by-conditional-generative-adversarial-net" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Objective-Based System Dynamics Modeling to Forecast the Number of Health Professionals in Pudong New Area of Shanghai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Ji">Jie Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Xu"> Jing Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuehong%20Zhuang"> Yuehong Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangqing%20Kang"> Xiangqing Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Qian"> Ying Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Zhou"> Ping Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Di%20Xue"> Di Xue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In 2014, there were 28,341 health professionals in Pudong new area of Shanghai and the number per 1000 population was 5.199, 55.55% higher than that in 2006. But it was always less than the average number of health professionals per 1000 population in Shanghai from 2006 to 2014. Therefore, allocation planning for the health professionals in Pudong new area has become a high priority task in order to meet the future demands of health care. In this study, we constructed an objective-based system dynamics model to forecast the number of health professionals in Pudong new area of Shanghai in 2020. Methods: We collected the data from health statistics reports and previous survey of human resources in Pudong new area of Shanghai. Nine experts, who were from health administrative departments, public hospitals and community health service centers, were consulted to estimate the current and future status of nine variables used in the system dynamics model. Based on the objective of the number of health professionals per 1000 population (8.0) in Shanghai for 2020, the system dynamics model for health professionals in Pudong new area of Shanghai was constructed to forecast the number of health professionals needed in Pudong new area in 2020. Results: The system dynamics model for health professionals in Pudong new area of Shanghai was constructed. The model forecasted that there will be 37,330 health professionals (6.433 per 1000 population) in 2020. If the success rate of health professional recruitment changed from 20% to 70%, the number of health professionals per 1000 population would be changed from 5.269 to 6.919. If this rate changed from 20% to 70% and the success rate of building new beds changed from 5% to 30% at the same time, the number of health professionals per 1000 population would be changed from 5.269 to 6.923. Conclusions: The system dynamics model could be used to simulate and forecast the health professionals. But, if there were no significant changes in health policies and management system, the number of health professionals per 1000 population would not reach the objectives in Pudong new area in 2020. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allocation%20planning" title="allocation planning">allocation planning</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20professional" title=" health professional"> health professional</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20dynamics" title=" system dynamics"> system dynamics</a> </p> <a href="https://publications.waset.org/abstracts/42464/objective-based-system-dynamics-modeling-to-forecast-the-number-of-health-professionals-in-pudong-new-area-of-shanghai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Record Peak Current Density in AlN/GaN Double-Barrier Resonant Tunneling Diodes on Free-Standing Gan Substrates by Modulating Barrier Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fang%20Liu">Fang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Jia%20Yao"> Jia Jia Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Guan%20Lin%20Wu"> Guan Lin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%20Jie%20Liu"> Ren Jie Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20Guo"> Zhuang Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leveraging plasma-assisted molecular beam epitaxy (PA-MBE) on c-plane free-standing GaN substrates, this work demonstrates high-performance AlN/GaN double-barrier resonant tunneling diodes (RTDs) featuring stable and repeatable negative differential resistance (NDR) characteristics at room temperature. By scaling down the barrier thickness of AlN and the lateral mesa size of collector, a record peak current density of 1551 kA/cm2 is achieved, accompanied by a peak-to-valley current ratio (PVCR) of 1.24. This can be attributed to the reduced resonant tunneling time under thinner AlN barrier and the suppressed external incoherent valley current by reducing the dislocation number contained in the RTD device with the smaller size of collector. Statistical analysis of the NDR performance of RTD devices with different AlN barrier thicknesses reveals that, as the AlN barrier thickness decreases from 1.5 nm to 1.25 nm, the average peak current density increases from 145.7 kA/cm2 to 1215.1 kA/cm2, while the average PVCR decreases from 1.45 to 1.1, and the peak voltage drops from 6.89 V to 5.49 V. The peak current density obtained in this work represents the highest value reported for nitride-based RTDs to date, while maintaining a high PVCR value simultaneously. This illustrates that an ultra-scaled RTD based on a vertical quantum-well structure and lateral collector size is a valuable approach for the development of nitride-based RTDs with excellent NDR characteristics, revealing their great potential applications in high-frequency oscillation sources and high-speed switch circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaN%20resonant%20tunneling%20diode" title="GaN resonant tunneling diode">GaN resonant tunneling diode</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20current%20density" title=" peak current density"> peak current density</a>, <a href="https://publications.waset.org/abstracts/search?q=peak-to-valley%20current%20ratio" title=" peak-to-valley current ratio"> peak-to-valley current ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20differential%20resistance" title=" negative differential resistance"> negative differential resistance</a> </p> <a href="https://publications.waset.org/abstracts/184386/record-peak-current-density-in-alngan-double-barrier-resonant-tunneling-diodes-on-free-standing-gan-substrates-by-modulating-barrier-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Chinese Acupuncture: A Potential Treatment for Autism Rat Model via Improving Synaptic Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sijie%20Chen">Sijie Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofang%20Chen"> Xiaofang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Wang"> Juan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingying%20Zhang"> Yingying Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Hong"> Yu Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanyu%20Zhuang"> Wanyu Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinxin%20Huang"> Xinxin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Ou"> Ping Ou</a>, <a href="https://publications.waset.org/abstracts/search?q=Longsheng%20Huang"> Longsheng Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Autistic symptom improvement can be observed in children treated with acupuncture, but the mechanism is still being explored. In the present study, we used scalp acupuncture to treat autism rat model, and then their improvement in the abnormal behaviors and specific mechanisms behind were revealed by detecting animal behaviors, analyzing the RNA sequencing of the prefrontal cortex(PFC), and observing the ultrastructure of PFC neurons under the transmission electron microscope. Methods: On gestational day 12.5, Wistar rats were given valproic acid (VPA) by intraperitoneal injection, and their offspring were considered to be reliable rat models of autism. They were randomized to VPA or VPA-acupuncture group (n=8). Offspring of Wistar pregnant rats that were simultaneously injected with saline were randomly selected as the wild-type group (WT). VPA_acupuncture group rats received acupuncture intervention at 23 days of age for 4 weeks, and the other two groups followed without intervention. After the intervention, all experimental rats underwent behavioral tests. Immediately afterward, they were euthanized by cervical dislocation, and their prefrontal cortex was isolated for RNA sequencing and transmission electron microscopy. Results: The main results are as follows: 1. Animal behavioural tests: VPA group rats showed more anxiety-like behaviour and repetitive, stereotyped behaviour than WT group rats. While VPA group rats showed less spatial exploration ability, activity level, social interaction, and social novelty preference than WT group rats. It was gratifying to observe that acupuncture indeed improved these abnormal behaviors of autism rat model. 2. RNA-sequencing: The three groups of rats differed in the expression and enrichment pathways of multiple genes related to synaptic function, neural signal transduction, and circadian rhythm regulation. Our experiments indicated that acupuncture can alleviate the major symptoms of ASD by improving these neurological abnormalities. 3. Under the transmission electron microscopy, several lysosomes and mitochondrial structural abnormalities were observed in the prefrontal neurons of VPA group rats, which were manifested as atrophy of the mitochondrial membran, blurring or disappearance of the mitochondrial cristae, and even vacuolization. Moreover, the number of synapses and synaptic vesicles was relatively small. Conversely, the mitochondrial structure of rats in the WT group and VPA_acupuncture was normal, and the number of synapses and synaptic vesicles was relatively large. Conclusion: Acupuncture effectively improved the abnormal behaviors of autism rat model and the ultrastructure of the PFC neurons, which might worked by improving their abnormal synaptic function, synaptic plasticity and promoting neuronal signal transduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder" title="autism spectrum disorder">autism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=acupuncture" title=" acupuncture"> acupuncture</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20behavior" title=" animal behavior"> animal behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20sequencing" title=" RNA sequencing"> RNA sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscope" title=" transmission electron microscope"> transmission electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/184480/chinese-acupuncture-a-potential-treatment-for-autism-rat-model-via-improving-synaptic-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Influence of Moss Cover and Seasonality on Soil Microbial Biomass and Enzymatic Activity in Different Central Himalayan Temperate Forest Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anshu%20Siwach">Anshu Siwach</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianlai%20Zhuang"> Qianlai Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratul%20Baishya"> Ratul Baishya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: This study focuses on the influence of moss cover and seasonality on soil microbial biomass and enzymatic activity in different Central Himalayan temperate forest types. Soil microbial biomass and enzymes are key indicators of microbial communities in soil and provide information on soil properties, microbial status, and organic matter dynamics. The activity of microorganisms in the soil varies depending on the vegetation type and environmental conditions. Therefore, this study aims to assess the effects of moss cover, seasons, and different forest types on soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil enzymatic activity in the Central Himalayas, Uttarakhand, India. Research Aim: The aim of this study is to evaluate the levels of SMBC, SMBN, and soil enzymatic activity in different temperate forest types under the influence of two ground covers (soil with and without moss cover) during the rainy and winter seasons. Question Addressed: This study addresses the following questions: 1. How does the presence of moss cover and seasonality affect soil microbial biomass and enzymatic activity? 2. What is the influence of different forest types on SMBC, SMBN, and enzymatic activity? Methodology: Soil samples were collected from different forest types during the rainy and winter seasons. The study utilizes the chloroform-fumigation extraction method to determine SMBC and SMBN. Standard methodologies are followed to measure enzymatic activities, including dehydrogenase, acid phosphatase, aryl sulfatase, β-glucosidase, phenol oxidase, and urease. Findings: The study reveals significant variations in SMBC, SMBN, and enzymatic activity under different ground covers, within the rainy and winter seasons, and among the forest types. Moss cover positively influences SMBC and enzymatic activity during the rainy season, while soil without moss cover shows higher values during the winter season. Quercus-dominated forests, as well as Cupressus torulosa forests, exhibit higher levels of SMBC and enzymatic activity, while Pinus roxburghii forests show lower levels. Theoretical Importance: The findings highlight the importance of considering mosses in forest management plans to improve soil microbial diversity, enzymatic activity, soil quality, and health. Additionally, this research contributes to understanding the role of lower plants, such as mosses, in influencing ecosystem dynamics. Conclusion: The study concludes that moss cover during the rainy season significantly influences soil microbial biomass and enzymatic activity. Quercus and Cupressus torulosa dominated forests demonstrate higher levels of SMBC and enzymatic activity, indicating the importance of these forest types in sustaining soil microbial diversity and soil health. Including mosses in forest management plans can improve soil quality and overall ecosystem dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moss%20cover" title="moss cover">moss cover</a>, <a href="https://publications.waset.org/abstracts/search?q=seasons" title=" seasons"> seasons</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20enzymes" title=" soil enzymes"> soil enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20microbial%20biomass" title=" soil microbial biomass"> soil microbial biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=temperate%20forest%20types" title=" temperate forest types"> temperate forest types</a> </p> <a href="https://publications.waset.org/abstracts/175360/influence-of-moss-cover-and-seasonality-on-soil-microbial-biomass-and-enzymatic-activity-in-different-central-himalayan-temperate-forest-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=De-Shin%20Liu">De-Shin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Chun%20Wen"> Po-Chun Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen-Wei%20Zhuang"> Zhen-Wei Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsueh-Chih%20Liu"> Hsueh-Chih Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Chen%20Huang"> Pei-Chen Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wafer%20probing%20test" title="wafer probing test">wafer probing test</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20probe" title=" vertical probe"> vertical probe</a>, <a href="https://publications.waset.org/abstracts/search?q=probe%20mark" title=" probe mark"> probe mark</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20response" title=" mechanical response"> mechanical response</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA%20simulation" title=" FEA simulation"> FEA simulation</a> </p> <a href="https://publications.waset.org/abstracts/179072/mechanical-response-investigation-of-wafer-probing-test-with-vertical-cobra-probe-via-the-experiment-and-transient-dynamic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20Yiwen">Zhuang Yiwen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20device%20tracking" title="medical device tracking">medical device tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=unique%20device%20identifier" title=" unique device identifier"> unique device identifier</a>, <a href="https://publications.waset.org/abstracts/search?q=barcoding%20and%20image%20recognition" title=" barcoding and image recognition"> barcoding and image recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=systematized%20nomenclature%20of%20medicine%20clinical%20terms" title=" systematized nomenclature of medicine clinical terms"> systematized nomenclature of medicine clinical terms</a> </p> <a href="https://publications.waset.org/abstracts/168251/challenges-and-recommendations-for-medical-device-tracking-and-traceability-in-singapore-a-focus-on-nursing-practices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Interactively Developed Capabilities for Environmental Management Systems: An Exploratory Investigation of SMEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20Ma">Zhuang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihan%20Zhang"> Zihan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Li"> Yu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental concerns from stakeholders (e.g., governments & customers) have pushed firms to integrate environmental management systems into business processes such as R&D, manufacturing, and marketing. Environmental systems include managing environmental risks and pollution control (e.g., air pollution control, waste-water treatment, noise control, energy recycling & solid waste treatment) through raw material management, the elimination and reduction of contaminants, recycling, and reuse in firms' operational processes. Despite increasing studies on firms' proactive adoption of environmental management, their focus is primarily on large corporations operating in developed economies. Investigations in the environmental management efforts of small and medium-sized enterprises (SMEs) are scarce. This is problematic for SMEs because, unlike large corporations, SMEs have limited awareness, resources, capabilities to adapt their operational routines to address environmental impacts. The purpose of this study is to explore how SMEs develop organizational capabilities through interactions with business partners (e.g., environmental management specialists & customers). Drawing on the resource-based view (RBV) and an organizational capabilities perspective, this study investigates the interactively developed capabilities that allow SMEs to adopt environmental management systems. Using an exploratory approach, the study includes 12 semi-structured interviews with senior managers from four SMEs, two environmental management specialists, and two customers in the pharmaceutical sector in Chongqing, China. Findings of this study include four key organizational capabilities: 1) ‘dynamic marketing’ capability, which allows SMEs to recoup the investments in environmental management systems by developing environmentally friendly products to address customers' ever-changing needs; 2) ‘process improvement’ capability, which allows SMEs to select and adopt the latest technologies from biology, chemistry, new material, and new energy sectors into the production system for improved environmental performance and cost-reductions; and 3) ‘relationship management’ capability which allows SMEs to improve corporate image among the public, social media, government agencies, and customers, who in turn help SMEs to overcome their competitive disadvantages. These interactively developed capabilities help SMEs to address larger competitors' foothold in the local market, reduce market constraints, and exploit competitive advantages in other regions (e.g., Guangdong & Jiangsu) of China. These findings extend the RBV and organizational capabilities perspective; that is, SMEs can develop the essential resources and capabilities required for environmental management through interactions with upstream and downstream business partners. While a limited number of studies did highlight the importance of interactions among SMEs, customers, suppliers, NGOs, industrial associations, and consulting firms, they failed to explore the specific capabilities developed through these interactions. Additionally, the findings can explain how a proactive adoption of environmental management systems could help some SMEs to overcome the institutional and market restraints on their products, thereby springboarding into larger, more environmentally demanding, yet more profitable markets compared with their existing market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capabilities" title="capabilities">capabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20management%20systems" title=" environmental management systems"> environmental management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=interactions" title=" interactions"> interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a> </p> <a href="https://publications.waset.org/abstracts/136819/interactively-developed-capabilities-for-environmental-management-systems-an-exploratory-investigation-of-smes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10