CINXE.COM

Search results for: Dawid Stawski

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Dawid Stawski</title> <meta name="description" content="Search results for: Dawid Stawski"> <meta name="keywords" content="Dawid Stawski"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Dawid Stawski" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Dawid Stawski"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Dawid Stawski</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Adsorption-desorption Behavior of Weak Polyelectrolytes Deposition on Aminolyzed-PLA Non-woven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sima%20Shakoorjavan">Sima Shakoorjavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Stawski"> Dawid Stawski</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Akbari"> Somaye Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption-desorption behavior of poly(amidoamine) (PAMAM) as a polycation and poly (acrylic acid) (PAA) as a polyanion deposited on aminolyzed-PLA nonwoven through layer-by-layer technique (lbl) was studied. The adsorption-desorption behavior was monitored by UV adsorbance spectroscopy and turbidity tests of the waste polyelectrolytes after each deposition. Also, the drying between each deposition step was performed to study the effect of drying on adsorption-desorption behavior. According to UV adsorbance spectroscopy of the waste polyelectrolyte after each deposition, it was revealed that drying has a great effect on the deposition behavior of the next layer. Regarding the deposition of the second layer, drying caused more desorption and removal of the previously deposited layer since the turbidity and the absorbance of the waste increased in comparison to pure polyelectrolyte. To deposit the third layer, the same scenario occurred and drying caused more removal of the previously deposited layer. However, the deposition of the fourth layer drying after the deposition of the third layer did not affect the adsorption-desorption behavior. Since the adsorbance and turbidity of the samples that were dried and those that were not dried were the same. As a result, it seemed that deposition of the fourth layer could be the starting point where lbl reached its constant state. The decrease in adsorbance and remaining turbidity of the waste same as a pure polyelectrolyte can indicate that most portion of the polyelectrolyte was adsorbed onto the substrate rather than complex formation in the bath as the subsequence of the previous layer removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adsorption-desorption%20behavior" title="Adsorption-desorption behavior">Adsorption-desorption behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=lbl%20technique" title=" lbl technique"> lbl technique</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28amidoamine%29" title=" poly(amidoamine)"> poly(amidoamine)</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28acrylic%20acid%29" title=" poly (acrylic acid)"> poly (acrylic acid)</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20polyelectrolytes" title=" weak polyelectrolytes"> weak polyelectrolytes</a> </p> <a href="https://publications.waset.org/abstracts/176722/adsorption-desorption-behavior-of-weak-polyelectrolytes-deposition-on-aminolyzed-pla-non-woven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Layer-By-Layer Deposition of Poly(Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric: Electrostatic and Thermal Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Stawski">Dawid Stawski</a>, <a href="https://publications.waset.org/abstracts/search?q=Silviya%20Halacheva"> Silviya Halacheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorota%20Zieli%C5%84ska"> Dorota Zielińska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20°C). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20technique" title="layer-by-layer technique">layer-by-layer technique</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20nonwoven" title=" polypropylene nonwoven"> polypropylene nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20properties" title=" surface properties"> surface properties</a> </p> <a href="https://publications.waset.org/abstracts/6453/layer-by-layer-deposition-of-polyethylene-imine-nanolayers-on-polypropylene-nonwoven-fabric-electrostatic-and-thermal-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sima%20Shakoorjavan">Sima Shakoorjavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Stawski"> Dawid Stawski</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Akbari"> Somaye Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title="surface modification">surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20technique" title=" layer-by-layer technique"> layer-by-layer technique</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20polyelectrolytes" title=" weak polyelectrolytes"> weak polyelectrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption-desorption%20behavior" title=" adsorption-desorption behavior"> adsorption-desorption behavior</a> </p> <a href="https://publications.waset.org/abstracts/179727/monitoring-surface-modification-of-polylactide-nonwoven-fabric-with-weak-polyelectrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Sportband: An Idea for Workout Monitoring in Amateur and Recreational Sports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamila%20Mazur-Oleszczuk">Kamila Mazur-Oleszczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafal%20Banasiuk"> Rafal Banasiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Krasnowski"> Dawid Krasnowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Pek"> Maciej Pek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Podgorski"> Marcin Podgorski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Rykaczewski"> Krzysztof Rykaczewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabina%20Zoledowska"> Sabina Zoledowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Nidzworski"> Dawid Nidzworski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Workout safety is one of the most significant challenges of recreational sports. Loss of water and electrolytes is a consequence of thermoregulatory sweating during exercise. The rate of sweat loss and its chemical composition can fluctuate within and among individuals. That is why we propose our sportband 'Flow' as a device for monitoring these parameters. 'Flow' consists of two parts: an intelligent module and a mobile application. The application allows verifying the training progress and data archiving. The sportband intelligent module includes temperature, heart rate and pulse measurement (non-invasive, continuous methods of workout monitoring). Apart from the standard components, the device will consist of a sweat composition analyzer situated in sportband intelligent module. Sweat is a water solution of numerous compounds such as ions (sodium up to 1609 µg/ml, potassium up to 274 µg/ml), lactic acid (skin pH is between 4.5 - 6) and a small amount of glucose. Awareness of sweat composition allows personalizing electrolyte intake after training. A comprehensive workout monitoring (sweat composition, heart rate, blood oxygen level) will provide improvement in the training routine and time management, which is our goal for the development of the sweat composition analyzer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow" title="flow">flow</a>, <a href="https://publications.waset.org/abstracts/search?q=sportband" title=" sportband"> sportband</a>, <a href="https://publications.waset.org/abstracts/search?q=sweat" title=" sweat"> sweat</a>, <a href="https://publications.waset.org/abstracts/search?q=workout%20monitoring" title=" workout monitoring"> workout monitoring</a> </p> <a href="https://publications.waset.org/abstracts/112409/sportband-an-idea-for-workout-monitoring-in-amateur-and-recreational-sports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Layer-By-Layer Deposition of Poly (Amidoamine) and Poly (Acrylic Acid) on Grafted-Polylactide Nonwoven with Different Surface Charge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sima%20Shakoorjavan">Sima Shakoorjavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdieh%20Eskafi"> Mahdieh Eskafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Stawski"> Dawid Stawski</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Akbari"> Somaye Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, poly (amidoamine) dendritic material (PAMAM) and poly (acrylic acid) (PAA) as polycation and polyanion were deposited on surface charged polylactide (PLA) nonwoven to study the relationship of dye absorption capacity of layered-PLA with the number of deposited layers. To produce negatively charged-PLA, acrylic acid (AA) was grafted on the PLA surface (PLA-g-AA) through a chemical redox reaction with the strong oxidizing agent. Spectroscopy analysis, water contact measurement, and FTIR-ATR analysis confirm the successful grafting of AA on the PLA surface through the chemical redox reaction method. In detail, an increase in dye absorption percentage by 19% and immediate absorption of water droplets ensured hydrophilicity of PLA-g-AA surface; and the presence of new carbonyl bond at 1530 cm-¹ and a wide peak of hydroxyl between 3680-3130 cm-¹ confirm AA grafting. In addition, PLA as linear polyester can undergo aminolysis, which is the cleavage of ester bonds and replacement with amid bonds when exposed to an aminolysis agent. Therefore, to produce positively charged PLA, PAMAM as amine-terminated dendritic material was introduced to PLA molecular chains at different conditions; (1) at 60 C for 0.5, 1, 1.5, 2 hours of aminolysis and (2) at room temperature (RT) for 1, 2, 3, and 4 hours of aminolysis. Weight changes and spectrophotometer measurements showed a maximum in weight gain graph and K/S value curve indicating the highest PAMAM attachment at 60 C for 1 hour and RT for 2 hours which is considered as an optimum condition. Also, the emerging new peak around 1650 cm-1 corresponding to N-H bending vibration and double wide peak at around 3670-3170 cm-1 corresponding to N-H stretching vibration confirm PAMAM attachment in selected optimum condition. In the following, regarding the initial surface charge of grafted-PLA, lbl deposition was performed and started with PAA or PAMAM. FTIR-ATR results confirm chemical changes in samples due to deposition of the first layer (PAA or PAMAM). Generally, spectroscopy analysis indicated that an increase in layer number costed dye absorption capacity. It can be due to the partial deposition of a new layer on the previously deposited layer; therefore, the available PAMAM at the first layer is more than the third layer. In detail, in the case of layer-PLA starting lbl with negatively charged, having PAMAM as the first top layer (PLA-g-AA/PAMAM) showed the highest dye absorption of both cationic and anionic model dye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title="surface modification">surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20technique" title=" layer-by-layer technique"> layer-by-layer technique</a>, <a href="https://publications.waset.org/abstracts/search?q=dendritic%20materials" title=" dendritic materials"> dendritic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=PAMAM" title=" PAMAM"> PAMAM</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20absorption%20capacity" title=" dye absorption capacity"> dye absorption capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20nonwoven" title=" PLA nonwoven"> PLA nonwoven</a> </p> <a href="https://publications.waset.org/abstracts/165278/layer-by-layer-deposition-of-poly-amidoamine-and-poly-acrylic-acid-on-grafted-polylactide-nonwoven-with-different-surface-charge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Mass Transfer in Reactor with Magnetic Field Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski">Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha"> Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title="mass transfer">mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20magnetic%20field" title=" oscillating magnetic field"> oscillating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title=" rotating magnetic field"> rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20magnetic%20field" title=" static magnetic field"> static magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/140936/mass-transfer-in-reactor-with-magnetic-field-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Intensification of Heat Transfer in Magnetically Assisted Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha">Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski"> Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=undetermined%20heat%20transfer" title=" undetermined heat transfer"> undetermined heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title=" temperature profile"> temperature profile</a> </p> <a href="https://publications.waset.org/abstracts/140931/intensification-of-heat-transfer-in-magnetically-assisted-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Multimedia Firearms Training System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Nawrat">Aleksander Nawrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20J%C4%99drasiak"> Karol Jędrasiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Ryt"> Artur Ryt</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Sobel"> Dawid Sobel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=firearms%20shot%20detection" title="firearms shot detection">firearms shot detection</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20recalibration" title=" geometric recalibration"> geometric recalibration</a>, <a href="https://publications.waset.org/abstracts/search?q=photometric%20recalibration" title=" photometric recalibration"> photometric recalibration</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20tracking%20algorithm" title=" IR tracking algorithm"> IR tracking algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistics" title=" ballistics"> ballistics</a> </p> <a href="https://publications.waset.org/abstracts/54247/multimedia-firearms-training-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski">Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha"> Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20assisted%20reactor" title=" magnetically assisted reactor"> magnetically assisted reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20analysis" title=" dynamical analysis"> dynamical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20function" title=" transient function"> transient function</a> </p> <a href="https://publications.waset.org/abstracts/140933/dynamic-analysis-of-the-heat-transfer-in-the-magnetically-assisted-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Cytoprotective Role of Antioxidants in Mammalian Cells Exposed to Variable Temperature, Pressure Overload and Radiation in the Stratosphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Przystupski">Dawid Przystupski</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Gorska"> Agata Gorska</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Rozborska"> Paulina Rozborska</a>, <a href="https://publications.waset.org/abstracts/search?q=Weronika%20%20Bartosik"> Weronika Bartosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Michel"> Olga Michel</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Rossowska"> Joanna Rossowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Szewczyk"> Anna Szewczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Drag-Zalesinska"> Malgorzata Drag-Zalesinska</a>, <a href="https://publications.waset.org/abstracts/search?q=Jedrzej%20Gorski"> Jedrzej Gorski</a>, <a href="https://publications.waset.org/abstracts/search?q=Julita%20Kulbacka"> Julita Kulbacka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers are still looking for an answer to the question which has been fascinating the mankind for generations, specifically – is there life beyond Earth? As long as routine flights to other planets remain beyond our reach, there is a need to find alternative ways to conduct the astrobiological research. It is worth noticing that the part of the Earth’s atmosphere, stratosphere, has been found to show subcosmic environmental conditions, namely temperatures around -50°C, very rarefied air, increased cosmic radiation and the Sun’s ultraviolet radiation. This phenomenon gives rise to the opportunity for the use of stratospheric environment as a research model for the space conditions. Therefore the idea of conducting astrobiological experiments during the stratospheric flights arose. Up to now, the preliminary work in this field included launching balloons containing solely microbiological samples into the stratosphere to figure out if they would be able to survive under the stratospheric conditions. In our study, we take this concept further, sending the human healthy and cancerous cells treated with various compounds to investigate whether these medicines are capable to protect the cells against stratospheric stress. Due to oxidative stress caused by ionizing radiation and temperature shock, we used natural compounds which display antioxidant properties. In this way, we were able to reduce the reactive oxygen species production affecting cells, which results in their death. After-flight laboratory tests of biological samples from the stratosphere have been performed and indicated the most active antioxidants as potential agents which can minimize the harmful impacts of stratospheric conditions, especially radiation and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=stratosphere" title=" stratosphere"> stratosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=balloon%20flight" title=" balloon flight"> balloon flight</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20death" title=" cell death"> cell death</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/102351/the-cytoprotective-role-of-antioxidants-in-mammalian-cells-exposed-to-variable-temperature-pressure-overload-and-radiation-in-the-stratosphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Influence of Magnetic Field on the Antibacterial Properties of Pine Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha">Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski"> Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Markowska-Szczupak"> Agata Markowska-Szczupak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Weso%C5%82owska"> Aneta Wesołowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title="rotating magnetic field">rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20oil" title=" pine oil"> pine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/145025/influence-of-magnetic-field-on-the-antibacterial-properties-of-pine-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marta%20Skwarecka">Marta Skwarecka</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrycja%20Bloch"> Patrycja Bloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafal%20Walkusz"> Rafal Walkusz</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliwia%20Urbanowicz"> Oliwia Urbanowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Zielinski"> Grzegorz Zielinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabina%20Zoledowska"> Sabina Zoledowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Nidzworski"> Dawid Nidzworski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Streptococci" title="Streptococci">Streptococci</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20infections" title=" respiratory infections"> respiratory infections</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20test" title=" diagnostic test"> diagnostic test</a> </p> <a href="https://publications.waset.org/abstracts/112403/rapid-and-cheap-test-for-detection-of-streptococcus-pyogenes-and-streptococcus-pneumoniae-with-antibiotic-resistance-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Metal Binding Phage Clones in a Quest for Heavy Metal Recovery from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20%C5%81%C4%99ga">Tomasz Łęga</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Sosnowska"> Marta Sosnowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82awa%20Panasiuk"> Mirosława Panasiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilit%20Hovhannisyan"> Lilit Hovhannisyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Beata%20Gromadzka"> Beata Gromadzka</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Olszewski"> Marcin Olszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabina%20Zoledowska"> Sabina Zoledowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Nidzworski"> Dawid Nidzworski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toxic heavy metal ion contamination of industrial wastewater has recently become a significant environmental concern in many regions of the world. Although the majority of heavy metals are naturally occurring elements found on the earth's surface, anthropogenic activities such as mining and smelting, industrial production, and agricultural use of metals and metal-containing compounds are responsible for the majority of environmental contamination and human exposure. The permissible limits (ppm) for heavy metals in food, water and soil are frequently exceeded and considered hazardous to humans, other organisms, and the environment as a whole. Human exposure to highly nickel-polluted environments causes a variety of pathologic effects. In 2008, nickel received the shameful name of “Allergen of the Year” (GILLETTE 2008). According to the dermatologist, the frequency of nickel allergy is still growing, and it can’t be explained only by fashionable piercing and nickel devices used in medicine (like coronary stents and endoprostheses). Effective remediation methods for removing heavy metal ions from soil and water are becoming increasingly important. Among others, methods such as chemical precipitation, micro- and nanofiltration, membrane separation, conventional coagulation, electrodialysis, ion exchange, reverse and forward osmosis, photocatalysis and polymer or carbon nanocomposite absorbents have all been investigated so far. The importance of environmentally sustainable industrial production processes and the conservation of dwindling natural resources has highlighted the need for affordable, innovative biosorptive materials capable of recovering specific chemical elements from dilute aqueous solutions. The use of combinatorial phage display techniques for selecting and recognizing material-binding peptides with a selective affinity for any target, particularly inorganic materials, has gained considerable interest in the development of advanced bio- or nano-materials. However, due to the limitations of phage display libraries and the biopanning process, the accuracy of molecular recognition for inorganic materials remains a challenge. This study presents the isolation, identification and characterisation of metal binding phage clones that preferentially recover nickel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heavy%20metal%20recovery" title="Heavy metal recovery">Heavy metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=cleaning%20water" title=" cleaning water"> cleaning water</a>, <a href="https://publications.waset.org/abstracts/search?q=phage%20display" title=" phage display"> phage display</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/168379/metal-binding-phage-clones-in-a-quest-for-heavy-metal-recovery-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski">Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha"> Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Markowska-Szczupak"> Agata Markowska-Szczupak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Weso%C5%82owska"> Aneta Wesołowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title="rotating magnetic field">rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=rosemary" title=" rosemary"> rosemary</a>, <a href="https://publications.waset.org/abstracts/search?q=thyme" title=" thyme"> thyme</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/145024/enhancing-of-antibacterial-activity-of-essential-oil-by-rotating-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Made on Land, Ends Up in the Water &quot;I-Clare&quot; Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabina%20%C5%BBo%C5%82%C4%99dowska">Sabina Żołędowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Ossowski"> Tadeusz Ossowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Bogdanowicz"> Robert Bogdanowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacek%20Ryl"> Jacek Ryl</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20Rostkowski"> Paweł Rostkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Kruczkowski"> Michał Kruczkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Sobaszek"> Michał Sobaszek</a>, <a href="https://publications.waset.org/abstracts/search?q=Zofia%20Cebula"> Zofia Cebula</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Skowierzak"> Grzegorz Skowierzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20Jak%C3%B3bczyk"> Paweł Jakóbczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilit%20Hovhannisyan"> Lilit Hovhannisyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20%C5%9Alepski"> Paweł Ślepski</a>, <a href="https://publications.waset.org/abstracts/search?q=Iwona%20Kaczmarczyk"> Iwona Kaczmarczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Mattia%20Pierpaoli"> Mattia Pierpaoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%C5%82omiej%20Dec"> Bartłomiej Dec</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Nidzworski"> Dawid Nidzworski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatement" title="waste water treatement">waste water treatement</a>, <a href="https://publications.waset.org/abstracts/search?q=RVC" title=" RVC"> RVC</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=paracetamol" title=" paracetamol"> paracetamol</a> </p> <a href="https://publications.waset.org/abstracts/168387/made-on-land-ends-up-in-the-water-i-clare-intelligent-remediation-system-for-removal-of-harmful-contaminants-in-water-using-modified-reticulated-vitreous-carbon-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Suicidal Attempts as a Reason for Emergency Medical Teams’ Call-Outs Based on Examples of Ambulance Service in Siedlce, Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Jakimiuk">Dawid Jakimiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Mitura"> Krzysztof Mitura</a>, <a href="https://publications.waset.org/abstracts/search?q=Leszek%20Szpakowski"> Leszek Szpakowski</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C5%82awomir%20Pilip"> Sławomir Pilip</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Celi%C5%84ski"> Daniel Celiński</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Emergency Medical Teams (EMS) of the Ambulance Service in Siedlce serve the population living in the Mazowieckie Voivodeship (the area of eastern Poland with approximately 550,000 inhabitants). They provide health services at the pre-hospital stage to all life-threatening patients. The analysis covered the interventions of emergency medical teams in cases of suicide attempts that occurred in the years 2015-2018. The study was retrospective. The data was obtained on the basis of digital medical records of completed call-outs. When defining the disease entity, the International Statistical Classification of Diseases and Health Problems ICD-10 prepared by WHO was used. The relationship between selected disease entities and the area of EMT intervention, the patient's sex and age, and the time of occurrence of the event were investigated. Non-urban area was defined as the area inhabited by a population below 10,000 residents. Statistical analysis was performed using Pearson's Chi ^ 2 test and presenting the percentage of cases in the study group. Of all the suicide attempts, drug abuse cases were the most frequent, including: X60 (Intentional self-poisoning by and exposure to nonopioid analgesics, antipyretics and antirheumatics); X61 (Intentional self-poisoning by and exposure to antiepileptic, sedative-hypnotic, antiparkinsonian and psychotropic drugs, not elsewhere classified); X62 (Intentional self-poisoning by and exposure to narcotics and psycholeptics [hallucinogens], not elsewhere classified); X63 (Intentional self-poisoning by and exposure to other drugs acting on the autonomic nervous system); X64 (Intentional self-poisoning by and exposure to other and unspecified drugs, medicaments and biological substance) oraz X70 (Intentional self-harm by hanging, strangulation and suffocation). In total, they accounted for 69.4% of all interventions to suicide attempts in the studied period. Statistical analysis shows significant differences (χ2 = 39.30239, p <0.0001, n = 561) between the area of EMT intervention and the type of suicide attempt. In non-urban areas, a higher percentage of X70 diagnoses was recorded (55.67%), while in urban areas, X60-X64 (72.53%). In non-urban areas, a higher proportion of patients attempting suicide was observed compared to patients living in urban areas. For X70 and X60 - X64 in total, the incidence rates in non-urban areas were 80.8% and 56%, respectively. Significant differences were found (χ2 = 119.3304, p <0.0001, n = 561) depending on the method of attempting suicide in relation to the patient's sex. The percentage of women diagnosed with X60-X64 versus X70 was 87.50%, which was the largest number of patients (n = 154) as compared to men. In the case of X70 in relation to X60-X64, the percentage of men was 62.08%, which was the largest number of patients (n = 239) as compared to women (n = 22). In the case of X70, the percentage of men compared to women was as high as 92%. Significant differences were observed (χ2 = 14.94848, p <0.01058) between the hour of EMT intervention and the type of suicide attempt. The highest percentage of X70 occurred between 04:01 - 08:00 (64.44%), while X60-X64 between 00:01 - 04:00 (70.45%). The largest number of cases of all tested suicide attempts was recorded between 16:01 - 20:00 for X70 (n = 62), X60 - X64 (n = 82), respectively. The highest percentage of patients undertaking all suicide attempts studied at work was observed in the age range of 18-30 (31.5%), while the lowest was in the age group over 60 years of age. (11%). There was no significant correlation between the day of the week or individual months of the year and the type of suicide attempt - respectively (χ2 = 6.281729, p <0.39238, n = 561) and (χ2 = 3.348913, p <0.9857, n = 561). There were also no significant differences in the incidence of suicide attempts for each year in the study period (χ2 = 3.348913, p <0.9857 n = 561). The obtained results suggest the necessity to undertake preventive measures in order to minimize the number of suicide attempts. Such activities should be directed especially at young patients living in non-urban areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20med" title="emergency med">emergency med</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20medical%20team" title=" emergency medical team"> emergency medical team</a>, <a href="https://publications.waset.org/abstracts/search?q=attempted%20suicide" title=" attempted suicide"> attempted suicide</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-hospital" title=" pre-hospital"> pre-hospital</a> </p> <a href="https://publications.waset.org/abstracts/155721/suicidal-attempts-as-a-reason-for-emergency-medical-teams-call-outs-based-on-examples-of-ambulance-service-in-siedlce-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10