CINXE.COM

Search results for: cure kinetics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cure kinetics</title> <meta name="description" content="Search results for: cure kinetics"> <meta name="keywords" content="cure kinetics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cure kinetics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cure kinetics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 887</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cure kinetics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Simulation of Cure Kinetics and Process-Induced Stresses in Carbon Fibre Composite Laminate Manufactured by a Liquid Composite Molding Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayaraman%20Muniyappan">Jayaraman Muniyappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachchan%20Kr%20Mishra"> Bachchan Kr Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautam%20Salkar"> Gautam Salkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Swetha%20Manian%20Sridhar"> Swetha Manian Sridhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum Assisted Resin Transfer Molding (VARTM), a cost effective method of Liquid Composite Molding (LCM), is a single step process where the resin, at atmospheric pressure, is infused through a preform that is maintained under vacuum. This hydrodynamic pressure gradient is responsible for the flow of resin through the dry fabric preform. The current study has a slight variation to traditional VARTM, wherein, the resin infuses through the fabric placed on a heated mold to reduce its viscosity. The saturated preform is subjected to a cure cycle where the resin hardens as it undergoes curing. During this cycle, an uneven temperature distribution through the thickness of the composite and excess exothermic heat released due to different cure rates result in non-uniform curing. Additionally, there is a difference in thermal expansion coefficient between fiber and resin in a given plane and between adjacent plies. All these effects coupled with orthotropic coefficient of thermal expansion of the composite give rise to process-induced stresses in the laminate. Such stresses lead to part deformation when the laminate tries to relieve them as the part is released off the mold. The current study looks at simulating resin infusion, cure kinetics and the structural response of composite laminate subject to process-induced stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cure%20kinetics" title="cure kinetics">cure kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=process-induced%20stresses" title=" process-induced stresses"> process-induced stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20expansion%20coefficient" title=" thermal expansion coefficient"> thermal expansion coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20assisted%20resin%20transfer%20molding" title=" vacuum assisted resin transfer molding"> vacuum assisted resin transfer molding</a> </p> <a href="https://publications.waset.org/abstracts/54963/simulation-of-cure-kinetics-and-process-induced-stresses-in-carbon-fibre-composite-laminate-manufactured-by-a-liquid-composite-molding-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Hattatoglu">Fatih Hattatoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrezzak%20Baki%C5%9F"> Abdulrezzak Bakiş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 &deg;C for 7 days &ndash; hot water cure at 90 &deg;C for 2 days - drying oven cure at 180 &deg;C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 &deg;C for 7 days - hot water cure at 90 &deg;C for 2 days - drying oven cure at 180 &deg;C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20cure" title="combined cure">combined cure</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test" title=" flexural test"> flexural test</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20powder%20concrete%20%28RPC%29" title=" reactive powder concrete (RPC)"> reactive powder concrete (RPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20pavement" title=" rigid pavement"> rigid pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20test" title=" pressure test"> pressure test</a> </p> <a href="https://publications.waset.org/abstracts/44544/development-of-combined-cure-type-for-rigid-pavement-with-reactive-powder-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Comparison of Depth of Cure and Degree of Conversion between Opus Bulk Fill and X-Tra Fill Bulk Fill Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Samani">Yasaman Samani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Golmohammadi"> Ali Golmohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The degree of conversion and depth of cure affects the clinical success of resin composite restorations directly. One of the main challenges in achieving a successful composite restoration is the achievement of sufficient depth of cure. The insufficient polymerization may lead to a decrease in the physical/mechanical and biological properties of resin composites and, as a result of that, unsuccessful composite restoration. Thus, because of the importance of studying and evaluating the depth of cure and degree of conversion in bulk-fill composites, we decided to evaluate and compare the degree of conversion and depth of cure in two bulk-fill composites; x-tra fill (Voco, Germany) and Opus Bulk fill APS (FGM, Brazil). Materials and Methods: Composite resin specimens (n=10) per group were prepared as cylinder blocks (4×8 mm) with bulk-fill composites, x-tra fil (Voco, Germany) designated as Group A, and Opus Bulk fill APS (FGM, Brazil) designated as Group B. Depth of cure was determined according to “ISO 4049; Depth of Cure” method, In which each specimen were cured (iLED, Woodpecker, China) 40 seconds and FTIR spectroscopy method was used to estimate the degree of conversion of both the bulk-fill composites. The degree of conversion of monomer to polymer was estimated individually in the coronal half (Group A1 and B1) and pulpal half (Group A2 and Group B2) by dividing each specimen into two halves. The data were analyzed using a Student’s t-test and one-way ANOVA at a 5% level of significance. Results: The mean depth of cure in x-tra fil (Voco, Germany) was 3.99 (±0.16), and for Opus Bulk fill, APS (FGM, Brazil) was 2.14 (±0.3). The degree of conversion percentage in Group A1 was 82.7 (±6.1), in group A2 was 73.4 (±5.2), in group B1 was 63.3 (±4.7) and in Group B2 was 56.5 (±7.7). Statistical analysis revealed a significant difference in the depth of cure between the two bulk-fill composites with x-tra fil (Voco, Germany) higher than Opus Bulk fill APS (FGM, Brazil) (P<0.001). The degree of conversion percentage also showed a significant difference, Group A1 being higher than A2 (P=0.0085), B1, and B2 (P<0.001). Group A2 was also higher than B1 (P=0.003) and B2 (P<0.001). There was no significant difference between B1 and B2 (P=0.072). Conclusion: The results indicate that x-tra fill has more depth of cure and a higher percentage of the degree of conversion than Opus Bulk fill APS. The coronal half of x-tra fil had the highest depth of cure percentage (82.66%), and the pulpal half of Opus Bulk fill APS had the lowest percentage (56.45%). Even though both bulk-fill composite materials had an acceptable degree of conversion (55% and higher), x-tra fill has shown better results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depth%20of%20cure" title="depth of cure">depth of cure</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20conversion" title=" degree of conversion"> degree of conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk-fill%20composite" title=" bulk-fill composite"> bulk-fill composite</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a> </p> <a href="https://publications.waset.org/abstracts/151692/comparison-of-depth-of-cure-and-degree-of-conversion-between-opus-bulk-fill-and-x-tra-fill-bulk-fill-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Pyrolysis of Dursunbey Lignite and Pyrolysis Kinetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S%C3%BCt%C3%A7%C3%BC">H. Sütçü</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Efe"> C. Efe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, pyrolysis characteristics of Dursunbey-Balıkesir lignite and its pyrolysis kinetics are examined. The pyrolysis experiments carried out at three different heating rates are performed by using thermogravimetric method. Kinetic parameters are calculated by Coats & Redfern kinetic model and the degree of pyrolysis process is determined for each of the heating rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignite" title="lignite">lignite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis" title=" thermogravimetric analysis"> thermogravimetric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/61724/pyrolysis-of-dursunbey-lignite-and-pyrolysis-kinetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Effect of Two Cooking Methods on Kinetics of Polyphenol Content, Flavonoid Content and Color of a Tunisian Meal: Molokheiya (Corchorus olitorius)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Njoumi">S. Njoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ben%20Haj%20Said"> L. Ben Haj Said</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Amiot"> M. J. Amiot</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bellagha"> S. Bellagha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research was to establish the kinetics of variation of total polyphenol content (TPC) and total flavonoid content (TFC) in Tunisian Corchorus olitorius powder and in a traditional home cooked-meal (Molokheiya) when using stewing and stir-frying as cooking methods, but also to compare the effect of these two common cooking practices on water content, TPC, TFC and color. The L*, a* and b* coordinates values of the Molokheiya varied from 24.955±0.039 to 21.301±0.036, from -1.556±0.048 to 0.23±0.026 and from 5.675±0.052 to 6.313±0.103 when using stewing and from 21.328±0.025 to 20.56±0.021, from -1.093± 0.011to 0.121±0.007 and from 5.708±0.020 to 6.263±0.007 when using stir-frying, respectively. TPC and TFC increased during cooking. TPC of Molokheiya varied from 29.852±0.866 mg GAE/100 g to 220.416±0.519 mg GAE/100 g after 150 min of stewing and from 25.257±0.259 mg GAE/100 g to 208.897 ±0.173 mg GAE/100 g using stir-frying method during 150 min. TFC of Molokheiya varied from 48.229±1.47 mg QE/100 g to 843.802±1.841 mg QE/100 g when using stewing and from 37.031± 0.368 mg QE/100 g to 775.312±0.736 mg QE/100 g when using stir-frying. Kinetics followed similar curves in all cases but resulted in different final TPC and TFC. The shape of the kinetics curves suggests zero-order kinetics. The mathematical relations and the numerical approach used to model the kinetics of polyphenol and flavonoid contents in Molokheiya are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Corchorus%20olitorius" title="Corchorus olitorius">Corchorus olitorius</a>, <a href="https://publications.waset.org/abstracts/search?q=Molokheiya" title=" Molokheiya"> Molokheiya</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a> </p> <a href="https://publications.waset.org/abstracts/29841/effect-of-two-cooking-methods-on-kinetics-of-polyphenol-content-flavonoid-content-and-color-of-a-tunisian-meal-molokheiya-corchorus-olitorius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Studies on Non-Isothermal Crystallization Kinetics of PP/SEBS-g-MA Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishi%20Sharma">Rishi Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Maiti"> S. N. Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The non-isothermal crystallization kinetics of PP/SEBS-g-MA blends up to 0-50% concentration of copolymer was studied by differential scanning calorimetry at four different cooling rates. Crystallization parameters were analyzed by Avrami and Jeziorny models. Primary and secondary crystallization processes were described by Avrami equation. Avrami model showed that all types of shapes grow from small dimensions during primary crystallization. However, three-dimensional crystal growth was observed during the secondary crystallization process. The crystallization peak and onset temperature decrease, however <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystallization%20kinetics" title="crystallization kinetics">crystallization kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=non-isothermal" title=" non-isothermal"> non-isothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=SEBS-g-MA" title=" SEBS-g-MA"> SEBS-g-MA</a> </p> <a href="https://publications.waset.org/abstracts/19871/studies-on-non-isothermal-crystallization-kinetics-of-ppsebs-g-ma-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> Human Kinetics Education and the Computer Operations, Effects and Merits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kehinde%20Adeyeye%20Adelabu">Kehinde Adeyeye Adelabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer applications has completely revolutionized the way of life of people which does not exclude the field of sport education. There are computer technologies which help to enhance teaching in every field of education. Invention of computers has done great to the field of education. This study was therefore carried out to examine the effects and merits of computer operations in Human Kinetics Education and Sports. The study was able to identify the component of computer, uses of computer in Human Kinetics education (sports), computer applications in some branches of human kinetics education. A qualitative research method was employed by the author in gathering experts’ views and used to analyze the effects and merits of computer applications in the field of human kinetics education. No experiment was performed in the cause of carrying out the study. The source of information for the study was text-books, journal, articles, past project reports, internet i.e. Google search engine. Computer has significantly helped to improve Education (Human Kinetic), it has complemented the basic physical fitness testing and gave a more scientific basis to the testing. The use of the software and packages has made cost projections, database applications, inventory control, management of events, word processing, electronic mailing and record keeping easier than the pasts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20operation" title=" computer operation"> computer operation</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20kinetics" title=" human kinetics"> human kinetics</a> </p> <a href="https://publications.waset.org/abstracts/92823/human-kinetics-education-and-the-computer-operations-effects-and-merits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> Biosorption of Phenol onto Water Hyacinth Activated Carbon: Kinetics and Isotherm Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Mahapatra">Manoj Kumar Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Batch adsorption experiments were carried out for the removal of phenol from its aqueous solution using water hyancith activated carbon (WHAC) as an adsorbent. The sorption kinetics were analysed using pseudo-first order kinetics and pseudo-second order model, and it was observed that the sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Equilibrium data fitted well to the Freundlich model with a maximum biosorption capacity of 31.45 mg/g estimated using Langmuir model. The adsorption intensity 3.7975 represents a favorable adsorption condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a> </p> <a href="https://publications.waset.org/abstracts/56589/biosorption-of-phenol-onto-water-hyacinth-activated-carbon-kinetics-and-isotherm-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Kinetics and Mechanism of Oxidation of Dimethylglyoxime Chromium (III) Complex by Periodate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Abdel-Khalek">Ahmed A. Abdel-Khalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20A.%20Mohamed"> Reham A. Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of oxidation of binary complex [CrIII(DMG)2(H2O)4 ]+ to Cr(VI) by periodate has been investigated spectrophotometrically where, [DMG= Dimethylglyoxime] at 370nm under pseudo first order reaction conditions in aqueous medium over 20- 40ºC range, PH 2-3, and I=0.07 mol dm-3. The reaction is first order with respect to both [IO4-] and Cr(III), and the reaction increased with PH increased. Thermodymanic activation parameters have been calculated. It is suggested that electron transfer proceeds through an inner sphere mechanism via coordination of IO4- to Cr (III). The reaction obeys the following rate law Rate= {k1 K5+ k2 K6 K2 } [Cr III (DMG)2(H2O)4 ]+ [H5IO6]. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethylglyoxime" title=" dimethylglyoxime"> dimethylglyoxime</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodate" title=" periodate"> periodate</a> </p> <a href="https://publications.waset.org/abstracts/30916/kinetics-and-mechanism-of-oxidation-of-dimethylglyoxime-chromium-iii-complex-by-periodate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Kinetics of Cu(II) Transport through Bulk Liquid Membrane with Different Membrane Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siu%20Hua%20Chang">Siu Hua Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayub%20Md%20Som"> Ayub Md Som</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannathan%20Krishnan"> Jagannathan Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: Fresh cooking oil, waste cooking oil, and kerosene each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane, and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transport%20kinetics" title="transport kinetics">transport kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%28II%29" title=" Cu(II)"> Cu(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20liquid%20membrane" title=" bulk liquid membrane"> bulk liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20cooking%20oil" title=" waste cooking oil "> waste cooking oil </a> </p> <a href="https://publications.waset.org/abstracts/2082/kinetics-of-cuii-transport-through-bulk-liquid-membrane-with-different-membrane-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Herbal Medicines Used for the Cure of Jaundice among the Some Tribal Populations of Madhya Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awdhesh%20Narayan%20Sharma">Awdhesh Narayan Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of herbal medicines for the cure of various ailments among the tribal population is as old as human origin itself. Most of the tribal populations of Madhya Pradesh inhabit in remote and inaccessible ecological setup. From long back, tribals and forests are interrelated to each other. They use an enormous range of wild plants for their basic needs and medicines. The tribal developed a unique understanding with wild plants, herbs, etc., and earned specialized knowledge of disease pattern and curative therapy-through hard experiences, common sense, trial, and error methods. They have passed this knowledge through traditions, taboos, totems, folklore by words of mouth from generation to generation. Here, an attempt has been made to study the possible aspects of herbal medicine for the cure of Jaundice among the tribal populations of Madhya Pradesh, India, through primary data as well as available secondary data. The data have been collected from the 305 Bharias of Patalkot, Madhya Pradesh, India, and included available secondary source of data by various investigators. It may be concluded that a sizable herbal medicinal plants' wealth exists in Madhya Pradesh, India, which still awaits for scientific exploration. The existing herbal medicines used for the cure of jaundice need an extensive investigation from the pharmaceutical point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharias" title="Bharias">Bharias</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20medicine" title=" herbal medicine"> herbal medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=tribal" title=" tribal"> tribal</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhya%20Pradesh" title=" Madhya Pradesh"> Madhya Pradesh</a> </p> <a href="https://publications.waset.org/abstracts/126822/herbal-medicines-used-for-the-cure-of-jaundice-among-the-some-tribal-populations-of-madhya-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> Isothermal Crystallization Kinetics of Lauric Acid Methyl Ester from DSC Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charine%20Faith%20H.%20Lagrimas">Charine Faith H. Lagrimas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rommel%20N.%20Galvan"> Rommel N. Galvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizalinda%20L.%20de%20Leon"> Rizalinda L. de Leon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ongoing study, methyl laurate to be used as a refrigerant in an HVAC system, requires the crystallization kinetics of the said substance. Step-wise and normal forms of Avrami model parameters were used to describe the isothermal crystallization kinetics of methyl laurate at different temperatures from Differential Scanning Calorimetry (DSC) measurements. At 3 °C, parameters showed that methyl laurate exhibits a secondary crystallization. The primary crystallization occurred with instantaneous nuclei and spherulitic growth; followed by a secondary instantaneous nucleation with a lower growth of dimensionality, rod-like. At 4 °C to 6 °C, the exotherms from DSC implied that the system was under the isokinetic range. The kinetics behavior is the same which is instantaneous nucleation with one-dimensional growth. The differences for the isokinetic range temperatures are the activation energies (directly proportional to T) and nucleation rates (inversely proportional to T). From the images obtained during the crystallization of methyl laurate using an optical microscope, it is confirmed that the nucleation and crystal growth modes obtained from the optical microscope are consistent with the parameters from Avrami model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avrami%20model" title="Avrami model">Avrami model</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20crystallization" title=" isothermal crystallization"> isothermal crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids%20kinetics" title=" lipids kinetics"> lipids kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20laurate" title=" methyl laurate"> methyl laurate</a> </p> <a href="https://publications.waset.org/abstracts/27068/isothermal-crystallization-kinetics-of-lauric-acid-methyl-ester-from-dsc-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Modelling Kinetics of Colour Degradation in American Pokeweed (Phytolacca americana) Extract Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed-Ahmad%20Shahidi">Seyed-Ahmad Shahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salemeh%20Kazemzadeh"> Salemeh Kazemzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Sharifi%20Soltani"> Mehdi Sharifi Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Azade%20Ghorbani-HasanSaraei"> Azade Ghorbani-HasanSaraei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of colour changes of American Pokeweed extract, due to concentration by various heating methods was studied. Three different heating/evaporation processes were employed for production of American Pokeweed extract concentrate. The American Pokeweed extract was concentrated to a final 40 °Brix from an initial °Brix of 4 by microwave heating, rotary vacuum evaporator and evaporating at atmospheric pressure. The final American Pokeweed extract concentration of 40 °Brix was achieved in 188, 216 and 320 min by using microwave, rotary vacuum and atmospheric heating processes, respectively. The colour change during concentration processes was investigated. Total colour differences, Hunter L, a and b parameters were used to estimate the extent of colour loss. All Hunter colour parameters decreased with time. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. All models were found to describe the L, a and b-data adequately. Results indicated that variation in TCD followed both first-order and combined kinetics models. This model implied that the colour formation and pigment destruction occurred during concentration processes of American Pokeweed extract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=American%20pokeweed" title="American pokeweed">American pokeweed</a>, <a href="https://publications.waset.org/abstracts/search?q=colour" title=" colour"> colour</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/36138/modelling-kinetics-of-colour-degradation-in-american-pokeweed-phytolacca-americana-extract-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Study of First Hydrogenation Kinetics at Different Temperatures of BCC Alloy 52Ti-12V-36Cr + x wt% Zr (x = 4, 8 &amp; 12)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Prakash">Ravi Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of Zr addition on kinetics and hydrogen absorption characteristics of BCC alloy 52Ti-12V-36Cr doped with x wt% of Zr (x = 0, 4, 8 & 12) was investigated. The samples have been characterized by X-ray diffraction, and activation study were made at four different temperatures- 100 oC, 200 oC, 300 oC and 400 oC. First hydrogenation kinetics of alloys were studied at 20 bar of hydrogen pressure and room temperature after giving heat treatment at different temperatures for 6 hours. Among the various Zr doped alloys studied, the composition 52Ti-12V-36Cr + 4wt% Zr shows maximum hydrogen storage capacity of 3.6wt%. Small amount of Zr shows advantageous effects on kinetics of alloy. It was also found out that alloys with the higher Zr concentration can be activated by giving heat treatment at lower temperatures. There is reduction in hydrogen storage capacity with increasing Zr content in the alloy primarily due to increasing abundance of secondary phase as established by X-Ray Diffraction and Scanning Electron Microscope results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20hydrides" title=" metal hydrides"> metal hydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=bcc%20alloy" title=" bcc alloy"> bcc alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/168987/study-of-first-hydrogenation-kinetics-at-different-temperatures-of-bcc-alloy-52ti-12v-36cr-x-wt-zr-x-4-8-12" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Modeling and Experimental Verification of Crystal Growth Kinetics in Glass Forming Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20K.%20Galenko">Peter K. Galenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefanie%20Koch"> Stefanie Koch</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Rettenmayr"> Markus Rettenmayr</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Wonneberger"> Robert Wonneberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20V.%20%20Kharanzhevskiy"> Evgeny V. Kharanzhevskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20%20Zamoryanskaya"> Maria Zamoryanskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Ankudinov"> Vladimir Ankudinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We analyze the structure of undercooled melts, crystal growth kinetics and amorphous/crystalline microstructure of rapidly solidifying glass-forming Pd-based and CuZr-based alloys. A dendrite growth model is developed using a combination of the kinetic phase-field model and mesoscopic sharp interface model. The model predicts features of crystallization kinetics in alloys from thermodynamically controlled growth (governed by the Gibbs free energy change on solidification) to the kinetically limited regime (governed by atomic attachment-detachment processes at the solid/liquid interface). Comparing critical undercoolings observed in the crystallization kinetics with experimental data on melt viscosity, atomistic simulation's data on liquid microstructure and theoretically predicted dendrite growth velocity allows us to conclude that the dendrite growth kinetics strongly depends on the cluster structure changes of the melt. The obtained data of theoretical and experimental investigations are used for interpretation of microstructure of samples processed in electro-magnetic levitator on board International Space Station in the frame of the project "MULTIPHAS" (European Space Agency and German Aerospace Center, 50WM1941) and "KINETIKA" (ROSKOSMOS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrite" title="dendrite">dendrite</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a> </p> <a href="https://publications.waset.org/abstracts/130040/modeling-and-experimental-verification-of-crystal-growth-kinetics-in-glass-forming-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Ren">Yong Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaping%20Zhang"> Yaping Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title="phase change material">phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release%20kinetics" title=" drug release kinetics"> drug release kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20emulsion" title=" double emulsion"> double emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a> </p> <a href="https://publications.waset.org/abstracts/22132/numerical-investigation-of-thermally-triggered-release-kinetics-of-double-emulsion-for-drug-delivery-using-phase-change-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> Efficient Estimation for the Cox Proportional Hazards Cure Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khandoker%20Akib%20Mohammad">Khandoker Akib Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cox%20PH%20model" title="Cox PH model">Cox PH model</a>, <a href="https://publications.waset.org/abstracts/search?q=cure%20model" title=" cure model"> cure model</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20score%20function" title=" efficient score function"> efficient score function</a>, <a href="https://publications.waset.org/abstracts/search?q=EM%20algorithm" title=" EM algorithm"> EM algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit%20function" title=" implicit function"> implicit function</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20likelihood" title=" profile likelihood"> profile likelihood</a> </p> <a href="https://publications.waset.org/abstracts/124490/efficient-estimation-for-the-cox-proportional-hazards-cure-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Effect of Concentration of Alkaline and Curing Temperature on Compressive Strength of Geopolymer Concert</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nursah%20Kutuk">Nursah Kutuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevil%20Cetinkaya"> Sevil Cetinkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geopolymers are becoming new concrete materials to use alongside cement, which are formed due to reaction between alumino-silicates and oxides with alkaline media. Silicates obtained from natural minerals or industrial wastes are used for geopolymer synthesis. Geopolymers have recently received wide attention because of their advantages over other cementitious material like Portland cement. Some of the advantages are high compressive strength, low environmental impact, chemical and fire resistance and thermal stability. In this study, geopolymers were prepared by using inorganic materials such as kaolinite and calcite. The experiments were carried out by varying the concentration of NaOH as 5, 10, 15 and 20 M, and at cure temperature of 22, 45 and 65 °C. Compressive strengths for each mixes at each cure temperature were measured. Results of the analyses indicated that the compressive strength of geopolymers did not increase steadily with increasing concentration of NaOH, but did increase steadily with increasing cure temperature. We examined the effect Na2SiO3/NaOH weight ratio on the properties of the geopolymers, too. It was seen that Na2SiO3/NaOH weight ratio was also important to prepare geopolymers that can be applied to construction industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymers" title="geopolymers">geopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=calcite" title=" calcite"> calcite</a> </p> <a href="https://publications.waset.org/abstracts/37489/effect-of-concentration-of-alkaline-and-curing-temperature-on-compressive-strength-of-geopolymer-concert" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Precipitation Kinetics of Al-7%Mg Alloy Studied by DSC and XRD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Fatmi">M. Fatmi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Chihi"> T. Chihi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ghebouli"> M. A. Ghebouli</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ghebouli"> B. Ghebouli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the experimental results of the differential scanning calorimetry (DSC), hardness measurements (Hv) and XRD analysis, for order to investigate the kinetics of precipitation phenomena in Al-7%wt. Mg alloy. In the XRD and DSC curves indicates the formation of the intermediate precipitation of β-(Al3Mg2) phase respectively. The activation energies associated with the processes have been determined according to the three models proposed by Kissinger, Ozawa, and Boswell. Consequently, the nucleation mechanism of the precipitates can be explained. These phases are confirmed by XRD analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discontinuous%20precipitation" title="discontinuous precipitation">discontinuous precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%E2%80%93Mg%20alloys" title=" Al–Mg alloys"> Al–Mg alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20and%20mechatronics%20engineering" title=" mechanical and mechatronics engineering"> mechanical and mechatronics engineering</a> </p> <a href="https://publications.waset.org/abstracts/13735/precipitation-kinetics-of-al-7mg-alloy-studied-by-dsc-and-xrd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Effect of Blanching and Drying Methods on the Degradation Kinetics and Color Stability of Radish (Raphanus sativus) Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Radha%20Krishnan">K. Radha Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirajul%20Alom"> Mirajul Alom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dehydrated powder prepared from fresh radish (Raphanus sativus) leaves were investigated for the color stability by different drying methods (tray, sun and solar). The effect of blanching conditions, drying methods as well as drying temperatures (50 – 90°C) were considered for studying the color degradation kinetics of chlorophyll in the dehydrated powder. The hunter color parameters (L*, a*, b*) and total color difference (TCD) were determined in order to investigate the color degradation kinetics of chlorophyll. Blanching conditions, drying method and drying temperature influenced the changes in L*, a*, b* and TCD values. The changes in color values during processing were described by a first order kinetic model. The temperature dependence of chlorophyll degradation was adequately modeled by Arrhenius equation. To predict the losses in green color, a mathematical model was developed from the steady state kinetic parameters. The results from this study indicated the protective effect of blanching conditions on the color stability of dehydrated radish powder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorophyll" title="chlorophyll">chlorophyll</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20stability" title=" color stability"> color stability</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20kinetics" title=" degradation kinetics"> degradation kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a> </p> <a href="https://publications.waset.org/abstracts/44880/effect-of-blanching-and-drying-methods-on-the-degradation-kinetics-and-color-stability-of-radish-raphanus-sativus-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Phase Stability and Grain Growth Kinetics of Oxide Dispersed CoCrFeMnNi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prangya%20P.%20Sahoo">Prangya P. Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Murty"> B. S. Murty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with phase evolution of oxide dispersed CoCrFeMnNi high entropy alloy as a function of amount of added Y2O3 during mechanical alloying and analysis of grain growth kinetics of CoCrFeMnNi high entropy alloy without and with oxide dispersion. Mechanical alloying of CoCrFeMnNi resulted in a single FCC phase. However, evolution of chromium carbide was observed after heat treatment between 1073 and 1473 K. Comparison of grain growth time exponents and activation energy barrier is also reported. Micro structural investigations, using electron microscopy and EBSD techniques, were carried out to confirm the enhanced grain growth resistance which is attributed to the presence oxide dispersoids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grain%20growth%20kinetics" title="grain growth kinetics">grain growth kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20dispersion" title=" oxide dispersion"> oxide dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20evolution" title=" phase evolution"> phase evolution</a> </p> <a href="https://publications.waset.org/abstracts/58015/phase-stability-and-grain-growth-kinetics-of-oxide-dispersed-cocrfemnni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrashekar">Chandrashekar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Radhika"> R. T. Radhika</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Venkatesha"> B. M. Venkatesha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ananda"> S. Ananda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivalingegowda"> Shivalingegowda</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Shashikumar"> T. S. Shashikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ramachandra"> H. Ramachandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO<sub>4</sub>) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH<sub>3</sub>C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amitriptyline" title="amitriptyline">amitriptyline</a>, <a href="https://publications.waset.org/abstracts/search?q=bromamine-T" title=" bromamine-T"> bromamine-T</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/50625/oxidation-of-amitriptyline-by-bromamine-t-in-acidic-buffer-medium-a-kinetic-and-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bet%C3%BCl%20%C3%96zgen%C3%A7">Betül Özgenç</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Ku%C5%9Flu"> Soner Kuşlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabri%20%C3%87olak"> Sabri Çolak</a>, <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban"> Turan Çalban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ulexite" title="ulexite">ulexite</a>, <a href="https://publications.waset.org/abstracts/search?q=disodium%20hydrogen%20phosphate" title=" disodium hydrogen phosphate"> disodium hydrogen phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching%20kinetics" title=" leaching kinetics"> leaching kinetics</a> </p> <a href="https://publications.waset.org/abstracts/27457/dissolution-leaching-kinetics-of-ulexite-in-disodium-hydrogen-phosphate-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Production of Plum (Prunus Cerasifera) Concentrate as Edible Color and Evaluation of Color Change Kinetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azade%20Ghorbani-HasanSaraei">Azade Ghorbani-HasanSaraei</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed-Ahmad%20Shahidi"> Seyed-Ahmad Shahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakineh%20Alizadeh"> Sakineh Alizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeleh%20Maghsoudlou"> Adeleh Maghsoudlou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improvement of color, as a quality attribute of Plum Concentrate, has been made possible by the increase in knowledge of kinetic of color change. Three different heating/evaporation processes were employed for the production of pPlum juice concentrate. The Plum juice was concentrated to a final 55 °Bx from an initial °Bx of 15 by microwave heating, rotary vacuum evaporator and evaporating at atmospheric pressure. The final Plum juice concentration of 55 °Bx was achieved in 17, 24 and 57 min by using the microwave, rotary vacuum and atmospheric heating processes, respectively. The colour change during concentration processes was investigated. Total colour differences, Hunter L, a and b parameters were used to estimate the extent of colour loss. All Hunter colour parameters decreased with time. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. Results indicated that variation in TCD followed both first-order and combined kinetics models, and parameters L, a and b followed only combined model. This model implied that the colour formation and pigment destruction occurred during concentration processes of plum juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colour" title="colour">colour</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=plum%20juice" title=" plum juice"> plum juice</a> </p> <a href="https://publications.waset.org/abstracts/36135/production-of-plum-prunus-cerasifera-concentrate-as-edible-color-and-evaluation-of-color-change-kinetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Dom%C3%ADnguez">Juan C. Domínguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Bel%C3%A9n%20Del%20Saz-Orozco"> Belén Del Saz-Orozco</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20V.%20Alonso"> María V. Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercedes%20Oliet"> Mercedes Oliet</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Rodr%C3%ADguez"> Francisco Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam, 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement, and 82.1, 106.9, and 124.4 kJ. mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (< 1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetics" title="kinetics">kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20foam" title=" phenolic foam"> phenolic foam</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20degradation" title=" thermal degradation"> thermal degradation</a> </p> <a href="https://publications.waset.org/abstracts/25484/kinetic-study-of-thermal-degradation-of-a-lignin-nanoparticle-reinforced-phenolic-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Awareness and Utilization of E-Learning Technologies in Teaching and Learning of Human Kinetics and Health Education Courses in Nigeria Universities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Laro%20ABUBAKAR">Ibrahim Laro ABUBAKAR</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the Availability and Utilization of E-Learning Technologies in Teaching of Human Kinetics and Health Education courses in Nigerian Universities, specifically, Universities in Kwara State. Two purposes were formulated to guide the study from which two research questions and two hypotheses were raised. The descriptive research design was used in the research. Three Hundred respondents (100 Lecturers and 200 Students) made up the population for the study. There was no sampling, as the population of the study was not much. A structured questionnaire tagged ‘Availability and Utilization of E-Learning Technologies in Teaching and Learning Questionnaire’ (AUETTLQ) was used for data collection. The questionnaire was subjected to face and content validation, and it was equally pilot tested. The validation yielded a reliability coefficient of 0.78. The data collected from the study were statistically analyzed using frequencies and percentage count for personal data of the respondents, mean and standard deviation to answer the research questions. The null hypotheses were tested at 0.05 level of significance using the independent t-test. One among other findings of this study showed that lecturers and Student are aware of synchronous e-learning technologies in teaching and learning of Human Kinetics and Health Education but often utilize the synchronous e-learning technologies. It was recommended among others that lecturers and Students should be sensitized through seminars and workshops on the need to maximally utilize available e-learning technologies in teaching and learning of Human Kinetics and Health Education courses in Universities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness" title="awareness">awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization" title=" utilization"> utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=E-Learning" title=" E-Learning"> E-Learning</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies" title=" technologies"> technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20kinetics%20synchronous" title=" human kinetics synchronous"> human kinetics synchronous</a> </p> <a href="https://publications.waset.org/abstracts/110014/awareness-and-utilization-of-e-learning-technologies-in-teaching-and-learning-of-human-kinetics-and-health-education-courses-in-nigeria-universities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Adsorption of Malachite Green Dye on Graphene Oxide Nanosheets from Aqueous Solution: Kinetics and Thermodynamics Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20S.%20Elsherbiny">Abeer S. Elsherbiny</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20H.%20Gemeay"> Ali H. Gemeay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, graphene oxide (GO) nanosheets have been synthesized and characterized using different spectroscopic tools such as X-ray diffraction spectroscopy, infrared Fourier transform (FT-IR) spectroscopy, BET specific surface area and Transmission Electronic Microscope (TEM). The prepared GO was investigated for the removal of malachite green, a cationic dye from aqueous solution. The removal methods of malachite green has been proceeded via adsorption process. GO nanosheets can be predicted as a good adsorbent material for the adsorption of cationic species. The adsorption of the malachite green onto the GO nanosheets has been carried out at different experimental conditions such as adsorption kinetics, concentration of adsorbate, pH, and temperature. The kinetics of the adsorption data were analyzed using four kinetic models such as the pseudo first-order model, pseudo second-order model, intraparticle diffusion, and the Boyd model to understand the adsorption behavior of malachite green onto the GO nanosheets and the mechanism of adsorption. The adsorption isotherm of adsorption of the malachite green onto the GO nanosheets has been investigated at 25, 35 and 45 °C. The equilibrium data were fitted well to the Langmuir model. Various thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) change were also evaluated. The interaction of malachite green onto the GO nanosheets has been investigated by infrared Fourier transform (FT-IR) spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title=" malachite green"> malachite green</a> </p> <a href="https://publications.waset.org/abstracts/36266/adsorption-of-malachite-green-dye-on-graphene-oxide-nanosheets-from-aqueous-solution-kinetics-and-thermodynamics-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> An Investigation into the Crystallization Tendency/Kinetics of Amorphous Active Pharmaceutical Ingredients: A Case Study with Dipyridamole and Cinnarizine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shrawan%20Baghel">Shrawan Baghel</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20Cathcart"> Helen Cathcart</a>, <a href="https://publications.waset.org/abstracts/search?q=Biall%20J.%20O%27Reilly"> Biall J. O&#039;Reilly </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amorphous drug formulations have great potential to enhance solubility and thus bioavailability of BCS class II drugs. However, the higher free energy and molecular mobility of the amorphous form lowers the activation energy barrier for crystallization and thermodynamically drives it towards the crystalline state which makes them unstable. Accurate determination of the crystallization tendency/kinetics is the key to the successful design and development of such systems. In this study, dipyridamole (DPM) and cinnarizine (CNZ) has been selected as model compounds. Thermodynamic fragility (m_T) is measured from the heat capacity change at the glass transition temperature (Tg) whereas dynamic fragility (m_D) is evaluated using methods based on extrapolation of configurational entropy to zero 〖(m〗_(D_CE )), and heating rate dependence of Tg 〖(m〗_(D_Tg)). The mean relaxation time of amorphous drugs was calculated from Vogel-Tammann-Fulcher (VTF) equation. Furthermore, the correlation between fragility and glass forming ability (GFA) of model drugs has been established and the relevance of these parameters to crystallization of amorphous drugs is also assessed. Moreover, the crystallization kinetics of model drugs under isothermal conditions has been studied using Johnson-Mehl-Avrami (JMA) approach to determine the Avrami constant ‘n’ which provides an insight into the mechanism of crystallization. To further probe into the crystallization mechanism, the non-isothermal crystallization kinetics of model systems was also analysed by statistically fitting the crystallization data to 15 different kinetic models and the relevance of model-free kinetic approach has been established. In addition, the crystallization mechanism for DPM and CNZ at each extent of transformation has been predicted. The calculated fragility, glass forming ability (GFA) and crystallization kinetics is found to be in good correlation with the stability prediction of amorphous solid dispersions. Thus, this research work involves a multidisciplinary approach to establish fragility, GFA and crystallization kinetics as stability predictors for amorphous drug formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous" title="amorphous">amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility" title=" fragility"> fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20forming%20ability" title=" glass forming ability"> glass forming ability</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20mobility" title=" molecular mobility"> molecular mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20relaxation%20time" title=" mean relaxation time"> mean relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization%20kinetics" title=" crystallization kinetics"> crystallization kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/41262/an-investigation-into-the-crystallization-tendencykinetics-of-amorphous-active-pharmaceutical-ingredients-a-case-study-with-dipyridamole-and-cinnarizine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Dissolution Leaching Kinetics of Ulexite in Sodium Dihydrogen Phosphate Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20Teke">Emine Teke</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Ku%C5%9Flu"> Soner Kuşlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabri%20%C3%87olak"> Sabri Çolak</a>, <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban"> Turan Çalban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to investigate the dissolution kinetics of ulexite in sodium dihydrogen phosphate in a mechanical agitation system and also to declare an alternative reactant to produce the boric acid. Reaction temperature, concentration of sodium dihydrogen phosphate, stirring speed, solid-liquid ratio, and ulexite particle size were selected as parameters. The experimental results were successfully correlated by using linear regression and a statistical program. Dissolution curves were evaluated in order to test the shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase in the dissolution rate of ulexite. The activation energy was found to be 36.4 kJ/mol. The leaching of ulexite was controlled by diffusion through the ash (or product) layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ulexite" title="ulexite">ulexite</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20dihydrogen%20phosphate" title=" sodium dihydrogen phosphate"> sodium dihydrogen phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching%20kinetics" title=" leaching kinetics"> leaching kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a> </p> <a href="https://publications.waset.org/abstracts/51920/dissolution-leaching-kinetics-of-ulexite-in-sodium-dihydrogen-phosphate-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> Cadmium Separation from Aqueous Solutions by Natural Biosorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20V.%20P.%20Murthy">Z. V. P. Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Arunachalam"> Preeti Arunachalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Balram"> Sangeeta Balram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of metal ions from different wastewaters has become important due to their effects on living beings. Cadmium is one of the heavy metals found in different industrial wastewaters. There are many conventional methods available to remove heavy metals from wastewaters like adsorption, membrane separations, precipitation, electrolytic methods, etc. and all of them have their own advantages and disadvantages. The present work deals with the use of natural biosorbents (chitin and chitosan) to separate cadmium ions from aqueous solutions. The adsorption data were fitted with different isotherms and kinetics models. Amongst different adsorption isotherms used to fit the adsorption data, the Freundlich isotherm showed better fits for both the biosorbents. The kinetics data of adsorption of cadmium showed better fit with pseudo-second order model for both the biosorbents. Chitosan, the derivative from chitin, showed better performance than chitin. The separation results are encouraging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitin" title="chitin">chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/79853/cadmium-separation-from-aqueous-solutions-by-natural-biosorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cure%20kinetics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10