CINXE.COM
Search results for: cell- material interaction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cell- material interaction</title> <meta name="description" content="Search results for: cell- material interaction"> <meta name="keywords" content="cell- material interaction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cell- material interaction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cell- material interaction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13326</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cell- material interaction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13326</span> Assessment of Drug Delivery Systems from Molecular Dynamic Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimnejad">M. Rahimnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vahidi"> B. Vahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ebrahimi%20Hoseinzadeh"> B. Ebrahimi Hoseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Yazdian"> F. Yazdian</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Motamed%20Fath"> P. Motamed Fath</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jamjah"> R. Jamjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20drug" title="anti-cancer drug">anti-cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20mass" title=" center of mass"> center of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title=" nanocarrier"> nanocarrier</a> </p> <a href="https://publications.waset.org/abstracts/73548/assessment-of-drug-delivery-systems-from-molecular-dynamic-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13325</span> Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Rahimnejad">Maedeh Rahimnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahman%20Vahidi"> Bahman Vahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahman%20Ebrahimi%20Hoseinzadeh"> Bahman Ebrahimi Hoseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Yazdian"> Fatemeh Yazdian</a>, <a href="https://publications.waset.org/abstracts/search?q=Puria%20Motamed%20Fath"> Puria Motamed Fath</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghieh%20Jamjah"> Roghieh Jamjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20drug" title="anti-cancer drug">anti-cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20mass" title=" center of mass"> center of mass</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20energy" title=" interaction energy"> interaction energy</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocarrier" title=" nanocarrier"> nanocarrier</a> </p> <a href="https://publications.waset.org/abstracts/73338/understanding-nanocarrier-efficacy-in-drug-delivery-systems-using-molecular-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13324</span> Immunomodulatory Effects of Multipotent Mesenchymal Stromal Cells on T-Cell Populations at Tissue-Related Oxygen Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Gornostaeva">A. N. Gornostaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20I.%20Bobyleva"> P. I. Bobyleva</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20R.%20Andreeva"> E. R. Andreeva</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20B.%20Buravkova"> L. B. Buravkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multipotent mesenchymal stromal cells (MSCs) possess immunomodulatory properties. The effect of MSCs on the crucial cellular immunity compartment – T-cells is of a special interest. It is known that MSC tissue niche and expected milieu of their interaction with T- cells are characterized by low oxygen concentration, whereas the in vitro experiments usually are carried out at a much higher ambient oxygen (20%). We firstly evaluated immunomodulatory effects of MSCs on T-cells at tissue-related oxygen (5%) after interaction implied cell-to-cell contacts and paracrine factors only. It turned out that MSCs under reduced oxygen can effectively suppress the activation and proliferation of PHA-stimulated T-cells and can provoke decrease in the production of proinflammatory and increase in anti-inflammatory cytokines. In hypoxia some effects were amplified (inhibition of proliferation, anti-inflammatory cytokine profile shift). This impact was more evident after direct cell-to-cell interaction; lack of intercellular contacts could revoke the potentiating effect of hypoxia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MSCs" title="MSCs">MSCs</a>, <a href="https://publications.waset.org/abstracts/search?q=T-cells" title=" T-cells"> T-cells</a>, <a href="https://publications.waset.org/abstracts/search?q=activation" title=" activation"> activation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20oxygen" title=" low oxygen"> low oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-to-cell%20interaction" title=" cell-to-cell interaction"> cell-to-cell interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=immunosuppression" title=" immunosuppression "> immunosuppression </a> </p> <a href="https://publications.waset.org/abstracts/12460/immunomodulatory-effects-of-multipotent-mesenchymal-stromal-cells-on-t-cell-populations-at-tissue-related-oxygen-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13323</span> Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fan%20Gao">Fan Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lior%20Pachter"> Lior Pachter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-cell" title="single-cell">single-cell</a>, <a href="https://publications.waset.org/abstracts/search?q=ATAC-seq" title=" ATAC-seq"> ATAC-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20chromatin%20landscape" title=" open chromatin landscape"> open chromatin landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatin%20interactome" title=" chromatin interactome"> chromatin interactome</a> </p> <a href="https://publications.waset.org/abstracts/137695/efficient-pre-processing-of-single-cell-assay-for-transposase-accessible-chromatin-with-high-throughput-sequencing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13322</span> On the Thermodynamics of Biological Cell Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Nadler">Ben Nadler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cell adhesion plays a vital role in many cell activities. The motivation to model cell adhesion is to study important biological processes, such as cell spreading, cell aggregation, tissue formation, and cell adhesion, which are very challenging to study by experimental methods alone. This study provides important insight into cell adhesion, which can lead to improve regenerative medicine and tissue formation techniques. In this presentation the biological cells adhesion is mediated by receptors–ligands binding and the diffusivity of the receptor on the cell membrane surface. The ability of receptors to diffuse on the cell membrane surface yields a very unique and complicated adhesion mechanism, which is exclusive to cells. The phospholipid bilayer, which is the main component in the cell membrane, shows fluid-like behavior associated with the molecules’ diffusivity. The biological cell is modeled as a fluid-like membrane with negligible bending stiffness enclosing the cytoplasm fluid. The in-plane mechanical behavior of the cell membrane is assumed to depend only on the area change, which is motivated by the fluidity of the phospholipid bilayer. In addition, the presence of receptors influences on the local mechanical properties of the cell membrane is accounted for by including stress-free area change, which depends on the receptor density. Based on the physical properties of the receptors and ligands the attraction between the receptors and ligands is modeled as a charged-nonpolar which is a noncovalent interaction. Such interaction is a short-range type, which decays fast with distance. The mobility of the receptor on the cell membrane is modeled using the diffusion equation and Fick’s law is used to model the receptor–receptor interactions. The resultant interaction force, which includes receptor–ligand and receptor–receptor interaction, is decomposed into tangential part, which governs the receptor diffusion, and normal part, which governs the cell deformation and adhesion. The formulation of the governing equations and numerical simulations will be presented. Analysis of the adhesion characteristic and properties are discussed. The roles of various thermomechanical properties of the cell, receptors and ligands on the cell adhesion are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20adhesion" title="cell adhesion">cell adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20membrane" title=" cell membrane"> cell membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor-ligand%20interaction" title=" receptor-ligand interaction"> receptor-ligand interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=receptor%20diffusion" title=" receptor diffusion"> receptor diffusion</a> </p> <a href="https://publications.waset.org/abstracts/37546/on-the-thermodynamics-of-biological-cell-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13321</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhane%20Hamed%20Kamran">Reyhane Hamed Kamran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science, and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/154753/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13320</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narin%20Salehiyan">Narin Salehiyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/170992/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13319</span> Role of Micro-Patterning on Stem Cell-Material Interaction Modulation and Cell Fate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lay%20Poh%20Tan">Lay Poh Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chor%20Yong%20Tay"> Chor Yong Tay</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiyang%20Yu"> Haiyang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-contact printing is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact technique. Here, we adopt this method to print proteins of different dimensions on our biodegradable polymer substrates. We started off with printing 20-500 μm scale lanes of fibronectin to engineer the shape of bone marrow derived human mesenchymal stem cell (hMSCs). After 8 hours of culture, the hMSCs adopted elongated shapes, and upon analysis of the gene expressions, genes commonly associated with myogenesis (GATA-4, MyoD1, cTnT and β-MHC) and neurogenesis (NeuroD, Nestin, GFAP, and MAP2) were up-regulated but gene expression associated to osteogenesis (ALPL, RUNX2, and SPARC) were either down modulated or remained at the nominal level. This is the first evidence that cellular morphology control via micropatterning could be used to modulate stem cell fate without external biochemical stimuli. We further our studies to modulate the focal adhesion (FA) instead of the macro shape of cells. Micro-contact printed islands of different smaller dimensions were investigated. We successfully regulated the FAs into dense FAs and elongated FAs by micropatterning. Additionally, the combined effects of hard (40.4 kPa), and intermediate (10.6 kPa) PA gel and FAs patterning on hMSCs differentiation were studied. Results showed that FA and matrix compliance plays an important role in hMSCs differentiation, and there is a cross-talk between different physical stimulants and the significance of these stimuli can only be realized if they are combined at the optimum level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-contact%20printing" title="micro-contact printing">micro-contact printing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20substrate" title=" polymer substrate"> polymer substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-material%20interaction" title=" cell-material interaction"> cell-material interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20differentiation" title=" stem cell differentiation"> stem cell differentiation</a> </p> <a href="https://publications.waset.org/abstracts/92615/role-of-micro-patterning-on-stem-cell-material-interaction-modulation-and-cell-fate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13318</span> CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehak%20Munjal">Mehak Munjal</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Kishore%20Sharma"> Raj Kishore Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh"> Gurmeet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%20ferrite" title=" cobalt ferrite"> cobalt ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a> </p> <a href="https://publications.waset.org/abstracts/104755/cofe2o4-as-anode-for-enhanced-energy-recovery-in-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13317</span> Modelling and Optimization Analysis of Silicon/MgZnO-CBTSSe Tandem Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vallisree%20Sivathanu">Vallisree Sivathanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumaraswamidhas%20Lakshmi%20Annamalai"> Kumaraswamidhas Lakshmi Annamalai</a>, <a href="https://publications.waset.org/abstracts/search?q=Trupti%20Ranjan%20Lenka"> Trupti Ranjan Lenka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a tandem solar cell model with Silicon as the bottom cell absorber material and Cu₂BaSn(S, Se)₄(CBTSSe) as absorber material for the top cell. As a first step, the top and bottom cells were modelled and validated by comparison with the experiment. Once the individual cells are validated, then the tandem structure is modelled with Indium Tin Oxide(ITO) as conducting layer between the top and bottom cells. The tandem structure yielded better open circuit voltage and fill factor; however, the efficiency obtained is 7.01%. The top cell and the bottom cells are investigated with the help of electron-hole current density, photogeneration rate, and external quantum efficiency profiles. In order to minimize the various loss mechanisms in the tandem solar cell, the material parameters are optimized within experimentally achievable limits. Initially, the top cell optimization was carried out; then, the bottom cell is optimized for maximizing the light absorption, and upon minimizing the current and photon losses in the tandem structure, the maximum achievable efficiency is predicted to be 19.52%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBTSSe" title="CBTSSe">CBTSSe</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem" title=" tandem"> tandem</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20modeling" title=" device modeling"> device modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20losses" title=" current losses"> current losses</a>, <a href="https://publications.waset.org/abstracts/search?q=photon%20losses" title=" photon losses"> photon losses</a> </p> <a href="https://publications.waset.org/abstracts/177529/modelling-and-optimization-analysis-of-siliconmgzno-cbtsse-tandem-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13316</span> Efficient Production of Cell-Adhesive Motif From Human Fibronectin Domains to Design a Bio-Functionalized Scaffold for Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Ben%20Abla">Amina Ben Abla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvie%20Changotade"> Sylvie Changotade</a>, <a href="https://publications.waset.org/abstracts/search?q=Geraldine%20Rohman"> Geraldine Rohman</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilhem%20Boeuf"> Guilhem Boeuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyrine%20Dridi"> Cyrine Dridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elmarjou"> Ahmed Elmarjou</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Dufour"> Florence Dufour</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Lutomski"> Didier Lutomski</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Elm%E2%80%99semi"> Abdellatif Elm’semi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding cell adhesion and interaction with the extracellular matrix is essential for biomedical and biotechnological applications, including the development of biomaterials. In recent years, numerous biomaterials have emerged and were used in the field of tissue engineering. Nevertheless, the lack of interaction of biomaterials with cells still limits their bio-integration. Thus, the design of bioactive biomaterials to improve cell attachment and proliferation is of growing interest. In this study, bio-functionalized material was developed combining a synthetic polymer scaffold surface with selected domains of type III human fibronectin (FNIII-DOM) to promote cell adhesion and proliferation. Bioadhesive ligand includes cell-binding domains of human fibronectin, a major ECM protein that interacts with a variety of integrins cell-surface receptors, and ECM proteins through specific binding domains were engineered. FNIII-DOM was produced in bacterial system E. coli in 5L fermentor with a high yield level reaching 20mg/L. Bioactivity of the produced fragment was validated by studying cellular adhesion of human cells. The adsorption and immobilization of FNIII-DOM onto the polymer scaffold were evaluated in order to develop an innovative biomaterial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20adhesion" title=" cellular adhesion"> cellular adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=fibronectin" title=" fibronectin"> fibronectin</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/122734/efficient-production-of-cell-adhesive-motif-from-human-fibronectin-domains-to-design-a-bio-functionalized-scaffold-for-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13315</span> Investigating the Effect of Adding the Window Layer and the Back Surface Field Layer of InₓGa₍₁₋ₓ₎P Material to GaAs Single Junction Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Taghinia">Ahmad Taghinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Negar%20Gholamishaker"> Negar Gholamishaker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GaAs (gallium arsenide) solar cells have gained significant attention for their use in space applications. These solar cells have the potential for efficient energy conversion and are being explored as potential power sources for electronic devices, satellites, and telecommunication equipment. In this study, the aim is to investigate the effect of adding a window layer and a back surface field (BSF) layer made of InₓGa₍₁₋ₓ₎P material to a GaAs single junction solar cell. In this paper, we first obtain the important electrical parameters of a single-junction GaAs solar cell by utilizing a two-dimensional simulator software for virtual investigation of the solar cell; then, we analyze the impact of adding a window layer and a back surface field layer made of InₓGa₍₁₋ₓ₎P on the solar cell. The results show that the incorporation of these layers led to enhancements in Jsc, Voc, FF, and the overall efficiency of the solar cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20surface%20field%20layer" title="back surface field layer">back surface field layer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=In%E2%82%93Ga%E2%82%8D%E2%82%81%E2%82%8B%E2%82%93%E2%82%8EP" title=" InₓGa₍₁₋ₓ₎P"> InₓGa₍₁₋ₓ₎P</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20layer" title=" window layer"> window layer</a> </p> <a href="https://publications.waset.org/abstracts/170469/investigating-the-effect-of-adding-the-window-layer-and-the-back-surface-field-layer-of-inga1p-material-to-gaas-single-junction-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13314</span> Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shayli%20Varasteh%20Moradi">Shayli Varasteh Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20A.%20Johnston"> Wayne A. Johnston</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejan%20Gagoski"> Dejan Gagoski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20Alexandrov"> Kirill Alexandrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlphaLISA%20technology" title="AlphaLISA technology">AlphaLISA technology</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-free%20protein%20expression" title=" cell-free protein expression"> cell-free protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=epitope%20mapping" title=" epitope mapping"> epitope mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20tarentolae" title=" Leishmania tarentolae"> Leishmania tarentolae</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction"> protein-protein interaction</a> </p> <a href="https://publications.waset.org/abstracts/81407/combining-in-vitro-protein-expression-with-alphalisa-technology-to-study-protein-protein-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13313</span> PPRA Regulates DNA Replication Initiation and Cell Morphology in Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20K.%20Maurya">Ganesh K. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Reema%20Chaudhary"> Reema Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Pandey"> Neha Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20S.%20Misra"> Hari S. Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provides better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20replication" title="DNA replication">DNA replication</a>, <a href="https://publications.waset.org/abstracts/search?q=radioresistance" title=" radioresistance"> radioresistance</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction"> protein-protein interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20morphology" title=" cell morphology"> cell morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=ATPase%20activity" title=" ATPase activity"> ATPase activity</a> </p> <a href="https://publications.waset.org/abstracts/171547/ppra-regulates-dna-replication-initiation-and-cell-morphology-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13312</span> PPRA Controls DNA Replication and Cell Growth in Escherichia Coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20K.%20Maurya">Ganesh K. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Reema%20Chaudhary"> Reema Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Pandey"> Neha Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20S.%20Misra"> Hari S. Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provide better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20replication" title="DNA replication">DNA replication</a>, <a href="https://publications.waset.org/abstracts/search?q=radioresistance" title=" radioresistance"> radioresistance</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction"> protein-protein interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20morphology" title=" cell morphology"> cell morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=ATPase%20activity" title=" ATPase activity"> ATPase activity</a> </p> <a href="https://publications.waset.org/abstracts/171922/ppra-controls-dna-replication-and-cell-growth-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13311</span> Synergistic Effects of the Substrate-Ligand Interaction in Metal-Organic Complexes on the De-electronation Kinetics of a Vitamin C Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muskan%20Parmar">Muskan Parmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Musthafa%20Ottakam%20Thotiyl"> Musthafa Ottakam Thotiyl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rising need for portable energy sources has led to advancements in direct liquid fuel cells (DLFCs) using various fuels like alcohol, ammonia, hydrazine, and vitamin C. Traditional precious metal catalysts improve reaction speeds but are expensive and prone to poisoning. Our study reveals how non-precious metal organometallic complexes, combined with smartly designed ligands, can significantly boost performance. The key is a unique interaction between the substrate (fuel) and the ligand, which creates a "dragging" effect that enhances reaction rates. By using this approach with a ferricyanide/ferrocyanide half-cell reaction, we developed a vitamin C fuel cell without precious metals. This fuel cell achieves an open circuit voltage of ∼950 mV, a peak power density of ∼97 mW cm⁻², and a peak current density of ∼215 mA cm⁻². Impressively, its performance is about 1.7 times better than traditional precious metal-based DLFCs. This highlights the potential of substrate ligand chemistry in the creation of sustainable DLFCs for efficient energy conversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20electrocatalysts" title="molecular electrocatalysts">molecular electrocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C%20fuel%20cell" title=" vitamin C fuel cell"> vitamin C fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20charge%20assembly" title=" proton charge assembly"> proton charge assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=ferricyanide%20half-cell%20chemistry" title=" ferricyanide half-cell chemistry"> ferricyanide half-cell chemistry</a> </p> <a href="https://publications.waset.org/abstracts/192220/synergistic-effects-of-the-substrate-ligand-interaction-in-metal-organic-complexes-on-the-de-electronation-kinetics-of-a-vitamin-c-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13310</span> Understanding Neuronal and Glial Cell Behaviour in Multi-Layer Nanofibre Systems to Support the Development of an in vitro Model of Spinal Cord Injury and Personalised Prostheses for Repair </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Pegram">H. Pegram</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Stevens"> R. Stevens</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20De%20Girolamo"> L. De Girolamo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aligned electrospun nanofibres act as effective neuronal and glial cell scaffolds that can be layered to contain multiple sheets harboring different cell populations. This allows personalised biofunctional prostheses to be manufactured with both acellular and cellularised layers for the treatment of spinal cord injury. Additionally, the manufacturing route may be configured to produce in-vitro 3D cell based model of spinal cord injury to aid drug development and enhance prosthesis performance. The goal of this investigation was to optimise the multi-layer scaffold design parameters for prosthesis manufacture, to enable the development of multi-layer patient specific implant therapies. The work has also focused on the fabricating aligned nanofibre scaffolds that promote in-vitro neuronal and glial cell population growth, cell-to-cell interaction and long-term survival following trauma to mimic an in-vivo spinal cord lesion. The approach has established reproducible lesions and has identified markers of trauma and regeneration marked by effective neuronal migration across the lesion with glial support. The investigation has advanced the development of an in-vitro model of traumatic spinal cord injury and has identified a route to manufacture prostheses which target the repair spinal cord injury. Evidence collated to investigate the multi-layer concept suggests that physical cues provided by nanofibres provide both a natural extra-cellular matrix (ECM) like environment and controls cell proliferation and migration. Specifically, aligned nanofibre layers act as a guidance system for migrating and elongating neurons. On a larger scale, material type in multi-layer systems also has an influence in inter-layer migration as cell types favour different material types. Results have shown that layering nanofibre membranes create a multi-level scaffold system which can enhance or prohibit cell migration between layers. It is hypothesised that modifying nanofibre layer material permits control over neuronal/glial cell migration. Using this concept, layering of neuronal and glial cells has become possible, in the context of tissue engineering and also modelling in-vitro induced lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=layering" title=" layering"> layering</a>, <a href="https://publications.waset.org/abstracts/search?q=lesion" title=" lesion"> lesion</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibre" title=" nanofibre"> nanofibre</a> </p> <a href="https://publications.waset.org/abstracts/91909/understanding-neuronal-and-glial-cell-behaviour-in-multi-layer-nanofibre-systems-to-support-the-development-of-an-in-vitro-model-of-spinal-cord-injury-and-personalised-prostheses-for-repair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13309</span> Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Chemlal">Radia Chemlal</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Mehenni"> Salim Mehenni</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahbia%20Leila%20Anes-boulahbal"> Dahbia Leila Anes-boulahbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Kherat"> Mohamed Kherat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Mameri"> Nabil Mameri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20electric%20field" title="continuous electric field">continuous electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=RD%20cancer%20cell%20line" title=" RD cancer cell line"> RD cancer cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage" title=" voltage"> voltage</a> </p> <a href="https://publications.waset.org/abstracts/159144/study-of-the-effect-of-the-continuous-electric-field-on-the-rd-cancer-cell-line-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13308</span> Stimulation of NCAM1-14.3.3.ζδ-derived Peptide Interaction Fuels Angiogenesis and Osteogenesis in Ageing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Kadir%20Yesin">Taha Kadir Yesin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanyu%20Liu"> Hanyu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhangfan%20Ding"> Zhangfan Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Singh"> Amit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Tian"> Qi Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuheng%20Zhang"> Yuheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajyoti%20Borah"> Biswajyoti Borah</a>, <a href="https://publications.waset.org/abstracts/search?q=Junyu%20Chen"> Junyu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjali%20P.%20Kusumbe"> Anjali P. Kusumbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The skeletal structure and bone marrow endothelium collectively form a critical functional unit essential for bone development, health, and aging. At the core of osteogenesis and bone formation lies the dynamic process of angiogenesis. In this study, we reveal a potent endogenous anabolic NCAM1-14.3.3. ζδ-derived- Peptide interaction, which stimulates bone angiogenesis and osteogenesis during homeostasis, aging, and age-related bone diseases. Employing high-resolution imaging and inducible cell-specific mouse genetics, our results elucidate the pivotal role of the NCAM1-14.3.3.ζδ-derived-Peptide interaction in driving the expansion of Clec14a+ angiogenic endothelial cells. Notably, Clec14a+ endothelial cells express key osteogenic factors. The NCAM1-14.3.3.ζδ-derived-Peptide interaction in osteoblasts drives osteoblast differentiation, ultimately contributing to the genesis of bone. Moreover, the NCAM1-14.3.3.ζδ-derived-Peptide interaction leads to a reduction in bone resorption. In age-associated vascular and bone loss diseases, stimulating the NCAM1-14.3.3.ζδ-derived-Peptide interaction not only promotes angiogenesis but also reverses bone loss. Consequently, harnessing the endogenous anabolic potential of the NCAM1-14.3.3.ζδ-derived-Peptide interaction emerges as a promising therapeutic modality for managing age-related bone diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endothelial%20cell" title="endothelial cell">endothelial cell</a>, <a href="https://publications.waset.org/abstracts/search?q=NCAM1" title=" NCAM1"> NCAM1</a>, <a href="https://publications.waset.org/abstracts/search?q=Clec14a" title=" Clec14a"> Clec14a</a>, <a href="https://publications.waset.org/abstracts/search?q=14.3.3.%CE%B6%CE%B4" title=" 14.3.3.ζδ"> 14.3.3.ζδ</a> </p> <a href="https://publications.waset.org/abstracts/184055/stimulation-of-ncam1-1433zd-derived-peptide-interaction-fuels-angiogenesis-and-osteogenesis-in-ageing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13307</span> Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bryan%20D.%20Llenarizas">Bryan D. Llenarizas</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Carla%20F.%20Manzano"> Maria Carla F. Manzano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anode" title="anode">anode</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=electropolymerization" title=" electropolymerization"> electropolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanostatic" title=" galvanostatic"> galvanostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a> </p> <a href="https://publications.waset.org/abstracts/176675/fabrication-and-characterization-of-ppyrgoppyzno-composite-with-varying-zno-concentration-as-anode-for-fuel-cell-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13306</span> Activation of Caspase 3 by Terpenoids and Flavonoids in Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nusrat%20Masood">Nusrat Masood</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Dubey"> Vijaya Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Suaib%20Luqman"> Suaib Luqman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caspase 3, a member of cysteine-aspartic acid protease family, is an imperative indicator for cell death particularly when substantiating apoptosis. Thus, caspase 3 is an interesting target for the discovery and development of anticancer agent. We adopted a four level assessment of both terpenoids and flavonoids and thus experimentally performed the enzymatic assay in cell free system as well as in cancer cell line which was validated through real time expression and molecular interaction studies. A significant difference was observed with both the class of natural products indicating terpenoids as better activators of caspase 3 compared to flavonoids both in the cell free system as well as in cell lines. The expression analysis, activation constant and binding energy also correlate well with the enzyme activity. Overall, terpenoids had an unswerving effect on caspase 3 in all the tested system while flavonoids indirectly affect enzyme activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caspase%203" title="Caspase 3">Caspase 3</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenoids" title=" terpenoids"> terpenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20constant" title=" activation constant"> activation constant</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20energy" title=" binding energy"> binding energy</a> </p> <a href="https://publications.waset.org/abstracts/72938/activation-of-caspase-3-by-terpenoids-and-flavonoids-in-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13305</span> Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajashekar%20Badam">Rajashekar Badam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vedarajan%20Raman"> Vedarajan Raman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noriyoshi%20Matsumi"> Noriyoshi Matsumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionalized%20acetylene%20black" title="functionalized acetylene black">functionalized acetylene black</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20reduction%20reaction" title=" oxygen reduction reaction"> oxygen reduction reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Functionalized%20battery" title=" Functionalized battery"> Functionalized battery</a> </p> <a href="https://publications.waset.org/abstracts/103300/pt-decorated-functionalized-acetylene-black-as-efficient-cathode-material-for-li-air-battery-and-fuel-cell-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13304</span> Effect of Soil and Material Characteristics on Safety of Concrete Structures Including SSI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Kurtoglu">A. E. Kurtoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cevik"> A. Cevik</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bilgehan"> M. Bilgehan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this parametric study, effect of soil and material characteristics on safety of structures is investigated. The soil parameters such as shear strength, unit weight; geometrical parameters of the structure such as foundation depth and height of building; and material properties such as weight of concrete were selected as input parameters. A real accelerogram of 1989 El-Centro earthquake recorded by the USGS in Imperial Valley is used for this study. It is contained in the standard Strong Motion CD-ROM (SMC) format, which can be recognized and interpreted by FEM software used. The soil-structure interaction model subjected to above-mentioned earthquake was analyzed for 729 cases. Effect of input parameters on safety factor of the soil-structure system was then investigated and the interaction between the input and output parameters is presented in graphical form. Findings showed that all input parameters have significant effects on factor of safety results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title="factor of safety">factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20of%20structures" title=" safety of structures"> safety of structures</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20structure%20interaction" title=" soil structure interaction"> soil structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/1885/effect-of-soil-and-material-characteristics-on-safety-of-concrete-structures-including-ssi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13303</span> Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Farokhirad">Samaneh Farokhirad</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Ahmadpoor"> Fatemeh Ahmadpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virus%20nanofilaments" title="virus nanofilaments">virus nanofilaments</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20mechanics" title=" cell mechanics"> cell mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20biophysics" title=" computational biophysics"> computational biophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20mechanics" title=" statistical mechanics"> statistical mechanics</a> </p> <a href="https://publications.waset.org/abstracts/169732/biophysical-consideration-in-the-interaction-of-biological-cell-membranes-with-virus-nanofilaments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13302</span> Mechanism of Modeling the Level of Bcr-Abl Oncoprotein by Ubiquitin-Proteasome System in Chronic Myeloid Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svitlana%20Antonenko">Svitlana Antonenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennady%20Telegeev"> Gennady Telegeev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introductive statement: The development of chronic myeloid leukemia (CML) is caused by Bcr-Abl oncoprotein. Modern treatments with tyrosine kinase inhibitors are greatly complicated by the mutational variability of the Bcr-Abl oncoprotein, which causes drug resistance. Therefore, there is an urgent need to develop new approaches to the treatment of the disease, which will allow modeling the level of Bcr-Abl oncoprotein in the cell. Promising in this direction is the identification of proteases that can selectively promote cellular proteolysis of oncoproteins. The aim of the study was to study the effect of the interaction of Bcr-Abl with deubiquitinase USP1 on the level of oncoprotein in CML cells. Methodology: K562 cells were selected for the experiment. Сells were incubated with ML323 inhibitor for 24 hours. Precipitation of endogenous proteins from K562 cell lysate was performed using anti-Bcr-Abl antibodies. Cell lysates and precipitation results were studied by Western blot. Subcellular localization of proteins was studied by immunofluorescence analysis followed by confocal microscopy. The results were analyzed quantitatively and statistically. Major findings: The Bcr-Abl/USP1 protein complex was detected in CML cells, and it was found that inhibition of USP1 deubiquitinating activity by the compound ML323 leads to disruption of this protein complex and a decrease in the level of Bcr-Abl oncoprotein in cells. The interaction of Bcr-Abl with USP1 may result in deubiquitination of the oncoprotein, which disrupts its proteasomal degradation and leads to the accumulation of CML in cells. Conclusion: We believe that the interaction of oncoprotein with USP1 may be one of the prerequisites that contribute to malignant cell transformation due to the deubiquitination of oncoprotein, which leads to its accumulation and disease progression. A correlation was found between the deubiquitinating activity of USP1 and the level of oncoprotein in CML cells. Thus, we identify deubiquitinase USP1 as a promising therapeutic target for the development of a new strategy for the treatment of CML by modulating the level of Bcr-Abl in the cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title="chronic myeloid leukemia">chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bcr-Abl" title=" Bcr-Abl"> Bcr-Abl</a>, <a href="https://publications.waset.org/abstracts/search?q=USP1" title=" USP1"> USP1</a>, <a href="https://publications.waset.org/abstracts/search?q=deubiquitination%20Bcr-Abl" title=" deubiquitination Bcr-Abl"> deubiquitination Bcr-Abl</a>, <a href="https://publications.waset.org/abstracts/search?q=K562%20cell" title=" K562 cell"> K562 cell</a> </p> <a href="https://publications.waset.org/abstracts/149255/mechanism-of-modeling-the-level-of-bcr-abl-oncoprotein-by-ubiquitin-proteasome-system-in-chronic-myeloid-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13301</span> Proteomics Associated with Colonization of Human Enteric Pathogen on Solanum lycopersicum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Bhadauria">Neha Bhadauria</a>, <a href="https://publications.waset.org/abstracts/search?q=Indu%20Gaur"> Indu Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpi%20Shilpi"> Shilpi Shilpi</a>, <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Goswami"> Susmita Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabir%20K.%20Paul"> Prabir K. Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aerial surface of plants colonized by Human Enteric Pathogens ()has been implicated in outbreaks of enteric diseases in humans. Practice of organic farming primarily using animal dung as manure and sewage water for irrigation are the most significant source of enteric pathogens on the surface of leaves, fruits and vegetables. The present work aims to have an insight into the molecular mechanism of interaction of Human Enteric Pathogens or their metabolites with cell wall receptors in plants. Tomato plants grown under aseptic conditions at 12 hours L/D photoperiod, 25±1°C and 75% RH were inoculated individually with S. fonticola and K. pneumonia. The leaves from treated plants were sampled after 24 and 48 hours of incubation. The cell wall and cytoplasmic proteins were extracted and isocratically separated on 1D SDS-PAGE. The sampled leaves were also subjected to formaldehyde treatment prior to isolation of cytoplasmic proteins to study protein-protein interactions induced by Human Enteric Pathogens. Protein bands extracted from the gel were subjected to MALDI-TOF-TOF MS analysis. The foremost interaction of Human Enteric Pathogens on the plant surface was found to be cell wall bound receptors which possibly set ups a wave a critical protein-protein interaction in cytoplasm. The study revealed the expression and suppression of specific cytoplasmic and cell wall-bound proteins, some of them being important components of signaling pathways. The results also demonstrated HEP induced rearrangement of signaling pathways which possibly are crucial for adaptation of these pathogens to plant surface. At the end of the study, it can be concluded that controlling the over-expression or suppression of these specific proteins rearrange the signaling pathway thus reduces the outbreaks of food-borne illness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytoplasmic%20protein" title="cytoplasmic protein">cytoplasmic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20wall-bound%20protein" title=" cell wall-bound protein"> cell wall-bound protein</a>, <a href="https://publications.waset.org/abstracts/search?q=Human%20Enteric%20Pathogen%20%28HEP%29" title=" Human Enteric Pathogen (HEP)"> Human Enteric Pathogen (HEP)</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction "> protein-protein interaction </a> </p> <a href="https://publications.waset.org/abstracts/60905/proteomics-associated-with-colonization-of-human-enteric-pathogen-on-solanum-lycopersicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13300</span> Study of Multimodal Resources in Interactions Involving Children with Autistic Spectrum Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20Miranda%20da%20Cruz">Fernanda Miranda da Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to systematize, descriptively and analytically, the relations between language, body and material world explored in a specific empirical context: everyday co-presence interactions between children diagnosed with Autistic Spectrum Disease ASD and various interlocutors. We will work based on 20 hours of an audiovisual corpus in Brazilian Portuguese language. This analysis focuses on 1) the analysis of daily interactions that have the presence/participation of subjects with a diagnosis of ASD based on an embodied interaction perspective; 2) the study of the status and role of gestures, body and material world in the construction and constitution of human interaction and its relation with linguistic-cognitive processes and Autistic Spectrum Disorders; 3) to highlight questions related to the field of videoanalysis, such as: procedures for recording interactions in complex environments (involving many participants, use of objects and body movement); the construction of audiovisual corpora for linguistic-interaction research; the invitation to a visual analytical mentality of human social interactions involving not only the verbal aspects that constitute it, but also the physical space, the body and the material world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disease" title="autism spectrum disease">autism spectrum disease</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodality" title=" multimodality"> multimodality</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20interaction" title=" social interaction"> social interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-verbal%20interactions" title=" non-verbal interactions"> non-verbal interactions</a> </p> <a href="https://publications.waset.org/abstracts/121698/study-of-multimodal-resources-in-interactions-involving-children-with-autistic-spectrum-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13299</span> Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Sharma">R. C. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Bansal"> Rishabh Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=Prajwal%20Menon"> Prajwal Menon</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20K.%20Sharma"> Manoj K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silicon-air%20battery" title="Silicon-air battery">Silicon-air battery</a>, <a href="https://publications.waset.org/abstracts/search?q=Germanium-air%20battery" title=" Germanium-air battery"> Germanium-air battery</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage-time%20curve" title=" voltage-time curve"> voltage-time curve</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20circuit%20voltage" title=" open circuit voltage"> open circuit voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=Anodic%20corrosion" title=" Anodic corrosion"> Anodic corrosion</a> </p> <a href="https://publications.waset.org/abstracts/138312/electrochemical-studies-of-si-si-ge-and-ge-air-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13298</span> A Study on Implementation of Optimal Soldering Temperature Profile through Deformation Analysisin Infrared Lamp Soldering of Photovoltaic Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taejung%20Lho">Taejung Lho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonghwan%20Lee"> Jonghwan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the photovoltaic (PV) module manufacturers have recently interested in reducing the manufacturing cost. One of available solution is the use of the thin photovoltaic cell because of reducing of raw material cost. Thin PV cells, however, are damaged large deformation which causes possible microcracks inside PV cell, leading to failure problem. In this paper, deformation characteristics by heat conduction in soldering process of PV cells are analyzed through ANSYS software tool. They have been tested for different PV cell thickness and soldering temperature profile. Accordingly optimal soldering process to minimize the deformation of PV cell has been suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29%20cell" title="photovoltaic (PV) cell">photovoltaic (PV) cell</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%28IR%29%20lamp%20soldering" title=" infrared(IR) lamp soldering"> infrared(IR) lamp soldering</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20soldering%20temperature%20profile" title=" optimal soldering temperature profile"> optimal soldering temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scanner" title=" 3D scanner"> 3D scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/1447/a-study-on-implementation-of-optimal-soldering-temperature-profile-through-deformation-analysisin-infrared-lamp-soldering-of-photovoltaic-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13297</span> Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20El%20Gendy">Mohamed M. El Gendy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20A.%20El%20Arabi"> Ibrahim A. El Arabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafeek%20W.%20Abdel-Missih"> Rafeek W. Abdel-Missih</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20A.%20Kandil"> Omar A. Kandil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title="nonlinear analysis">nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20arched%20structure" title=" reinforced concrete arched structure"> reinforced concrete arched structure</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20engineering" title=" geotechnical engineering"> geotechnical engineering</a> </p> <a href="https://publications.waset.org/abstracts/8429/nonlinear-analysis-of-reinforced-concrete-arched-structures-considering-soil-structure-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=444">444</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=445">445</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell-%20material%20interaction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>