CINXE.COM
Laetitia Jourdan - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Laetitia Jourdan - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="REKeaL/5yD1NkHqbspm+uA7BXdTRYgedTAJd1Q31WjWya/916jRZaN62jAouBe9dC2P/Y7KCiwTZoZLjqjbxlQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="laetitia jourdan" /> <meta name="description" content="Laetitia Jourdan: 3 Followers, 1 Following, 58 Research papers. Research interests: Neuroplasticity, Cognitive Enhancement, and Feuerstein's Structural…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'fdfcd03ea2af2a60c31d1f7e544fe08547bcb5a1'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15272,"monthly_visitors":"113 million","monthly_visitor_count":113784677,"monthly_visitor_count_in_millions":113,"user_count":277469362,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732726505000); window.Aedu.timeDifference = new Date().getTime() - 1732726505000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-e90a2f43a733a0e9134689da7890520eebc345b9e07879038fcc7f7e3f7d4909.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-c273e21c7040e68b9a3ae640eca94c398a7eb6929ac8f5ce955b96685fca85e9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/LJourdan" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-95d7bb46d01e00bccd025abd7c77e29f35ad8e060af041869b770f4ed564e154.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":42276,"name":"Neuroplasticity","url":"https://www.academia.edu/Documents/in/Neuroplasticity"},{"id":192481,"name":"Cognitive Enhancement","url":"https://www.academia.edu/Documents/in/Cognitive_Enhancement"},{"id":111019,"name":"Feuerstein's Structural Cognitive Modifiability and Neuroplasticity","url":"https://www.academia.edu/Documents/in/Feuersteins_Structural_Cognitive_Modifiability_and_Neuroplasticity"},{"id":986283,"name":"Cognitive Models of Human Learning","url":"https://www.academia.edu/Documents/in/Cognitive_Models_of_Human_Learning"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/LJourdan","location":"/LJourdan","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/LJourdan","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-3c71358e-2211-443b-8638-62da743c6ef7"></div> <div id="ProfileCheckPaperUpdate-react-component-3c71358e-2211-443b-8638-62da743c6ef7"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Laetitia Jourdan</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Laetitia" data-follow-user-id="9335826" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="9335826"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="9335826" href="https://www.academia.edu/Documents/in/Neuroplasticity"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/LJourdan","location":"/LJourdan","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/LJourdan","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Neuroplasticity"]}" data-trace="false" data-dom-id="Pill-react-component-1f17a362-ee81-4827-9cd7-70f20a4e4d09"></div> <div id="Pill-react-component-1f17a362-ee81-4827-9cd7-70f20a4e4d09"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="9335826" href="https://www.academia.edu/Documents/in/Cognitive_Enhancement"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Cognitive Enhancement"]}" data-trace="false" data-dom-id="Pill-react-component-6993df44-3514-4c51-af9b-8e73d5cf9ba0"></div> <div id="Pill-react-component-6993df44-3514-4c51-af9b-8e73d5cf9ba0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="9335826" href="https://www.academia.edu/Documents/in/Feuersteins_Structural_Cognitive_Modifiability_and_Neuroplasticity"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Feuerstein's Structural Cognitive Modifiability and Neuroplast..."]}" data-trace="false" data-dom-id="Pill-react-component-6b656eb1-bba7-49fa-9a47-50795101a70f"></div> <div id="Pill-react-component-6b656eb1-bba7-49fa-9a47-50795101a70f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="9335826" href="https://www.academia.edu/Documents/in/Cognitive_Models_of_Human_Learning"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Cognitive Models of Human Learning"]}" data-trace="false" data-dom-id="Pill-react-component-30543411-e05e-459a-9d17-b6db1d1e56af"></div> <div id="Pill-react-component-30543411-e05e-459a-9d17-b6db1d1e56af"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Laetitia Jourdan</h3></div><div class="js-work-strip profile--work_container" data-work-id="94148547"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148547/Automatic_Configuration_of_Bi_Objective_Optimisation_Algorithms_Impact_of_Correlation_Between_Objectives"><img alt="Research paper thumbnail of Automatic Configuration of Bi-Objective Optimisation Algorithms: Impact of Correlation Between Objectives" class="work-thumbnail" src="https://attachments.academia-assets.com/96686830/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148547/Automatic_Configuration_of_Bi_Objective_Optimisation_Algorithms_Impact_of_Correlation_Between_Objectives">Automatic Configuration of Bi-Objective Optimisation Algorithms: Impact of Correlation Between Objectives</a></div><div class="wp-workCard_item"><span>2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="23346a07035c6535a897275fbbdc26fb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686830,"asset_id":94148547,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686830/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148547"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148547"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148547; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148547]").text(description); $(".js-view-count[data-work-id=94148547]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148547; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148547']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148547, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "23346a07035c6535a897275fbbdc26fb" } } $('.js-work-strip[data-work-id=94148547]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148547,"title":"Automatic Configuration of Bi-Objective Optimisation Algorithms: Impact of Correlation Between Objectives","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148547/Automatic_Configuration_of_Bi_Objective_Optimisation_Algorithms_Impact_of_Correlation_Between_Objectives","translated_internal_url":"","created_at":"2023-01-02T02:46:58.609-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686830/thumbnails/1.jpg","file_name":"BloEtAl18.pdf","download_url":"https://www.academia.edu/attachments/96686830/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Configuration_of_Bi_Objective.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686830/BloEtAl18-libre.pdf?1672656621=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Configuration_of_Bi_Objective.pdf\u0026Expires=1732730104\u0026Signature=OXwu0h4SrhDMeI4a2veIjLI5QXiUr4Qhlw7ozvSPbaVYbWnqjCd8ogEM5Mikhocs4NL~ZJWaCTLH3ACkXoj72jfG1PpiY8I9YB-yprTZaelHvgqdxsPl8BSg2NEl-fhSdUzkMqPIHFZAOo~wCzFiiBLmpVeuuq54eYUBGNZjooFce~poszZ7vAYnDtxe59S-8o4y3jFJI4G-h-CH9PCY8w9ADGHQJcyI7El1KByF6suvJMvIx8a-B0NNODQSeuZhJ4NkMNPrjN9HseZUIPQHa2GQWvp9iXks5Y3ujAaJ6vxURQnaD2qnQ4SL3kwb7v0KBHM6xKFIW5mlqAgev6OxJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_Configuration_of_Bi_Objective_Optimisation_Algorithms_Impact_of_Correlation_Between_Objectives","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686830/thumbnails/1.jpg","file_name":"BloEtAl18.pdf","download_url":"https://www.academia.edu/attachments/96686830/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Configuration_of_Bi_Objective.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686830/BloEtAl18-libre.pdf?1672656621=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Configuration_of_Bi_Objective.pdf\u0026Expires=1732730104\u0026Signature=OXwu0h4SrhDMeI4a2veIjLI5QXiUr4Qhlw7ozvSPbaVYbWnqjCd8ogEM5Mikhocs4NL~ZJWaCTLH3ACkXoj72jfG1PpiY8I9YB-yprTZaelHvgqdxsPl8BSg2NEl-fhSdUzkMqPIHFZAOo~wCzFiiBLmpVeuuq54eYUBGNZjooFce~poszZ7vAYnDtxe59S-8o4y3jFJI4G-h-CH9PCY8w9ADGHQJcyI7El1KByF6suvJMvIx8a-B0NNODQSeuZhJ4NkMNPrjN9HseZUIPQHa2GQWvp9iXks5Y3ujAaJ6vxURQnaD2qnQ4SL3kwb7v0KBHM6xKFIW5mlqAgev6OxJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":27654193,"url":"http://xplorestaging.ieee.org/ielx7/8575556/8575998/08576091.pdf?arnumber=8576091"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148546"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148546/Multi_objective_recommender_system_for_corporate_MOOC"><img alt="Research paper thumbnail of Multi-objective recommender system for corporate MOOC" class="work-thumbnail" src="https://attachments.academia-assets.com/96686710/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148546/Multi_objective_recommender_system_for_corporate_MOOC">Multi-objective recommender system for corporate MOOC</a></div><div class="wp-workCard_item"><span>Proceedings of the Genetic and Evolutionary Computation Conference Companion</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68117bc921a0a8d1964dcbfecd783499" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686710,"asset_id":94148546,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686710/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148546"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148546"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148546; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148546]").text(description); $(".js-view-count[data-work-id=94148546]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148546; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148546']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148546, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68117bc921a0a8d1964dcbfecd783499" } } $('.js-work-strip[data-work-id=94148546]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148546,"title":"Multi-objective recommender system for corporate MOOC","translated_title":"","metadata":{"publisher":"ACM","publication_name":"Proceedings of the Genetic and Evolutionary Computation Conference Companion"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148546/Multi_objective_recommender_system_for_corporate_MOOC","translated_internal_url":"","created_at":"2023-01-02T02:46:57.663-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686710,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686710/thumbnails/1.jpg","file_name":"3520304.pdf","download_url":"https://www.academia.edu/attachments/96686710/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_recommender_system_for_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686710/3520304-libre.pdf?1672656643=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_recommender_system_for_c.pdf\u0026Expires=1732730104\u0026Signature=YOSj8vRSrUuedcvWg564Ie7GK6XQ~qflB5qMsevW5uaxdxplbkPxoEEiX3elhfnBUaDWby8CsVqq5WR6~lIunbyQMIjK7dFG2a1FC1tYY1yhe9TNXPWTkHRyovqeeUSLAfhWxXgHuHBuAm1FmEIcDqfPXNet-~SEAiTFubBAQ3VNh5K0CWHKkQtJxV-ydtbwvfQtOakBC3jNn10qRyPeE4FIW7ucSljPg5GU~HspHMLPPjfbv~IgktECjI3C3NsQ45HLTHG4Do0h3gStlU5~DSirylhT0tqgoqj2KD0XUjYcPk7fVkGhaR1Cp8XaGKcnXiVOr27xdvtjPAn7C744BQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_objective_recommender_system_for_corporate_MOOC","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686710,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686710/thumbnails/1.jpg","file_name":"3520304.pdf","download_url":"https://www.academia.edu/attachments/96686710/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_recommender_system_for_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686710/3520304-libre.pdf?1672656643=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_recommender_system_for_c.pdf\u0026Expires=1732730104\u0026Signature=YOSj8vRSrUuedcvWg564Ie7GK6XQ~qflB5qMsevW5uaxdxplbkPxoEEiX3elhfnBUaDWby8CsVqq5WR6~lIunbyQMIjK7dFG2a1FC1tYY1yhe9TNXPWTkHRyovqeeUSLAfhWxXgHuHBuAm1FmEIcDqfPXNet-~SEAiTFubBAQ3VNh5K0CWHKkQtJxV-ydtbwvfQtOakBC3jNn10qRyPeE4FIW7ucSljPg5GU~HspHMLPPjfbv~IgktECjI3C3NsQ45HLTHG4Do0h3gStlU5~DSirylhT0tqgoqj2KD0XUjYcPk7fVkGhaR1Cp8XaGKcnXiVOr27xdvtjPAn7C744BQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96686709,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686709/thumbnails/1.jpg","file_name":"3520304.pdf","download_url":"https://www.academia.edu/attachments/96686709/download_file","bulk_download_file_name":"Multi_objective_recommender_system_for_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686709/3520304-libre.pdf?1672656645=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_recommender_system_for_c.pdf\u0026Expires=1732730104\u0026Signature=KzFV36HPrncoRDu1MS7lrgNVkVNXdY4z1ZncD55ZOHpe-JB69NlUNl~mRLrv9BbKFK3ftluc9ACc3aOaCfSksymUV8gMtPc0I0ED2fE~3B5-pt0t~7MUVDcwf2a4J7Wd7GfRTPbktm0kt1Xk8vaTpLusuq4K9DRO1AEbAbjijSJ8NsksSmtHtUptby6mrp6nQnxQ0RaYxb4v-pquZgms0eiqWm-Br8CJutKWvRXO8OVOgqT7nfwns8lW7I0DgiFkFOVXbfJPQwMkbUmC9PjYfn2QHe-4NWQ3Q6dkhx29ptbS9cg3Nm8NjuK4NRSrR8OOHY0gnrwBcuqXPjz-qWY7Mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":153179,"name":"Recommender System","url":"https://www.academia.edu/Documents/in/Recommender_System"}],"urls":[{"id":27654190,"url":"https://dl.acm.org/doi/pdf/10.1145/3520304.3534058"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148543"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148543/Multi_objective_Automatic_Algorithm_Configuration_for_the_Classification_Problem_of_Imbalanced_Data"><img alt="Research paper thumbnail of Multi-objective Automatic Algorithm Configuration for the Classification Problem of Imbalanced Data" class="work-thumbnail" src="https://attachments.academia-assets.com/96686826/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148543/Multi_objective_Automatic_Algorithm_Configuration_for_the_Classification_Problem_of_Imbalanced_Data">Multi-objective Automatic Algorithm Configuration for the Classification Problem of Imbalanced Data</a></div><div class="wp-workCard_item"><span>2020 IEEE Congress on Evolutionary Computation (CEC)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bf1ba959902c6590639aaf60f375e50a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686826,"asset_id":94148543,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686826/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148543"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148543"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148543; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148543]").text(description); $(".js-view-count[data-work-id=94148543]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148543; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148543']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148543, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bf1ba959902c6590639aaf60f375e50a" } } $('.js-work-strip[data-work-id=94148543]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148543,"title":"Multi-objective Automatic Algorithm Configuration for the Classification Problem of Imbalanced Data","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2020 IEEE Congress on Evolutionary Computation (CEC)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148543/Multi_objective_Automatic_Algorithm_Configuration_for_the_Classification_Problem_of_Imbalanced_Data","translated_internal_url":"","created_at":"2023-01-02T02:46:56.406-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686826,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686826/thumbnails/1.jpg","file_name":"E-24550.pdf","download_url":"https://www.academia.edu/attachments/96686826/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_Automatic_Algorithm_Conf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686826/E-24550-libre.pdf?1672656626=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_Automatic_Algorithm_Conf.pdf\u0026Expires=1732730104\u0026Signature=JOHSzeyZc4V6v2DEe9m7xARBuTzFERGS3zjerfauv2vTuZfG3a9xswgsypKfXwm-9XsSfPiwA3JrGKSCf4DHdf7cJaw19JMPuSqo17bZHUBNpZKIeXKz32rBnyUaewUOwWn0wArAQqfOvDYuB77oebroKN6zr683B0UzKjiTSm-Yl-kWH71X3C70VtcplxrjZ8Td2Jadi8rRgH6kTV71mgVSR9vFlszExdu33kvULmhlOxompRvfqZCcaaDdEJzov4kVV82B3PDMpC09B9OSYNCeW-KATZDDqJzjDVavuN02VFrnpBl5Sp3v7A2wkuya~6YQQxiJDFA0ELc5p~zXCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_objective_Automatic_Algorithm_Configuration_for_the_Classification_Problem_of_Imbalanced_Data","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686826,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686826/thumbnails/1.jpg","file_name":"E-24550.pdf","download_url":"https://www.academia.edu/attachments/96686826/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_Automatic_Algorithm_Conf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686826/E-24550-libre.pdf?1672656626=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_Automatic_Algorithm_Conf.pdf\u0026Expires=1732730104\u0026Signature=JOHSzeyZc4V6v2DEe9m7xARBuTzFERGS3zjerfauv2vTuZfG3a9xswgsypKfXwm-9XsSfPiwA3JrGKSCf4DHdf7cJaw19JMPuSqo17bZHUBNpZKIeXKz32rBnyUaewUOwWn0wArAQqfOvDYuB77oebroKN6zr683B0UzKjiTSm-Yl-kWH71X3C70VtcplxrjZ8Td2Jadi8rRgH6kTV71mgVSR9vFlszExdu33kvULmhlOxompRvfqZCcaaDdEJzov4kVV82B3PDMpC09B9OSYNCeW-KATZDDqJzjDVavuN02VFrnpBl5Sp3v7A2wkuya~6YQQxiJDFA0ELc5p~zXCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3163891,"name":"Statistical Classification","url":"https://www.academia.edu/Documents/in/Statistical_Classification"}],"urls":[{"id":27654188,"url":"http://xplorestaging.ieee.org/ielx7/9178820/9185488/09185785.pdf?arnumber=9185785"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148539"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148539/Bypassing_or_flying_above_the_obstacles_A_novel_multi_objective_UAV_path_planning_problem"><img alt="Research paper thumbnail of Bypassing or flying above the obstacles? A novel multi-objective UAV path planning problem" class="work-thumbnail" src="https://attachments.academia-assets.com/96686827/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148539/Bypassing_or_flying_above_the_obstacles_A_novel_multi_objective_UAV_path_planning_problem">Bypassing or flying above the obstacles? A novel multi-objective UAV path planning problem</a></div><div class="wp-workCard_item"><span>2020 IEEE Congress on Evolutionary Computation (CEC)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0153cd81281a2a022bdf19d9b50f9593" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686827,"asset_id":94148539,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686827/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148539"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148539"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148539; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148539]").text(description); $(".js-view-count[data-work-id=94148539]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148539; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148539']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148539, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0153cd81281a2a022bdf19d9b50f9593" } } $('.js-work-strip[data-work-id=94148539]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148539,"title":"Bypassing or flying above the obstacles? A novel multi-objective UAV path planning problem","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2020 IEEE Congress on Evolutionary Computation (CEC)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148539/Bypassing_or_flying_above_the_obstacles_A_novel_multi_objective_UAV_path_planning_problem","translated_internal_url":"","created_at":"2023-01-02T02:46:55.594-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686827,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686827/thumbnails/1.jpg","file_name":"E-24591.pdf","download_url":"https://www.academia.edu/attachments/96686827/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bypassing_or_flying_above_the_obstacles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686827/E-24591-libre.pdf?1672656624=\u0026response-content-disposition=attachment%3B+filename%3DBypassing_or_flying_above_the_obstacles.pdf\u0026Expires=1732730104\u0026Signature=XORPR-mFPyDoUieplmS9NoeuPoj6OYb3PgszG1p~qhpp7I7vSfiOVk~wcyD-hM8vk4Va7rnSNRia30zzIL9ThsAo-iwVnSJxg4l9UZXu9~NeduXiiBL-7ogHD7hqGLO7K78m3C-hVc1xfe-Ngm5oQzR6OeXv1aI~~4zKA6mBnZu8uJ95RTuXUzS53s~25kQ6ppSOV3Wp9vBNuXaMfnMcWLa80ob3J7vXkhptaLFzI1HuUV~sCbd-tB7JIeuiqE23DR9hPXHJa9LrQKZEtoXn1QJIH9yaR5J66wa4-EjUmRO-AsfE5dfz9p-m7daNNm3rYMN21w77MZkWHzrqp8rBfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bypassing_or_flying_above_the_obstacles_A_novel_multi_objective_UAV_path_planning_problem","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686827,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686827/thumbnails/1.jpg","file_name":"E-24591.pdf","download_url":"https://www.academia.edu/attachments/96686827/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bypassing_or_flying_above_the_obstacles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686827/E-24591-libre.pdf?1672656624=\u0026response-content-disposition=attachment%3B+filename%3DBypassing_or_flying_above_the_obstacles.pdf\u0026Expires=1732730104\u0026Signature=XORPR-mFPyDoUieplmS9NoeuPoj6OYb3PgszG1p~qhpp7I7vSfiOVk~wcyD-hM8vk4Va7rnSNRia30zzIL9ThsAo-iwVnSJxg4l9UZXu9~NeduXiiBL-7ogHD7hqGLO7K78m3C-hVc1xfe-Ngm5oQzR6OeXv1aI~~4zKA6mBnZu8uJ95RTuXUzS53s~25kQ6ppSOV3Wp9vBNuXaMfnMcWLa80ob3J7vXkhptaLFzI1HuUV~sCbd-tB7JIeuiqE23DR9hPXHJa9LrQKZEtoXn1QJIH9yaR5J66wa4-EjUmRO-AsfE5dfz9p-m7daNNm3rYMN21w77MZkWHzrqp8rBfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":6411,"name":"Integer Programming","url":"https://www.academia.edu/Documents/in/Integer_Programming"},{"id":15119,"name":"Motion Planning","url":"https://www.academia.edu/Documents/in/Motion_Planning"},{"id":74778,"name":"Crossover","url":"https://www.academia.edu/Documents/in/Crossover"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"}],"urls":[{"id":27654187,"url":"http://xplorestaging.ieee.org/ielx7/9178820/9185488/09185695.pdf?arnumber=9185695"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148535"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148535/Automatic_design_of_multi_objective_local_search_algorithms"><img alt="Research paper thumbnail of Automatic design of multi-objective local search algorithms" class="work-thumbnail" src="https://attachments.academia-assets.com/96686824/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148535/Automatic_design_of_multi_objective_local_search_algorithms">Automatic design of multi-objective local search algorithms</a></div><div class="wp-workCard_item"><span>Proceedings of the Genetic and Evolutionary Computation Conference</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc18edb03da45c6628d9ef012feee0e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686824,"asset_id":94148535,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686824/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148535"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148535"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148535; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148535]").text(description); $(".js-view-count[data-work-id=94148535]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148535; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148535']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148535, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc18edb03da45c6628d9ef012feee0e0" } } $('.js-work-strip[data-work-id=94148535]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148535,"title":"Automatic design of multi-objective local search algorithms","translated_title":"","metadata":{"publisher":"ACM","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Proceedings of the Genetic and Evolutionary Computation Conference"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148535/Automatic_design_of_multi_objective_local_search_algorithms","translated_internal_url":"","created_at":"2023-01-02T02:46:52.142-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686824,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686824/thumbnails/1.jpg","file_name":"gecco_2017_preprint.pdf","download_url":"https://www.academia.edu/attachments/96686824/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_design_of_multi_objective_loca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686824/gecco_2017_preprint-libre.pdf?1672656623=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_design_of_multi_objective_loca.pdf\u0026Expires=1732730104\u0026Signature=MR3pF6ai04hcis1ZKiYjR3HVKGDEoDTWyED3NXFe~8-rVsTihLywCy8jTAQaEH6Y6YpvO~O5nmsT03~C-LSfTmQbJDRHSz1l0f-Rzw6iRSIJXTQQTNkFuQXPY8wzm5XzwPuqlqtPB36o5KeV3ZLR5fY2Fef6sTbaopyfQ-oiHVtR8-cYd23igYWNQbSui5jlTLnmCIJYJGVeH85kDQXaUtDwkwHaItHO7vGx-ZVzrdNPhpnKXW8~uYpJaE6vzAP95RLB26IN96stpipfns9Y5d64YPqExDgc0nz~rjU0QFr7Cd~2y-qKIfNGC5VwuakhPqRwCL-uVVcdJTJnunHfew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_design_of_multi_objective_local_search_algorithms","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686824,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686824/thumbnails/1.jpg","file_name":"gecco_2017_preprint.pdf","download_url":"https://www.academia.edu/attachments/96686824/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_design_of_multi_objective_loca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686824/gecco_2017_preprint-libre.pdf?1672656623=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_design_of_multi_objective_loca.pdf\u0026Expires=1732730104\u0026Signature=MR3pF6ai04hcis1ZKiYjR3HVKGDEoDTWyED3NXFe~8-rVsTihLywCy8jTAQaEH6Y6YpvO~O5nmsT03~C-LSfTmQbJDRHSz1l0f-Rzw6iRSIJXTQQTNkFuQXPY8wzm5XzwPuqlqtPB36o5KeV3ZLR5fY2Fef6sTbaopyfQ-oiHVtR8-cYd23igYWNQbSui5jlTLnmCIJYJGVeH85kDQXaUtDwkwHaItHO7vGx-ZVzrdNPhpnKXW8~uYpJaE6vzAP95RLB26IN96stpipfns9Y5d64YPqExDgc0nz~rjU0QFr7Cd~2y-qKIfNGC5VwuakhPqRwCL-uVVcdJTJnunHfew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":61386,"name":"Metaheuristics","url":"https://www.academia.edu/Documents/in/Metaheuristics"},{"id":107381,"name":"Local Search","url":"https://www.academia.edu/Documents/in/Local_Search"},{"id":836814,"name":"Parameter Tuning","url":"https://www.academia.edu/Documents/in/Parameter_Tuning"}],"urls":[{"id":27654186,"url":"https://dl.acm.org/doi/pdf/10.1145/3071178.3071323"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148533"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148533/To_cite_this_version"><img alt="Research paper thumbnail of To cite this version" class="work-thumbnail" src="https://attachments.academia-assets.com/96686821/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148533/To_cite_this_version">To cite this version</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. in ria</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a0f107b2b99b9b9f3affdb5617e4f0c4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686821,"asset_id":94148533,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686821/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148533"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148533"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148533; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148533]").text(description); $(".js-view-count[data-work-id=94148533]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148533; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148533']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148533, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a0f107b2b99b9b9f3affdb5617e4f0c4" } } $('.js-work-strip[data-work-id=94148533]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148533,"title":"To cite this version","translated_title":"","metadata":{"abstract":"HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. in ria","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. in ria","internal_url":"https://www.academia.edu/94148533/To_cite_this_version","translated_internal_url":"","created_at":"2023-01-02T02:46:51.758-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686821/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96686821/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"To_cite_this_version.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686821/document-libre.pdf?1672656628=\u0026response-content-disposition=attachment%3B+filename%3DTo_cite_this_version.pdf\u0026Expires=1732730104\u0026Signature=bmMHU1~PKi9i87oNn~jYOQYQN~-Glg-dl2kkWuPN6BYUNvic2ZtI7GyZIOToMpvWK5zXVDedVaI8Z0Tmi6QSGWz8M-J7EVofypHnPM1MNjM-EW89VdrC6y8K2xf6fRS0GpeRCA0ttvFNvnzUTE708nMqW7tQsooIigJFVAXoGU9yzGD1COtJ76t9UCQD0efqETn41bRIqNCCzyMifnKhByKBNhxZZtgeVo3cq-HtMb4o4OKth-pMhKGRKF25BXe1zFe~0aOoI3T1xJQdsYDV0cDCbve1K8wh1JbsJkUGl5yBY5zBaN88Evgn-rTsjQ59jmPrBLA3nd1i1jp5rnQqbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"To_cite_this_version","translated_slug":"","page_count":49,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686821/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96686821/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"To_cite_this_version.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686821/document-libre.pdf?1672656628=\u0026response-content-disposition=attachment%3B+filename%3DTo_cite_this_version.pdf\u0026Expires=1732730104\u0026Signature=bmMHU1~PKi9i87oNn~jYOQYQN~-Glg-dl2kkWuPN6BYUNvic2ZtI7GyZIOToMpvWK5zXVDedVaI8Z0Tmi6QSGWz8M-J7EVofypHnPM1MNjM-EW89VdrC6y8K2xf6fRS0GpeRCA0ttvFNvnzUTE708nMqW7tQsooIigJFVAXoGU9yzGD1COtJ76t9UCQD0efqETn41bRIqNCCzyMifnKhByKBNhxZZtgeVo3cq-HtMb4o4OKth-pMhKGRKF25BXe1zFe~0aOoI3T1xJQdsYDV0cDCbve1K8wh1JbsJkUGl5yBY5zBaN88Evgn-rTsjQ59jmPrBLA3nd1i1jp5rnQqbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":99512,"name":"Ia","url":"https://www.academia.edu/Documents/in/Ia"}],"urls":[{"id":27654185,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.654.5452\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148531/ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENGMetaheuristics_and_Their_Hybridization_to_Solve_the_Bi_objective_Ring_Star_Problem_a_Comparative_Study"><img alt="Research paper thumbnail of ISSN 0249-6399 ISRN INRIA/RR--6515--FR+ENGMetaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study" class="work-thumbnail" src="https://attachments.academia-assets.com/96686825/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148531/ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENGMetaheuristics_and_Their_Hybridization_to_Solve_the_Bi_objective_Ring_Star_Problem_a_Comparative_Study">ISSN 0249-6399 ISRN INRIA/RR--6515--FR+ENGMetaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="da2a5d5986be40896253d67863dbf83b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686825,"asset_id":94148531,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686825/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148531]").text(description); $(".js-view-count[data-work-id=94148531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148531, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "da2a5d5986be40896253d67863dbf83b" } } $('.js-work-strip[data-work-id=94148531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148531,"title":"ISSN 0249-6399 ISRN INRIA/RR--6515--FR+ENGMetaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148531/ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENGMetaheuristics_and_Their_Hybridization_to_Solve_the_Bi_objective_Ring_Star_Problem_a_Comparative_Study","translated_internal_url":"","created_at":"2023-01-02T02:46:51.311-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686825/thumbnails/1.jpg","file_name":"0804.3965v2.pdf","download_url":"https://www.academia.edu/attachments/96686825/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENG.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686825/0804.3965v2-libre.pdf?1672656625=\u0026response-content-disposition=attachment%3B+filename%3DISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENG.pdf\u0026Expires=1732730104\u0026Signature=Ad13hNOm~UhNZPtxUfEkzG7CZMPXcaf-ECyGzviXXSjwWU8BwG35OpNpFDgYBNuGKe7Jn3iEhhvA1UlgtJfYSIvlt0FWogJCM6iyKuaa4X79UImIZPLvyxdKFZaJYzbfYTrFmaHI-5MXGblHNHOUy-HtchCvOL55Vv1PwZPGKERoCX2A0B4uTWT9tsVUeMj4VXEGGyoPN3uS7ylLwgU~rCL7g5Q0DzcWl9Ns5DS~a9RFHH0jXVC3IEGYMVm2b5HCBqyW44HTJwxPY~MrSoGoq3pkxJptu~kCO560nUiYYkPX08BacgzPivk6KFO0ffXdWww1Hb1Ggnz0OnpyfprnWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENGMetaheuristics_and_Their_Hybridization_to_Solve_the_Bi_objective_Ring_Star_Problem_a_Comparative_Study","translated_slug":"","page_count":48,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686825/thumbnails/1.jpg","file_name":"0804.3965v2.pdf","download_url":"https://www.academia.edu/attachments/96686825/download_file?st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENG.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686825/0804.3965v2-libre.pdf?1672656625=\u0026response-content-disposition=attachment%3B+filename%3DISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENG.pdf\u0026Expires=1732730104\u0026Signature=Ad13hNOm~UhNZPtxUfEkzG7CZMPXcaf-ECyGzviXXSjwWU8BwG35OpNpFDgYBNuGKe7Jn3iEhhvA1UlgtJfYSIvlt0FWogJCM6iyKuaa4X79UImIZPLvyxdKFZaJYzbfYTrFmaHI-5MXGblHNHOUy-HtchCvOL55Vv1PwZPGKERoCX2A0B4uTWT9tsVUeMj4VXEGGyoPN3uS7ylLwgU~rCL7g5Q0DzcWl9Ns5DS~a9RFHH0jXVC3IEGYMVm2b5HCBqyW44HTJwxPY~MrSoGoq3pkxJptu~kCO560nUiYYkPX08BacgzPivk6KFO0ffXdWww1Hb1Ggnz0OnpyfprnWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":27654184,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.312.1116\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148528/Decoder_based_evolutionary_algorithm_for_bi_objective_just_in_time_single_machine_job_shop"><img alt="Research paper thumbnail of Decoder-based evolutionary algorithm for bi-objective just-in-time single-machine job-shop" class="work-thumbnail" src="https://attachments.academia-assets.com/96686819/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148528/Decoder_based_evolutionary_algorithm_for_bi_objective_just_in_time_single_machine_job_shop">Decoder-based evolutionary algorithm for bi-objective just-in-time single-machine job-shop</a></div><div class="wp-workCard_item"><span>2016 IEEE Symposium Series on Computational Intelligence (SSCI)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The bi-objective just-in-time single-machine job-shop scheduling problem (JIT-JSP) aims at simult...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The bi-objective just-in-time single-machine job-shop scheduling problem (JIT-JSP) aims at simultaneously minimizing earliness and tardiness. In this paper, a multi-objective decoder-based evolutionary algorithm is proposed. The decoding strategy divides the search into two steps. In the first step, the search of the permutation order of the jobs is realized thanks to a multi-objective evolutionary algorithm. For a fixed permutation, the decoder algorithm optimizes the multi-objective timing sub-problem in the second step. Thus each permutation order induces a Pareto set of solutions. Two different decoding strategies to fix the idle times are proposed, one approximate and one exact. A comparison study with a classical multi-objective evolutionary algorithm underlines the performance of the proposed decoding strategy and the interest of the approximate decoder.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="df4b8114527ed6ca45eaf97fb67f80c4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686819,"asset_id":94148528,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686819/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148528]").text(description); $(".js-view-count[data-work-id=94148528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "df4b8114527ed6ca45eaf97fb67f80c4" } } $('.js-work-strip[data-work-id=94148528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148528,"title":"Decoder-based evolutionary algorithm for bi-objective just-in-time single-machine job-shop","translated_title":"","metadata":{"abstract":"The bi-objective just-in-time single-machine job-shop scheduling problem (JIT-JSP) aims at simultaneously minimizing earliness and tardiness. In this paper, a multi-objective decoder-based evolutionary algorithm is proposed. The decoding strategy divides the search into two steps. In the first step, the search of the permutation order of the jobs is realized thanks to a multi-objective evolutionary algorithm. For a fixed permutation, the decoder algorithm optimizes the multi-objective timing sub-problem in the second step. Thus each permutation order induces a Pareto set of solutions. Two different decoding strategies to fix the idle times are proposed, one approximate and one exact. A comparison study with a classical multi-objective evolutionary algorithm underlines the performance of the proposed decoding strategy and the interest of the approximate decoder.","publisher":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)"},"translated_abstract":"The bi-objective just-in-time single-machine job-shop scheduling problem (JIT-JSP) aims at simultaneously minimizing earliness and tardiness. In this paper, a multi-objective decoder-based evolutionary algorithm is proposed. The decoding strategy divides the search into two steps. In the first step, the search of the permutation order of the jobs is realized thanks to a multi-objective evolutionary algorithm. For a fixed permutation, the decoder algorithm optimizes the multi-objective timing sub-problem in the second step. Thus each permutation order induces a Pareto set of solutions. Two different decoding strategies to fix the idle times are proposed, one approximate and one exact. A comparison study with a classical multi-objective evolutionary algorithm underlines the performance of the proposed decoding strategy and the interest of the approximate decoder.","internal_url":"https://www.academia.edu/94148528/Decoder_based_evolutionary_algorithm_for_bi_objective_just_in_time_single_machine_job_shop","translated_internal_url":"","created_at":"2023-01-02T02:46:51.116-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686819/thumbnails/1.jpg","file_name":"SSCI16_paper_158.pdf","download_url":"https://www.academia.edu/attachments/96686819/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decoder_based_evolutionary_algorithm_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686819/SSCI16_paper_158-libre.pdf?1672656629=\u0026response-content-disposition=attachment%3B+filename%3DDecoder_based_evolutionary_algorithm_for.pdf\u0026Expires=1732730105\u0026Signature=LiWedd0P0DlpjTdyzMOM8V6FbMbuJnlhkjYv3jSY6F13Kx7zZQuHDURQh0pdSHqlbFf~v1m9vaYEd2EJr3D8ZB7URQTg1CfLaohMIZ3LEkCAEWNel-G9DA~58s4tFUDZAqnNhs-oOIdVFw5zf~gBessCOaeevu-Wwc~L8cZY~FaEwpvmbDzwpHFv6EhLhRMHpW9To66ihbZZE~drzmzt-qzIAEu2fp8gUCpIRZK7UDAUnNhXHSgenWVi4lx8WKX~cKphKOswtdmx4Rhmu41bKaPA3Gfup0Xg9~TZO2f4sGBwANJDRP9qyp7KI-kK0T2ba7lTEevjyUxvhcJ-ZQipmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decoder_based_evolutionary_algorithm_for_bi_objective_just_in_time_single_machine_job_shop","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686819/thumbnails/1.jpg","file_name":"SSCI16_paper_158.pdf","download_url":"https://www.academia.edu/attachments/96686819/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decoder_based_evolutionary_algorithm_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686819/SSCI16_paper_158-libre.pdf?1672656629=\u0026response-content-disposition=attachment%3B+filename%3DDecoder_based_evolutionary_algorithm_for.pdf\u0026Expires=1732730105\u0026Signature=LiWedd0P0DlpjTdyzMOM8V6FbMbuJnlhkjYv3jSY6F13Kx7zZQuHDURQh0pdSHqlbFf~v1m9vaYEd2EJr3D8ZB7URQTg1CfLaohMIZ3LEkCAEWNel-G9DA~58s4tFUDZAqnNhs-oOIdVFw5zf~gBessCOaeevu-Wwc~L8cZY~FaEwpvmbDzwpHFv6EhLhRMHpW9To66ihbZZE~drzmzt-qzIAEu2fp8gUCpIRZK7UDAUnNhXHSgenWVi4lx8WKX~cKphKOswtdmx4Rhmu41bKaPA3Gfup0Xg9~TZO2f4sGBwANJDRP9qyp7KI-kK0T2ba7lTEevjyUxvhcJ-ZQipmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":400356,"name":"Job shop scheduling","url":"https://www.academia.edu/Documents/in/Job_shop_scheduling"},{"id":484848,"name":"Tardiness","url":"https://www.academia.edu/Documents/in/Tardiness"}],"urls":[{"id":27654183,"url":"https://www.wikidata.org/entity/Q59262662"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148526/Survey_and_unification_of_local_search_techniques_in_metaheuristics_for_multi_objective_combinatorial_optimisation"><img alt="Research paper thumbnail of Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation" class="work-thumbnail" src="https://attachments.academia-assets.com/96686822/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148526/Survey_and_unification_of_local_search_techniques_in_metaheuristics_for_multi_objective_combinatorial_optimisation">Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation</a></div><div class="wp-workCard_item"><span>Journal of Heuristics</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05553317677ae4d7ea16ddae2047f866" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686822,"asset_id":94148526,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686822/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148526]").text(description); $(".js-view-count[data-work-id=94148526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05553317677ae4d7ea16ddae2047f866" } } $('.js-work-strip[data-work-id=94148526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148526,"title":"Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Journal of Heuristics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148526/Survey_and_unification_of_local_search_techniques_in_metaheuristics_for_multi_objective_combinatorial_optimisation","translated_internal_url":"","created_at":"2023-01-02T02:46:50.911-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686822,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686822/thumbnails/1.jpg","file_name":"joh_2018_preprint.pdf","download_url":"https://www.academia.edu/attachments/96686822/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Survey_and_unification_of_local_search_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686822/joh_2018_preprint-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DSurvey_and_unification_of_local_search_t.pdf\u0026Expires=1732730105\u0026Signature=JVqvWL-C7nrFwAzfrwFpLU0m88RHbQpxz5Rra6X651P1Kr11vsOjIHsIv9pnwgcSJN14fJgBh1qe8jhcdEjuIPCJIPYQCR~I3H3A84t3pEHlpmgTQBQ-L0sjLVH9inVhULCh8dcO4NjzBqeTYfhtnN~3VmcWVN8rbYOYuGNEx3zttgqzn8cRXxEggN741c4mME5OoD5b3vIPFDbN8NWyK7CEO4Fs28iqjcZC4YQaHiHd-FC~YliXqIm22KZjLwyCm6u3xZd8pXl4YXjuL8ZZ4e01uH~~WEbTdwEzkdRPEwcfdG9pcPGbVpjYt4MDqdSPakU27UpTuzEfZ09V24GlWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Survey_and_unification_of_local_search_techniques_in_metaheuristics_for_multi_objective_combinatorial_optimisation","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686822,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686822/thumbnails/1.jpg","file_name":"joh_2018_preprint.pdf","download_url":"https://www.academia.edu/attachments/96686822/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Survey_and_unification_of_local_search_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686822/joh_2018_preprint-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DSurvey_and_unification_of_local_search_t.pdf\u0026Expires=1732730105\u0026Signature=JVqvWL-C7nrFwAzfrwFpLU0m88RHbQpxz5Rra6X651P1Kr11vsOjIHsIv9pnwgcSJN14fJgBh1qe8jhcdEjuIPCJIPYQCR~I3H3A84t3pEHlpmgTQBQ-L0sjLVH9inVhULCh8dcO4NjzBqeTYfhtnN~3VmcWVN8rbYOYuGNEx3zttgqzn8cRXxEggN741c4mME5OoD5b3vIPFDbN8NWyK7CEO4Fs28iqjcZC4YQaHiHd-FC~YliXqIm22KZjLwyCm6u3xZd8pXl4YXjuL8ZZ4e01uH~~WEbTdwEzkdRPEwcfdG9pcPGbVpjYt4MDqdSPakU27UpTuzEfZ09V24GlWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2537,"name":"Heuristics","url":"https://www.academia.edu/Documents/in/Heuristics"},{"id":179262,"name":"Metaheuristic","url":"https://www.academia.edu/Documents/in/Metaheuristic"},{"id":200829,"name":"Unification","url":"https://www.academia.edu/Documents/in/Unification"}],"urls":[{"id":27654182,"url":"http://link.springer.com/article/10.1007/s10732-018-9381-1/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148524"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148524/Automatic_Configuration_of_Multi_Objective_Local_Search_Algorithms_for_Permutation_Problems"><img alt="Research paper thumbnail of Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/96686823/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148524/Automatic_Configuration_of_Multi_Objective_Local_Search_Algorithms_for_Permutation_Problems">Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems</a></div><div class="wp-workCard_item"><span>Evolutionary Computation</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-perfor...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e7f7298f681a308ea97dc22b424b356c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686823,"asset_id":94148524,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686823/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148524"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148524"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148524; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148524]").text(description); $(".js-view-count[data-work-id=94148524]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148524; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148524']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148524, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e7f7298f681a308ea97dc22b424b356c" } } $('.js-work-strip[data-work-id=94148524]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148524,"title":"Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems","translated_title":"","metadata":{"abstract":"Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective...","publisher":"MIT Press - Journals","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Evolutionary Computation"},"translated_abstract":"Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective...","internal_url":"https://www.academia.edu/94148524/Automatic_Configuration_of_Multi_Objective_Local_Search_Algorithms_for_Permutation_Problems","translated_internal_url":"","created_at":"2023-01-02T02:46:50.762-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686823/thumbnails/1.jpg","file_name":"Blot_evco_a_00240.pdf","download_url":"https://www.academia.edu/attachments/96686823/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Configuration_of_Multi_Objecti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686823/Blot_evco_a_00240-libre.pdf?1672656626=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Configuration_of_Multi_Objecti.pdf\u0026Expires=1732730105\u0026Signature=Vairy7UMxyUa-AVin3iudN8bvqqNf~OWrYp~mChAmmIZPNSAjF9bNabNu3JC~X4BhzpGehxKEBdHy2aHNDqjDAzMaaYKYmjaGGZZ6AbAYgjJHHpMBH3pPwmRx4DcsStLn0DBugCvq-d9VVoCPbXyM3ulTJco~ef4lY3jxSSlpTLGZF6kx59LGj-WzyUUNIT6QHhhlHRfUkpWrE0ywAlwX~rc8HHPYDwIWPp5avI38zSCqgY~tPDWr9qFAo3zGlnLmZaKf4lItjtxW~TNjKPnd6jyPjbdsfexuAOs7LH9WyKfSV-NRolKQ-CtLRWtObv1watKzP0P4jCFbS8inqYTkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_Configuration_of_Multi_Objective_Local_Search_Algorithms_for_Permutation_Problems","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686823/thumbnails/1.jpg","file_name":"Blot_evco_a_00240.pdf","download_url":"https://www.academia.edu/attachments/96686823/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Configuration_of_Multi_Objecti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686823/Blot_evco_a_00240-libre.pdf?1672656626=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Configuration_of_Multi_Objecti.pdf\u0026Expires=1732730105\u0026Signature=Vairy7UMxyUa-AVin3iudN8bvqqNf~OWrYp~mChAmmIZPNSAjF9bNabNu3JC~X4BhzpGehxKEBdHy2aHNDqjDAzMaaYKYmjaGGZZ6AbAYgjJHHpMBH3pPwmRx4DcsStLn0DBugCvq-d9VVoCPbXyM3ulTJco~ef4lY3jxSSlpTLGZF6kx59LGj-WzyUUNIT6QHhhlHRfUkpWrE0ywAlwX~rc8HHPYDwIWPp5avI38zSCqgY~tPDWr9qFAo3zGlnLmZaKf4lItjtxW~TNjKPnd6jyPjbdsfexuAOs7LH9WyKfSV-NRolKQ-CtLRWtObv1watKzP0P4jCFbS8inqYTkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":884823,"name":"Travelling Salesman Problem","url":"https://www.academia.edu/Documents/in/Travelling_Salesman_Problem"},{"id":1355305,"name":"Configurator","url":"https://www.academia.edu/Documents/in/Configurator"}],"urls":[{"id":27654181,"url":"https://www.mitpressjournals.org/doi/pdf/10.1162/evco_a_00240"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148523/M%C3%A9taheuristiques_Coop%C3%A9ratives_du_d%C3%A9terministe_au_stochastique"><img alt="Research paper thumbnail of Métaheuristiques Coopératives : du déterministe au stochastique" class="work-thumbnail" src="https://attachments.academia-assets.com/96686828/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148523/M%C3%A9taheuristiques_Coop%C3%A9ratives_du_d%C3%A9terministe_au_stochastique">Métaheuristiques Coopératives : du déterministe au stochastique</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ce travail présente nos principales contributions à la résolution de problèmes d&#39;optimisation...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ce travail présente nos principales contributions à la résolution de problèmes d&#39;optimisation combinatoire en environnements déterministe et stochastique. Au niveau des métaheuristiques, une vue unifiée de la conception de métaheuristiques à solution unique et de métaheuristiques multi-objective est proposée. Cette unification a permis notamment de retravailler la plateforme ParadisEO afin d&#39;offrir plus de flexibilité et de polyvalence. La synthèse des travaux présente également une vue unifiée des métaheuristiques coopératives. Nous montrons que cette vue convient aussi bien pour des coopérations entre métaheuristiques que des coopération entre des métaheuristiques et des méthodes exactes mais également des coopérations entre des métaheuristiques et des algorithmes d&#39;extraction de connaissances. Différents exemples de coopérations réalisées dans mes travaux de recherche illustent ces coopérations et leur application à des problèmes d&#39;optimisation combinatoire mono- ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4300c6aed03fd83fa28b43dd2266a9ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686828,"asset_id":94148523,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686828/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148523]").text(description); $(".js-view-count[data-work-id=94148523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4300c6aed03fd83fa28b43dd2266a9ce" } } $('.js-work-strip[data-work-id=94148523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148523,"title":"Métaheuristiques Coopératives : du déterministe au stochastique","translated_title":"","metadata":{"abstract":"Ce travail présente nos principales contributions à la résolution de problèmes d\u0026#39;optimisation combinatoire en environnements déterministe et stochastique. Au niveau des métaheuristiques, une vue unifiée de la conception de métaheuristiques à solution unique et de métaheuristiques multi-objective est proposée. Cette unification a permis notamment de retravailler la plateforme ParadisEO afin d\u0026#39;offrir plus de flexibilité et de polyvalence. La synthèse des travaux présente également une vue unifiée des métaheuristiques coopératives. Nous montrons que cette vue convient aussi bien pour des coopérations entre métaheuristiques que des coopération entre des métaheuristiques et des méthodes exactes mais également des coopérations entre des métaheuristiques et des algorithmes d\u0026#39;extraction de connaissances. Différents exemples de coopérations réalisées dans mes travaux de recherche illustent ces coopérations et leur application à des problèmes d\u0026#39;optimisation combinatoire mono- ..."},"translated_abstract":"Ce travail présente nos principales contributions à la résolution de problèmes d\u0026#39;optimisation combinatoire en environnements déterministe et stochastique. Au niveau des métaheuristiques, une vue unifiée de la conception de métaheuristiques à solution unique et de métaheuristiques multi-objective est proposée. Cette unification a permis notamment de retravailler la plateforme ParadisEO afin d\u0026#39;offrir plus de flexibilité et de polyvalence. La synthèse des travaux présente également une vue unifiée des métaheuristiques coopératives. Nous montrons que cette vue convient aussi bien pour des coopérations entre métaheuristiques que des coopération entre des métaheuristiques et des méthodes exactes mais également des coopérations entre des métaheuristiques et des algorithmes d\u0026#39;extraction de connaissances. Différents exemples de coopérations réalisées dans mes travaux de recherche illustent ces coopérations et leur application à des problèmes d\u0026#39;optimisation combinatoire mono- ...","internal_url":"https://www.academia.edu/94148523/M%C3%A9taheuristiques_Coop%C3%A9ratives_du_d%C3%A9terministe_au_stochastique","translated_internal_url":"","created_at":"2023-01-02T02:46:50.541-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686828,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686828/thumbnails/1.jpg","file_name":"ljhdr.pdf","download_url":"https://www.academia.edu/attachments/96686828/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristiques_Cooperatives_du_determi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686828/ljhdr-libre.pdf?1672657133=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristiques_Cooperatives_du_determi.pdf\u0026Expires=1732730105\u0026Signature=SNETh67jTQk7~2BM9iCHgPjmv4s12VTKiseBxccTgJyejZhEvliM4lWQiGYTbV6JSIXSMQd-uieJtpu-giG-IUqCCvqhx-pv6GKUJs85lV33dEj80RY6cHLkIOMbR5vzRKEXm6UR-PTVFQPFb-Njg6gcYKqHSL5D6kWAljPojW99ILhIJw9tFOlHNRIyGKno-ORJNszTSrFqHo9c2225BQlZ5XKJlhTD5bauEyHI7RNBFQsNqCgjWh1Nr7V4af6IPQ8p7fY5z8u3OAhi5YDSWygrqn4V93EabJmVbMZgnw4uztxyJfSujCViI7zz~yyHc0TZCAQIhms86lGxK1sDxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Métaheuristiques_Coopératives_du_déterministe_au_stochastique","translated_slug":"","page_count":175,"language":"fr","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686828,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686828/thumbnails/1.jpg","file_name":"ljhdr.pdf","download_url":"https://www.academia.edu/attachments/96686828/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristiques_Cooperatives_du_determi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686828/ljhdr-libre.pdf?1672657133=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristiques_Cooperatives_du_determi.pdf\u0026Expires=1732730105\u0026Signature=SNETh67jTQk7~2BM9iCHgPjmv4s12VTKiseBxccTgJyejZhEvliM4lWQiGYTbV6JSIXSMQd-uieJtpu-giG-IUqCCvqhx-pv6GKUJs85lV33dEj80RY6cHLkIOMbR5vzRKEXm6UR-PTVFQPFb-Njg6gcYKqHSL5D6kWAljPojW99ILhIJw9tFOlHNRIyGKno-ORJNszTSrFqHo9c2225BQlZ5XKJlhTD5bauEyHI7RNBFQsNqCgjWh1Nr7V4af6IPQ8p7fY5z8u3OAhi5YDSWygrqn4V93EabJmVbMZgnw4uztxyJfSujCViI7zz~yyHc0TZCAQIhms86lGxK1sDxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy"},{"id":951,"name":"Humanities","url":"https://www.academia.edu/Documents/in/Humanities"},{"id":43968,"name":"Cooperation","url":"https://www.academia.edu/Documents/in/Cooperation"},{"id":407080,"name":"Dynamique","url":"https://www.academia.edu/Documents/in/Dynamique"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148521"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148521/MOCA_I_Discovering_Rules_and_Guiding_Decision_Maker_in_the_Context_of_Partial_Classification_in_Large_and_Imbalanced_Datasets"><img alt="Research paper thumbnail of MOCA-I: Discovering Rules and Guiding Decision Maker in the Context of Partial Classification in Large and Imbalanced Datasets" class="work-thumbnail" src="https://attachments.academia-assets.com/96686814/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148521/MOCA_I_Discovering_Rules_and_Guiding_Decision_Maker_in_the_Context_of_Partial_Classification_in_Large_and_Imbalanced_Datasets">MOCA-I: Discovering Rules and Guiding Decision Maker in the Context of Partial Classification in Large and Imbalanced Datasets</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3f6bc6f7548cd0f130d9967916a25bd9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686814,"asset_id":94148521,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686814/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148521"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148521"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148521; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148521]").text(description); $(".js-view-count[data-work-id=94148521]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148521; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148521']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148521, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3f6bc6f7548cd0f130d9967916a25bd9" } } $('.js-work-strip[data-work-id=94148521]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148521,"title":"MOCA-I: Discovering Rules and Guiding Decision Maker in the Context of Partial Classification in Large and Imbalanced Datasets","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148521/MOCA_I_Discovering_Rules_and_Guiding_Decision_Maker_in_the_Context_of_Partial_Classification_in_Large_and_Imbalanced_Datasets","translated_internal_url":"","created_at":"2023-01-02T02:46:50.343-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686814,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686814/thumbnails/1.jpg","file_name":"2013-01-03_lion2013.pdf","download_url":"https://www.academia.edu/attachments/96686814/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MOCA_I_Discovering_Rules_and_Guiding_Dec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686814/2013-01-03_lion2013-libre.pdf?1672656627=\u0026response-content-disposition=attachment%3B+filename%3DMOCA_I_Discovering_Rules_and_Guiding_Dec.pdf\u0026Expires=1732730105\u0026Signature=MooS9rmWYROusuTzTkvEUS6dJ45zTnNbeL9ESOar31xPFvsvs9njQBfYA1LFowOhgKIf99FpMWduE8hPaEJ2PhhlAIFyXK6E3CvQCUzb0KY6iUchsxzRx4ijdjxZKsDqk3h0zdD4gVSk~wJ6vdIM3ksLipu3wKI0WVQWqLXOG1K6IAoqvnMlNET0L0PH5FuHv3Mibefy6moaQbht4tqOZrfZab9OKM9IcWj6BmN0Umn4Ct8xoQiNqn7Vuo62sllluaJVU6s8GTZ43cFfCwJawMotM3d5nNgQz3ao-RdnNLXsL3qJz-3FJpVTuAsfsFAyQAi0EJ~sEWi9mTyeh9S4TA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"MOCA_I_Discovering_Rules_and_Guiding_Decision_Maker_in_the_Context_of_Partial_Classification_in_Large_and_Imbalanced_Datasets","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686814,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686814/thumbnails/1.jpg","file_name":"2013-01-03_lion2013.pdf","download_url":"https://www.academia.edu/attachments/96686814/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MOCA_I_Discovering_Rules_and_Guiding_Dec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686814/2013-01-03_lion2013-libre.pdf?1672656627=\u0026response-content-disposition=attachment%3B+filename%3DMOCA_I_Discovering_Rules_and_Guiding_Dec.pdf\u0026Expires=1732730105\u0026Signature=MooS9rmWYROusuTzTkvEUS6dJ45zTnNbeL9ESOar31xPFvsvs9njQBfYA1LFowOhgKIf99FpMWduE8hPaEJ2PhhlAIFyXK6E3CvQCUzb0KY6iUchsxzRx4ijdjxZKsDqk3h0zdD4gVSk~wJ6vdIM3ksLipu3wKI0WVQWqLXOG1K6IAoqvnMlNET0L0PH5FuHv3Mibefy6moaQbht4tqOZrfZab9OKM9IcWj6BmN0Umn4Ct8xoQiNqn7Vuo62sllluaJVU6s8GTZ43cFfCwJawMotM3d5nNgQz3ao-RdnNLXsL3qJz-3FJpVTuAsfsFAyQAi0EJ~sEWi9mTyeh9S4TA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":821516,"name":"Decision Maker","url":"https://www.academia.edu/Documents/in/Decision_Maker"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148519/A_unified_model_for_evolutionary_multi_objective_optimization_and_its_implementation_in_a_general_purpose_software_framework"><img alt="Research paper thumbnail of A unified model for evolutionary multi-objective optimization and its implementation in a general purpose software framework" class="work-thumbnail" src="https://attachments.academia-assets.com/96686816/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148519/A_unified_model_for_evolutionary_multi_objective_optimization_and_its_implementation_in_a_general_purpose_software_framework">A unified model for evolutionary multi-objective optimization and its implementation in a general purpose software framework</a></div><div class="wp-workCard_item"><span>2009 IEEE Symposium on Computational Intelligence in Milti-Criteria Decision-Making</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c8040277b8f92fa760999cb6dedc59fe" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686816,"asset_id":94148519,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686816/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148519]").text(description); $(".js-view-count[data-work-id=94148519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c8040277b8f92fa760999cb6dedc59fe" } } $('.js-work-strip[data-work-id=94148519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148519,"title":"A unified model for evolutionary multi-objective optimization and its implementation in a general purpose software framework","translated_title":"","metadata":{"publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"2009 IEEE Symposium on Computational Intelligence in Milti-Criteria Decision-Making"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148519/A_unified_model_for_evolutionary_multi_objective_optimization_and_its_implementation_in_a_general_purpose_software_framework","translated_internal_url":"","created_at":"2023-01-02T02:46:50.028-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686816/thumbnails/1.jpg","file_name":"RR-6906.pdf","download_url":"https://www.academia.edu/attachments/96686816/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_unified_model_for_evolutionary_multi_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686816/RR-6906-libre.pdf?1672656627=\u0026response-content-disposition=attachment%3B+filename%3DA_unified_model_for_evolutionary_multi_o.pdf\u0026Expires=1732730105\u0026Signature=MWr0-BezXXiRz5NTeMItyz-nBLb9WZOHadMo~xDjhbyWGPtYwuBC0cL5mVg40EcSItp1CjisJx3uR4EtMU7oD1vAby6Qb9WpT1-ndnqlReENWDa1AsOECQ5KWKwcH8NIWjHqbZywX~wks3Bbmha0nbsAvTY8umjMQQtY5MqUuSqPIqxUuBcmBko2~MgoP7WyeaJDULV4z16ksnH4s7a~R-Vs6qoqeNQAdlh2pz52IKP4p9nSvkkFFUb80dNuY1MhXE5EnvM5FF9~47BDyHdT4pfOBVDl-l-BhG62x1tW3CBwpzRE98YO03y8pGwNMcfgQT6dT1jeCDX0gF73EQht2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_unified_model_for_evolutionary_multi_objective_optimization_and_its_implementation_in_a_general_purpose_software_framework","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686816/thumbnails/1.jpg","file_name":"RR-6906.pdf","download_url":"https://www.academia.edu/attachments/96686816/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_unified_model_for_evolutionary_multi_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686816/RR-6906-libre.pdf?1672656627=\u0026response-content-disposition=attachment%3B+filename%3DA_unified_model_for_evolutionary_multi_o.pdf\u0026Expires=1732730105\u0026Signature=MWr0-BezXXiRz5NTeMItyz-nBLb9WZOHadMo~xDjhbyWGPtYwuBC0cL5mVg40EcSItp1CjisJx3uR4EtMU7oD1vAby6Qb9WpT1-ndnqlReENWDa1AsOECQ5KWKwcH8NIWjHqbZywX~wks3Bbmha0nbsAvTY8umjMQQtY5MqUuSqPIqxUuBcmBko2~MgoP7WyeaJDULV4z16ksnH4s7a~R-Vs6qoqeNQAdlh2pz52IKP4p9nSvkkFFUb80dNuY1MhXE5EnvM5FF9~47BDyHdT4pfOBVDl-l-BhG62x1tW3CBwpzRE98YO03y8pGwNMcfgQT6dT1jeCDX0gF73EQht2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1701,"name":"Evolutionary algorithms","url":"https://www.academia.edu/Documents/in/Evolutionary_algorithms"},{"id":6414,"name":"Decomposition","url":"https://www.academia.edu/Documents/in/Decomposition"},{"id":13445,"name":"Multiobjective Optimization","url":"https://www.academia.edu/Documents/in/Multiobjective_Optimization"},{"id":49419,"name":"Problem Solving","url":"https://www.academia.edu/Documents/in/Problem_Solving"},{"id":56605,"name":"Multiobjective Evolutionary Optimization","url":"https://www.academia.edu/Documents/in/Multiobjective_Evolutionary_Optimization"},{"id":107414,"name":"En","url":"https://www.academia.edu/Documents/in/En"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":213990,"name":"Flexibility in engineering design","url":"https://www.academia.edu/Documents/in/Flexibility_in_engineering_design"},{"id":224618,"name":"Software Frameworks","url":"https://www.academia.edu/Documents/in/Software_Frameworks"},{"id":243832,"name":"Software Framework","url":"https://www.academia.edu/Documents/in/Software_Framework"},{"id":252813,"name":"Evolutionary Computing","url":"https://www.academia.edu/Documents/in/Evolutionary_Computing"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":459492,"name":"Unified Model","url":"https://www.academia.edu/Documents/in/Unified_Model"},{"id":1107332,"name":"Modular Design","url":"https://www.academia.edu/Documents/in/Modular_Design"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148517"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148517/ParadisEO_MOEO_A_Framework_for_Evolutionary_Multi_objective_Optimization"><img alt="Research paper thumbnail of ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/96686829/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148517/ParadisEO_MOEO_A_Framework_for_Evolutionary_Multi_objective_Optimization">ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8f3ac07cffbaa6e703ff9f7f36b1d430" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686829,"asset_id":94148517,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686829/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148517"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148517"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148517; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148517]").text(description); $(".js-view-count[data-work-id=94148517]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148517; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148517']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148517, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8f3ac07cffbaa6e703ff9f7f36b1d430" } } $('.js-work-strip[data-work-id=94148517]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148517,"title":"ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization","translated_title":"","metadata":{"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148517/ParadisEO_MOEO_A_Framework_for_Evolutionary_Multi_objective_Optimization","translated_internal_url":"","created_at":"2023-01-02T02:46:49.655-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686829,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686829/thumbnails/1.jpg","file_name":"075.pdf","download_url":"https://www.academia.edu/attachments/96686829/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ParadisEO_MOEO_A_Framework_for_Evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686829/075-libre.pdf?1672656622=\u0026response-content-disposition=attachment%3B+filename%3DParadisEO_MOEO_A_Framework_for_Evolution.pdf\u0026Expires=1732730105\u0026Signature=Cbrf1JealOFZtXFK2tg7S2wMpd5YOk99TGGXZAR5gyatGjOu9reqU29DZHxHgERRQvtEbD6TozMzDA~IQw-aE~4rNbwhiyTzOgJXl3~zEoej-Sew5qZAnj11lVb~Gsw8gAekjLlB6XYYW3VSBWcJ9wNK3e8Zj61CUvv-Qd059OjTEsozJuOBY6MldfClhk3hXkUhIwThtjocvEmvR6-DZaPv02GtPqRRy1J~DlygCOxDJ9YK0Xy8TPDdbLot62CRewaEwFiGR0cSO8n95R9VQgoqEa3csDDQ~muc4Ya~PX2x4UCRntMROy-zwQy7eAmE9CKPuF3LPomg7TXoLuCHIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ParadisEO_MOEO_A_Framework_for_Evolutionary_Multi_objective_Optimization","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686829,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686829/thumbnails/1.jpg","file_name":"075.pdf","download_url":"https://www.academia.edu/attachments/96686829/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ParadisEO_MOEO_A_Framework_for_Evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686829/075-libre.pdf?1672656622=\u0026response-content-disposition=attachment%3B+filename%3DParadisEO_MOEO_A_Framework_for_Evolution.pdf\u0026Expires=1732730105\u0026Signature=Cbrf1JealOFZtXFK2tg7S2wMpd5YOk99TGGXZAR5gyatGjOu9reqU29DZHxHgERRQvtEbD6TozMzDA~IQw-aE~4rNbwhiyTzOgJXl3~zEoej-Sew5qZAnj11lVb~Gsw8gAekjLlB6XYYW3VSBWcJ9wNK3e8Zj61CUvv-Qd059OjTEsozJuOBY6MldfClhk3hXkUhIwThtjocvEmvR6-DZaPv02GtPqRRy1J~DlygCOxDJ9YK0Xy8TPDdbLot62CRewaEwFiGR0cSO8n95R9VQgoqEa3csDDQ~muc4Ya~PX2x4UCRntMROy-zwQy7eAmE9CKPuF3LPomg7TXoLuCHIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":31408,"name":"Free Software","url":"https://www.academia.edu/Documents/in/Free_Software"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":171813,"name":"Multiobjective","url":"https://www.academia.edu/Documents/in/Multiobjective"},{"id":177350,"name":"Reuse","url":"https://www.academia.edu/Documents/in/Reuse"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":454596,"name":"Object Oriented Frameworks","url":"https://www.academia.edu/Documents/in/Object_Oriented_Frameworks"},{"id":1121048,"name":"Object Oriented","url":"https://www.academia.edu/Documents/in/Object_Oriented"},{"id":3619016,"name":"Code Reuse","url":"https://www.academia.edu/Documents/in/Code_Reuse"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148515"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148515/A_Comparison_of_Decoding_Strategies_for_the_0_1_Multi_objective_Unit_Commitment_Problem"><img alt="Research paper thumbnail of A Comparison of Decoding Strategies for the 0/1 Multi-objective Unit Commitment Problem" class="work-thumbnail" src="https://attachments.academia-assets.com/96686811/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148515/A_Comparison_of_Decoding_Strategies_for_the_0_1_Multi_objective_Unit_Commitment_Problem">A Comparison of Decoding Strategies for the 0/1 Multi-objective Unit Commitment Problem</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="87d08090444722693db2454f9418e716" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686811,"asset_id":94148515,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686811/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148515"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148515"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148515; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148515]").text(description); $(".js-view-count[data-work-id=94148515]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148515; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148515']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148515, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "87d08090444722693db2454f9418e716" } } $('.js-work-strip[data-work-id=94148515]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148515,"title":"A Comparison of Decoding Strategies for the 0/1 Multi-objective Unit Commitment Problem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148515/A_Comparison_of_Decoding_Strategies_for_the_0_1_Multi_objective_Unit_Commitment_Problem","translated_internal_url":"","created_at":"2023-01-02T02:46:49.428-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686811,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686811/thumbnails/1.jpg","file_name":"emo_UCP.pdf","download_url":"https://www.academia.edu/attachments/96686811/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Comparison_of_Decoding_Strategies_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686811/emo_UCP-libre.pdf?1672656628=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_of_Decoding_Strategies_for.pdf\u0026Expires=1732730105\u0026Signature=AaqOkaAC8Lgy3lbJxRVfnY0CwS0a0P6-iJSr8otk7p7z2pukRRRyyuU2KuF~qRhwqWzBNTOMXXt2Rcs5RnX1CejlDcLDaZdQm023qfvGykTNCDWP13Kpjr5m7JvSKqL~ff18QrOP3X8ffreiBS6itfm8qGCeHtQ3CCkcidQLCHUaC4dULhTf8mVtQYEopgaUhyblIupRb6vz0a00mNGTrpmy5X5S35CJYTB5JXpnRCdbu7H6o5SHOm9YOxD5qEmCfvffEHp98DfyY3H2daNY4yJsoYcOXcV8uTCRJbyacCn-i3DXhMcYTC~bSvTOpAqnFH3uGWeYoPqq2avzIiO1WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Comparison_of_Decoding_Strategies_for_the_0_1_Multi_objective_Unit_Commitment_Problem","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686811,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686811/thumbnails/1.jpg","file_name":"emo_UCP.pdf","download_url":"https://www.academia.edu/attachments/96686811/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Comparison_of_Decoding_Strategies_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686811/emo_UCP-libre.pdf?1672656628=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_of_Decoding_Strategies_for.pdf\u0026Expires=1732730105\u0026Signature=AaqOkaAC8Lgy3lbJxRVfnY0CwS0a0P6-iJSr8otk7p7z2pukRRRyyuU2KuF~qRhwqWzBNTOMXXt2Rcs5RnX1CejlDcLDaZdQm023qfvGykTNCDWP13Kpjr5m7JvSKqL~ff18QrOP3X8ffreiBS6itfm8qGCeHtQ3CCkcidQLCHUaC4dULhTf8mVtQYEopgaUhyblIupRb6vz0a00mNGTrpmy5X5S35CJYTB5JXpnRCdbu7H6o5SHOm9YOxD5qEmCfvffEHp98DfyY3H2daNY4yJsoYcOXcV8uTCRJbyacCn-i3DXhMcYTC~bSvTOpAqnFH3uGWeYoPqq2avzIiO1WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":61386,"name":"Metaheuristics","url":"https://www.academia.edu/Documents/in/Metaheuristics"},{"id":139255,"name":"Ucp","url":"https://www.academia.edu/Documents/in/Ucp"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":400356,"name":"Job shop scheduling","url":"https://www.academia.edu/Documents/in/Job_shop_scheduling"},{"id":419504,"name":"Heuristic","url":"https://www.academia.edu/Documents/in/Heuristic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148513"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148513/Metaheuristics_for_the_Bi_objective_Ring_Star_Problem"><img alt="Research paper thumbnail of Metaheuristics for the Bi-objective Ring Star Problem" class="work-thumbnail" src="https://attachments.academia-assets.com/96686831/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148513/Metaheuristics_for_the_Bi_objective_Ring_Star_Problem">Metaheuristics for the Bi-objective Ring Star Problem</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5c7cd6b0fde09f4607c0a63f0483a53f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686831,"asset_id":94148513,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686831/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148513"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148513"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148513; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148513]").text(description); $(".js-view-count[data-work-id=94148513]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148513; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148513']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148513, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5c7cd6b0fde09f4607c0a63f0483a53f" } } $('.js-work-strip[data-work-id=94148513]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148513,"title":"Metaheuristics for the Bi-objective Ring Star Problem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148513/Metaheuristics_for_the_Bi_objective_Ring_Star_Problem","translated_internal_url":"","created_at":"2023-01-02T02:46:49.168-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686831,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686831/thumbnails/1.jpg","file_name":"liefooghe.evocop08.pdf","download_url":"https://www.academia.edu/attachments/96686831/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristics_for_the_Bi_objective_Ring.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686831/liefooghe.evocop08-libre.pdf?1672656623=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristics_for_the_Bi_objective_Ring.pdf\u0026Expires=1732730105\u0026Signature=Qt6bSBWqfdhn8YbwziwBaVTXFYv29prk87ameJZGDFDwCpypPPX27noUByIM9W6WKLz3Y2Nff9qq2zIpWxYl4j3hupbPBMzqY49FciYHpUPsr5YoTEPhUypVxuqNVDKLrX9iLBNFshmlodeOywYWzU4tRrF8YWY25NbtfXMz7RT8LP9mFgxkKUgakK3ktKKdUSN5~dw~OUF-lezjA1MwSkf~XyAXNM-TUVvz4iUsHfh3gYVqWw3L~V1bhNItLbvCfgAPbaJtQqGAe78NMOkLfM5yLZ2qVs8i6RJMXCEQ2zoK7DIauiWxpns0WOv8hlOrwYqtA2ZM-I6JVBDkqga0gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Metaheuristics_for_the_Bi_objective_Ring_Star_Problem","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686831,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686831/thumbnails/1.jpg","file_name":"liefooghe.evocop08.pdf","download_url":"https://www.academia.edu/attachments/96686831/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristics_for_the_Bi_objective_Ring.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686831/liefooghe.evocop08-libre.pdf?1672656623=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristics_for_the_Bi_objective_Ring.pdf\u0026Expires=1732730105\u0026Signature=Qt6bSBWqfdhn8YbwziwBaVTXFYv29prk87ameJZGDFDwCpypPPX27noUByIM9W6WKLz3Y2Nff9qq2zIpWxYl4j3hupbPBMzqY49FciYHpUPsr5YoTEPhUypVxuqNVDKLrX9iLBNFshmlodeOywYWzU4tRrF8YWY25NbtfXMz7RT8LP9mFgxkKUgakK3ktKKdUSN5~dw~OUF-lezjA1MwSkf~XyAXNM-TUVvz4iUsHfh3gYVqWw3L~V1bhNItLbvCfgAPbaJtQqGAe78NMOkLfM5yLZ2qVs8i6RJMXCEQ2zoK7DIauiWxpns0WOv8hlOrwYqtA2ZM-I6JVBDkqga0gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":179262,"name":"Metaheuristic","url":"https://www.academia.edu/Documents/in/Metaheuristic"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148511"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148511/M%C3%A9taheuristiques_pour_le_flow_shop_de_permutation_bi_objectif_stochastique"><img alt="Research paper thumbnail of Métaheuristiques pour le flow-shop de permutation bi-objectif stochastique" class="work-thumbnail" src="https://attachments.academia-assets.com/96686809/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148511/M%C3%A9taheuristiques_pour_le_flow_shop_de_permutation_bi_objectif_stochastique">Métaheuristiques pour le flow-shop de permutation bi-objectif stochastique</a></div><div class="wp-workCard_item"><span>Revue d'intelligence artificielle</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d6fbc26ab2d76a94806dee27d0c3b509" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686809,"asset_id":94148511,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686809/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148511"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148511"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148511; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148511]").text(description); $(".js-view-count[data-work-id=94148511]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148511; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148511']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148511, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d6fbc26ab2d76a94806dee27d0c3b509" } } $('.js-work-strip[data-work-id=94148511]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148511,"title":"Métaheuristiques pour le flow-shop de permutation bi-objectif stochastique","translated_title":"","metadata":{"publisher":"Lavoisier","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Revue d'intelligence artificielle"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148511/M%C3%A9taheuristiques_pour_le_flow_shop_de_permutation_bi_objectif_stochastique","translated_internal_url":"","created_at":"2023-01-02T02:46:47.665-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686809,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686809/thumbnails/1.jpg","file_name":"liefooghe.ria08.pdf","download_url":"https://www.academia.edu/attachments/96686809/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristiques_pour_le_flow_shop_de_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686809/liefooghe.ria08-libre.pdf?1672656630=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristiques_pour_le_flow_shop_de_pe.pdf\u0026Expires=1732730105\u0026Signature=AsTM4rajQ1vW3A7HsnQjbuZ5LxkqBCw8ldXQphBuumX6YtkdiWyNI-cp7NLNSG33B6G68OMTSCtb-2jWaOKvaNzXY4j8fJmNJEq8nRnN8PJXnby~OnFuQ9Yy3Ao5O5Gwq1ksrWsFCV0erYIwysXhJjG~1ckQOXQI0p32xbkw44V~-0gNnKMsSQCXX3Og1yRO-L8cMvVLGnRUPeBcnWf5o5AgESl3OxdpHPiy59TifgXARQJPsHDuqjIiX8Ymo7attg2yW2TR-Fe13xBGWjsDCyLMdEvLu1z3f9Mob61XB~wgtzv2~iDP4o7N8afbToqFLGqTGv1EO9qla3Bry3LNJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Métaheuristiques_pour_le_flow_shop_de_permutation_bi_objectif_stochastique","translated_slug":"","page_count":27,"language":"fr","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686809,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686809/thumbnails/1.jpg","file_name":"liefooghe.ria08.pdf","download_url":"https://www.academia.edu/attachments/96686809/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristiques_pour_le_flow_shop_de_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686809/liefooghe.ria08-libre.pdf?1672656630=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristiques_pour_le_flow_shop_de_pe.pdf\u0026Expires=1732730105\u0026Signature=AsTM4rajQ1vW3A7HsnQjbuZ5LxkqBCw8ldXQphBuumX6YtkdiWyNI-cp7NLNSG33B6G68OMTSCtb-2jWaOKvaNzXY4j8fJmNJEq8nRnN8PJXnby~OnFuQ9Yy3Ao5O5Gwq1ksrWsFCV0erYIwysXhJjG~1ckQOXQI0p32xbkw44V~-0gNnKMsSQCXX3Og1yRO-L8cMvVLGnRUPeBcnWf5o5AgESl3OxdpHPiy59TifgXARQJPsHDuqjIiX8Ymo7attg2yW2TR-Fe13xBGWjsDCyLMdEvLu1z3f9Mob61XB~wgtzv2~iDP4o7N8afbToqFLGqTGv1EO9qla3Bry3LNJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":951,"name":"Humanities","url":"https://www.academia.edu/Documents/in/Humanities"},{"id":1701,"name":"Evolutionary algorithms","url":"https://www.academia.edu/Documents/in/Evolutionary_algorithms"},{"id":9049,"name":"Flow Shop Scheduling","url":"https://www.academia.edu/Documents/in/Flow_Shop_Scheduling"},{"id":61386,"name":"Metaheuristics","url":"https://www.academia.edu/Documents/in/Metaheuristics"},{"id":61603,"name":"Uncertainty","url":"https://www.academia.edu/Documents/in/Uncertainty"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":374897,"name":"Incertitude","url":"https://www.academia.edu/Documents/in/Incertitude"},{"id":598812,"name":"Scheduling Problems","url":"https://www.academia.edu/Documents/in/Scheduling_Problems"},{"id":3207614,"name":"ALGORITHMES ÉVOLUTIONNAIRES ","url":"https://www.academia.edu/Documents/in/ALGORITHMES_%C3%89VOLUTIONNAIRES"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148506"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148506/Neutrality_in_the_Graph_Coloring_Problem"><img alt="Research paper thumbnail of Neutrality in the Graph Coloring Problem" class="work-thumbnail" src="https://attachments.academia-assets.com/96686807/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148506/Neutrality_in_the_Graph_Coloring_Problem">Neutrality in the Graph Coloring Problem</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1d63c8a4f9b21d111cf79f72ee563064" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686807,"asset_id":94148506,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686807/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148506"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148506"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148506; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148506]").text(description); $(".js-view-count[data-work-id=94148506]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148506; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148506']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148506, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1d63c8a4f9b21d111cf79f72ee563064" } } $('.js-work-strip[data-work-id=94148506]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148506,"title":"Neutrality in the Graph Coloring Problem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148506/Neutrality_in_the_Graph_Coloring_Problem","translated_internal_url":"","created_at":"2023-01-02T02:46:44.904-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686807,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686807/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/96686807/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neutrality_in_the_Graph_Coloring_Problem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686807/1301-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DNeutrality_in_the_Graph_Coloring_Problem.pdf\u0026Expires=1732730105\u0026Signature=Rjlaf8beBYNwtXhwq33py5enkAB6Qovhvr0hmsM2gQGkSu4VfuQhPtNqg3QZ4zSmSfYm-5MXFiD1V3oThRW7XjL0wl2ltWUrVNRCfMbfcBsLjWM5O98LCtvLREMv-xsb8~IGynJA3xK0O6QJ9MXa~ILwajL8OzC4ZxYyJN7SEsZ~eG19-X0VIYF4crp4X4tq0vSOcatUq1gQtzTTQ4qsXdgAakMrzJNnfQwRvN2-GfqDjypJoi7ovWXwuGIerkfbUCL7-swZ6EsBNavr8jMzwXPD6f56s2jOg5R1uOTDwgI7exFZ789x~xw7S9-h61UffLwr-wGrHzG~Fy~yskxgNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Neutrality_in_the_Graph_Coloring_Problem","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686807,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686807/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/96686807/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neutrality_in_the_Graph_Coloring_Problem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686807/1301-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DNeutrality_in_the_Graph_Coloring_Problem.pdf\u0026Expires=1732730105\u0026Signature=Rjlaf8beBYNwtXhwq33py5enkAB6Qovhvr0hmsM2gQGkSu4VfuQhPtNqg3QZ4zSmSfYm-5MXFiD1V3oThRW7XjL0wl2ltWUrVNRCfMbfcBsLjWM5O98LCtvLREMv-xsb8~IGynJA3xK0O6QJ9MXa~ILwajL8OzC4ZxYyJN7SEsZ~eG19-X0VIYF4crp4X4tq0vSOcatUq1gQtzTTQ4qsXdgAakMrzJNnfQwRvN2-GfqDjypJoi7ovWXwuGIerkfbUCL7-swZ6EsBNavr8jMzwXPD6f56s2jOg5R1uOTDwgI7exFZ789x~xw7S9-h61UffLwr-wGrHzG~Fy~yskxgNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":129770,"name":"Key words","url":"https://www.academia.edu/Documents/in/Key_words"},{"id":133518,"name":"Graph Coloring","url":"https://www.academia.edu/Documents/in/Graph_Coloring"},{"id":139253,"name":"Neutrality","url":"https://www.academia.edu/Documents/in/Neutrality"},{"id":266831,"name":"Graph","url":"https://www.academia.edu/Documents/in/Graph"},{"id":1398490,"name":"Graph Coloring Problem","url":"https://www.academia.edu/Documents/in/Graph_Coloring_Problem"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148504"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148504/A_Multi_objective_Approach_to_the_Design_of_Conducting_Polymer_Composites_for_Electromagnetic_Shielding"><img alt="Research paper thumbnail of A Multi-objective Approach to the Design of Conducting Polymer Composites for Electromagnetic Shielding" class="work-thumbnail" src="https://attachments.academia-assets.com/96686806/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148504/A_Multi_objective_Approach_to_the_Design_of_Conducting_Polymer_Composites_for_Electromagnetic_Shielding">A Multi-objective Approach to the Design of Conducting Polymer Composites for Electromagnetic Shielding</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2679755bd575d8d4c89f072f4b4f7fe9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686806,"asset_id":94148504,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686806/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148504"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148504"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148504; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148504]").text(description); $(".js-view-count[data-work-id=94148504]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148504; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148504']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148504, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2679755bd575d8d4c89f072f4b4f7fe9" } } $('.js-work-strip[data-work-id=94148504]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148504,"title":"A Multi-objective Approach to the Design of Conducting Polymer Composites for Electromagnetic Shielding","translated_title":"","metadata":{"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148504/A_Multi_objective_Approach_to_the_Design_of_Conducting_Polymer_Composites_for_Electromagnetic_Shielding","translated_internal_url":"","created_at":"2023-01-02T02:46:40.927-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686806,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686806/thumbnails/1.jpg","file_name":"emopoly.pdf","download_url":"https://www.academia.edu/attachments/96686806/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Multi_objective_Approach_to_the_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686806/emopoly-libre.pdf?1672656637=\u0026response-content-disposition=attachment%3B+filename%3DA_Multi_objective_Approach_to_the_Design.pdf\u0026Expires=1732730105\u0026Signature=NxzaPbZOlaxkH0RY1pLbqRNt2tHZCXseGaQHP7Edj-ZtVbmMeaCaxbJwk9omeKqIPFkiDXPhoug4rPC3Pq2ez4D~dL68-3cmGpEWq6O-pDedE~ZV91phDJVBZzfrdmVX8sriUWhsJvIbZngEynH59qx-v1ir-npDhd8j7De3iprRajA3hZk74lNZ~cgtsvOop6sjBPk6HQ1-IkOQLh~YqswBBYLkg10-jkXpk4uGf-vZ1jj1RDV4lZu9cK4SxTUfVY6jPZMF0sY6VwPU7rNf5VJSXQPmvk9h2ook-QQe38nT-Q9Q-TYW3x-LTaMymZWLIvmF~XfcCaDcnbItrodWpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Multi_objective_Approach_to_the_Design_of_Conducting_Polymer_Composites_for_Electromagnetic_Shielding","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686806,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686806/thumbnails/1.jpg","file_name":"emopoly.pdf","download_url":"https://www.academia.edu/attachments/96686806/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Multi_objective_Approach_to_the_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686806/emopoly-libre.pdf?1672656637=\u0026response-content-disposition=attachment%3B+filename%3DA_Multi_objective_Approach_to_the_Design.pdf\u0026Expires=1732730105\u0026Signature=NxzaPbZOlaxkH0RY1pLbqRNt2tHZCXseGaQHP7Edj-ZtVbmMeaCaxbJwk9omeKqIPFkiDXPhoug4rPC3Pq2ez4D~dL68-3cmGpEWq6O-pDedE~ZV91phDJVBZzfrdmVX8sriUWhsJvIbZngEynH59qx-v1ir-npDhd8j7De3iprRajA3hZk74lNZ~cgtsvOop6sjBPk6HQ1-IkOQLh~YqswBBYLkg10-jkXpk4uGf-vZ1jj1RDV4lZu9cK4SxTUfVY6jPZMF0sY6VwPU7rNf5VJSXQPmvk9h2ook-QQe38nT-Q9Q-TYW3x-LTaMymZWLIvmF~XfcCaDcnbItrodWpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":5023,"name":"Microwave","url":"https://www.academia.edu/Documents/in/Microwave"},{"id":78723,"name":"Electromagnetic Shielding","url":"https://www.academia.edu/Documents/in/Electromagnetic_Shielding"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":149081,"name":"Decision Support","url":"https://www.academia.edu/Documents/in/Decision_Support"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148502"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148502/ParadisEO_MOEO_A_Software_Framework_for_Evolutionary_Multi_Objective_Optimization"><img alt="Research paper thumbnail of ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/96686801/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148502/ParadisEO_MOEO_A_Software_Framework_for_Evolutionary_Multi_Objective_Optimization">ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization</a></div><div class="wp-workCard_item"><span>Studies in Computational Intelligence</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="85d143348a0e6e152ede6dec12e479c5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686801,"asset_id":94148502,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686801/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148502"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148502"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148502; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148502]").text(description); $(".js-view-count[data-work-id=94148502]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148502; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148502']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148502, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "85d143348a0e6e152ede6dec12e479c5" } } $('.js-work-strip[data-work-id=94148502]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148502,"title":"ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization","translated_title":"","metadata":{"publisher":"Springer Berlin Heidelberg","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Studies in Computational Intelligence"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148502/ParadisEO_MOEO_A_Software_Framework_for_Evolutionary_Multi_Objective_Optimization","translated_internal_url":"","created_at":"2023-01-02T02:46:39.412-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686801,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686801/thumbnails/1.jpg","file_name":"liefooghe_springer2010.pdf","download_url":"https://www.academia.edu/attachments/96686801/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ParadisEO_MOEO_A_Software_Framework_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686801/liefooghe_springer2010-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DParadisEO_MOEO_A_Software_Framework_for.pdf\u0026Expires=1732730105\u0026Signature=Li3wS6i1fZwdVlj2Yb2cIrpFcIT3kL44NHmpedvG7KQl3MF2fvK2Un7jo9xQ-RnaDf-SNGp8JHUdG1pNkW5SeXkKGHVDIMuvSLNAWKzX68nAVskWxL8nQnfS8HUn4PVnWh54ZdxgyXmMlJsmCfwlBaUfnq6CrJ9p1qu~JPncVD4ebYRuAs2ysK9a1F4rtfy4xQH0M4svw05uKvA7jKuKc6u1cx9I0r5Ic2WmWmS9uj7wiPi-fyWQDHR4L2oEaW4gWNiVkec-Rn0wA8-CqgsW1YnzdqoU2BO5Kio-o0aFTKLfhENgv-9JZGE2Y~d~rVjMKYY9HDsAt2NGuYkXBsgLYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ParadisEO_MOEO_A_Software_Framework_for_Evolutionary_Multi_Objective_Optimization","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686801,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686801/thumbnails/1.jpg","file_name":"liefooghe_springer2010.pdf","download_url":"https://www.academia.edu/attachments/96686801/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ParadisEO_MOEO_A_Software_Framework_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686801/liefooghe_springer2010-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DParadisEO_MOEO_A_Software_Framework_for.pdf\u0026Expires=1732730105\u0026Signature=Li3wS6i1fZwdVlj2Yb2cIrpFcIT3kL44NHmpedvG7KQl3MF2fvK2Un7jo9xQ-RnaDf-SNGp8JHUdG1pNkW5SeXkKGHVDIMuvSLNAWKzX68nAVskWxL8nQnfS8HUn4PVnWh54ZdxgyXmMlJsmCfwlBaUfnq6CrJ9p1qu~JPncVD4ebYRuAs2ysK9a1F4rtfy4xQH0M4svw05uKvA7jKuKc6u1cx9I0r5Ic2WmWmS9uj7wiPi-fyWQDHR4L2oEaW4gWNiVkec-Rn0wA8-CqgsW1YnzdqoU2BO5Kio-o0aFTKLfhENgv-9JZGE2Y~d~rVjMKYY9HDsAt2NGuYkXBsgLYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":31408,"name":"Free Software","url":"https://www.academia.edu/Documents/in/Free_Software"},{"id":39821,"name":"Search Based Software Engineering","url":"https://www.academia.edu/Documents/in/Search_Based_Software_Engineering"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":177350,"name":"Reuse","url":"https://www.academia.edu/Documents/in/Reuse"},{"id":179262,"name":"Metaheuristic","url":"https://www.academia.edu/Documents/in/Metaheuristic"},{"id":243832,"name":"Software Framework","url":"https://www.academia.edu/Documents/in/Software_Framework"},{"id":332352,"name":"Object Oriented Software Engineering","url":"https://www.academia.edu/Documents/in/Object_Oriented_Software_Engineering"},{"id":3619016,"name":"Code Reuse","url":"https://www.academia.edu/Documents/in/Code_Reuse"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="12970961" id="papers"><div class="js-work-strip profile--work_container" data-work-id="94148547"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148547/Automatic_Configuration_of_Bi_Objective_Optimisation_Algorithms_Impact_of_Correlation_Between_Objectives"><img alt="Research paper thumbnail of Automatic Configuration of Bi-Objective Optimisation Algorithms: Impact of Correlation Between Objectives" class="work-thumbnail" src="https://attachments.academia-assets.com/96686830/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148547/Automatic_Configuration_of_Bi_Objective_Optimisation_Algorithms_Impact_of_Correlation_Between_Objectives">Automatic Configuration of Bi-Objective Optimisation Algorithms: Impact of Correlation Between Objectives</a></div><div class="wp-workCard_item"><span>2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="23346a07035c6535a897275fbbdc26fb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686830,"asset_id":94148547,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686830/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148547"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148547"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148547; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148547]").text(description); $(".js-view-count[data-work-id=94148547]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148547; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148547']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148547, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "23346a07035c6535a897275fbbdc26fb" } } $('.js-work-strip[data-work-id=94148547]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148547,"title":"Automatic Configuration of Bi-Objective Optimisation Algorithms: Impact of Correlation Between Objectives","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148547/Automatic_Configuration_of_Bi_Objective_Optimisation_Algorithms_Impact_of_Correlation_Between_Objectives","translated_internal_url":"","created_at":"2023-01-02T02:46:58.609-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686830/thumbnails/1.jpg","file_name":"BloEtAl18.pdf","download_url":"https://www.academia.edu/attachments/96686830/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Configuration_of_Bi_Objective.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686830/BloEtAl18-libre.pdf?1672656621=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Configuration_of_Bi_Objective.pdf\u0026Expires=1732730104\u0026Signature=OXwu0h4SrhDMeI4a2veIjLI5QXiUr4Qhlw7ozvSPbaVYbWnqjCd8ogEM5Mikhocs4NL~ZJWaCTLH3ACkXoj72jfG1PpiY8I9YB-yprTZaelHvgqdxsPl8BSg2NEl-fhSdUzkMqPIHFZAOo~wCzFiiBLmpVeuuq54eYUBGNZjooFce~poszZ7vAYnDtxe59S-8o4y3jFJI4G-h-CH9PCY8w9ADGHQJcyI7El1KByF6suvJMvIx8a-B0NNODQSeuZhJ4NkMNPrjN9HseZUIPQHa2GQWvp9iXks5Y3ujAaJ6vxURQnaD2qnQ4SL3kwb7v0KBHM6xKFIW5mlqAgev6OxJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_Configuration_of_Bi_Objective_Optimisation_Algorithms_Impact_of_Correlation_Between_Objectives","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686830/thumbnails/1.jpg","file_name":"BloEtAl18.pdf","download_url":"https://www.academia.edu/attachments/96686830/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Configuration_of_Bi_Objective.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686830/BloEtAl18-libre.pdf?1672656621=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Configuration_of_Bi_Objective.pdf\u0026Expires=1732730104\u0026Signature=OXwu0h4SrhDMeI4a2veIjLI5QXiUr4Qhlw7ozvSPbaVYbWnqjCd8ogEM5Mikhocs4NL~ZJWaCTLH3ACkXoj72jfG1PpiY8I9YB-yprTZaelHvgqdxsPl8BSg2NEl-fhSdUzkMqPIHFZAOo~wCzFiiBLmpVeuuq54eYUBGNZjooFce~poszZ7vAYnDtxe59S-8o4y3jFJI4G-h-CH9PCY8w9ADGHQJcyI7El1KByF6suvJMvIx8a-B0NNODQSeuZhJ4NkMNPrjN9HseZUIPQHa2GQWvp9iXks5Y3ujAaJ6vxURQnaD2qnQ4SL3kwb7v0KBHM6xKFIW5mlqAgev6OxJw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":27654193,"url":"http://xplorestaging.ieee.org/ielx7/8575556/8575998/08576091.pdf?arnumber=8576091"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148546"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148546/Multi_objective_recommender_system_for_corporate_MOOC"><img alt="Research paper thumbnail of Multi-objective recommender system for corporate MOOC" class="work-thumbnail" src="https://attachments.academia-assets.com/96686710/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148546/Multi_objective_recommender_system_for_corporate_MOOC">Multi-objective recommender system for corporate MOOC</a></div><div class="wp-workCard_item"><span>Proceedings of the Genetic and Evolutionary Computation Conference Companion</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68117bc921a0a8d1964dcbfecd783499" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686710,"asset_id":94148546,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686710/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148546"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148546"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148546; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148546]").text(description); $(".js-view-count[data-work-id=94148546]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148546; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148546']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148546, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68117bc921a0a8d1964dcbfecd783499" } } $('.js-work-strip[data-work-id=94148546]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148546,"title":"Multi-objective recommender system for corporate MOOC","translated_title":"","metadata":{"publisher":"ACM","publication_name":"Proceedings of the Genetic and Evolutionary Computation Conference Companion"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148546/Multi_objective_recommender_system_for_corporate_MOOC","translated_internal_url":"","created_at":"2023-01-02T02:46:57.663-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686710,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686710/thumbnails/1.jpg","file_name":"3520304.pdf","download_url":"https://www.academia.edu/attachments/96686710/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_recommender_system_for_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686710/3520304-libre.pdf?1672656643=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_recommender_system_for_c.pdf\u0026Expires=1732730104\u0026Signature=YOSj8vRSrUuedcvWg564Ie7GK6XQ~qflB5qMsevW5uaxdxplbkPxoEEiX3elhfnBUaDWby8CsVqq5WR6~lIunbyQMIjK7dFG2a1FC1tYY1yhe9TNXPWTkHRyovqeeUSLAfhWxXgHuHBuAm1FmEIcDqfPXNet-~SEAiTFubBAQ3VNh5K0CWHKkQtJxV-ydtbwvfQtOakBC3jNn10qRyPeE4FIW7ucSljPg5GU~HspHMLPPjfbv~IgktECjI3C3NsQ45HLTHG4Do0h3gStlU5~DSirylhT0tqgoqj2KD0XUjYcPk7fVkGhaR1Cp8XaGKcnXiVOr27xdvtjPAn7C744BQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_objective_recommender_system_for_corporate_MOOC","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686710,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686710/thumbnails/1.jpg","file_name":"3520304.pdf","download_url":"https://www.academia.edu/attachments/96686710/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_recommender_system_for_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686710/3520304-libre.pdf?1672656643=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_recommender_system_for_c.pdf\u0026Expires=1732730104\u0026Signature=YOSj8vRSrUuedcvWg564Ie7GK6XQ~qflB5qMsevW5uaxdxplbkPxoEEiX3elhfnBUaDWby8CsVqq5WR6~lIunbyQMIjK7dFG2a1FC1tYY1yhe9TNXPWTkHRyovqeeUSLAfhWxXgHuHBuAm1FmEIcDqfPXNet-~SEAiTFubBAQ3VNh5K0CWHKkQtJxV-ydtbwvfQtOakBC3jNn10qRyPeE4FIW7ucSljPg5GU~HspHMLPPjfbv~IgktECjI3C3NsQ45HLTHG4Do0h3gStlU5~DSirylhT0tqgoqj2KD0XUjYcPk7fVkGhaR1Cp8XaGKcnXiVOr27xdvtjPAn7C744BQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":96686709,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686709/thumbnails/1.jpg","file_name":"3520304.pdf","download_url":"https://www.academia.edu/attachments/96686709/download_file","bulk_download_file_name":"Multi_objective_recommender_system_for_c.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686709/3520304-libre.pdf?1672656645=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_recommender_system_for_c.pdf\u0026Expires=1732730104\u0026Signature=KzFV36HPrncoRDu1MS7lrgNVkVNXdY4z1ZncD55ZOHpe-JB69NlUNl~mRLrv9BbKFK3ftluc9ACc3aOaCfSksymUV8gMtPc0I0ED2fE~3B5-pt0t~7MUVDcwf2a4J7Wd7GfRTPbktm0kt1Xk8vaTpLusuq4K9DRO1AEbAbjijSJ8NsksSmtHtUptby6mrp6nQnxQ0RaYxb4v-pquZgms0eiqWm-Br8CJutKWvRXO8OVOgqT7nfwns8lW7I0DgiFkFOVXbfJPQwMkbUmC9PjYfn2QHe-4NWQ3Q6dkhx29ptbS9cg3Nm8NjuK4NRSrR8OOHY0gnrwBcuqXPjz-qWY7Mw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":153179,"name":"Recommender System","url":"https://www.academia.edu/Documents/in/Recommender_System"}],"urls":[{"id":27654190,"url":"https://dl.acm.org/doi/pdf/10.1145/3520304.3534058"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148543"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148543/Multi_objective_Automatic_Algorithm_Configuration_for_the_Classification_Problem_of_Imbalanced_Data"><img alt="Research paper thumbnail of Multi-objective Automatic Algorithm Configuration for the Classification Problem of Imbalanced Data" class="work-thumbnail" src="https://attachments.academia-assets.com/96686826/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148543/Multi_objective_Automatic_Algorithm_Configuration_for_the_Classification_Problem_of_Imbalanced_Data">Multi-objective Automatic Algorithm Configuration for the Classification Problem of Imbalanced Data</a></div><div class="wp-workCard_item"><span>2020 IEEE Congress on Evolutionary Computation (CEC)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bf1ba959902c6590639aaf60f375e50a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686826,"asset_id":94148543,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686826/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148543"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148543"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148543; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148543]").text(description); $(".js-view-count[data-work-id=94148543]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148543; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148543']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148543, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bf1ba959902c6590639aaf60f375e50a" } } $('.js-work-strip[data-work-id=94148543]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148543,"title":"Multi-objective Automatic Algorithm Configuration for the Classification Problem of Imbalanced Data","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2020 IEEE Congress on Evolutionary Computation (CEC)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148543/Multi_objective_Automatic_Algorithm_Configuration_for_the_Classification_Problem_of_Imbalanced_Data","translated_internal_url":"","created_at":"2023-01-02T02:46:56.406-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686826,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686826/thumbnails/1.jpg","file_name":"E-24550.pdf","download_url":"https://www.academia.edu/attachments/96686826/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_Automatic_Algorithm_Conf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686826/E-24550-libre.pdf?1672656626=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_Automatic_Algorithm_Conf.pdf\u0026Expires=1732730104\u0026Signature=JOHSzeyZc4V6v2DEe9m7xARBuTzFERGS3zjerfauv2vTuZfG3a9xswgsypKfXwm-9XsSfPiwA3JrGKSCf4DHdf7cJaw19JMPuSqo17bZHUBNpZKIeXKz32rBnyUaewUOwWn0wArAQqfOvDYuB77oebroKN6zr683B0UzKjiTSm-Yl-kWH71X3C70VtcplxrjZ8Td2Jadi8rRgH6kTV71mgVSR9vFlszExdu33kvULmhlOxompRvfqZCcaaDdEJzov4kVV82B3PDMpC09B9OSYNCeW-KATZDDqJzjDVavuN02VFrnpBl5Sp3v7A2wkuya~6YQQxiJDFA0ELc5p~zXCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Multi_objective_Automatic_Algorithm_Configuration_for_the_Classification_Problem_of_Imbalanced_Data","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686826,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686826/thumbnails/1.jpg","file_name":"E-24550.pdf","download_url":"https://www.academia.edu/attachments/96686826/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Multi_objective_Automatic_Algorithm_Conf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686826/E-24550-libre.pdf?1672656626=\u0026response-content-disposition=attachment%3B+filename%3DMulti_objective_Automatic_Algorithm_Conf.pdf\u0026Expires=1732730104\u0026Signature=JOHSzeyZc4V6v2DEe9m7xARBuTzFERGS3zjerfauv2vTuZfG3a9xswgsypKfXwm-9XsSfPiwA3JrGKSCf4DHdf7cJaw19JMPuSqo17bZHUBNpZKIeXKz32rBnyUaewUOwWn0wArAQqfOvDYuB77oebroKN6zr683B0UzKjiTSm-Yl-kWH71X3C70VtcplxrjZ8Td2Jadi8rRgH6kTV71mgVSR9vFlszExdu33kvULmhlOxompRvfqZCcaaDdEJzov4kVV82B3PDMpC09B9OSYNCeW-KATZDDqJzjDVavuN02VFrnpBl5Sp3v7A2wkuya~6YQQxiJDFA0ELc5p~zXCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3163891,"name":"Statistical Classification","url":"https://www.academia.edu/Documents/in/Statistical_Classification"}],"urls":[{"id":27654188,"url":"http://xplorestaging.ieee.org/ielx7/9178820/9185488/09185785.pdf?arnumber=9185785"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148539"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148539/Bypassing_or_flying_above_the_obstacles_A_novel_multi_objective_UAV_path_planning_problem"><img alt="Research paper thumbnail of Bypassing or flying above the obstacles? A novel multi-objective UAV path planning problem" class="work-thumbnail" src="https://attachments.academia-assets.com/96686827/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148539/Bypassing_or_flying_above_the_obstacles_A_novel_multi_objective_UAV_path_planning_problem">Bypassing or flying above the obstacles? A novel multi-objective UAV path planning problem</a></div><div class="wp-workCard_item"><span>2020 IEEE Congress on Evolutionary Computation (CEC)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0153cd81281a2a022bdf19d9b50f9593" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686827,"asset_id":94148539,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686827/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148539"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148539"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148539; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148539]").text(description); $(".js-view-count[data-work-id=94148539]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148539; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148539']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148539, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0153cd81281a2a022bdf19d9b50f9593" } } $('.js-work-strip[data-work-id=94148539]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148539,"title":"Bypassing or flying above the obstacles? A novel multi-objective UAV path planning problem","translated_title":"","metadata":{"publisher":"IEEE","publication_name":"2020 IEEE Congress on Evolutionary Computation (CEC)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148539/Bypassing_or_flying_above_the_obstacles_A_novel_multi_objective_UAV_path_planning_problem","translated_internal_url":"","created_at":"2023-01-02T02:46:55.594-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686827,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686827/thumbnails/1.jpg","file_name":"E-24591.pdf","download_url":"https://www.academia.edu/attachments/96686827/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bypassing_or_flying_above_the_obstacles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686827/E-24591-libre.pdf?1672656624=\u0026response-content-disposition=attachment%3B+filename%3DBypassing_or_flying_above_the_obstacles.pdf\u0026Expires=1732730104\u0026Signature=XORPR-mFPyDoUieplmS9NoeuPoj6OYb3PgszG1p~qhpp7I7vSfiOVk~wcyD-hM8vk4Va7rnSNRia30zzIL9ThsAo-iwVnSJxg4l9UZXu9~NeduXiiBL-7ogHD7hqGLO7K78m3C-hVc1xfe-Ngm5oQzR6OeXv1aI~~4zKA6mBnZu8uJ95RTuXUzS53s~25kQ6ppSOV3Wp9vBNuXaMfnMcWLa80ob3J7vXkhptaLFzI1HuUV~sCbd-tB7JIeuiqE23DR9hPXHJa9LrQKZEtoXn1QJIH9yaR5J66wa4-EjUmRO-AsfE5dfz9p-m7daNNm3rYMN21w77MZkWHzrqp8rBfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Bypassing_or_flying_above_the_obstacles_A_novel_multi_objective_UAV_path_planning_problem","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686827,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686827/thumbnails/1.jpg","file_name":"E-24591.pdf","download_url":"https://www.academia.edu/attachments/96686827/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Bypassing_or_flying_above_the_obstacles.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686827/E-24591-libre.pdf?1672656624=\u0026response-content-disposition=attachment%3B+filename%3DBypassing_or_flying_above_the_obstacles.pdf\u0026Expires=1732730104\u0026Signature=XORPR-mFPyDoUieplmS9NoeuPoj6OYb3PgszG1p~qhpp7I7vSfiOVk~wcyD-hM8vk4Va7rnSNRia30zzIL9ThsAo-iwVnSJxg4l9UZXu9~NeduXiiBL-7ogHD7hqGLO7K78m3C-hVc1xfe-Ngm5oQzR6OeXv1aI~~4zKA6mBnZu8uJ95RTuXUzS53s~25kQ6ppSOV3Wp9vBNuXaMfnMcWLa80ob3J7vXkhptaLFzI1HuUV~sCbd-tB7JIeuiqE23DR9hPXHJa9LrQKZEtoXn1QJIH9yaR5J66wa4-EjUmRO-AsfE5dfz9p-m7daNNm3rYMN21w77MZkWHzrqp8rBfQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":6411,"name":"Integer Programming","url":"https://www.academia.edu/Documents/in/Integer_Programming"},{"id":15119,"name":"Motion Planning","url":"https://www.academia.edu/Documents/in/Motion_Planning"},{"id":74778,"name":"Crossover","url":"https://www.academia.edu/Documents/in/Crossover"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":303727,"name":"Grid","url":"https://www.academia.edu/Documents/in/Grid"}],"urls":[{"id":27654187,"url":"http://xplorestaging.ieee.org/ielx7/9178820/9185488/09185695.pdf?arnumber=9185695"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148535"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148535/Automatic_design_of_multi_objective_local_search_algorithms"><img alt="Research paper thumbnail of Automatic design of multi-objective local search algorithms" class="work-thumbnail" src="https://attachments.academia-assets.com/96686824/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148535/Automatic_design_of_multi_objective_local_search_algorithms">Automatic design of multi-objective local search algorithms</a></div><div class="wp-workCard_item"><span>Proceedings of the Genetic and Evolutionary Computation Conference</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc18edb03da45c6628d9ef012feee0e0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686824,"asset_id":94148535,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686824/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148535"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148535"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148535; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148535]").text(description); $(".js-view-count[data-work-id=94148535]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148535; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148535']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148535, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc18edb03da45c6628d9ef012feee0e0" } } $('.js-work-strip[data-work-id=94148535]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148535,"title":"Automatic design of multi-objective local search algorithms","translated_title":"","metadata":{"publisher":"ACM","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Proceedings of the Genetic and Evolutionary Computation Conference"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148535/Automatic_design_of_multi_objective_local_search_algorithms","translated_internal_url":"","created_at":"2023-01-02T02:46:52.142-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686824,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686824/thumbnails/1.jpg","file_name":"gecco_2017_preprint.pdf","download_url":"https://www.academia.edu/attachments/96686824/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_design_of_multi_objective_loca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686824/gecco_2017_preprint-libre.pdf?1672656623=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_design_of_multi_objective_loca.pdf\u0026Expires=1732730104\u0026Signature=MR3pF6ai04hcis1ZKiYjR3HVKGDEoDTWyED3NXFe~8-rVsTihLywCy8jTAQaEH6Y6YpvO~O5nmsT03~C-LSfTmQbJDRHSz1l0f-Rzw6iRSIJXTQQTNkFuQXPY8wzm5XzwPuqlqtPB36o5KeV3ZLR5fY2Fef6sTbaopyfQ-oiHVtR8-cYd23igYWNQbSui5jlTLnmCIJYJGVeH85kDQXaUtDwkwHaItHO7vGx-ZVzrdNPhpnKXW8~uYpJaE6vzAP95RLB26IN96stpipfns9Y5d64YPqExDgc0nz~rjU0QFr7Cd~2y-qKIfNGC5VwuakhPqRwCL-uVVcdJTJnunHfew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_design_of_multi_objective_local_search_algorithms","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686824,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686824/thumbnails/1.jpg","file_name":"gecco_2017_preprint.pdf","download_url":"https://www.academia.edu/attachments/96686824/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_design_of_multi_objective_loca.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686824/gecco_2017_preprint-libre.pdf?1672656623=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_design_of_multi_objective_loca.pdf\u0026Expires=1732730104\u0026Signature=MR3pF6ai04hcis1ZKiYjR3HVKGDEoDTWyED3NXFe~8-rVsTihLywCy8jTAQaEH6Y6YpvO~O5nmsT03~C-LSfTmQbJDRHSz1l0f-Rzw6iRSIJXTQQTNkFuQXPY8wzm5XzwPuqlqtPB36o5KeV3ZLR5fY2Fef6sTbaopyfQ-oiHVtR8-cYd23igYWNQbSui5jlTLnmCIJYJGVeH85kDQXaUtDwkwHaItHO7vGx-ZVzrdNPhpnKXW8~uYpJaE6vzAP95RLB26IN96stpipfns9Y5d64YPqExDgc0nz~rjU0QFr7Cd~2y-qKIfNGC5VwuakhPqRwCL-uVVcdJTJnunHfew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":61386,"name":"Metaheuristics","url":"https://www.academia.edu/Documents/in/Metaheuristics"},{"id":107381,"name":"Local Search","url":"https://www.academia.edu/Documents/in/Local_Search"},{"id":836814,"name":"Parameter Tuning","url":"https://www.academia.edu/Documents/in/Parameter_Tuning"}],"urls":[{"id":27654186,"url":"https://dl.acm.org/doi/pdf/10.1145/3071178.3071323"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148533"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148533/To_cite_this_version"><img alt="Research paper thumbnail of To cite this version" class="work-thumbnail" src="https://attachments.academia-assets.com/96686821/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148533/To_cite_this_version">To cite this version</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. in ria</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a0f107b2b99b9b9f3affdb5617e4f0c4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686821,"asset_id":94148533,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686821/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148533"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148533"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148533; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148533]").text(description); $(".js-view-count[data-work-id=94148533]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148533; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148533']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148533, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a0f107b2b99b9b9f3affdb5617e4f0c4" } } $('.js-work-strip[data-work-id=94148533]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148533,"title":"To cite this version","translated_title":"","metadata":{"abstract":"HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. in ria","publication_date":{"day":null,"month":null,"year":2008,"errors":{}}},"translated_abstract":"HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. in ria","internal_url":"https://www.academia.edu/94148533/To_cite_this_version","translated_internal_url":"","created_at":"2023-01-02T02:46:51.758-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686821/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96686821/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"To_cite_this_version.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686821/document-libre.pdf?1672656628=\u0026response-content-disposition=attachment%3B+filename%3DTo_cite_this_version.pdf\u0026Expires=1732730104\u0026Signature=bmMHU1~PKi9i87oNn~jYOQYQN~-Glg-dl2kkWuPN6BYUNvic2ZtI7GyZIOToMpvWK5zXVDedVaI8Z0Tmi6QSGWz8M-J7EVofypHnPM1MNjM-EW89VdrC6y8K2xf6fRS0GpeRCA0ttvFNvnzUTE708nMqW7tQsooIigJFVAXoGU9yzGD1COtJ76t9UCQD0efqETn41bRIqNCCzyMifnKhByKBNhxZZtgeVo3cq-HtMb4o4OKth-pMhKGRKF25BXe1zFe~0aOoI3T1xJQdsYDV0cDCbve1K8wh1JbsJkUGl5yBY5zBaN88Evgn-rTsjQ59jmPrBLA3nd1i1jp5rnQqbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"To_cite_this_version","translated_slug":"","page_count":49,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686821,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686821/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/96686821/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"To_cite_this_version.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686821/document-libre.pdf?1672656628=\u0026response-content-disposition=attachment%3B+filename%3DTo_cite_this_version.pdf\u0026Expires=1732730104\u0026Signature=bmMHU1~PKi9i87oNn~jYOQYQN~-Glg-dl2kkWuPN6BYUNvic2ZtI7GyZIOToMpvWK5zXVDedVaI8Z0Tmi6QSGWz8M-J7EVofypHnPM1MNjM-EW89VdrC6y8K2xf6fRS0GpeRCA0ttvFNvnzUTE708nMqW7tQsooIigJFVAXoGU9yzGD1COtJ76t9UCQD0efqETn41bRIqNCCzyMifnKhByKBNhxZZtgeVo3cq-HtMb4o4OKth-pMhKGRKF25BXe1zFe~0aOoI3T1xJQdsYDV0cDCbve1K8wh1JbsJkUGl5yBY5zBaN88Evgn-rTsjQ59jmPrBLA3nd1i1jp5rnQqbA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":99512,"name":"Ia","url":"https://www.academia.edu/Documents/in/Ia"}],"urls":[{"id":27654185,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.654.5452\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148531/ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENGMetaheuristics_and_Their_Hybridization_to_Solve_the_Bi_objective_Ring_Star_Problem_a_Comparative_Study"><img alt="Research paper thumbnail of ISSN 0249-6399 ISRN INRIA/RR--6515--FR+ENGMetaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study" class="work-thumbnail" src="https://attachments.academia-assets.com/96686825/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148531/ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENGMetaheuristics_and_Their_Hybridization_to_Solve_the_Bi_objective_Ring_Star_Problem_a_Comparative_Study">ISSN 0249-6399 ISRN INRIA/RR--6515--FR+ENGMetaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="da2a5d5986be40896253d67863dbf83b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686825,"asset_id":94148531,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686825/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148531]").text(description); $(".js-view-count[data-work-id=94148531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148531, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "da2a5d5986be40896253d67863dbf83b" } } $('.js-work-strip[data-work-id=94148531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148531,"title":"ISSN 0249-6399 ISRN INRIA/RR--6515--FR+ENGMetaheuristics and Their Hybridization to Solve the Bi-objective Ring Star Problem: a Comparative Study","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148531/ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENGMetaheuristics_and_Their_Hybridization_to_Solve_the_Bi_objective_Ring_Star_Problem_a_Comparative_Study","translated_internal_url":"","created_at":"2023-01-02T02:46:51.311-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686825/thumbnails/1.jpg","file_name":"0804.3965v2.pdf","download_url":"https://www.academia.edu/attachments/96686825/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENG.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686825/0804.3965v2-libre.pdf?1672656625=\u0026response-content-disposition=attachment%3B+filename%3DISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENG.pdf\u0026Expires=1732730104\u0026Signature=Ad13hNOm~UhNZPtxUfEkzG7CZMPXcaf-ECyGzviXXSjwWU8BwG35OpNpFDgYBNuGKe7Jn3iEhhvA1UlgtJfYSIvlt0FWogJCM6iyKuaa4X79UImIZPLvyxdKFZaJYzbfYTrFmaHI-5MXGblHNHOUy-HtchCvOL55Vv1PwZPGKERoCX2A0B4uTWT9tsVUeMj4VXEGGyoPN3uS7ylLwgU~rCL7g5Q0DzcWl9Ns5DS~a9RFHH0jXVC3IEGYMVm2b5HCBqyW44HTJwxPY~MrSoGoq3pkxJptu~kCO560nUiYYkPX08BacgzPivk6KFO0ffXdWww1Hb1Ggnz0OnpyfprnWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENGMetaheuristics_and_Their_Hybridization_to_Solve_the_Bi_objective_Ring_Star_Problem_a_Comparative_Study","translated_slug":"","page_count":48,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686825,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686825/thumbnails/1.jpg","file_name":"0804.3965v2.pdf","download_url":"https://www.academia.edu/attachments/96686825/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENG.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686825/0804.3965v2-libre.pdf?1672656625=\u0026response-content-disposition=attachment%3B+filename%3DISSN_0249_6399_ISRN_INRIA_RR_6515_FR_ENG.pdf\u0026Expires=1732730104\u0026Signature=Ad13hNOm~UhNZPtxUfEkzG7CZMPXcaf-ECyGzviXXSjwWU8BwG35OpNpFDgYBNuGKe7Jn3iEhhvA1UlgtJfYSIvlt0FWogJCM6iyKuaa4X79UImIZPLvyxdKFZaJYzbfYTrFmaHI-5MXGblHNHOUy-HtchCvOL55Vv1PwZPGKERoCX2A0B4uTWT9tsVUeMj4VXEGGyoPN3uS7ylLwgU~rCL7g5Q0DzcWl9Ns5DS~a9RFHH0jXVC3IEGYMVm2b5HCBqyW44HTJwxPY~MrSoGoq3pkxJptu~kCO560nUiYYkPX08BacgzPivk6KFO0ffXdWww1Hb1Ggnz0OnpyfprnWw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":27654184,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.312.1116\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148528/Decoder_based_evolutionary_algorithm_for_bi_objective_just_in_time_single_machine_job_shop"><img alt="Research paper thumbnail of Decoder-based evolutionary algorithm for bi-objective just-in-time single-machine job-shop" class="work-thumbnail" src="https://attachments.academia-assets.com/96686819/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148528/Decoder_based_evolutionary_algorithm_for_bi_objective_just_in_time_single_machine_job_shop">Decoder-based evolutionary algorithm for bi-objective just-in-time single-machine job-shop</a></div><div class="wp-workCard_item"><span>2016 IEEE Symposium Series on Computational Intelligence (SSCI)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The bi-objective just-in-time single-machine job-shop scheduling problem (JIT-JSP) aims at simult...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The bi-objective just-in-time single-machine job-shop scheduling problem (JIT-JSP) aims at simultaneously minimizing earliness and tardiness. In this paper, a multi-objective decoder-based evolutionary algorithm is proposed. The decoding strategy divides the search into two steps. In the first step, the search of the permutation order of the jobs is realized thanks to a multi-objective evolutionary algorithm. For a fixed permutation, the decoder algorithm optimizes the multi-objective timing sub-problem in the second step. Thus each permutation order induces a Pareto set of solutions. Two different decoding strategies to fix the idle times are proposed, one approximate and one exact. A comparison study with a classical multi-objective evolutionary algorithm underlines the performance of the proposed decoding strategy and the interest of the approximate decoder.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="df4b8114527ed6ca45eaf97fb67f80c4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686819,"asset_id":94148528,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686819/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148528]").text(description); $(".js-view-count[data-work-id=94148528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148528, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "df4b8114527ed6ca45eaf97fb67f80c4" } } $('.js-work-strip[data-work-id=94148528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148528,"title":"Decoder-based evolutionary algorithm for bi-objective just-in-time single-machine job-shop","translated_title":"","metadata":{"abstract":"The bi-objective just-in-time single-machine job-shop scheduling problem (JIT-JSP) aims at simultaneously minimizing earliness and tardiness. In this paper, a multi-objective decoder-based evolutionary algorithm is proposed. The decoding strategy divides the search into two steps. In the first step, the search of the permutation order of the jobs is realized thanks to a multi-objective evolutionary algorithm. For a fixed permutation, the decoder algorithm optimizes the multi-objective timing sub-problem in the second step. Thus each permutation order induces a Pareto set of solutions. Two different decoding strategies to fix the idle times are proposed, one approximate and one exact. A comparison study with a classical multi-objective evolutionary algorithm underlines the performance of the proposed decoding strategy and the interest of the approximate decoder.","publisher":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)"},"translated_abstract":"The bi-objective just-in-time single-machine job-shop scheduling problem (JIT-JSP) aims at simultaneously minimizing earliness and tardiness. In this paper, a multi-objective decoder-based evolutionary algorithm is proposed. The decoding strategy divides the search into two steps. In the first step, the search of the permutation order of the jobs is realized thanks to a multi-objective evolutionary algorithm. For a fixed permutation, the decoder algorithm optimizes the multi-objective timing sub-problem in the second step. Thus each permutation order induces a Pareto set of solutions. Two different decoding strategies to fix the idle times are proposed, one approximate and one exact. A comparison study with a classical multi-objective evolutionary algorithm underlines the performance of the proposed decoding strategy and the interest of the approximate decoder.","internal_url":"https://www.academia.edu/94148528/Decoder_based_evolutionary_algorithm_for_bi_objective_just_in_time_single_machine_job_shop","translated_internal_url":"","created_at":"2023-01-02T02:46:51.116-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686819/thumbnails/1.jpg","file_name":"SSCI16_paper_158.pdf","download_url":"https://www.academia.edu/attachments/96686819/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decoder_based_evolutionary_algorithm_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686819/SSCI16_paper_158-libre.pdf?1672656629=\u0026response-content-disposition=attachment%3B+filename%3DDecoder_based_evolutionary_algorithm_for.pdf\u0026Expires=1732730105\u0026Signature=LiWedd0P0DlpjTdyzMOM8V6FbMbuJnlhkjYv3jSY6F13Kx7zZQuHDURQh0pdSHqlbFf~v1m9vaYEd2EJr3D8ZB7URQTg1CfLaohMIZ3LEkCAEWNel-G9DA~58s4tFUDZAqnNhs-oOIdVFw5zf~gBessCOaeevu-Wwc~L8cZY~FaEwpvmbDzwpHFv6EhLhRMHpW9To66ihbZZE~drzmzt-qzIAEu2fp8gUCpIRZK7UDAUnNhXHSgenWVi4lx8WKX~cKphKOswtdmx4Rhmu41bKaPA3Gfup0Xg9~TZO2f4sGBwANJDRP9qyp7KI-kK0T2ba7lTEevjyUxvhcJ-ZQipmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decoder_based_evolutionary_algorithm_for_bi_objective_just_in_time_single_machine_job_shop","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686819,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686819/thumbnails/1.jpg","file_name":"SSCI16_paper_158.pdf","download_url":"https://www.academia.edu/attachments/96686819/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decoder_based_evolutionary_algorithm_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686819/SSCI16_paper_158-libre.pdf?1672656629=\u0026response-content-disposition=attachment%3B+filename%3DDecoder_based_evolutionary_algorithm_for.pdf\u0026Expires=1732730105\u0026Signature=LiWedd0P0DlpjTdyzMOM8V6FbMbuJnlhkjYv3jSY6F13Kx7zZQuHDURQh0pdSHqlbFf~v1m9vaYEd2EJr3D8ZB7URQTg1CfLaohMIZ3LEkCAEWNel-G9DA~58s4tFUDZAqnNhs-oOIdVFw5zf~gBessCOaeevu-Wwc~L8cZY~FaEwpvmbDzwpHFv6EhLhRMHpW9To66ihbZZE~drzmzt-qzIAEu2fp8gUCpIRZK7UDAUnNhXHSgenWVi4lx8WKX~cKphKOswtdmx4Rhmu41bKaPA3Gfup0Xg9~TZO2f4sGBwANJDRP9qyp7KI-kK0T2ba7lTEevjyUxvhcJ-ZQipmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":400356,"name":"Job shop scheduling","url":"https://www.academia.edu/Documents/in/Job_shop_scheduling"},{"id":484848,"name":"Tardiness","url":"https://www.academia.edu/Documents/in/Tardiness"}],"urls":[{"id":27654183,"url":"https://www.wikidata.org/entity/Q59262662"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148526/Survey_and_unification_of_local_search_techniques_in_metaheuristics_for_multi_objective_combinatorial_optimisation"><img alt="Research paper thumbnail of Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation" class="work-thumbnail" src="https://attachments.academia-assets.com/96686822/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148526/Survey_and_unification_of_local_search_techniques_in_metaheuristics_for_multi_objective_combinatorial_optimisation">Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation</a></div><div class="wp-workCard_item"><span>Journal of Heuristics</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="05553317677ae4d7ea16ddae2047f866" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686822,"asset_id":94148526,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686822/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148526]").text(description); $(".js-view-count[data-work-id=94148526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148526, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "05553317677ae4d7ea16ddae2047f866" } } $('.js-work-strip[data-work-id=94148526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148526,"title":"Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Journal of Heuristics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148526/Survey_and_unification_of_local_search_techniques_in_metaheuristics_for_multi_objective_combinatorial_optimisation","translated_internal_url":"","created_at":"2023-01-02T02:46:50.911-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686822,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686822/thumbnails/1.jpg","file_name":"joh_2018_preprint.pdf","download_url":"https://www.academia.edu/attachments/96686822/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Survey_and_unification_of_local_search_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686822/joh_2018_preprint-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DSurvey_and_unification_of_local_search_t.pdf\u0026Expires=1732730105\u0026Signature=JVqvWL-C7nrFwAzfrwFpLU0m88RHbQpxz5Rra6X651P1Kr11vsOjIHsIv9pnwgcSJN14fJgBh1qe8jhcdEjuIPCJIPYQCR~I3H3A84t3pEHlpmgTQBQ-L0sjLVH9inVhULCh8dcO4NjzBqeTYfhtnN~3VmcWVN8rbYOYuGNEx3zttgqzn8cRXxEggN741c4mME5OoD5b3vIPFDbN8NWyK7CEO4Fs28iqjcZC4YQaHiHd-FC~YliXqIm22KZjLwyCm6u3xZd8pXl4YXjuL8ZZ4e01uH~~WEbTdwEzkdRPEwcfdG9pcPGbVpjYt4MDqdSPakU27UpTuzEfZ09V24GlWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Survey_and_unification_of_local_search_techniques_in_metaheuristics_for_multi_objective_combinatorial_optimisation","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686822,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686822/thumbnails/1.jpg","file_name":"joh_2018_preprint.pdf","download_url":"https://www.academia.edu/attachments/96686822/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Survey_and_unification_of_local_search_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686822/joh_2018_preprint-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DSurvey_and_unification_of_local_search_t.pdf\u0026Expires=1732730105\u0026Signature=JVqvWL-C7nrFwAzfrwFpLU0m88RHbQpxz5Rra6X651P1Kr11vsOjIHsIv9pnwgcSJN14fJgBh1qe8jhcdEjuIPCJIPYQCR~I3H3A84t3pEHlpmgTQBQ-L0sjLVH9inVhULCh8dcO4NjzBqeTYfhtnN~3VmcWVN8rbYOYuGNEx3zttgqzn8cRXxEggN741c4mME5OoD5b3vIPFDbN8NWyK7CEO4Fs28iqjcZC4YQaHiHd-FC~YliXqIm22KZjLwyCm6u3xZd8pXl4YXjuL8ZZ4e01uH~~WEbTdwEzkdRPEwcfdG9pcPGbVpjYt4MDqdSPakU27UpTuzEfZ09V24GlWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2537,"name":"Heuristics","url":"https://www.academia.edu/Documents/in/Heuristics"},{"id":179262,"name":"Metaheuristic","url":"https://www.academia.edu/Documents/in/Metaheuristic"},{"id":200829,"name":"Unification","url":"https://www.academia.edu/Documents/in/Unification"}],"urls":[{"id":27654182,"url":"http://link.springer.com/article/10.1007/s10732-018-9381-1/fulltext.html"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148524"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148524/Automatic_Configuration_of_Multi_Objective_Local_Search_Algorithms_for_Permutation_Problems"><img alt="Research paper thumbnail of Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/96686823/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148524/Automatic_Configuration_of_Multi_Objective_Local_Search_Algorithms_for_Permutation_Problems">Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems</a></div><div class="wp-workCard_item"><span>Evolutionary Computation</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-perfor...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e7f7298f681a308ea97dc22b424b356c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686823,"asset_id":94148524,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686823/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148524"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148524"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148524; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148524]").text(description); $(".js-view-count[data-work-id=94148524]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148524; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148524']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148524, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e7f7298f681a308ea97dc22b424b356c" } } $('.js-work-strip[data-work-id=94148524]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148524,"title":"Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems","translated_title":"","metadata":{"abstract":"Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective...","publisher":"MIT Press - Journals","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Evolutionary Computation"},"translated_abstract":"Automatic algorithm configuration (AAC) is becoming a key ingredient in the design of high-performance solvers for challenging optimisation problems. However, most existing work on AAC deals with configuration procedures that optimise a single performance metric of a given, single-objective algorithm. Of course, these configurators can also be used to optimise the performance of multi-objective algorithms, as measured by a single performance indicator. In this work, we demonstrate that better results can be obtained by using a native, multi-objective algorithm configuration procedure. Specifically, we compare three AAC approaches: one considering only the hypervolume indicator, a second optimising the weighted sum of hypervolume and spread, and a third that simultaneously optimises these complementary indicators, using a genuinely multi-objective approach. We assess these approaches by applying them to a highly-parametric local search framework for two widely studied multi-objective...","internal_url":"https://www.academia.edu/94148524/Automatic_Configuration_of_Multi_Objective_Local_Search_Algorithms_for_Permutation_Problems","translated_internal_url":"","created_at":"2023-01-02T02:46:50.762-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686823/thumbnails/1.jpg","file_name":"Blot_evco_a_00240.pdf","download_url":"https://www.academia.edu/attachments/96686823/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Configuration_of_Multi_Objecti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686823/Blot_evco_a_00240-libre.pdf?1672656626=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Configuration_of_Multi_Objecti.pdf\u0026Expires=1732730105\u0026Signature=Vairy7UMxyUa-AVin3iudN8bvqqNf~OWrYp~mChAmmIZPNSAjF9bNabNu3JC~X4BhzpGehxKEBdHy2aHNDqjDAzMaaYKYmjaGGZZ6AbAYgjJHHpMBH3pPwmRx4DcsStLn0DBugCvq-d9VVoCPbXyM3ulTJco~ef4lY3jxSSlpTLGZF6kx59LGj-WzyUUNIT6QHhhlHRfUkpWrE0ywAlwX~rc8HHPYDwIWPp5avI38zSCqgY~tPDWr9qFAo3zGlnLmZaKf4lItjtxW~TNjKPnd6jyPjbdsfexuAOs7LH9WyKfSV-NRolKQ-CtLRWtObv1watKzP0P4jCFbS8inqYTkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Automatic_Configuration_of_Multi_Objective_Local_Search_Algorithms_for_Permutation_Problems","translated_slug":"","page_count":25,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686823/thumbnails/1.jpg","file_name":"Blot_evco_a_00240.pdf","download_url":"https://www.academia.edu/attachments/96686823/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Automatic_Configuration_of_Multi_Objecti.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686823/Blot_evco_a_00240-libre.pdf?1672656626=\u0026response-content-disposition=attachment%3B+filename%3DAutomatic_Configuration_of_Multi_Objecti.pdf\u0026Expires=1732730105\u0026Signature=Vairy7UMxyUa-AVin3iudN8bvqqNf~OWrYp~mChAmmIZPNSAjF9bNabNu3JC~X4BhzpGehxKEBdHy2aHNDqjDAzMaaYKYmjaGGZZ6AbAYgjJHHpMBH3pPwmRx4DcsStLn0DBugCvq-d9VVoCPbXyM3ulTJco~ef4lY3jxSSlpTLGZF6kx59LGj-WzyUUNIT6QHhhlHRfUkpWrE0ywAlwX~rc8HHPYDwIWPp5avI38zSCqgY~tPDWr9qFAo3zGlnLmZaKf4lItjtxW~TNjKPnd6jyPjbdsfexuAOs7LH9WyKfSV-NRolKQ-CtLRWtObv1watKzP0P4jCFbS8inqYTkg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3523,"name":"Evolutionary Computation","url":"https://www.academia.edu/Documents/in/Evolutionary_Computation"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":884823,"name":"Travelling Salesman Problem","url":"https://www.academia.edu/Documents/in/Travelling_Salesman_Problem"},{"id":1355305,"name":"Configurator","url":"https://www.academia.edu/Documents/in/Configurator"}],"urls":[{"id":27654181,"url":"https://www.mitpressjournals.org/doi/pdf/10.1162/evco_a_00240"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148523"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148523/M%C3%A9taheuristiques_Coop%C3%A9ratives_du_d%C3%A9terministe_au_stochastique"><img alt="Research paper thumbnail of Métaheuristiques Coopératives : du déterministe au stochastique" class="work-thumbnail" src="https://attachments.academia-assets.com/96686828/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148523/M%C3%A9taheuristiques_Coop%C3%A9ratives_du_d%C3%A9terministe_au_stochastique">Métaheuristiques Coopératives : du déterministe au stochastique</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ce travail présente nos principales contributions à la résolution de problèmes d&#39;optimisation...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ce travail présente nos principales contributions à la résolution de problèmes d&#39;optimisation combinatoire en environnements déterministe et stochastique. Au niveau des métaheuristiques, une vue unifiée de la conception de métaheuristiques à solution unique et de métaheuristiques multi-objective est proposée. Cette unification a permis notamment de retravailler la plateforme ParadisEO afin d&#39;offrir plus de flexibilité et de polyvalence. La synthèse des travaux présente également une vue unifiée des métaheuristiques coopératives. Nous montrons que cette vue convient aussi bien pour des coopérations entre métaheuristiques que des coopération entre des métaheuristiques et des méthodes exactes mais également des coopérations entre des métaheuristiques et des algorithmes d&#39;extraction de connaissances. Différents exemples de coopérations réalisées dans mes travaux de recherche illustent ces coopérations et leur application à des problèmes d&#39;optimisation combinatoire mono- ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4300c6aed03fd83fa28b43dd2266a9ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686828,"asset_id":94148523,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686828/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148523"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148523"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148523; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148523]").text(description); $(".js-view-count[data-work-id=94148523]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148523; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148523']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148523, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4300c6aed03fd83fa28b43dd2266a9ce" } } $('.js-work-strip[data-work-id=94148523]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148523,"title":"Métaheuristiques Coopératives : du déterministe au stochastique","translated_title":"","metadata":{"abstract":"Ce travail présente nos principales contributions à la résolution de problèmes d\u0026#39;optimisation combinatoire en environnements déterministe et stochastique. Au niveau des métaheuristiques, une vue unifiée de la conception de métaheuristiques à solution unique et de métaheuristiques multi-objective est proposée. Cette unification a permis notamment de retravailler la plateforme ParadisEO afin d\u0026#39;offrir plus de flexibilité et de polyvalence. La synthèse des travaux présente également une vue unifiée des métaheuristiques coopératives. Nous montrons que cette vue convient aussi bien pour des coopérations entre métaheuristiques que des coopération entre des métaheuristiques et des méthodes exactes mais également des coopérations entre des métaheuristiques et des algorithmes d\u0026#39;extraction de connaissances. Différents exemples de coopérations réalisées dans mes travaux de recherche illustent ces coopérations et leur application à des problèmes d\u0026#39;optimisation combinatoire mono- ..."},"translated_abstract":"Ce travail présente nos principales contributions à la résolution de problèmes d\u0026#39;optimisation combinatoire en environnements déterministe et stochastique. Au niveau des métaheuristiques, une vue unifiée de la conception de métaheuristiques à solution unique et de métaheuristiques multi-objective est proposée. Cette unification a permis notamment de retravailler la plateforme ParadisEO afin d\u0026#39;offrir plus de flexibilité et de polyvalence. La synthèse des travaux présente également une vue unifiée des métaheuristiques coopératives. Nous montrons que cette vue convient aussi bien pour des coopérations entre métaheuristiques que des coopération entre des métaheuristiques et des méthodes exactes mais également des coopérations entre des métaheuristiques et des algorithmes d\u0026#39;extraction de connaissances. Différents exemples de coopérations réalisées dans mes travaux de recherche illustent ces coopérations et leur application à des problèmes d\u0026#39;optimisation combinatoire mono- ...","internal_url":"https://www.academia.edu/94148523/M%C3%A9taheuristiques_Coop%C3%A9ratives_du_d%C3%A9terministe_au_stochastique","translated_internal_url":"","created_at":"2023-01-02T02:46:50.541-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686828,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686828/thumbnails/1.jpg","file_name":"ljhdr.pdf","download_url":"https://www.academia.edu/attachments/96686828/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristiques_Cooperatives_du_determi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686828/ljhdr-libre.pdf?1672657133=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristiques_Cooperatives_du_determi.pdf\u0026Expires=1732730105\u0026Signature=SNETh67jTQk7~2BM9iCHgPjmv4s12VTKiseBxccTgJyejZhEvliM4lWQiGYTbV6JSIXSMQd-uieJtpu-giG-IUqCCvqhx-pv6GKUJs85lV33dEj80RY6cHLkIOMbR5vzRKEXm6UR-PTVFQPFb-Njg6gcYKqHSL5D6kWAljPojW99ILhIJw9tFOlHNRIyGKno-ORJNszTSrFqHo9c2225BQlZ5XKJlhTD5bauEyHI7RNBFQsNqCgjWh1Nr7V4af6IPQ8p7fY5z8u3OAhi5YDSWygrqn4V93EabJmVbMZgnw4uztxyJfSujCViI7zz~yyHc0TZCAQIhms86lGxK1sDxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Métaheuristiques_Coopératives_du_déterministe_au_stochastique","translated_slug":"","page_count":175,"language":"fr","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686828,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686828/thumbnails/1.jpg","file_name":"ljhdr.pdf","download_url":"https://www.academia.edu/attachments/96686828/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristiques_Cooperatives_du_determi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686828/ljhdr-libre.pdf?1672657133=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristiques_Cooperatives_du_determi.pdf\u0026Expires=1732730105\u0026Signature=SNETh67jTQk7~2BM9iCHgPjmv4s12VTKiseBxccTgJyejZhEvliM4lWQiGYTbV6JSIXSMQd-uieJtpu-giG-IUqCCvqhx-pv6GKUJs85lV33dEj80RY6cHLkIOMbR5vzRKEXm6UR-PTVFQPFb-Njg6gcYKqHSL5D6kWAljPojW99ILhIJw9tFOlHNRIyGKno-ORJNszTSrFqHo9c2225BQlZ5XKJlhTD5bauEyHI7RNBFQsNqCgjWh1Nr7V4af6IPQ8p7fY5z8u3OAhi5YDSWygrqn4V93EabJmVbMZgnw4uztxyJfSujCViI7zz~yyHc0TZCAQIhms86lGxK1sDxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy"},{"id":951,"name":"Humanities","url":"https://www.academia.edu/Documents/in/Humanities"},{"id":43968,"name":"Cooperation","url":"https://www.academia.edu/Documents/in/Cooperation"},{"id":407080,"name":"Dynamique","url":"https://www.academia.edu/Documents/in/Dynamique"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148521"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148521/MOCA_I_Discovering_Rules_and_Guiding_Decision_Maker_in_the_Context_of_Partial_Classification_in_Large_and_Imbalanced_Datasets"><img alt="Research paper thumbnail of MOCA-I: Discovering Rules and Guiding Decision Maker in the Context of Partial Classification in Large and Imbalanced Datasets" class="work-thumbnail" src="https://attachments.academia-assets.com/96686814/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148521/MOCA_I_Discovering_Rules_and_Guiding_Decision_Maker_in_the_Context_of_Partial_Classification_in_Large_and_Imbalanced_Datasets">MOCA-I: Discovering Rules and Guiding Decision Maker in the Context of Partial Classification in Large and Imbalanced Datasets</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3f6bc6f7548cd0f130d9967916a25bd9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686814,"asset_id":94148521,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686814/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148521"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148521"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148521; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148521]").text(description); $(".js-view-count[data-work-id=94148521]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148521; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148521']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148521, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3f6bc6f7548cd0f130d9967916a25bd9" } } $('.js-work-strip[data-work-id=94148521]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148521,"title":"MOCA-I: Discovering Rules and Guiding Decision Maker in the Context of Partial Classification in Large and Imbalanced Datasets","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148521/MOCA_I_Discovering_Rules_and_Guiding_Decision_Maker_in_the_Context_of_Partial_Classification_in_Large_and_Imbalanced_Datasets","translated_internal_url":"","created_at":"2023-01-02T02:46:50.343-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686814,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686814/thumbnails/1.jpg","file_name":"2013-01-03_lion2013.pdf","download_url":"https://www.academia.edu/attachments/96686814/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MOCA_I_Discovering_Rules_and_Guiding_Dec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686814/2013-01-03_lion2013-libre.pdf?1672656627=\u0026response-content-disposition=attachment%3B+filename%3DMOCA_I_Discovering_Rules_and_Guiding_Dec.pdf\u0026Expires=1732730105\u0026Signature=MooS9rmWYROusuTzTkvEUS6dJ45zTnNbeL9ESOar31xPFvsvs9njQBfYA1LFowOhgKIf99FpMWduE8hPaEJ2PhhlAIFyXK6E3CvQCUzb0KY6iUchsxzRx4ijdjxZKsDqk3h0zdD4gVSk~wJ6vdIM3ksLipu3wKI0WVQWqLXOG1K6IAoqvnMlNET0L0PH5FuHv3Mibefy6moaQbht4tqOZrfZab9OKM9IcWj6BmN0Umn4Ct8xoQiNqn7Vuo62sllluaJVU6s8GTZ43cFfCwJawMotM3d5nNgQz3ao-RdnNLXsL3qJz-3FJpVTuAsfsFAyQAi0EJ~sEWi9mTyeh9S4TA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"MOCA_I_Discovering_Rules_and_Guiding_Decision_Maker_in_the_Context_of_Partial_Classification_in_Large_and_Imbalanced_Datasets","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686814,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686814/thumbnails/1.jpg","file_name":"2013-01-03_lion2013.pdf","download_url":"https://www.academia.edu/attachments/96686814/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"MOCA_I_Discovering_Rules_and_Guiding_Dec.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686814/2013-01-03_lion2013-libre.pdf?1672656627=\u0026response-content-disposition=attachment%3B+filename%3DMOCA_I_Discovering_Rules_and_Guiding_Dec.pdf\u0026Expires=1732730105\u0026Signature=MooS9rmWYROusuTzTkvEUS6dJ45zTnNbeL9ESOar31xPFvsvs9njQBfYA1LFowOhgKIf99FpMWduE8hPaEJ2PhhlAIFyXK6E3CvQCUzb0KY6iUchsxzRx4ijdjxZKsDqk3h0zdD4gVSk~wJ6vdIM3ksLipu3wKI0WVQWqLXOG1K6IAoqvnMlNET0L0PH5FuHv3Mibefy6moaQbht4tqOZrfZab9OKM9IcWj6BmN0Umn4Ct8xoQiNqn7Vuo62sllluaJVU6s8GTZ43cFfCwJawMotM3d5nNgQz3ao-RdnNLXsL3qJz-3FJpVTuAsfsFAyQAi0EJ~sEWi9mTyeh9S4TA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":821516,"name":"Decision Maker","url":"https://www.academia.edu/Documents/in/Decision_Maker"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148519/A_unified_model_for_evolutionary_multi_objective_optimization_and_its_implementation_in_a_general_purpose_software_framework"><img alt="Research paper thumbnail of A unified model for evolutionary multi-objective optimization and its implementation in a general purpose software framework" class="work-thumbnail" src="https://attachments.academia-assets.com/96686816/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148519/A_unified_model_for_evolutionary_multi_objective_optimization_and_its_implementation_in_a_general_purpose_software_framework">A unified model for evolutionary multi-objective optimization and its implementation in a general purpose software framework</a></div><div class="wp-workCard_item"><span>2009 IEEE Symposium on Computational Intelligence in Milti-Criteria Decision-Making</span><span>, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c8040277b8f92fa760999cb6dedc59fe" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686816,"asset_id":94148519,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686816/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148519]").text(description); $(".js-view-count[data-work-id=94148519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c8040277b8f92fa760999cb6dedc59fe" } } $('.js-work-strip[data-work-id=94148519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148519,"title":"A unified model for evolutionary multi-objective optimization and its implementation in a general purpose software framework","translated_title":"","metadata":{"publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"2009 IEEE Symposium on Computational Intelligence in Milti-Criteria Decision-Making"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148519/A_unified_model_for_evolutionary_multi_objective_optimization_and_its_implementation_in_a_general_purpose_software_framework","translated_internal_url":"","created_at":"2023-01-02T02:46:50.028-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686816/thumbnails/1.jpg","file_name":"RR-6906.pdf","download_url":"https://www.academia.edu/attachments/96686816/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_unified_model_for_evolutionary_multi_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686816/RR-6906-libre.pdf?1672656627=\u0026response-content-disposition=attachment%3B+filename%3DA_unified_model_for_evolutionary_multi_o.pdf\u0026Expires=1732730105\u0026Signature=MWr0-BezXXiRz5NTeMItyz-nBLb9WZOHadMo~xDjhbyWGPtYwuBC0cL5mVg40EcSItp1CjisJx3uR4EtMU7oD1vAby6Qb9WpT1-ndnqlReENWDa1AsOECQ5KWKwcH8NIWjHqbZywX~wks3Bbmha0nbsAvTY8umjMQQtY5MqUuSqPIqxUuBcmBko2~MgoP7WyeaJDULV4z16ksnH4s7a~R-Vs6qoqeNQAdlh2pz52IKP4p9nSvkkFFUb80dNuY1MhXE5EnvM5FF9~47BDyHdT4pfOBVDl-l-BhG62x1tW3CBwpzRE98YO03y8pGwNMcfgQT6dT1jeCDX0gF73EQht2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_unified_model_for_evolutionary_multi_objective_optimization_and_its_implementation_in_a_general_purpose_software_framework","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686816/thumbnails/1.jpg","file_name":"RR-6906.pdf","download_url":"https://www.academia.edu/attachments/96686816/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_unified_model_for_evolutionary_multi_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686816/RR-6906-libre.pdf?1672656627=\u0026response-content-disposition=attachment%3B+filename%3DA_unified_model_for_evolutionary_multi_o.pdf\u0026Expires=1732730105\u0026Signature=MWr0-BezXXiRz5NTeMItyz-nBLb9WZOHadMo~xDjhbyWGPtYwuBC0cL5mVg40EcSItp1CjisJx3uR4EtMU7oD1vAby6Qb9WpT1-ndnqlReENWDa1AsOECQ5KWKwcH8NIWjHqbZywX~wks3Bbmha0nbsAvTY8umjMQQtY5MqUuSqPIqxUuBcmBko2~MgoP7WyeaJDULV4z16ksnH4s7a~R-Vs6qoqeNQAdlh2pz52IKP4p9nSvkkFFUb80dNuY1MhXE5EnvM5FF9~47BDyHdT4pfOBVDl-l-BhG62x1tW3CBwpzRE98YO03y8pGwNMcfgQT6dT1jeCDX0gF73EQht2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":1701,"name":"Evolutionary algorithms","url":"https://www.academia.edu/Documents/in/Evolutionary_algorithms"},{"id":6414,"name":"Decomposition","url":"https://www.academia.edu/Documents/in/Decomposition"},{"id":13445,"name":"Multiobjective Optimization","url":"https://www.academia.edu/Documents/in/Multiobjective_Optimization"},{"id":49419,"name":"Problem Solving","url":"https://www.academia.edu/Documents/in/Problem_Solving"},{"id":56605,"name":"Multiobjective Evolutionary Optimization","url":"https://www.academia.edu/Documents/in/Multiobjective_Evolutionary_Optimization"},{"id":107414,"name":"En","url":"https://www.academia.edu/Documents/in/En"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":213990,"name":"Flexibility in engineering design","url":"https://www.academia.edu/Documents/in/Flexibility_in_engineering_design"},{"id":224618,"name":"Software Frameworks","url":"https://www.academia.edu/Documents/in/Software_Frameworks"},{"id":243832,"name":"Software Framework","url":"https://www.academia.edu/Documents/in/Software_Framework"},{"id":252813,"name":"Evolutionary Computing","url":"https://www.academia.edu/Documents/in/Evolutionary_Computing"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":459492,"name":"Unified Model","url":"https://www.academia.edu/Documents/in/Unified_Model"},{"id":1107332,"name":"Modular Design","url":"https://www.academia.edu/Documents/in/Modular_Design"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148517"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148517/ParadisEO_MOEO_A_Framework_for_Evolutionary_Multi_objective_Optimization"><img alt="Research paper thumbnail of ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/96686829/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148517/ParadisEO_MOEO_A_Framework_for_Evolutionary_Multi_objective_Optimization">ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8f3ac07cffbaa6e703ff9f7f36b1d430" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686829,"asset_id":94148517,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686829/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148517"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148517"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148517; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148517]").text(description); $(".js-view-count[data-work-id=94148517]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148517; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148517']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148517, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8f3ac07cffbaa6e703ff9f7f36b1d430" } } $('.js-work-strip[data-work-id=94148517]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148517,"title":"ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization","translated_title":"","metadata":{"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148517/ParadisEO_MOEO_A_Framework_for_Evolutionary_Multi_objective_Optimization","translated_internal_url":"","created_at":"2023-01-02T02:46:49.655-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686829,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686829/thumbnails/1.jpg","file_name":"075.pdf","download_url":"https://www.academia.edu/attachments/96686829/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ParadisEO_MOEO_A_Framework_for_Evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686829/075-libre.pdf?1672656622=\u0026response-content-disposition=attachment%3B+filename%3DParadisEO_MOEO_A_Framework_for_Evolution.pdf\u0026Expires=1732730105\u0026Signature=Cbrf1JealOFZtXFK2tg7S2wMpd5YOk99TGGXZAR5gyatGjOu9reqU29DZHxHgERRQvtEbD6TozMzDA~IQw-aE~4rNbwhiyTzOgJXl3~zEoej-Sew5qZAnj11lVb~Gsw8gAekjLlB6XYYW3VSBWcJ9wNK3e8Zj61CUvv-Qd059OjTEsozJuOBY6MldfClhk3hXkUhIwThtjocvEmvR6-DZaPv02GtPqRRy1J~DlygCOxDJ9YK0Xy8TPDdbLot62CRewaEwFiGR0cSO8n95R9VQgoqEa3csDDQ~muc4Ya~PX2x4UCRntMROy-zwQy7eAmE9CKPuF3LPomg7TXoLuCHIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ParadisEO_MOEO_A_Framework_for_Evolutionary_Multi_objective_Optimization","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686829,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686829/thumbnails/1.jpg","file_name":"075.pdf","download_url":"https://www.academia.edu/attachments/96686829/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ParadisEO_MOEO_A_Framework_for_Evolution.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686829/075-libre.pdf?1672656622=\u0026response-content-disposition=attachment%3B+filename%3DParadisEO_MOEO_A_Framework_for_Evolution.pdf\u0026Expires=1732730105\u0026Signature=Cbrf1JealOFZtXFK2tg7S2wMpd5YOk99TGGXZAR5gyatGjOu9reqU29DZHxHgERRQvtEbD6TozMzDA~IQw-aE~4rNbwhiyTzOgJXl3~zEoej-Sew5qZAnj11lVb~Gsw8gAekjLlB6XYYW3VSBWcJ9wNK3e8Zj61CUvv-Qd059OjTEsozJuOBY6MldfClhk3hXkUhIwThtjocvEmvR6-DZaPv02GtPqRRy1J~DlygCOxDJ9YK0Xy8TPDdbLot62CRewaEwFiGR0cSO8n95R9VQgoqEa3csDDQ~muc4Ya~PX2x4UCRntMROy-zwQy7eAmE9CKPuF3LPomg7TXoLuCHIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":31408,"name":"Free Software","url":"https://www.academia.edu/Documents/in/Free_Software"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":171813,"name":"Multiobjective","url":"https://www.academia.edu/Documents/in/Multiobjective"},{"id":177350,"name":"Reuse","url":"https://www.academia.edu/Documents/in/Reuse"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":454596,"name":"Object Oriented Frameworks","url":"https://www.academia.edu/Documents/in/Object_Oriented_Frameworks"},{"id":1121048,"name":"Object Oriented","url":"https://www.academia.edu/Documents/in/Object_Oriented"},{"id":3619016,"name":"Code Reuse","url":"https://www.academia.edu/Documents/in/Code_Reuse"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148515"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148515/A_Comparison_of_Decoding_Strategies_for_the_0_1_Multi_objective_Unit_Commitment_Problem"><img alt="Research paper thumbnail of A Comparison of Decoding Strategies for the 0/1 Multi-objective Unit Commitment Problem" class="work-thumbnail" src="https://attachments.academia-assets.com/96686811/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148515/A_Comparison_of_Decoding_Strategies_for_the_0_1_Multi_objective_Unit_Commitment_Problem">A Comparison of Decoding Strategies for the 0/1 Multi-objective Unit Commitment Problem</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="87d08090444722693db2454f9418e716" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686811,"asset_id":94148515,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686811/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148515"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148515"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148515; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148515]").text(description); $(".js-view-count[data-work-id=94148515]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148515; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148515']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148515, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "87d08090444722693db2454f9418e716" } } $('.js-work-strip[data-work-id=94148515]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148515,"title":"A Comparison of Decoding Strategies for the 0/1 Multi-objective Unit Commitment Problem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148515/A_Comparison_of_Decoding_Strategies_for_the_0_1_Multi_objective_Unit_Commitment_Problem","translated_internal_url":"","created_at":"2023-01-02T02:46:49.428-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686811,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686811/thumbnails/1.jpg","file_name":"emo_UCP.pdf","download_url":"https://www.academia.edu/attachments/96686811/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Comparison_of_Decoding_Strategies_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686811/emo_UCP-libre.pdf?1672656628=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_of_Decoding_Strategies_for.pdf\u0026Expires=1732730105\u0026Signature=AaqOkaAC8Lgy3lbJxRVfnY0CwS0a0P6-iJSr8otk7p7z2pukRRRyyuU2KuF~qRhwqWzBNTOMXXt2Rcs5RnX1CejlDcLDaZdQm023qfvGykTNCDWP13Kpjr5m7JvSKqL~ff18QrOP3X8ffreiBS6itfm8qGCeHtQ3CCkcidQLCHUaC4dULhTf8mVtQYEopgaUhyblIupRb6vz0a00mNGTrpmy5X5S35CJYTB5JXpnRCdbu7H6o5SHOm9YOxD5qEmCfvffEHp98DfyY3H2daNY4yJsoYcOXcV8uTCRJbyacCn-i3DXhMcYTC~bSvTOpAqnFH3uGWeYoPqq2avzIiO1WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Comparison_of_Decoding_Strategies_for_the_0_1_Multi_objective_Unit_Commitment_Problem","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686811,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686811/thumbnails/1.jpg","file_name":"emo_UCP.pdf","download_url":"https://www.academia.edu/attachments/96686811/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Comparison_of_Decoding_Strategies_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686811/emo_UCP-libre.pdf?1672656628=\u0026response-content-disposition=attachment%3B+filename%3DA_Comparison_of_Decoding_Strategies_for.pdf\u0026Expires=1732730105\u0026Signature=AaqOkaAC8Lgy3lbJxRVfnY0CwS0a0P6-iJSr8otk7p7z2pukRRRyyuU2KuF~qRhwqWzBNTOMXXt2Rcs5RnX1CejlDcLDaZdQm023qfvGykTNCDWP13Kpjr5m7JvSKqL~ff18QrOP3X8ffreiBS6itfm8qGCeHtQ3CCkcidQLCHUaC4dULhTf8mVtQYEopgaUhyblIupRb6vz0a00mNGTrpmy5X5S35CJYTB5JXpnRCdbu7H6o5SHOm9YOxD5qEmCfvffEHp98DfyY3H2daNY4yJsoYcOXcV8uTCRJbyacCn-i3DXhMcYTC~bSvTOpAqnFH3uGWeYoPqq2avzIiO1WA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":61386,"name":"Metaheuristics","url":"https://www.academia.edu/Documents/in/Metaheuristics"},{"id":139255,"name":"Ucp","url":"https://www.academia.edu/Documents/in/Ucp"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"},{"id":400356,"name":"Job shop scheduling","url":"https://www.academia.edu/Documents/in/Job_shop_scheduling"},{"id":419504,"name":"Heuristic","url":"https://www.academia.edu/Documents/in/Heuristic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148513"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148513/Metaheuristics_for_the_Bi_objective_Ring_Star_Problem"><img alt="Research paper thumbnail of Metaheuristics for the Bi-objective Ring Star Problem" class="work-thumbnail" src="https://attachments.academia-assets.com/96686831/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148513/Metaheuristics_for_the_Bi_objective_Ring_Star_Problem">Metaheuristics for the Bi-objective Ring Star Problem</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5c7cd6b0fde09f4607c0a63f0483a53f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686831,"asset_id":94148513,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686831/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148513"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148513"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148513; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148513]").text(description); $(".js-view-count[data-work-id=94148513]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148513; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148513']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148513, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5c7cd6b0fde09f4607c0a63f0483a53f" } } $('.js-work-strip[data-work-id=94148513]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148513,"title":"Metaheuristics for the Bi-objective Ring Star Problem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148513/Metaheuristics_for_the_Bi_objective_Ring_Star_Problem","translated_internal_url":"","created_at":"2023-01-02T02:46:49.168-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686831,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686831/thumbnails/1.jpg","file_name":"liefooghe.evocop08.pdf","download_url":"https://www.academia.edu/attachments/96686831/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristics_for_the_Bi_objective_Ring.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686831/liefooghe.evocop08-libre.pdf?1672656623=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristics_for_the_Bi_objective_Ring.pdf\u0026Expires=1732730105\u0026Signature=Qt6bSBWqfdhn8YbwziwBaVTXFYv29prk87ameJZGDFDwCpypPPX27noUByIM9W6WKLz3Y2Nff9qq2zIpWxYl4j3hupbPBMzqY49FciYHpUPsr5YoTEPhUypVxuqNVDKLrX9iLBNFshmlodeOywYWzU4tRrF8YWY25NbtfXMz7RT8LP9mFgxkKUgakK3ktKKdUSN5~dw~OUF-lezjA1MwSkf~XyAXNM-TUVvz4iUsHfh3gYVqWw3L~V1bhNItLbvCfgAPbaJtQqGAe78NMOkLfM5yLZ2qVs8i6RJMXCEQ2zoK7DIauiWxpns0WOv8hlOrwYqtA2ZM-I6JVBDkqga0gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Metaheuristics_for_the_Bi_objective_Ring_Star_Problem","translated_slug":"","page_count":13,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686831,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686831/thumbnails/1.jpg","file_name":"liefooghe.evocop08.pdf","download_url":"https://www.academia.edu/attachments/96686831/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristics_for_the_Bi_objective_Ring.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686831/liefooghe.evocop08-libre.pdf?1672656623=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristics_for_the_Bi_objective_Ring.pdf\u0026Expires=1732730105\u0026Signature=Qt6bSBWqfdhn8YbwziwBaVTXFYv29prk87ameJZGDFDwCpypPPX27noUByIM9W6WKLz3Y2Nff9qq2zIpWxYl4j3hupbPBMzqY49FciYHpUPsr5YoTEPhUypVxuqNVDKLrX9iLBNFshmlodeOywYWzU4tRrF8YWY25NbtfXMz7RT8LP9mFgxkKUgakK3ktKKdUSN5~dw~OUF-lezjA1MwSkf~XyAXNM-TUVvz4iUsHfh3gYVqWw3L~V1bhNItLbvCfgAPbaJtQqGAe78NMOkLfM5yLZ2qVs8i6RJMXCEQ2zoK7DIauiWxpns0WOv8hlOrwYqtA2ZM-I6JVBDkqga0gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":179262,"name":"Metaheuristic","url":"https://www.academia.edu/Documents/in/Metaheuristic"},{"id":272592,"name":"Mathematical Optimization","url":"https://www.academia.edu/Documents/in/Mathematical_Optimization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148511"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148511/M%C3%A9taheuristiques_pour_le_flow_shop_de_permutation_bi_objectif_stochastique"><img alt="Research paper thumbnail of Métaheuristiques pour le flow-shop de permutation bi-objectif stochastique" class="work-thumbnail" src="https://attachments.academia-assets.com/96686809/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148511/M%C3%A9taheuristiques_pour_le_flow_shop_de_permutation_bi_objectif_stochastique">Métaheuristiques pour le flow-shop de permutation bi-objectif stochastique</a></div><div class="wp-workCard_item"><span>Revue d'intelligence artificielle</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d6fbc26ab2d76a94806dee27d0c3b509" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686809,"asset_id":94148511,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686809/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148511"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148511"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148511; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148511]").text(description); $(".js-view-count[data-work-id=94148511]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148511; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148511']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148511, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d6fbc26ab2d76a94806dee27d0c3b509" } } $('.js-work-strip[data-work-id=94148511]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148511,"title":"Métaheuristiques pour le flow-shop de permutation bi-objectif stochastique","translated_title":"","metadata":{"publisher":"Lavoisier","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Revue d'intelligence artificielle"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148511/M%C3%A9taheuristiques_pour_le_flow_shop_de_permutation_bi_objectif_stochastique","translated_internal_url":"","created_at":"2023-01-02T02:46:47.665-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686809,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686809/thumbnails/1.jpg","file_name":"liefooghe.ria08.pdf","download_url":"https://www.academia.edu/attachments/96686809/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristiques_pour_le_flow_shop_de_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686809/liefooghe.ria08-libre.pdf?1672656630=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristiques_pour_le_flow_shop_de_pe.pdf\u0026Expires=1732730105\u0026Signature=AsTM4rajQ1vW3A7HsnQjbuZ5LxkqBCw8ldXQphBuumX6YtkdiWyNI-cp7NLNSG33B6G68OMTSCtb-2jWaOKvaNzXY4j8fJmNJEq8nRnN8PJXnby~OnFuQ9Yy3Ao5O5Gwq1ksrWsFCV0erYIwysXhJjG~1ckQOXQI0p32xbkw44V~-0gNnKMsSQCXX3Og1yRO-L8cMvVLGnRUPeBcnWf5o5AgESl3OxdpHPiy59TifgXARQJPsHDuqjIiX8Ymo7attg2yW2TR-Fe13xBGWjsDCyLMdEvLu1z3f9Mob61XB~wgtzv2~iDP4o7N8afbToqFLGqTGv1EO9qla3Bry3LNJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Métaheuristiques_pour_le_flow_shop_de_permutation_bi_objectif_stochastique","translated_slug":"","page_count":27,"language":"fr","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686809,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686809/thumbnails/1.jpg","file_name":"liefooghe.ria08.pdf","download_url":"https://www.academia.edu/attachments/96686809/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Metaheuristiques_pour_le_flow_shop_de_pe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686809/liefooghe.ria08-libre.pdf?1672656630=\u0026response-content-disposition=attachment%3B+filename%3DMetaheuristiques_pour_le_flow_shop_de_pe.pdf\u0026Expires=1732730105\u0026Signature=AsTM4rajQ1vW3A7HsnQjbuZ5LxkqBCw8ldXQphBuumX6YtkdiWyNI-cp7NLNSG33B6G68OMTSCtb-2jWaOKvaNzXY4j8fJmNJEq8nRnN8PJXnby~OnFuQ9Yy3Ao5O5Gwq1ksrWsFCV0erYIwysXhJjG~1ckQOXQI0p32xbkw44V~-0gNnKMsSQCXX3Og1yRO-L8cMvVLGnRUPeBcnWf5o5AgESl3OxdpHPiy59TifgXARQJPsHDuqjIiX8Ymo7attg2yW2TR-Fe13xBGWjsDCyLMdEvLu1z3f9Mob61XB~wgtzv2~iDP4o7N8afbToqFLGqTGv1EO9qla3Bry3LNJQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":951,"name":"Humanities","url":"https://www.academia.edu/Documents/in/Humanities"},{"id":1701,"name":"Evolutionary algorithms","url":"https://www.academia.edu/Documents/in/Evolutionary_algorithms"},{"id":9049,"name":"Flow Shop Scheduling","url":"https://www.academia.edu/Documents/in/Flow_Shop_Scheduling"},{"id":61386,"name":"Metaheuristics","url":"https://www.academia.edu/Documents/in/Metaheuristics"},{"id":61603,"name":"Uncertainty","url":"https://www.academia.edu/Documents/in/Uncertainty"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":265625,"name":"Evolutionary Algorithm","url":"https://www.academia.edu/Documents/in/Evolutionary_Algorithm"},{"id":374897,"name":"Incertitude","url":"https://www.academia.edu/Documents/in/Incertitude"},{"id":598812,"name":"Scheduling Problems","url":"https://www.academia.edu/Documents/in/Scheduling_Problems"},{"id":3207614,"name":"ALGORITHMES ÉVOLUTIONNAIRES ","url":"https://www.academia.edu/Documents/in/ALGORITHMES_%C3%89VOLUTIONNAIRES"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148506"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148506/Neutrality_in_the_Graph_Coloring_Problem"><img alt="Research paper thumbnail of Neutrality in the Graph Coloring Problem" class="work-thumbnail" src="https://attachments.academia-assets.com/96686807/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148506/Neutrality_in_the_Graph_Coloring_Problem">Neutrality in the Graph Coloring Problem</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1d63c8a4f9b21d111cf79f72ee563064" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686807,"asset_id":94148506,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686807/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148506"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148506"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148506; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148506]").text(description); $(".js-view-count[data-work-id=94148506]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148506; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148506']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148506, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1d63c8a4f9b21d111cf79f72ee563064" } } $('.js-work-strip[data-work-id=94148506]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148506,"title":"Neutrality in the Graph Coloring Problem","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148506/Neutrality_in_the_Graph_Coloring_Problem","translated_internal_url":"","created_at":"2023-01-02T02:46:44.904-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686807,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686807/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/96686807/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neutrality_in_the_Graph_Coloring_Problem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686807/1301-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DNeutrality_in_the_Graph_Coloring_Problem.pdf\u0026Expires=1732730105\u0026Signature=Rjlaf8beBYNwtXhwq33py5enkAB6Qovhvr0hmsM2gQGkSu4VfuQhPtNqg3QZ4zSmSfYm-5MXFiD1V3oThRW7XjL0wl2ltWUrVNRCfMbfcBsLjWM5O98LCtvLREMv-xsb8~IGynJA3xK0O6QJ9MXa~ILwajL8OzC4ZxYyJN7SEsZ~eG19-X0VIYF4crp4X4tq0vSOcatUq1gQtzTTQ4qsXdgAakMrzJNnfQwRvN2-GfqDjypJoi7ovWXwuGIerkfbUCL7-swZ6EsBNavr8jMzwXPD6f56s2jOg5R1uOTDwgI7exFZ789x~xw7S9-h61UffLwr-wGrHzG~Fy~yskxgNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Neutrality_in_the_Graph_Coloring_Problem","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686807,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686807/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/96686807/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Neutrality_in_the_Graph_Coloring_Problem.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686807/1301-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DNeutrality_in_the_Graph_Coloring_Problem.pdf\u0026Expires=1732730105\u0026Signature=Rjlaf8beBYNwtXhwq33py5enkAB6Qovhvr0hmsM2gQGkSu4VfuQhPtNqg3QZ4zSmSfYm-5MXFiD1V3oThRW7XjL0wl2ltWUrVNRCfMbfcBsLjWM5O98LCtvLREMv-xsb8~IGynJA3xK0O6QJ9MXa~ILwajL8OzC4ZxYyJN7SEsZ~eG19-X0VIYF4crp4X4tq0vSOcatUq1gQtzTTQ4qsXdgAakMrzJNnfQwRvN2-GfqDjypJoi7ovWXwuGIerkfbUCL7-swZ6EsBNavr8jMzwXPD6f56s2jOg5R1uOTDwgI7exFZ789x~xw7S9-h61UffLwr-wGrHzG~Fy~yskxgNg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":129770,"name":"Key words","url":"https://www.academia.edu/Documents/in/Key_words"},{"id":133518,"name":"Graph Coloring","url":"https://www.academia.edu/Documents/in/Graph_Coloring"},{"id":139253,"name":"Neutrality","url":"https://www.academia.edu/Documents/in/Neutrality"},{"id":266831,"name":"Graph","url":"https://www.academia.edu/Documents/in/Graph"},{"id":1398490,"name":"Graph Coloring Problem","url":"https://www.academia.edu/Documents/in/Graph_Coloring_Problem"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148504"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148504/A_Multi_objective_Approach_to_the_Design_of_Conducting_Polymer_Composites_for_Electromagnetic_Shielding"><img alt="Research paper thumbnail of A Multi-objective Approach to the Design of Conducting Polymer Composites for Electromagnetic Shielding" class="work-thumbnail" src="https://attachments.academia-assets.com/96686806/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148504/A_Multi_objective_Approach_to_the_Design_of_Conducting_Polymer_Composites_for_Electromagnetic_Shielding">A Multi-objective Approach to the Design of Conducting Polymer Composites for Electromagnetic Shielding</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2679755bd575d8d4c89f072f4b4f7fe9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686806,"asset_id":94148504,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686806/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148504"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148504"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148504; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148504]").text(description); $(".js-view-count[data-work-id=94148504]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148504; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148504']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148504, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2679755bd575d8d4c89f072f4b4f7fe9" } } $('.js-work-strip[data-work-id=94148504]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148504,"title":"A Multi-objective Approach to the Design of Conducting Polymer Composites for Electromagnetic Shielding","translated_title":"","metadata":{"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148504/A_Multi_objective_Approach_to_the_Design_of_Conducting_Polymer_Composites_for_Electromagnetic_Shielding","translated_internal_url":"","created_at":"2023-01-02T02:46:40.927-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686806,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686806/thumbnails/1.jpg","file_name":"emopoly.pdf","download_url":"https://www.academia.edu/attachments/96686806/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Multi_objective_Approach_to_the_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686806/emopoly-libre.pdf?1672656637=\u0026response-content-disposition=attachment%3B+filename%3DA_Multi_objective_Approach_to_the_Design.pdf\u0026Expires=1732730105\u0026Signature=NxzaPbZOlaxkH0RY1pLbqRNt2tHZCXseGaQHP7Edj-ZtVbmMeaCaxbJwk9omeKqIPFkiDXPhoug4rPC3Pq2ez4D~dL68-3cmGpEWq6O-pDedE~ZV91phDJVBZzfrdmVX8sriUWhsJvIbZngEynH59qx-v1ir-npDhd8j7De3iprRajA3hZk74lNZ~cgtsvOop6sjBPk6HQ1-IkOQLh~YqswBBYLkg10-jkXpk4uGf-vZ1jj1RDV4lZu9cK4SxTUfVY6jPZMF0sY6VwPU7rNf5VJSXQPmvk9h2ook-QQe38nT-Q9Q-TYW3x-LTaMymZWLIvmF~XfcCaDcnbItrodWpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Multi_objective_Approach_to_the_Design_of_Conducting_Polymer_Composites_for_Electromagnetic_Shielding","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686806,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686806/thumbnails/1.jpg","file_name":"emopoly.pdf","download_url":"https://www.academia.edu/attachments/96686806/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Multi_objective_Approach_to_the_Design.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686806/emopoly-libre.pdf?1672656637=\u0026response-content-disposition=attachment%3B+filename%3DA_Multi_objective_Approach_to_the_Design.pdf\u0026Expires=1732730105\u0026Signature=NxzaPbZOlaxkH0RY1pLbqRNt2tHZCXseGaQHP7Edj-ZtVbmMeaCaxbJwk9omeKqIPFkiDXPhoug4rPC3Pq2ez4D~dL68-3cmGpEWq6O-pDedE~ZV91phDJVBZzfrdmVX8sriUWhsJvIbZngEynH59qx-v1ir-npDhd8j7De3iprRajA3hZk74lNZ~cgtsvOop6sjBPk6HQ1-IkOQLh~YqswBBYLkg10-jkXpk4uGf-vZ1jj1RDV4lZu9cK4SxTUfVY6jPZMF0sY6VwPU7rNf5VJSXQPmvk9h2ook-QQe38nT-Q9Q-TYW3x-LTaMymZWLIvmF~XfcCaDcnbItrodWpQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":5023,"name":"Microwave","url":"https://www.academia.edu/Documents/in/Microwave"},{"id":78723,"name":"Electromagnetic Shielding","url":"https://www.academia.edu/Documents/in/Electromagnetic_Shielding"},{"id":85458,"name":"Conducting Polymer","url":"https://www.academia.edu/Documents/in/Conducting_Polymer"},{"id":149081,"name":"Decision Support","url":"https://www.academia.edu/Documents/in/Decision_Support"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94148502"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/94148502/ParadisEO_MOEO_A_Software_Framework_for_Evolutionary_Multi_Objective_Optimization"><img alt="Research paper thumbnail of ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/96686801/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/94148502/ParadisEO_MOEO_A_Software_Framework_for_Evolutionary_Multi_Objective_Optimization">ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization</a></div><div class="wp-workCard_item"><span>Studies in Computational Intelligence</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="85d143348a0e6e152ede6dec12e479c5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":96686801,"asset_id":94148502,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/96686801/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94148502"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94148502"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94148502; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94148502]").text(description); $(".js-view-count[data-work-id=94148502]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94148502; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94148502']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 94148502, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "85d143348a0e6e152ede6dec12e479c5" } } $('.js-work-strip[data-work-id=94148502]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94148502,"title":"ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization","translated_title":"","metadata":{"publisher":"Springer Berlin Heidelberg","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Studies in Computational Intelligence"},"translated_abstract":null,"internal_url":"https://www.academia.edu/94148502/ParadisEO_MOEO_A_Software_Framework_for_Evolutionary_Multi_Objective_Optimization","translated_internal_url":"","created_at":"2023-01-02T02:46:39.412-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":9335826,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":96686801,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686801/thumbnails/1.jpg","file_name":"liefooghe_springer2010.pdf","download_url":"https://www.academia.edu/attachments/96686801/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ParadisEO_MOEO_A_Software_Framework_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686801/liefooghe_springer2010-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DParadisEO_MOEO_A_Software_Framework_for.pdf\u0026Expires=1732730105\u0026Signature=Li3wS6i1fZwdVlj2Yb2cIrpFcIT3kL44NHmpedvG7KQl3MF2fvK2Un7jo9xQ-RnaDf-SNGp8JHUdG1pNkW5SeXkKGHVDIMuvSLNAWKzX68nAVskWxL8nQnfS8HUn4PVnWh54ZdxgyXmMlJsmCfwlBaUfnq6CrJ9p1qu~JPncVD4ebYRuAs2ysK9a1F4rtfy4xQH0M4svw05uKvA7jKuKc6u1cx9I0r5Ic2WmWmS9uj7wiPi-fyWQDHR4L2oEaW4gWNiVkec-Rn0wA8-CqgsW1YnzdqoU2BO5Kio-o0aFTKLfhENgv-9JZGE2Y~d~rVjMKYY9HDsAt2NGuYkXBsgLYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"ParadisEO_MOEO_A_Software_Framework_for_Evolutionary_Multi_Objective_Optimization","translated_slug":"","page_count":32,"language":"en","content_type":"Work","owner":{"id":9335826,"first_name":"Laetitia","middle_initials":null,"last_name":"Jourdan","page_name":"LJourdan","domain_name":"independent","created_at":"2014-02-20T04:28:06.355-08:00","display_name":"Laetitia Jourdan","url":"https://independent.academia.edu/LJourdan"},"attachments":[{"id":96686801,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/96686801/thumbnails/1.jpg","file_name":"liefooghe_springer2010.pdf","download_url":"https://www.academia.edu/attachments/96686801/download_file?st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&st=MTczMjcyNjUwNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"ParadisEO_MOEO_A_Software_Framework_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/96686801/liefooghe_springer2010-libre.pdf?1672656632=\u0026response-content-disposition=attachment%3B+filename%3DParadisEO_MOEO_A_Software_Framework_for.pdf\u0026Expires=1732730105\u0026Signature=Li3wS6i1fZwdVlj2Yb2cIrpFcIT3kL44NHmpedvG7KQl3MF2fvK2Un7jo9xQ-RnaDf-SNGp8JHUdG1pNkW5SeXkKGHVDIMuvSLNAWKzX68nAVskWxL8nQnfS8HUn4PVnWh54ZdxgyXmMlJsmCfwlBaUfnq6CrJ9p1qu~JPncVD4ebYRuAs2ysK9a1F4rtfy4xQH0M4svw05uKvA7jKuKc6u1cx9I0r5Ic2WmWmS9uj7wiPi-fyWQDHR4L2oEaW4gWNiVkec-Rn0wA8-CqgsW1YnzdqoU2BO5Kio-o0aFTKLfhENgv-9JZGE2Y~d~rVjMKYY9HDsAt2NGuYkXBsgLYw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":31408,"name":"Free Software","url":"https://www.academia.edu/Documents/in/Free_Software"},{"id":39821,"name":"Search Based Software Engineering","url":"https://www.academia.edu/Documents/in/Search_Based_Software_Engineering"},{"id":53293,"name":"Software","url":"https://www.academia.edu/Documents/in/Software"},{"id":143163,"name":"Multi objective optimization","url":"https://www.academia.edu/Documents/in/Multi_objective_optimization"},{"id":177350,"name":"Reuse","url":"https://www.academia.edu/Documents/in/Reuse"},{"id":179262,"name":"Metaheuristic","url":"https://www.academia.edu/Documents/in/Metaheuristic"},{"id":243832,"name":"Software Framework","url":"https://www.academia.edu/Documents/in/Software_Framework"},{"id":332352,"name":"Object Oriented Software Engineering","url":"https://www.academia.edu/Documents/in/Object_Oriented_Software_Engineering"},{"id":3619016,"name":"Code Reuse","url":"https://www.academia.edu/Documents/in/Code_Reuse"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "65692826f31dd98ce79c32de14d53592f59aac5068522942f0efded6c1043d6e", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Hoev7gYMBzGCmGXdaB1zw9XsGRs9i6W7r16iC0i5Zmzors7zU8GWZBG+k0z0gSIm0E67rF5rKSI6/W0973rNzA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/LJourdan" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="1K9R3UJuVqtXAhzRwJeHZShuNGfJoZOrukyKIoj//hwihjDAF6PH/sQk6kBcC9aALcyW0KpBHzIv70UULzxVvA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>