CINXE.COM
Search results for: battery power
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: battery power</title> <meta name="description" content="Search results for: battery power"> <meta name="keywords" content="battery power"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="battery power" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="battery power"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6639</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: battery power</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6639</span> Customized Cow鈥檚 Urine Battery Using MnO2 Depolarizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Kumar%20Rajak">Raj Kumar Rajak</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Mishra"> Bharat Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO<sub>2</sub> in various ways. MnO<sub>2 </sub>is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO<sub>2</sub>. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO<sub>2</sub>, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO<sub>2</sub> (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO<sub>2 </sub>to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO<sub>2</sub> is quite suitable to energize the bio-battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-batteries" title="bio-batteries">bio-batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%E2%80%99s%20urine" title=" cow鈥檚 urine"> cow鈥檚 urine</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20dioxide" title=" manganese dioxide"> manganese dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=non-conventional" title=" non-conventional"> non-conventional</a> </p> <a href="https://publications.waset.org/abstracts/81623/customized-cows-urine-battery-using-mno2-depolarizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6638</span> A Study on Long Life Hybrid Battery System Consists of Ni-63 Betavoltaic Battery and All Solid Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bosung%20Kim">Bosung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngmok%20Yun"> Youngmok Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Lee"> Sungho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanseok%20Park"> Chanseok Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a limitation to power supply and operation by the chemical or physical battery in the space environment. Therefore, research for utilizing nuclear energy in the universe has been in progress since the 1950s, around the major industrialized countries. In this study, the self-rechargeable battery having a long life relative to the half-life of the radioisotope is suggested. The hybrid system is composed of betavoltaic battery, all solid battery and energy harvesting board. Betavoltaic battery can produce electrical power at least 10 years over using the radioisotope from Ni-63 and the silicon-based semiconductor. The electrical power generated from the betavoltaic battery is stored in the all-solid battery and stored power is used if necessary. The hybrid system board is composed of input terminals, boost circuit, charging terminals and output terminals. Betavoltaic and all solid batteries are connected to the input and output terminal, respectively. The electric current of 10 碌A is applied to the system board by using the high-resolution power simulator. The system efficiencies are measured from a boost up voltage of 1.8 V, 2.4 V and 3 V, respectively. As a result, the efficiency of system board is about 75% after boosting up the voltage from 1V to 3V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotope" title="isotope">isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=betavoltaic" title=" betavoltaic"> betavoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear" title=" nuclear"> nuclear</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a> </p> <a href="https://publications.waset.org/abstracts/50011/a-study-on-long-life-hybrid-battery-system-consists-of-ni-63-betavoltaic-battery-and-all-solid-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6637</span> Design of a Universal Wireless Battery Charger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20B.%20Musamih">Ahmad B. Musamih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20A.%20Albloushi"> Ahmad A. Albloushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20Alshemeili"> Ahmed H. Alshemeili</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20Y.%20Alfili"> Abdulaziz Y. Alfili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ala%20A.%20Hussien"> Ala A. Hussien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a universal wireless battery charger design for portable electronic devices. As the number of portable electronics devices increases, the demand for more flexible and reliable charging techniques is becoming more urgent. A wireless battery charger differs from a traditional charger in the way the power transferred to the battery. In the latter, the power is transferred through electrical wires that connect the charger terminals to the battery terminals, while in the former; the power is transferred by induction without electrical connections. With a detection algorithm that detects the battery size and chemistry, the proposed charger will be able to accommodate a wide range of applications, and will allow a more flexible and reliable option to most of today鈥檚 portable electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically-coupled%20resonators" title=" magnetically-coupled resonators"> magnetically-coupled resonators</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20frequency" title=" resonance frequency"> resonance frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a> </p> <a href="https://publications.waset.org/abstracts/43549/design-of-a-universal-wireless-battery-charger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6636</span> Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dae-Hee%20Son">Dae-Hee Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Ryul%20Nam"> Soon-Ryul Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PSS%2FE%20user%20defined%20model" title="PSS/E user defined model">PSS/E user defined model</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20deviation" title=" power deviation"> power deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20droop%20control" title=" frequency droop control"> frequency droop control</a>, <a href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29" title=" ROCOF (rate of change of frequency)"> ROCOF (rate of change of frequency)</a> </p> <a href="https://publications.waset.org/abstracts/70548/development-of-psse-dynamic-model-for-controlling-battery-output-to-improve-frequency-stability-in-power-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6635</span> Renewable Integration Algorithm to Compensate Photovoltaic Power Using Battery Energy Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Joo%20Lee">Hyung Joo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Young%20Choi"> Jin Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gun%20Soo%20Park"> Gun Soo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyo%20Sun%20Oh"> Kyo Sun Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Jun%20Won"> Dong Jun Won</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fluctuation of the output of the renewable generator caused by weather conditions must be mitigated because it imposes strain on the system and adversely affects power quality. In this paper, we focus on mitigating the output fluctuation of the photovoltaic (PV) using battery energy storage system (BESS). To satisfy tight conditions of system, proposed algorithm is developed. This algorithm focuses on adjusting the integrated output curve considering state of capacity (SOC) of the battery. In this paper, the simulation model is PSCAD / EMTDC software. SOC of the battery and the overall output curve are shown using the simulation results. We also considered losses and battery efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20generation" title="photovoltaic generation">photovoltaic generation</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20energy%20storage%20system" title=" battery energy storage system"> battery energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20integration" title=" renewable integration"> renewable integration</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20smoothing" title=" power smoothing"> power smoothing</a> </p> <a href="https://publications.waset.org/abstracts/72517/renewable-integration-algorithm-to-compensate-photovoltaic-power-using-battery-energy-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6634</span> Adaptive Discharge Time Control for Battery Operation Time Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong-Bae%20Lee">Jong-Bae Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongsoo%20Lee"> Seongsoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery" title="battery">battery</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20effect" title=" recovery effect"> recovery effect</a>, <a href="https://publications.waset.org/abstracts/search?q=low-power" title=" low-power"> low-power</a>, <a href="https://publications.waset.org/abstracts/search?q=alternating%20battery%20cell%20discharging" title=" alternating battery cell discharging"> alternating battery cell discharging</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20discharge%20time%20control" title=" adaptive discharge time control"> adaptive discharge time control</a> </p> <a href="https://publications.waset.org/abstracts/2374/adaptive-discharge-time-control-for-battery-operation-time-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6633</span> Optimal MPPT Charging Battery System for Photovoltaic Standalone Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelaiaia%20Mounia%20Samira">Kelaiaia Mounia Samira</a>, <a href="https://publications.waset.org/abstracts/search?q=Labar%20Hocine"> Labar Hocine</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesbah%20Tarek"> Mesbah Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelaiaia%20samia"> Kelaiaia samia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The photovoltaic panel produces green power, and because of its availability across the globe, it can supply isolated loads (site away of the electrical network or difficult of access). Unfortunately this energy remains very expensive. The most application of these types of power needs storage devices, the Lithium batteries are commonly used because of its powerful storage capability. Using a solar panel or an array of panels without a controller that can perform MPPT will often result in wasted power, which results in the need to install more panels for the same power requirement. For devices that have the battery connected directly to the panel, this will also result in premature battery failure or capacity loss. In this paper it is proposed a modified P&O algorithm for the MPPT which takes in account the battery鈥檚 internal resistance vs temperature and stage of charging. Of course the temperature variation and irradiation of the PV panel are also introduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a>, <a href="https://publications.waset.org/abstracts/search?q=charging" title=" charging"> charging</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20Panel" title=" PV Panel "> PV Panel </a> </p> <a href="https://publications.waset.org/abstracts/21983/optimal-mppt-charging-battery-system-for-photovoltaic-standalone-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6632</span> Chemical Hazards Impact on Efficiency of Energy Storage Battery and its Possible Mitigation's</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abirham%20Simeneh%20Ayalew">Abirham Simeneh Ayalew</a>, <a href="https://publications.waset.org/abstracts/search?q=Seada%20Hussen%20Adem"> Seada Hussen Adem</a>, <a href="https://publications.waset.org/abstracts/search?q=Frie%20Ayalew%20Yimam"> Frie Ayalew Yimam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Battery energy storage has a great role on storing energy harnessed from different alternative resources and greatly benefit the power sector by supply energy back to the system during outage and regular operation in power sectors. Most of the study shows that there is an exponential increase in the quantity of lithium - ion battery energy storage system due to their power density, economical aspects and its performance. But this lithium ion battery failures resulted in fire and explosion due to its having flammable electrolytes (chemicals) which can create those hazards. Hazards happen in these energy storage system lead to minimize battery life spans or efficiency. Identifying the real cause of these hazards and its mitigation techniques can be the solution to improve the efficiency of battery technologies and the electrode materials should have high electrical conductivity, large surface area, stable structure and low resistance. This paper asses the real causes of chemical hazards, its impact on efficiency, proposed solution for mitigating those hazards associated with efficiency improvement and summery of researchers new finding related to the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20energy%20storage" title="battery energy storage">battery energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20energy%20storage%20efficiency" title=" battery energy storage efficiency"> battery energy storage efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20hazards" title=" chemical hazards"> chemical hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a> </p> <a href="https://publications.waset.org/abstracts/178880/chemical-hazards-impact-on-efficiency-of-energy-storage-battery-and-its-possible-mitigations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6631</span> A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharma">R. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Bhatnagar"> J. K. Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Poonam"> Poonam</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Sharma"> R. C. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal鈥揳ir batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg鈥揳ir cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg鈥揳ir batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20cathode" title="air cathode">air cathode</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20design" title=" battery design"> battery design</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20air%20battery" title=" magnesium air battery"> magnesium air battery</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20anode" title=" magnesium anode"> magnesium anode</a>, <a href="https://publications.waset.org/abstracts/search?q=rechargeable%20magnesium%20air%20battery" title=" rechargeable magnesium air battery"> rechargeable magnesium air battery</a> </p> <a href="https://publications.waset.org/abstracts/135970/a-review-of-magnesium-air-battery-systems-from-design-aspects-to-performance-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6630</span> Design and Implementation of Embedded FM Transmission Control SW for Low Power Battery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Su%20Ryu">Young-Su Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Won%20Park"> Kyung-Won Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hoon%20Song"> Jae-Hoon Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Won%20Kwon"> Ki-Won Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an embedded frequency modulation (FM) transmission control software (SW) for a low power battery system is designed and implemented. The simultaneous translation systems for various languages are needed as so many international conferences and festivals are held in world wide. Especially in portable transmitting and receiving systems, the ability of long operation life is used for a measure of value. This paper proposes an embedded FM transmission control SW for low power battery system and shows the results of the SW implemented on a portable FM transmission system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FM%20transmission" title="FM transmission">FM transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20translation%20system" title=" simultaneous translation system"> simultaneous translation system</a>, <a href="https://publications.waset.org/abstracts/search?q=portable%20transmitting%20and%20receiving%20systems" title=" portable transmitting and receiving systems"> portable transmitting and receiving systems</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20embedded%20control%20SW" title=" low power embedded control SW"> low power embedded control SW</a> </p> <a href="https://publications.waset.org/abstracts/67493/design-and-implementation-of-embedded-fm-transmission-control-sw-for-low-power-battery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6629</span> Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Hans%20Heimes"> Heiner Hans Heimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Ordung"> Mathias Ordung</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemanja%20Sarovic"> Nemanja Sarovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assembly" title="assembly">assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20system" title=" battery system"> battery system</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20concept" title=" battery concept"> battery concept</a> </p> <a href="https://publications.waset.org/abstracts/56399/reducing-change-related-costs-in-assembly-of-lithium-ion-batteries-for-electric-cars-by-mechanical-decoupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6628</span> Wireless Battery Charger with Adaptive Rapid-Charging Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byoung-Hee%20Lee">Byoung-Hee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless battery charger with adaptive rapid charging algorithm is proposed. The proposed wireless charger adopts voltage regulation technique to reduce the number of power conversion steps. Moreover, based on battery models, an adaptive rapid charging algorithm for Li-ion batteries is obtained. Rapid-charging performance with the proposed wireless battery charger and the proposed rapid charging algorithm has been experimentally verified to show more than 70% charging time reduction compared to conventional constant-current constant-voltage (CC-CV) charging without the degradation of battery lifetime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless" title="wireless">wireless</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20charger" title=" battery charger"> battery charger</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive" title=" adaptive"> adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid-charging" title=" rapid-charging"> rapid-charging</a> </p> <a href="https://publications.waset.org/abstracts/54610/wireless-battery-charger-with-adaptive-rapid-charging-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6627</span> Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghieh%20A.%20Biroon">Roghieh A. Biroon</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoleikha%20Abdollahi"> Zoleikha Abdollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancillary%20services" title="ancillary services">ancillary services</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20system%20and%20optimization" title=" distribution system and optimization"> distribution system and optimization</a> </p> <a href="https://publications.waset.org/abstracts/110651/voltage-and-frequency-regulation-using-the-third-party-mid-size-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6626</span> Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anaissia%20Franca">Anaissia Franca</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Fernandez"> Julian Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Curran%20Crawford"> Curran Crawford</a>, <a href="https://publications.waset.org/abstracts/search?q=Ned%20Djilali"> Ned Djilali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20electric%20bus" title="battery electric bus">battery electric bus</a>, <a href="https://publications.waset.org/abstracts/search?q=E-bus" title=" E-bus"> E-bus</a>, <a href="https://publications.waset.org/abstracts/search?q=in-depot%20charging" title=" in-depot charging"> in-depot charging</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20degradation" title=" battery degradation"> battery degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20fade" title=" capacity fade"> capacity fade</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20fade" title=" power fade"> power fade</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=SEI" title=" SEI"> SEI</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20models" title=" electrochemical models"> electrochemical models</a> </p> <a href="https://publications.waset.org/abstracts/57537/modeling-battery-degradation-for-electric-buses-assessment-of-lifespan-reduction-from-in-depot-charging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6625</span> Battery Control with Moving Average Algorithm to Smoothen the Intermittent Output Power of Photovoltaic Solar Power Plants in Off-Grid Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Gillfran%20Samual">Muhammad Gillfran Samual</a>, <a href="https://publications.waset.org/abstracts/search?q=Rinaldy%20Dalimi"> Rinaldy Dalimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fauzan%20Hanif%20Jufri"> Fauzan Hanif Jufri</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Sudiarto"> Budi Sudiarto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismi%20Rosyiana%20Fitri"> Ismi Rosyiana Fitri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is increasingly recognized as an important future energy source due to its abundant availability and renewable nature. However, the intermittent nature of solar energy can cause fluctuations in the electricity produced, making it difficult to guarantee a stable and reliable electricity supply. One solution that can be implemented is to use batteries in a photovoltaic solar power plant system with a Moving Average control algorithm, which can help smooth and reduce fluctuations in solar power output power. The parameter that can be adjusted in the Moving Average algorithm is the window size or the arithmetic average width of the photovoltaic output power over time. This research evaluates the effect of a change of window size parameter in the Moving Average algorithm on the resulting smoothed photovoltaic output power and the technical effects on batteries, i.e., power and energy usage. Based on the evaluation, it is found that the increase of window size parameter will slow down the response of photovoltaic output power to changes in irradiation and increase the smoothing quality of the intermittent photovoltaic output power. In addition, increasing the window size will reduce the maximum power received on the load side, and the amount of energy used by the battery during the power smoothing process will increase, which, in turn, increases the required battery capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery" title="battery">battery</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittent" title=" intermittent"> intermittent</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20average" title=" moving average"> moving average</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20smoothing" title=" power smoothing"> power smoothing</a> </p> <a href="https://publications.waset.org/abstracts/186512/battery-control-with-moving-average-algorithm-to-smoothen-the-intermittent-output-power-of-photovoltaic-solar-power-plants-in-off-grid-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6624</span> Reactive Power Control with Plug-In Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Dastori">Mostafa Dastori</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirus%20Mohammadi"> Sirus Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While plug-in electric vehicles (PEVs) potentially have the capability to fulfill the energy storage needs of the electric grid, the degradation on the battery during this operation makes it less preferable by the auto manufacturers and consumers. On the other hand, the on-board chargers can also supply energy storage system applications such as reactive power compensation, voltage regulation, and power factor correction without the need of engaging the battery with the grid and thereby preserving its lifetime. It presents the design motives of single-phase on-board chargers in detail and makes a classi铿乧ation of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac鈥揹c topology are discussed to shed light on their suit- ability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and in- creased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title="energy storage system">energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20unit" title=" battery unit"> battery unit</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20sizing" title=" optimal sizing"> optimal sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=plug-in%20electric%20vehicles%20%28PEVs%29" title=" plug-in electric vehicles (PEVs)"> plug-in electric vehicles (PEVs)</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/44195/reactive-power-control-with-plug-in-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6623</span> Reinforcement of an Electric Vehicle Battery Pack Using Honeycomb Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brandon%20To">Brandon To</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20S.%20Park"> Yong S. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As more battery electric vehicles are being introduced into the automobile industry, continuous advancements are constantly made in the electric vehicle space. Improvements in lithium-ion battery technology allow electric vehicles to be capable of traveling long distances. The batteries are capable of being charged faster, allowing for a sufficient range in shorter amounts of time. With increased reliance on battery technology and the changes in vehicle power trains, new challenges arise from this. Resulting electric vehicle fires caused by collisions are potentially more dangerous than those of the typical internal combustion engine. To further reduce the battery failures involved with side collisions, this project intends to reinforce an existing battery pack of an electric vehicle with honeycomb structures such that intrusion into the batteries can be minimized with weight restrictions in place. Honeycomb structures of hexagonal geometry are implemented into the side extrusions of the battery pack. With the use of explicit dynamics simulations performed in ANSYS, quantitative results such as deformation, strain, and stress are used to compare the performance of the battery pack with and without the implemented honeycomb structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20pack" title="battery pack">battery pack</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title=" honeycomb"> honeycomb</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20impact" title=" side impact"> side impact</a> </p> <a href="https://publications.waset.org/abstracts/162975/reinforcement-of-an-electric-vehicle-battery-pack-using-honeycomb-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6622</span> Autonomic Management for Mobile Robot Battery Degradation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Doran">Martin Doran</a>, <a href="https://publications.waset.org/abstracts/search?q=Roy%20Sterritt"> Roy Sterritt</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Wilkie"> George Wilkie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of today’s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic" title="autonomic">autonomic</a>, <a href="https://publications.waset.org/abstracts/search?q=self-adaptive" title=" self-adaptive"> self-adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=self-optimising" title=" self-optimising"> self-optimising</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/77739/autonomic-management-for-mobile-robot-battery-degradation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6621</span> A Power Management System for Indoor Micro-Drones in GPS-Denied Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yendo%20Hu">Yendo Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu-Yu%20Wu"> Xu-Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dylan%20Oh"> Dylan Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GPS-Denied drones open the possibility of indoor applications, including dynamic arial surveillance, inspection, safety enforcement, and discovery. Indoor swarming further enhances these applications in accuracy, robustness, operational time, and coverage. For micro-drones, power management becomes a critical issue, given the battery payload restriction. This paper proposes an application enabling battery replacement solution that extends the micro-drone active phase without human intervention. First, a framework to quantify the effectiveness of a power management solution for a drone fleet is proposed. The operation-to-non-operation ratio, ONR, gives one a quantitative benchmark to measure the effectiveness of a power management solution. Second, a survey was carried out to evaluate the ONR performance for the various solutions. Third, through analysis, this paper proposes a solution tailored to the indoor micro-drone, suitable for swarming applications. The proposed automated battery replacement solution, along with a modified micro-drone architecture, was implemented along with the associated micro-drone. Fourth, the system was tested and compared with the various solutions within the industry. Results show that the proposed solution achieves an ONR value of 31, which is a 1-fold improvement of the best alternative option. The cost analysis shows a manufacturing cost of $25, which makes this approach viable for cost-sensitive markets (e.g., consumer). Further challenges remain in the area of drone design for automated battery replacement, landing pad/drone production, high-precision landing control, and ONR improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-drone" title="micro-drone">micro-drone</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20swap" title=" battery swap"> battery swap</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20replacement" title=" battery replacement"> battery replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20recharge" title=" battery recharge"> battery recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20pad" title=" landing pad"> landing pad</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20management" title=" power management"> power management</a> </p> <a href="https://publications.waset.org/abstracts/171391/a-power-management-system-for-indoor-micro-drones-in-gps-denied-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6620</span> Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Keskin%20Arabul">Fatma Keskin Arabul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Senol"> Ibrahim Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Yigit%20Arabul"> Ahmet Yigit Arabul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Rifat%20Boynuegri"> Ali Rifat Boynuegri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20braking" title=" regenerative braking"> regenerative braking</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a> </p> <a href="https://publications.waset.org/abstracts/29821/providing-energy-management-of-a-fuel-cell-battery-hybrid-electric-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">714</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6619</span> Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mashayekh">Ali Mashayekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdiye%20Khorasani"> Mahdiye Khorasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Weyh"> Thomas Weyh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20characterization" title="battery characterization">battery characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=SoH%20estimation" title=" SoH estimation"> SoH estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=RLS" title=" RLS"> RLS</a>, <a href="https://publications.waset.org/abstracts/search?q=BEV" title=" BEV"> BEV</a> </p> <a href="https://publications.waset.org/abstracts/144193/investigation-and-estimation-of-state-of-health-of-battery-pack-in-battery-electric-vehicles-online-battery-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6618</span> Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hassoune">A. Hassoune</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khafallah"> M. Khafallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mesbahi"> A. Mesbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Bouragba"> T. Bouragba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20storage%20buffer" title="battery storage buffer">battery storage buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20station" title=" charging station"> charging station</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20analysis" title=" experimental analysis"> experimental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20algorithm" title=" management algorithm"> management algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=switches%20control" title=" switches control"> switches control</a> </p> <a href="https://publications.waset.org/abstracts/100812/experimental-analysis-of-control-in-electric-vehicle-charging-station-based-grid-tied-photovoltaic-battery-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6617</span> Product Architecture and Production Process of Battery Modules from Prismatic Lithium-Ion-Battery Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Hans%20Heimes"> Heiner Hans Heimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemanja%20Sarovic"> Nemanja Sarovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan-Philip%20Ganser"> Jan-Philip Ganser</a>, <a href="https://publications.waset.org/abstracts/search?q=Saskia%20Wessel"> Saskia Wessel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Lienemann"> Christoph Lienemann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrification of the power train is a fundamental technical transition in the automotive industry and poses a major challenge for established car companies. Providing the traction energy, requiring an ever greater amount of space within the car and having a high share of value-add the lithium-ion battery is a central component of the electric power train and a completely new component to car manufacturers at the same time. Being relatively new to the automotive industry, the current design of the product architecture and production process (including manufacturing and assembling processes) of lithium-ion battery modules do not allow for an easy and cost-efficient disassembly or product design change. Yet these two requirements will increase in importance with rising sales volumes of electric cars in the near future and need to be addressed for the electric car to be competitive with conventional power train systems. This paper focuses on the current product architecture and production process of common automotive battery modules from prismatic lithium-ion battery cells to derive impacts for a remanufacturing concept. The information necessary for this purpose were gathered by literature research, patent inquiries, industry expert interviews and first-hand experiences of the authors. On the basis of these results, the underlying causes for the design麓s lack of remanufacturability and flexibility with regards to product design changes are examined. In all, this paper gives an extensive and detailed overview of the state of the art of the product architecture and production process of lithium-ion battery modules from prismatic battery cells, identifies its deficiencies and derives improvement measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20module" title="battery module">battery module</a>, <a href="https://publications.waset.org/abstracts/search?q=prismatic%20lithium-ion%20battery%20cell" title=" prismatic lithium-ion battery cell"> prismatic lithium-ion battery cell</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20architecture" title=" product architecture"> product architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20process" title=" production process"> production process</a>, <a href="https://publications.waset.org/abstracts/search?q=remanufacturing" title=" remanufacturing"> remanufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a> </p> <a href="https://publications.waset.org/abstracts/78338/product-architecture-and-production-process-of-battery-modules-from-prismatic-lithium-ion-battery-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6616</span> Maximum Power Point Tracking Using Fuzzy Logic Control for a Stand-Alone PV System with PI Controller for Battery Charging Based on Evolutionary Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Moustafa%20Hassan">Mohamed A. Moustafa Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20S%20.S.%20Hussian"> Omnia S .S. Hussian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20M.%20Elsaved"> Hany M. Elsaved</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the application of Fuzzy Logic Controller (FLC) to extract the Maximum Power Point Tracking (MPPT) from the PV panel. In addition, the proportional integral (PI) controller is used to be the strategy for battery charge control according to acceptable performance criteria. The parameters of the PI controller have been tuned via Modified Adaptive Accelerated Coefficient Particle Swarm Optimization (MAACPSO) technique. The simulation results, using MATLAB/Simulink tools, show that the FLC technique has advantages for use in the MPPT problem, as it provides a fast response under changes in environmental conditions such as radiation and temperature. In addition, the use of PI controller based on MAACPSO results in a good performance in terms of controlling battery charging with constant voltage and current to execute rapid charging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20charging" title="battery charging">battery charging</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20control" title=" fuzzy logic control"> fuzzy logic control</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20system" title=" PV system"> PV system</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20technique" title=" evolutionary technique"> evolutionary technique</a> </p> <a href="https://publications.waset.org/abstracts/109686/maximum-power-point-tracking-using-fuzzy-logic-control-for-a-stand-alone-pv-system-with-pi-controller-for-battery-charging-based-on-evolutionary-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6615</span> Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Jalilzadeh">S. Jalilzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Mohseni%20Bonab"> S. M. Mohseni Bonab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20array%20%28PV%29" title="photovoltaic array (PV)">photovoltaic array (PV)</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%2FDC%20Boost%20converter" title=" DC/DC Boost converter"> DC/DC Boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20converter" title=" battery converter"> battery converter</a>, <a href="https://publications.waset.org/abstracts/search?q=inverters%20control" title=" inverters control"> inverters control</a> </p> <a href="https://publications.waset.org/abstracts/15394/voltage-stabilization-of-hybrid-pv-and-battery-systems-by-considering-temperature-and-irradiance-changes-in-standalone-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6614</span> Simple and Concise Maximum Power Control Circuit for PV Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keiju%20Matsui">Keiju Matsui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikio%20Yasubayashi"> Mikio Yasubayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayoshi%20Umeno"> Masayoshi Umeno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Consumption of energy is increasing every year, and yet does not the decline at all. The main energy source is fossil fuels such as petroleum and natural gas. Since it is the finite resources, they will be exhausted someday. Moreover, to make the fossil fuel an energy source causes an environment problem. In such way, one solution of the problems is the solar battery that is remarkable as one of the alternative energies. Under such circumstances, in this paper, we propose a novel maximum power control circuit for photovoltaic power generation system with simple and fast-response operation. In addition to an application to the solar battery, since this control system is possible to operate with simple circuit and fast-response, the polar value control like the maximum or the minimum value tracking for general application could be easily realized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20control" title="maximum power control">maximum power control</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-connection" title=" inter-connection"> inter-connection</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20power%20generation" title=" photovoltaic power generation"> photovoltaic power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplier" title=" multiplier"> multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=exclusive-or" title=" exclusive-or"> exclusive-or</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a> </p> <a href="https://publications.waset.org/abstracts/2577/simple-and-concise-maximum-power-control-circuit-for-pv-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6613</span> Proactive SoC Balancing of Li-ion Batteries for Automotive Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mashayekh">Ali Mashayekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdiye%20Khorasani"> Mahdiye Khorasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20weyh"> Thomas weyh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for battery electric vehicles (BEV) is steadily increasing, and it can be assumed that electric mobility will dominate the market for individual transportation in the future. Regarding BEVs, the focus of state-of-the-art research and development is on vehicle batteries since their properties primarily determine vehicles' characteristic parameters, such as price, driving range, charging time, and lifetime. State-of-the-art battery packs consist of invariable configurations of battery cells, connected in series and parallel. A promising alternative is battery systems based on multilevel inverters, which can alter the configuration of the battery cells during operation via semiconductor switches. The main benefit of such topologies is that a three-phase AC voltage can be directly generated from the battery pack, and no separate power inverters are required. Therefore, modular battery systems based on different multilevel inverter topologies and reconfigurable battery systems are currently under investigation. Another advantage of the multilevel concept is that the possibility to reconfigure the battery pack allows battery cells with different states of charge (SoC) to be connected in parallel, and thus low-loss balancing can take place between such cells. In contrast, in conventional battery systems, parallel connected (hard-wired) battery cells are discharged via bleeder resistors to keep the individual SoCs of the parallel battery strands balanced, ultimately reducing the vehicle range. Different multilevel inverter topologies and reconfigurable batteries have been described in the available literature that makes the before-mentioned advantages possible. However, what has not yet been described is how an intelligent operating algorithm needs to look like to keep the SoCs of the individual battery strands of a modular battery system with integrated power electronics balanced. Therefore, this paper suggests an SoC balancing approach for Battery Modular Multilevel Management (BM3) converter systems, which can be similarly used for reconfigurable battery systems or other multilevel inverter topologies with parallel connectivity. The here suggested approach attempts to simultaneously utilize all converter modules (bypassing individual modules should be avoided) because the parallel connection of adjacent modules reduces the phase-strand's battery impedance. Furthermore, the presented approach tries to reduce the number of switching events when changing the switching state combination. Thereby, the ohmic battery losses and switching losses are kept as low as possible. Since no power is dissipated in any designated bleeder resistors and no designated active balancing circuitry is required, the suggested approach can be categorized as a proactive balancing approach. To verify the algorithm's validity, simulations are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20management%20system" title="battery management system">battery management system</a>, <a href="https://publications.waset.org/abstracts/search?q=BEV" title=" BEV"> BEV</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20modular%20multilevel%20management%20%28BM3%29" title=" battery modular multilevel management (BM3)"> battery modular multilevel management (BM3)</a>, <a href="https://publications.waset.org/abstracts/search?q=SoC%20balancing" title=" SoC balancing"> SoC balancing</a> </p> <a href="https://publications.waset.org/abstracts/144196/proactive-soc-balancing-of-li-ion-batteries-for-automotive-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6612</span> FACTS Based Stabilization for Smart Grid Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel.%20M.%20Sharaf">Adel. M. Sharaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Foad%20H.%20Gandoman"> Foad H. Gandoman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AC%20FACTS" title="AC FACTS">AC FACTS</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=PV-battery%20storage" title=" PV-battery storage"> PV-battery storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Switched%20Filter-Compensation%20%28SFC%29" title=" Switched Filter-Compensation (SFC)"> Switched Filter-Compensation (SFC)</a> </p> <a href="https://publications.waset.org/abstracts/16162/facts-based-stabilization-for-smart-grid-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6611</span> Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishnan%20Manickavasagam">Krishnan Manickavasagam</a>, <a href="https://publications.waset.org/abstracts/search?q=Manikandan%20Shanmugam"> Manikandan Shanmugam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title="renewable energy sources">renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20decision%20support%20system" title=" fuzzy decision support system"> fuzzy decision support system</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20photovoltaic" title=" solar photovoltaic"> solar photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20device" title=" energy storage device"> energy storage device</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management%20system" title=" energy management system"> energy management system</a> </p> <a href="https://publications.waset.org/abstracts/157994/power-control-in-solar-battery-charging-station-using-fuzzy-decision-support-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6610</span> Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Kamalisiahroudi">Sara Kamalisiahroudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Jianbo"> Zhang Jianbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wu"> Bin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Huang"> Jun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Laisuo%20Su"> Laisuo Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20generation" title="heat generation">heat generation</a>, <a href="https://publications.waset.org/abstracts/search?q=Solid%20Electrolyte%20Interface%20%28SEI%29" title=" Solid Electrolyte Interface (SEI)"> Solid Electrolyte Interface (SEI)</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiometric%20method" title=" potentiometric method"> potentiometric method</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20coefficient" title=" entropy coefficient "> entropy coefficient </a> </p> <a href="https://publications.waset.org/abstracts/14454/comparison-of-entropy-coefficient-and-internal-resistance-of-two-used-and-fresh-cylindrical-commercial-lithium-ion-battery-ncr18650-with-different-capacities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=221">221</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=222">222</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=battery%20power&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>