CINXE.COM

Search results for: hybrid forecasting models

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hybrid forecasting models</title> <meta name="description" content="Search results for: hybrid forecasting models"> <meta name="keywords" content="hybrid forecasting models"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hybrid forecasting models" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hybrid forecasting models"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8554</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hybrid forecasting models</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8554</span> Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Kamrul%20Islam">A. K. M. Kamrul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Bouchachia"> Abdelhamid Bouchachia</a>, <a href="https://publications.waset.org/abstracts/search?q=Suang%20Cang"> Suang Cang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongnian%20Yu"> Hongnian Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20time%20series%20%28fts%29" title="fuzzy time series (fts)">fuzzy time series (fts)</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20algorithm" title=" clustering algorithm"> clustering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20model" title=" hybrid forecasting model"> hybrid forecasting model</a> </p> <a href="https://publications.waset.org/abstracts/51515/fuzzy-time-series-forecasting-based-on-fuzzy-logical-relationships-pso-technique-and-automatic-clustering-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8553</span> Forecasting Amman Stock Market Data Using a Hybrid Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Awajan">Ahmad Awajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadam%20Al%20Wadi"> Sadam Al Wadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Holt-Winter%20method" title="Holt-Winter method">Holt-Winter method</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/122857/forecasting-amman-stock-market-data-using-a-hybrid-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8552</span> Determining the Number of Single Models in a Combined Forecast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Aras">Serkan Aras</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Gulay"> Emrah Gulay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combining various forecasting models is an important tool for researchers to attain more accurate forecasts. A great number of papers have shown that selecting single models as dissimilar models, or methods based on different information as possible leads to better forecasting performances. However, there is not a certain rule regarding the number of single models to be used in any combining methods. This study focuses on determining the optimal or near optimal number for single models with the help of statistical tests. An extensive experiment is carried out by utilizing some well-known time series data sets from diverse fields. Furthermore, many rival forecasting methods and some of the commonly used combining methods are employed. The obtained results indicate that some statistically significant performance differences can be found regarding the number of the single models in the combining methods under investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20forecast" title="combined forecast">combined forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=M-competition" title=" M-competition"> M-competition</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/40361/determining-the-number-of-single-models-in-a-combined-forecast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8551</span> Electricity Demand Modeling and Forecasting in Singapore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xian%20Li">Xian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing-Guo%20Wang"> Qing-Guo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiangshuai%20Huang"> Jiangshuai Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jidong%20Liu"> Jidong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Yu"> Ming Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Kok%20Poh"> Tan Kok Poh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20industry" title="power industry">power industry</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20demand" title=" electricity demand"> electricity demand</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a> </p> <a href="https://publications.waset.org/abstracts/13471/electricity-demand-modeling-and-forecasting-in-singapore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8550</span> Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faz%C4%B1l%20G%C3%B6kg%C3%B6z">Fazıl Gökgöz</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahrettin%20Filiz"> Fahrettin Filiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20price%20forecasting" title=" energy price forecasting"> energy price forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=turkey" title=" turkey"> turkey</a> </p> <a href="https://publications.waset.org/abstracts/91064/electricity-price-forecasting-a-comparative-analysis-with-shallow-ann-and-dnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8549</span> A New Model for Production Forecasting in ERP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Wong">S. F. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20I.%20Ho"> W. I. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Lin"> B. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Huang"> Q. Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ERP" title="ERP">ERP</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20system" title=" grey system"> grey system</a>, <a href="https://publications.waset.org/abstracts/search?q=LSSVM" title=" LSSVM"> LSSVM</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20forecasting" title=" production forecasting"> production forecasting</a> </p> <a href="https://publications.waset.org/abstracts/3348/a-new-model-for-production-forecasting-in-erp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8548</span> Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Senabre">C. Senabre</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Valero"> S. Valero</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lopez"> M. Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Velasco"> E. Velasco</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sanchez"> M. Sanchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short-term%20load%20forecasting" title="short-term load forecasting">short-term load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20effects%20models" title=" mixed effects models"> mixed effects models</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20effects%20models" title=" mixed effects models"> mixed effects models</a> </p> <a href="https://publications.waset.org/abstracts/100166/mixed-effects-models-for-short-term-load-forecasting-for-the-spanish-regions-castilla-leon-castilla-la-mancha-and-andalucia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8547</span> Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tariq">Muhammad Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammad%20Tahir"> Hammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawwad%20Mahmood%20Butt"> Fawwad Mahmood Butt </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting" title="forecasting">forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/abstracts/search?q=auto%20regression" title=" auto regression"> auto regression</a>, <a href="https://publications.waset.org/abstracts/search?q=ARCH" title=" ARCH"> ARCH</a>, <a href="https://publications.waset.org/abstracts/search?q=ARMA" title=" ARMA"> ARMA</a> </p> <a href="https://publications.waset.org/abstracts/45124/comparison-of-applicability-of-time-series-forecasting-models-var-arch-and-arma-in-management-science-study-based-on-empirical-analysis-of-time-series-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8546</span> A Trend Based Forecasting Framework of the ATA Method and Its Performance on the M3-Competition Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Taylan%20Selamlar">H. Taylan Selamlar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Yavuz"> I. Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Yapar"> G. Yapar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is difficult to make predictions especially about the future and making accurate predictions is not always easy. However, better predictions remain the foundation of all science therefore the development of accurate, robust and reliable forecasting methods is very important. Numerous number of forecasting methods have been proposed and studied in the literature. There are still two dominant major forecasting methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), and still new methods are derived or inspired from them. After more than 50 years of widespread use, exponential smoothing is still one of the most practically relevant forecasting methods available due to their simplicity, robustness and accuracy as automatic forecasting procedures especially in the famous M-Competitions. Despite its success and widespread use in many areas, ES models have some shortcomings that negatively affect the accuracy of forecasts. Therefore, a new forecasting method in this study will be proposed to cope with these shortcomings and it will be called ATA method. This new method is obtained from traditional ES models by modifying the smoothing parameters therefore both methods have similar structural forms and ATA can be easily adapted to all of the individual ES models however ATA has many advantages due to its innovative new weighting scheme. In this paper, the focus is on modeling the trend component and handling seasonality patterns by utilizing classical decomposition. Therefore, ATA method is expanded to higher order ES methods for additive, multiplicative, additive damped and multiplicative damped trend components. The proposed models are called ATA trended models and their predictive performances are compared to their counter ES models on the M3 competition data set since it is still the most recent and comprehensive time-series data collection available. It is shown that the models outperform their counters on almost all settings and when a model selection is carried out amongst these trended models ATA outperforms all of the competitors in the M3- competition for both short term and long term forecasting horizons when the models’ forecasting accuracies are compared based on popular error metrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20smoothing" title=" exponential smoothing"> exponential smoothing</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20value" title=" initial value"> initial value</a> </p> <a href="https://publications.waset.org/abstracts/83013/a-trend-based-forecasting-framework-of-the-ata-method-and-its-performance-on-the-m3-competition-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8545</span> Currency Exchange Rate Forecasts Using Quantile Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuzhi%20Cai">Yuzhi Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combining%20forecasts" title="combining forecasts">combining forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=MCMC" title=" MCMC"> MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20density%20functions" title=" predictive density functions"> predictive density functions</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20forecasting" title=" quantile forecasting"> quantile forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20modelling" title=" quantile modelling"> quantile modelling</a> </p> <a href="https://publications.waset.org/abstracts/45531/currency-exchange-rate-forecasts-using-quantile-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8544</span> Spatial Spillovers in Forecasting Market Diffusion of Electric Mobility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reinhold%20Kosfeld">Reinhold Kosfeld</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Gohs"> Andreas Gohs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the reduction of CO₂ emissions, the transition to environmentally friendly transport modes has a high significance. In Germany, the climate protection programme 2030 includes various measures for promoting electromobility. Although electric cars at present hold a market share of just over one percent, its stock more than doubled in the past two years. Special measures like tax incentives and a buyer’s premium have been put in place to promote the shift towards electric cars and boost their diffusion. Knowledge of the future expansion of electric cars is required for planning purposes and adaptation measures. With a view of these objectives, we particularly investigate the effect of spatial spillovers on forecasting performance. For this purpose, time series econometrics and panel econometric models are designed for pure electric cars and hybrid cars for Germany. Regional forecasting models with spatial interactions are consistently estimated by using spatial econometric techniques. Regional data on the stocks of electric cars and their determinants at the district level (NUTS 3 regions) are available from the Federal Motor Transport Authority (Kraftfahrt-Bundesamt) for the period 2017 - 2019. A comparative examination of aggregated regional and national predictions provides quantitative information on accuracy gains by allowing for spatial spillovers in forecasting electric mobility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20mobility" title="electric mobility">electric mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20market%20diffusion" title=" forecasting market diffusion"> forecasting market diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20panel%20data%20model" title=" regional panel data model"> regional panel data model</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20interaction" title=" spatial interaction"> spatial interaction</a> </p> <a href="https://publications.waset.org/abstracts/118641/spatial-spillovers-in-forecasting-market-diffusion-of-electric-mobility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8543</span> Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Yin%20Kuo">Chen-Yin Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Hsin%20Lee"> Yung-Hsin Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20income%20valuation%20model" title="residual income valuation model">residual income valuation model</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20error%20correction%20model" title=" vector error correction model"> vector error correction model</a>, <a href="https://publications.waset.org/abstracts/search?q=out%20of%20sample%20forecasting" title=" out of sample forecasting"> out of sample forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20accuracy" title=" forecasting accuracy"> forecasting accuracy</a> </p> <a href="https://publications.waset.org/abstracts/1668/forecasting-stock-prices-based-on-the-residual-income-valuation-model-evidence-from-a-time-series-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8542</span> Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghaleb%20Y.%20Abbasi">Ghaleb Y. Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Israa%20Abu%20Rumman"> Israa Abu Rumman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20models" title="ARIMA models">ARIMA models</a>, <a href="https://publications.waset.org/abstracts/search?q=sales%20demand%20forecasting" title=" sales demand forecasting"> sales demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/abstracts/search?q=R%20code" title=" R code"> R code</a> </p> <a href="https://publications.waset.org/abstracts/64117/applying-arima-data-mining-techniques-to-erp-to-generate-sales-demand-forecasting-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8541</span> Evaluation of Football Forecasting Models: 2021 Brazilian Championship Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Cordeiro%20Fontanella">Flavio Cordeiro Fontanella</a>, <a href="https://publications.waset.org/abstracts/search?q=Asla%20Medeiros%20e%20S%C3%A1"> Asla Medeiros e Sá</a>, <a href="https://publications.waset.org/abstracts/search?q=Moacyr%20Alvim%20Horta%20Barbosa%20da%20Silva"> Moacyr Alvim Horta Barbosa da Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, we analyse the performance of football results forecasting models. In order to do so, we have performed the data collection from eight different forecasting models during the 2021 Brazilian football season. First, we guide the analysis through visual representations of the data, designed to highlight the most prominent features and enhance the interpretation of differences and similarities between the models. We propose using a 2-simplex triangle to investigate visual patterns from the results forecasting models. Next, we compute the expected points for every team playing in the championship and compare them to the final league standings, revealing interesting contrasts between actual to expected performances. Then, we evaluate forecasts’ accuracy using the Ranked Probability Score (RPS); models comparison accounts for tiny scale differences that may become consistent in time. Finally, we observe that the Wisdom of Crowds principle can be appropriately applied in the context, driving into a discussion of results forecasts usage in practice. This paper’s primary goal is to encourage football forecasts’ performance discussion. We hope to accomplish it by presenting appropriate criteria and easy-to-understand visual representations that can point out the relevant factors of the subject. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20evaluation" title="accuracy evaluation">accuracy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazilian%20championship" title=" Brazilian championship"> Brazilian championship</a>, <a href="https://publications.waset.org/abstracts/search?q=football%20results%20forecasts" title=" football results forecasts"> football results forecasts</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20models" title=" forecasting models"> forecasting models</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20analysis" title=" visual analysis"> visual analysis</a> </p> <a href="https://publications.waset.org/abstracts/146056/evaluation-of-football-forecasting-models-2021-brazilian-championship-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8540</span> Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurmail%20Singh">Gurmail Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bullwhip%20effect" title="bullwhip effect">bullwhip effect</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20techniques" title=" hybrid techniques"> hybrid techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20stock%20amplification" title=" net stock amplification"> net stock amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20flexibility" title=" supply chain flexibility"> supply chain flexibility</a> </p> <a href="https://publications.waset.org/abstracts/94150/effective-supply-chain-coordination-with-hybrid-demand-forecasting-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8539</span> Generic Hybrid Models for Two-Dimensional Ultrasonic Guided Wave Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Reghu">Manoj Reghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhu%20Rajagopal"> Prabhu Rajagopal</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Krishnamurthy"> C. V. Krishnamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnan%20Balasubramaniam"> Krishnan Balasubramaniam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thorough understanding of guided ultrasonic wave behavior in structures is essential for the application of existing Non Destructive Evaluation (NDE) technologies, as well as for the development of new methods. However, the analysis of guided wave phenomena is challenging because of their complex dispersive and multimodal nature. Although numerical solution procedures have proven to be very useful in this regard, the increasing complexity of features and defects to be considered, as well as the desire to improve the accuracy of inspection often imposes a large computational cost. Hybrid models that combine numerical solutions for wave scattering with faster alternative methods for wave propagation have long been considered as a solution to this problem. However usually such models require modification of the base code of the solution procedure. Here we aim to develop Generic Hybrid models that can be directly applied to any two different solution procedures. With this goal in mind, a Numerical Hybrid model and an Analytical-Numerical Hybrid model has been developed. The concept and implementation of these Hybrid models are discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guided%20ultrasonic%20waves" title="guided ultrasonic waves">guided ultrasonic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method%20%28FEM%29" title=" Finite Element Method (FEM)"> Finite Element Method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20model" title=" Hybrid model"> Hybrid model</a> </p> <a href="https://publications.waset.org/abstracts/16058/generic-hybrid-models-for-two-dimensional-ultrasonic-guided-wave-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8538</span> Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Fulus%20Fom">Daniel Fulus Fom</a>, <a href="https://publications.waset.org/abstracts/search?q=Gau%20Patrick%20Damulak"> Gau Patrick Damulak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto%20regressive" title="auto regressive">auto regressive</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20absolute%20error" title=" mean absolute error"> mean absolute error</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20square%20mean%20error" title=" root square mean error"> root square mean error</a> </p> <a href="https://publications.waset.org/abstracts/75328/forecasting-performance-comparison-of-autoregressive-fractional-integrated-moving-average-and-jordan-recurrent-neural-network-models-on-the-turbidity-of-stream-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8537</span> Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Seok%20Koo">Ji-Seok Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%E2%80%91Yong%20Kwon"> Hee‑Yong Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Young%20Yun"> Hui-Young Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-Hui%20Wang"> Kyung-Hui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn-Seo%20Koo"> Youn-Seo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PM2.5%20forecast" title="PM2.5 forecast">PM2.5 forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=convLSTM" title=" convLSTM"> convLSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=DNN" title=" DNN"> DNN</a> </p> <a href="https://publications.waset.org/abstracts/169596/development-of-pm25-forecasting-system-in-seoul-south-korea-using-chemical-transport-modeling-and-convlstm-dnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8536</span> Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faz%C4%B1l%20G%C3%B6kg%C3%B6z">Fazıl Gökgöz</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahrettin%20Filiz"> Fahrettin Filiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short%20term%20memory" title=" long short term memory"> long short term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20load%20forecasting" title=" renewable energy load forecasting"> renewable energy load forecasting</a> </p> <a href="https://publications.waset.org/abstracts/91058/deep-learning-for-renewable-power-forecasting-an-approach-using-lstm-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8535</span> Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Funda%20Kul">Funda Kul</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0smail%20G%C3%BCr"> İsmail Gür</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mortality" title="mortality">mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=lee-carter%20model" title=" lee-carter model"> lee-carter model</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20inverse%20gaussian%20distribution" title=" normal inverse gaussian distribution"> normal inverse gaussian distribution</a> </p> <a href="https://publications.waset.org/abstracts/39750/lee-carter-mortality-forecasting-method-with-dynamic-normal-inverse-gaussian-mortality-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8534</span> Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20I.%20Tselentis">Dimitrios I. Tselentis</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20P.%20Washington"> Simon P. Washington</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20forecasting" title="demand forecasting">demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20Efficient%20Vehicles%20%28EEVs%29" title=" Energy Efficient Vehicles (EEVs)"> Energy Efficient Vehicles (EEVs)</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20methodologies%20review" title=" forecasting methodologies review"> forecasting methodologies review</a>, <a href="https://publications.waset.org/abstracts/search?q=methodological%20approaches" title=" methodological approaches"> methodological approaches</a> </p> <a href="https://publications.waset.org/abstracts/15014/forecasting-future-demand-for-energy-efficient-vehicles-a-review-of-methodological-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8533</span> Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laidi%20Maamar">Laidi Maamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Achwak%20Madani"> Achwak Madani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20El%20Ahdj%20Abdellah"> Abdellah El Ahdj Abdellah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20regression%20%28SVR%29" title="support vector regression (SVR)">support vector regression (SVR)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20algorithms" title=" optimization algorithms"> optimization algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20solar%20radiation%20prediction" title=" global solar radiation prediction"> global solar radiation prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models" title=" hybrid forecasting models"> hybrid forecasting models</a> </p> <a href="https://publications.waset.org/abstracts/186719/support-vector-regression-combined-with-different-optimization-algorithms-to-predict-global-solar-radiation-on-horizontal-surfaces-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8532</span> Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Benga">E. Benga</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Tengen"> T. Tengen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alugongo"> A. Alugongo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodic%20inventory" title="periodic inventory">periodic inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20inventory" title=" continuous inventory"> continuous inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20inventory" title=" hybrid inventory"> hybrid inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20plant" title=" manufacturing plant"> manufacturing plant</a> </p> <a href="https://publications.waset.org/abstracts/64054/hybrid-inventory-model-optimization-under-uncertainties-a-case-study-in-a-manufacturing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8531</span> Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Sopipan">N. Sopipan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20Models" title="ARIMA Models">ARIMA Models</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20smoothing" title=" exponential smoothing"> exponential smoothing</a>, <a href="https://publications.waset.org/abstracts/search?q=Holt-Winter%20model" title=" Holt-Winter model"> Holt-Winter model</a> </p> <a href="https://publications.waset.org/abstracts/14834/forecasting-model-for-rainfall-in-thailand-case-study-nakhon-ratchasima-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8530</span> A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diteboho%20Xaba">Diteboho Xaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolentino%20Mpeta"> Kolentino Mpeta</a>, <a href="https://publications.waset.org/abstracts/search?q=Tlotliso%20Qejoe"> Tlotliso Qejoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARIMA" title="ARIMA">ARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20metrices" title=" error metrices"> error metrices</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20selection" title=" model selection"> model selection</a>, <a href="https://publications.waset.org/abstracts/search?q=SETAR" title=" SETAR"> SETAR</a> </p> <a href="https://publications.waset.org/abstracts/57052/a-comparative-analysis-of-arima-and-threshold-autoregressive-models-on-exchange-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8529</span> Forecasting Model to Predict Dengue Incidence in Malaysia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20Wan%20Zakiyatussariroh">W. H. Wan Zakiyatussariroh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Nasuhar"> A. A. Nasuhar</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Y.%20Wan%20Fairos"> W. Y. Wan Fairos</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20A.%20Nazatul%20Shahreen"> Z. A. Nazatul Shahreen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting dengue incidence in a population can provide useful information to facilitate the planning of the public health intervention. Many studies on dengue cases in Malaysia were conducted but are limited in modeling the outbreak and forecasting incidence. This article attempts to propose the most appropriate time series model to explain the behavior of dengue incidence in Malaysia for the purpose of forecasting future dengue outbreaks. Several seasonal auto-regressive integrated moving average (SARIMA) models were developed to model Malaysia’s number of dengue incidence on weekly data collected from January 2001 to December 2011. SARIMA (2,1,1)(1,1,1)52 model was found to be the most suitable model for Malaysia’s dengue incidence with the least value of Akaike information criteria (AIC) and Bayesian information criteria (BIC) for in-sample fitting. The models further evaluate out-sample forecast accuracy using four different accuracy measures. The results indicate that SARIMA (2,1,1)(1,1,1)52 performed well for both in-sample fitting and out-sample evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20modeling" title="time series modeling">time series modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Box-Jenkins" title=" Box-Jenkins"> Box-Jenkins</a>, <a href="https://publications.waset.org/abstracts/search?q=SARIMA" title=" SARIMA"> SARIMA</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a> </p> <a href="https://publications.waset.org/abstracts/1823/forecasting-model-to-predict-dengue-incidence-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8528</span> Short Life Cycle Time Series Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shalaka%20Kadam">Shalaka Kadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Apte"> Dinesh Apte</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagar%20Mainkar"> Sagar Mainkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecast" title="forecast">forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20life%20cycle%20product" title=" short life cycle product"> short life cycle product</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20judgement" title=" structured judgement"> structured judgement</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/33435/short-life-cycle-time-series-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8527</span> Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Setianingrum">Anita Setianingrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Oki%20S.%20Jaya"> Oki S. Jaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuherman%20Rustam"> Zuherman Rustam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20time%20series" title=" fuzzy time series"> fuzzy time series</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20forecasting" title=" stock forecasting"> stock forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=SVR" title=" SVR"> SVR</a> </p> <a href="https://publications.waset.org/abstracts/62703/adaptive-neuro-fuzzy-inference-system-model-based-on-support-vector-regression-for-stock-time-series-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8526</span> Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Thakur">Sneha Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Karmakar"> Sanjeev Karmakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title="long short-term memory">long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20level" title=" groundwater level"> groundwater level</a> </p> <a href="https://publications.waset.org/abstracts/171101/groundwater-level-prediction-using-hybrid-particle-swarm-optimization-long-short-term-memory-model-and-performance-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8525</span> A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavan%20K.%20Rallabandi">Pavan K. Rallabandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20C.%20Patidar"> Kailash C. Patidar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title="hybrid systems">hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20markov%20models" title=" hidden markov models"> hidden markov models</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20networks" title=" recurrent neural networks"> recurrent neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20finite%20state%20automata" title=" deterministic finite state automata"> deterministic finite state automata</a> </p> <a href="https://publications.waset.org/abstracts/37759/a-hybrid-system-of-hidden-markov-models-and-recurrent-neural-networks-for-learning-deterministic-finite-state-automata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=285">285</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=286">286</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20forecasting%20models&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10