CINXE.COM

Search results for: electric field stress

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electric field stress</title> <meta name="description" content="Search results for: electric field stress"> <meta name="keywords" content="electric field stress"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electric field stress" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electric field stress"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12738</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electric field stress</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12738</span> Electric Field Investigation in MV PILC Cables with Void Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Alsharif">Mohamed A. Alsharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20A.%20Wallace"> Peter A. Wallace</a>, <a href="https://publications.waset.org/abstracts/search?q=Donald%20M.%20Hepburn"> Donald M. Hepburn</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengke%20Zhou"> Chengke Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MV%20PILC%20cables" title="MV PILC cables">MV PILC cables</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model%2FCOMSOL%20multiphysics" title=" finite element model/COMSOL multiphysics"> finite element model/COMSOL multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress" title=" electric field stress"> electric field stress</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge%20degradation" title=" partial discharge degradation "> partial discharge degradation </a> </p> <a href="https://publications.waset.org/abstracts/18993/electric-field-investigation-in-mv-pilc-cables-with-void-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12737</span> Localising Gauss’s Law and the Electric Charge Induction on a Conducting Sphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirapat%20Lookrak">Sirapat Lookrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anol%20Paisal"> Anol Paisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space debris has numerous manifestations, including ferro-metalize and non-ferrous. The electric field will induce negative charges to split from positive charges inside the space debris. In this research, we focus only on conducting materials. The assumption is that the electric charge density of a conducting surface is proportional to the electric field on that surface due to Gauss's Law. We are trying to find the induced charge density from an external electric field perpendicular to a conducting spherical surface. An object is a sphere on which the external electric field is not uniform. The electric field is, therefore, considered locally. The localised spherical surface is a tangent plane, so the Gaussian surface is a very small cylinder, and every point on a spherical surface has its own cylinder. The electric field from a circular electrode has been calculated in near-field and far-field approximation and shown Explanation Touchless maneuvering space debris orbit properties. The electric charge density calculation from a near-field and far-field approximation is done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-field%20approximation" title="near-field approximation">near-field approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=far-field%20approximation" title=" far-field approximation"> far-field approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20Gauss%E2%80%99s%20law" title=" localized Gauss’s law"> localized Gauss’s law</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20charge%20density" title=" electric charge density"> electric charge density</a> </p> <a href="https://publications.waset.org/abstracts/150159/localising-gausss-law-and-the-electric-charge-induction-on-a-conducting-sphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12736</span> One-Dimensional Numerical Simulation of the Nonlinear Instability Behavior of an Electrified Viscoelastic Liquid Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fang%20Li">Fang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xie-Yuan%20Yin"> Xie-Yuan Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xie-Zhen%20Yin"> Xie-Zhen Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Instability and breakup of electrified viscoelastic liquid jets are involved in various applications such as inkjet printing, fuel atomization, the pharmaceutical industry, electrospraying, and electrospinning. Studying on the instability of electrified viscoelastic liquid jets is of theoretical and practical significance. We built a one-dimensional electrified viscoelastic model to study the nonlinear instability behavior of a perfecting conducting, slightly viscoelastic liquid jet under a radial electric field. The model is solved numerically by using an implicit finite difference scheme together with a boundary element method. It is found that under a radial electric field a viscoelastic liquid jet still evolves into a beads-on-string structure with a thin filament connecting two adjacent droplets as in the absence of an electric field. A radial electric field exhibits limited influence on the decay of the filament thickness in the nonlinear evolution process of a viscoelastic jet, in contrast to its great enhancing effect on the linear instability of the jet. On the other hand, a radial electric field can induce axial non-uniformity of the first normal stress difference within the filament. Particularly, the magnitude of the first normal stress difference near the midpoint of the filament can be greatly decreased by a radial electric field. Decreasing the extensional stress by a radial electric field may found applications in spraying, spinning, liquid bridges and others. In addition, the effect of a radial electric field on the formation of satellite droplets is investigated on the parametric plane of the dimensionless wave number and the electrical Bond number. It is found that satellite droplets may be formed for a larger axial wave number at a larger radial electric field. The present study helps us gain insight into the nonlinear instability characteristics of electrified viscoelastic liquid jets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20instability" title="non linear instability">non linear instability</a>, <a href="https://publications.waset.org/abstracts/search?q=one-dimensional%20models" title=" one-dimensional models"> one-dimensional models</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20electric%20fields" title=" radial electric fields"> radial electric fields</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20liquid%20jets" title=" viscoelastic liquid jets "> viscoelastic liquid jets </a> </p> <a href="https://publications.waset.org/abstracts/51607/one-dimensional-numerical-simulation-of-the-nonlinear-instability-behavior-of-an-electrified-viscoelastic-liquid-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12735</span> An Autopilot System for Static Zone Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanchun%20Zuo">Yanchun Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingao%20Liu"> Yingao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Yu"> Le Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Run%20Huang"> Run Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Guo"> Lixin Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autopilot%20mini-car%20measurement%20system" title="autopilot mini-car measurement system">autopilot mini-car measurement system</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20detection" title=" electric field detection"> electric field detection</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20map" title=" field map"> field map</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20zone%20measurement" title=" static zone measurement"> static zone measurement</a> </p> <a href="https://publications.waset.org/abstracts/153711/an-autopilot-system-for-static-zone-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12734</span> Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Mikkelsen">Alexander Mikkelsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Khobaib%20Khobaib"> Khobaib Khobaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Rozynek"> Zbigniew Rozynek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drop%20deformation" title="drop deformation">drop deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20induced%20stress" title=" electric field induced stress"> electric field induced stress</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic%20flows" title=" electrohydrodynamic flows"> electrohydrodynamic flows</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20structuring%20at%20drop%20interfaces" title=" particle structuring at drop interfaces"> particle structuring at drop interfaces</a> </p> <a href="https://publications.waset.org/abstracts/93941/electric-field-induced-deformation-of-particle-laden-drops-and-structuring-of-surface-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12733</span> Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khobaib%20Khobaib">Khobaib Khobaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Mikkelsen"> Alexander Mikkelsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Rozynek"> Zbigniew Rozynek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drop%20deformation%20and%20relaxation" title="drop deformation and relaxation">drop deformation and relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic%20flow" title=" electrohydrodynamic flow"> electrohydrodynamic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20assembly" title=" particle assembly"> particle assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/94038/deformation-of-particle-laden-droplet-in-viscous-liquid-under-dc-electric-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12732</span> An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Kumru">C. F. Kumru</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kocatepe"> C. Kocatepe</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Arikan"> O. Arikan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transmission%20line" title=" energy transmission line"> energy transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=pylon" title=" pylon"> pylon</a> </p> <a href="https://publications.waset.org/abstracts/29819/an-investigation-on-electric-field-distribution-around-380-kv-transmission-line-for-various-pylon-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">728</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12731</span> Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Chemlal">Radia Chemlal</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Mehenni"> Salim Mehenni</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahbia%20Leila%20Anes-boulahbal"> Dahbia Leila Anes-boulahbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Kherat"> Mohamed Kherat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Mameri"> Nabil Mameri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20electric%20field" title="continuous electric field">continuous electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=RD%20cancer%20cell%20line" title=" RD cancer cell line"> RD cancer cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage" title=" voltage"> voltage</a> </p> <a href="https://publications.waset.org/abstracts/159144/study-of-the-effect-of-the-continuous-electric-field-on-the-rd-cancer-cell-line-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12730</span> Kerr Electric-Optic Measurement of Electric Field and Space Charge Distribution in High Voltage Pulsed Transformer Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongda%20Guo">Hongda Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxia%20Sima"> Wenxia Sima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerr" title=" Kerr"> Kerr</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charge" title=" space charge"> space charge</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20oil" title=" transformer oil"> transformer oil</a> </p> <a href="https://publications.waset.org/abstracts/48379/kerr-electric-optic-measurement-of-electric-field-and-space-charge-distribution-in-high-voltage-pulsed-transformer-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12729</span> The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Santalunai">S. Santalunai</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Thosdeekoraphat"> T. Thosdeekoraphat</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thongsopa"> C. Thongsopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitor%20copper%20plates" title="capacitor copper plates">capacitor copper plates</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distribution" title=" electric field distribution"> electric field distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20heating" title=" dielectric heating"> dielectric heating</a>, <a href="https://publications.waset.org/abstracts/search?q=grains" title=" grains"> grains</a> </p> <a href="https://publications.waset.org/abstracts/10956/the-effect-of-electric-field-distributions-on-grains-and-insect-for-dielectric-heating-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12728</span> Mechanic and Thermal Analysis on an 83 kW Electric Motorcycle: A First-Principles Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mart%C3%ADn%20Felipe%20Garc%C3%ADa%20Romero">Martín Felipe García Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Mondrag%C3%B3n%20Escamilla"> Nancy Mondragón Escamilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismael%20Araujo%20Vargas"> Ismael Araujo Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Basurto%20Rios"> Viviana Basurto Rios</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Cano%20Pulido"> Kevin Cano Pulido</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Enrique%20Vel%C3%A1zquez%20Elisondo"> Pedro Enrique Velázquez Elisondo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a preliminary prototype of an 83 kW all-electric motorbike since, nowadays, electric motorbikes have advanced drastically in their technology in such a way that lately, there has been a boom in the field of competition of medium power electric vehicles. The field of electric vehicle racing mainly pursues the aim of obtaining an optimal performance of all the motorbike components in order to obtain a safe racing vehicle fast enough while looking for the stability of all the systems onboard. A general description of the project is given up to date, detailing the parts of the system, integration, numerical estimations, and a rearrangement proposal of the actual prototype with the aim to mechanically and thermally improve the vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20motorcycle" title="electric motorcycle">electric motorcycle</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic%20analysis" title=" mechanic analysis"> mechanic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a> </p> <a href="https://publications.waset.org/abstracts/157620/mechanic-and-thermal-analysis-on-an-83-kw-electric-motorcycle-a-first-principles-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12727</span> Nonlinear Pollution Modelling for Polymeric Outdoor Insulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahisham%20Abd%20Rahman">Rahisham Abd Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distributions" title="electric field distributions">electric field distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20layer" title=" pollution layer"> pollution layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title=" dynamic model"> dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20outdoor%20insulators" title=" polymeric outdoor insulators"> polymeric outdoor insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a> </p> <a href="https://publications.waset.org/abstracts/29392/nonlinear-pollution-modelling-for-polymeric-outdoor-insulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12726</span> Weak Electric Fields Enhance Growth and Nutritional Quality of Kale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=So-Ra%20Lee">So-Ra Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Min%20Oh"> Myung-Min Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, plants growing on the earth are under the influence of natural electric fields and may even require exposure of the electric field to survive. Electric signals have been observed within plants and seem to play an important role on various metabolic processes, but their role is not fully understood. In this study, we attempted to explore the response of plants under external electric fields in kale (Brassica oleracea var. acephala). The plants were hydroponically grown for 28 days in a plant factory. Electric currents at 10, 50 and 100 mA were supplied to nutrient solution for 3 weeks. Additionally, some of the plants were cultivated in a Faraday cage to remove the natural electric field. Kale plants exposed to electric fields had higher fresh weight than the control and plants in Faraday cage. Absence of electric field caused a significant decrease in shoot dry weight and root growth. Leaf area also showed a similar response with shoot fresh weight. Supplying weak electric stimulation enhanced nutritional quality including total phenolic content and antioxidant capacity. This work provides basic information on the effects of electric fields on plants and is a meaningful attempt for developing a new economical technology to increase crop productivity and quality by applying an electric field. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (717001-07-02-HD240). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroculture" title="electroculture">electroculture</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20signal" title=" electric signal"> electric signal</a>, <a href="https://publications.waset.org/abstracts/search?q=faraday%20cage" title=" faraday cage"> faraday cage</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a> </p> <a href="https://publications.waset.org/abstracts/93267/weak-electric-fields-enhance-growth-and-nutritional-quality-of-kale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12725</span> Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang">Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang"> Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structures" title="smart structures">smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=piezolamintes" title=" piezolamintes"> piezolamintes</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20electric%20field" title=" strong electric field"> strong electric field</a> </p> <a href="https://publications.waset.org/abstracts/60778/simulation-of-piezoelectric-laminated-smart-structure-under-strong-electric-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12724</span> A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lahcene%20Boukelkoul">Lahcene Boukelkoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20engineering" title="power engineering">power engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=radiated%20electromagnetic%20fields" title=" radiated electromagnetic fields"> radiated electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning-induced%20voltages" title=" lightning-induced voltages"> lightning-induced voltages</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20electric%20field" title=" lightning electric field"> lightning electric field</a> </p> <a href="https://publications.waset.org/abstracts/7041/a-comprehensive-approach-in-calculating-the-impact-of-the-ground-on-radiated-electromagnetic-fields-due-to-lightning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12723</span> The Impact of Space Charges on the Electromechanical Constraints in HVDC Power Cable Containing Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Medoukali">H. Medoukali</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zegnini"> B. Zegnini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation techniques in high-voltage cables rely heavily on chemically synapsed polyethylene. The latter may contain manufacturing defects such as small cavities, for example. The presence of the cavity affects the distribution of the electric field at the level of the insulating layer; this change in the electric field is affected by the presence of different space charge densities within the insulating material. This study is carried out by performing simulations to determine the distribution of the electric field inside the insulator. The simulations are based on the creation of a two-dimensional model of a high-voltage cable of 154 kV using the COMSOL Multiphysics software. Each time we study the effect of changing the space charge density of on the electromechanical Constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COMSOL%20multiphysics" title="COMSOL multiphysics">COMSOL multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC" title=" HVDC"> HVDC</a>, <a href="https://publications.waset.org/abstracts/search?q=microcavities" title=" microcavities"> microcavities</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charges" title=" space charges"> space charges</a>, <a href="https://publications.waset.org/abstracts/search?q=XLPE" title=" XLPE"> XLPE</a> </p> <a href="https://publications.waset.org/abstracts/158346/the-impact-of-space-charges-on-the-electromechanical-constraints-in-hvdc-power-cable-containing-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12722</span> Potential Distribution and Electric Field Analysis around a Polluted Outdoor Polymeric Insulator with Broken Sheds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Kara">Adel Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Bayadi"> Abdelhafid Bayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Terrab"> Hocine Terrab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study of electric field distribution along of 72 kV polymeric outdoor insulators with broken sheds. Different cases of damaged insulators are modeled and both of clean and polluted cases. By 3D finite element analysis using the software package COMSOL Multiphysics 4.3b. The obtained results of potential and the electrical field distribution around insulators by 3D simulation proved that finite element computations is useful tool for studying insulation electrical field distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distributions" title="electric field distributions">electric field distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator" title=" insulator"> insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=broken%20sheds" title=" broken sheds"> broken sheds</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20distributions" title=" potential distributions"> potential distributions</a> </p> <a href="https://publications.waset.org/abstracts/31053/potential-distribution-and-electric-field-analysis-around-a-polluted-outdoor-polymeric-insulator-with-broken-sheds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12721</span> A Model of Preventing Global Financial Crisis: Gauss Law Model Proposal Used in Electrical Field Calculations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arzu%20K.%20Kamberli">Arzu K. Kamberli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article examines the relationship between economics and physics, starting with Adam Smith, with a new econophysics approach in Economics-Physics with the Gauss Law model proposal using for the Electric Field calculation, which will allow us to anticipate the Global Financial Crisis. For this purpose, the similarities between the Gauss Law using the electric field calculations and the global financial crisis have been explained on the formula, and a model has been suggested to predict the risks of the financial systems from the electricity field calculations. Thus, this study is expected to help for preventing the Global Financial Crisis with the contribution of the science of economics and physics from the aspect of econophysics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=econophysics" title="econophysics">econophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20system" title=" financial system"> financial system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss%20law" title=" Gauss law"> Gauss law</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20financial%20crisis" title=" global financial crisis"> global financial crisis</a> </p> <a href="https://publications.waset.org/abstracts/83799/a-model-of-preventing-global-financial-crisis-gauss-law-model-proposal-used-in-electrical-field-calculations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12720</span> Electric Field Effect on the Rise of Single Bubbles during Boiling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Masoudnia">N. Masoudnia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fatahi"> M. Fatahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20bubbles" title="single bubbles">single bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=boiling" title=" boiling"> boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=effect" title=" effect "> effect </a> </p> <a href="https://publications.waset.org/abstracts/50072/electric-field-effect-on-the-rise-of-single-bubbles-during-boiling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12719</span> Electric Field Analysis of XLPE, Cross-Linked Polyethylene Covered Aerial Line and Insulator Lashing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Gu">Jyh-Cherng Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Ta%20Yang"> Ming-Ta Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dai-Ling%20Tsai"> Dai-Ling Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both sparse lashing and dense lashing are applied to secure overhead XLPE (cross-linked polyethylene) covered power lines on ceramic insulators or HDPE polymer insulators. The distribution of electric field in and among the lashing wires, the XLPE power lines and insulators in normal clean condition and when conducting materials such as salt, metal particles, dust, smoke or acidic smog are present is studied in this paper. The ANSYS Maxwell commercial software is used in this study for electric field analysis. Although the simulation analysis is performed assuming ideal conditions due to the constraints of the simulation software, the result may not be the same as in real situation but still be of sufficient practical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20intensity" title="electric field intensity">electric field intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator" title=" insulator"> insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=XLPE%20covered%20aerial%20line" title=" XLPE covered aerial line"> XLPE covered aerial line</a>, <a href="https://publications.waset.org/abstracts/search?q=empty" title=" empty"> empty</a> </p> <a href="https://publications.waset.org/abstracts/54018/electric-field-analysis-of-xlpe-cross-linked-polyethylene-covered-aerial-line-and-insulator-lashing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12718</span> Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Narumitbowonkul">U. Narumitbowonkul</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Keangin"> P. Keangin</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rattanadecho"> P. Rattanadecho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both numerical and experimental investigation of the temperature distribution and electric field in a natural rubber glove (NRG) during microwave heating are studied. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20energy" title=" microwave energy"> microwave energy</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber%20glove" title=" natural rubber glove"> natural rubber glove</a> </p> <a href="https://publications.waset.org/abstracts/17194/numerical-and-experimental-analysis-of-temperature-distribution-and-electric-field-in-a-natural-rubber-glove-during-microwave-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12717</span> Electromagnetic Simulation of Underground Cable Perforation by Nail </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Nour%20El%20Islam%20Ayad">Ahmed Nour El Islam Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Rouibah"> Tahar Rouibah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Krika"> Wafa Krika</a>, <a href="https://publications.waset.org/abstracts/search?q=Houari%20Boudjella"> Houari Boudjella</a>, <a href="https://publications.waset.org/abstracts/search?q=Larab%20Moulay"> Larab Moulay</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Benhamida"> Farid Benhamida</a>, <a href="https://publications.waset.org/abstracts/search?q=Selma%20Benmoussa"> Selma Benmoussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to evaluate the electromagnetic field of an underground cable of very high voltage perforated by nail. The aim of this work shows a numerical simulation of the electromagnetic field of 400 kV line after perforation through a ferrous nail in four positions for the pinch pin at different distances. From results for a longitudinal section, we observe and evaluate the distribution and the variation of the electromagnetic field in the cable and the earth. When the nail approaches the underground power cable, the distribution of the magnetic field changes and takes several forms, the magnetic field increase and become very important when the nail breaks the metal screen and will produce a significant leak of the electric field, characterized by a large electric arc and or electric discharge to earth and then a fault in the electrical network. These electromagnetic analysis results help to detect defects in underground cables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underground" title="underground">underground</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic" title=" electromagnetic"> electromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nail" title=" nail"> nail</a>, <a href="https://publications.waset.org/abstracts/search?q=defect" title=" defect"> defect</a> </p> <a href="https://publications.waset.org/abstracts/114023/electromagnetic-simulation-of-underground-cable-perforation-by-nail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12716</span> Vibration Damping Properties of Electrorheological Materials Based on Chitosan/Perlite Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Cabuk">M. Cabuk</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yavuz"> M. Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Yesil"> T. A. Yesil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20I.%20Unal"> H. I. Unal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrorheological (ER) fluids are a class of smart materials exhibiting reversible changes in their rheological and mechanical properties under an applied electric field (E). ER fluids generally are composed of polarisable solid particles dispersed in non-conducting oil. ER fluids are fluids which exhibit. The resistance to motion of the ER fluid can be controlled by adjusting the applied E, due to their fast and reversible changes in their rheological properties presence of E. In this study, a series of chitosan/expanded perlite (CS/EP) composites with different chitosan mass fractions (10%, 20%, and 50%) was used. Characterizations of the composites were carried out by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) techniques. Antisedimentation stability and dielectric properties of the composites were also determined. The effects of volume fraction, electric field strength, shear rate, shear stress, and temperature onto ER properties of the CS/EP composite particles dispersed in silicone oil (SO) were investigated in detail. Vibration damping behavior of the CS/EP composites were determined as a function of frequence, storage (Gʹ) and loss (Gʹ ʹ) moduli. It was observed that ER response of the CS/EP/SO ER fluids increased with increasing electric field strength and exhibited the typical shear thinning non-Newtonian viscoelastic behaviors with increasing shear rate. The maximum yield stress was obtained with 1250 Pa under E = 3 kV/mm. Further, the CS/EP/SO ER fluids were observed to sensitive to vibration control by showing reversible viscosity enhancements (Gʹ > Gʹ ʹ). Acknowledgements: The authors thank the TÜBİTAK (214Z199) for the financial support of this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=electrorheology" title=" electrorheology"> electrorheology</a>, <a href="https://publications.waset.org/abstracts/search?q=perlite" title=" perlite"> perlite</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a> </p> <a href="https://publications.waset.org/abstracts/90617/vibration-damping-properties-of-electrorheological-materials-based-on-chitosanperlite-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12715</span> Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderazak%20Guettaf">Abderazak Guettaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20magnetic%20potential%20vector%20and%20electric%20scalar%20potential%20%28A" title=" 3D magnetic potential vector and electric scalar potential (A"> 3D magnetic potential vector and electric scalar potential (A</a>, <a href="https://publications.waset.org/abstracts/search?q=V%29%20formulation" title=" V) formulation"> V) formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finished%20volumes" title=" finished volumes"> finished volumes</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20plasma" title=" annular plasma"> annular plasma</a> </p> <a href="https://publications.waset.org/abstracts/31587/numerical-analysis-of-3d-electromagnetic-fields-in-annular-induction-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12714</span> Levels of Students’ Understandings of Electric Field Due to a Continuous Charged Distribution: A Case Study of a Uniformly Charged Insulating Rod</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanida%20Sujarittham">Thanida Sujarittham</a>, <a href="https://publications.waset.org/abstracts/search?q=Narumon%20Emarat"> Narumon Emarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintawat%20Tanamatayarat"> Jintawat Tanamatayarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20Arayathanitkul"> Kwan Arayathanitkul</a>, <a href="https://publications.waset.org/abstracts/search?q=Suchai%20Nopparatjamjomras"> Suchai Nopparatjamjomras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric field is an important fundamental concept in electrostatics. In high-school, generally Thai students have already learned about definition of electric field, electric field due to a point charge, and superposition of electric fields due to multiple-point charges. Those are the prerequisite basic knowledge students holding before entrancing universities. In the first-year university level, students will be quickly revised those basic knowledge and will be then introduced to a more complicated topic&mdash;electric field due to continuous charged distributions. We initially found that our freshman students, who were from the Faculty of Science and enrolled in the introductory physic course (SCPY 158), often seriously struggled with the basic physics concepts&mdash;superposition of electric fields and inverse square law and mathematics being relevant to this topic. These also then resulted on students&rsquo; understanding of advanced topics within the course such as Gauss&#39;s law, electric potential difference, and capacitance. Therefore, it is very important to determine students&#39; understanding of electric field due to continuous charged distributions. The open-ended question about sketching net electric field vectors from a uniformly charged insulating rod was administered to 260 freshman science students as pre- and post-tests. All of their responses were analyzed and classified into five levels of understandings. To get deep understanding of each level, 30 students were interviewed toward their individual responses. The pre-test result found was that about 90% of students had incorrect understanding. Even after completing the lectures, there were only 26.5% of them could provide correct responses. Up to 50% had confusions and irrelevant ideas. The result implies that teaching methods in Thai high schools may be problematic. In addition for our benefit, these students&rsquo; alternative conceptions identified could be used as a guideline for developing the instructional method currently used in the course especially for teaching electrostatics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20conceptions" title="alternative conceptions">alternative conceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20of%20continuous%20charged%20distributions" title=" electric field of continuous charged distributions"> electric field of continuous charged distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20square%20law" title=" inverse square law"> inverse square law</a>, <a href="https://publications.waset.org/abstracts/search?q=levels%20of%20student%20understandings" title=" levels of student understandings"> levels of student understandings</a>, <a href="https://publications.waset.org/abstracts/search?q=superposition%20principle" title=" superposition principle"> superposition principle</a> </p> <a href="https://publications.waset.org/abstracts/39690/levels-of-students-understandings-of-electric-field-due-to-a-continuous-charged-distribution-a-case-study-of-a-uniformly-charged-insulating-rod" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12713</span> Rising of Single and Double Bubbles during Boiling and Effect of Electric Field in This Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Gholam%20Ale%20Mohammad">Masoud Gholam Ale Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Hafezi%20Birgani"> Mojtaba Hafezi Birgani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes in the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20and%20double%20bubbles" title="single and double bubbles">single and double bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=boiling" title=" boiling"> boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=rising" title=" rising"> rising</a> </p> <a href="https://publications.waset.org/abstracts/87592/rising-of-single-and-double-bubbles-during-boiling-and-effect-of-electric-field-in-this-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12712</span> Bi-Axial Stress Effects on Barkhausen-Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Balogh">G. Balogh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Szab%C3%B3"> I. A. Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=P.Z.%20Kov%C3%A1cs"> P.Z. Kovács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical stress has a strong effect on the magnitude of the Barkhausen-noise in structural steels. Because the measurements are performed at the surface of the material, for a sample sheet, the full effect can be described by a biaxial stress field. The measured Barkhausen-noise is dependent on the orientation of the exciting magnetic field relative to the axis of the stress tensor. The sample inhomogenities including the residual stress also modifies the angular dependence of the measured Barkhausen-noise. We have developed a laboratory device with a cross like specimen for bi-axial bending. The measuring head allowed performing excitations in two orthogonal directions. We could excite the two directions independently or simultaneously with different amplitudes. The simultaneous excitation of the two coils could be performed in phase or with a 90 degree phase shift. In principle this allows to measure the Barkhausen-noise at an arbitrary direction without moving the head, or to measure the Barkhausen-noise induced by a rotating magnetic field if a linear superposition of the two fields can be assumed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barkhausen-noise" title="Barkhausen-noise">Barkhausen-noise</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-axial%20stress" title=" bi-axial stress"> bi-axial stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20measuring" title=" stress measuring"> stress measuring</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20dependency" title=" stress dependency"> stress dependency</a> </p> <a href="https://publications.waset.org/abstracts/21369/bi-axial-stress-effects-on-barkhausen-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12711</span> Electric Field Impact on the Biomass Gasification and Combustion Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zake">M. Zake</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Barmina"> I. Barmina</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Valdmanis"> R. Valdmanis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kolmickovs"> A. Kolmickovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3 % and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10 % increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10 % <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodynamic%20control" title="electrodynamic control">electrodynamic control</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a> </p> <a href="https://publications.waset.org/abstracts/32948/electric-field-impact-on-the-biomass-gasification-and-combustion-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12710</span> Study of Ground Level Electric Field under 800 kV HVDC Unipolar Laboratory level Transmission line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Urukundu">K. Urukundu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Aravind"> K. A. Aravind</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20M.%20Nirgude"> Pradeep M. Nirgude</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sandhya"> K. Sandhya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transmission of bulk power over a long distance through HVDC transmission lines is gaining importance. This is because the transfer of bulk power through HVDC, from generating stations to load centers over long distances is more economical. However, these HVDC transmission lines create environmental and interference effects under the right of way of the line due to the ionization of the surrounding atmosphere in the vicinity of HVDC lines. The measurement of ground-level electric field and ionic current density is essential for the evaluation of human effects due to electromagnetic interference of the HVDC transmission line. In this paper, experimental laboratory results of the ground-level electric field under the miniature model of 800 kV monopole HVDC line of length 8 meters are presented in lateral configuration with different heights of the conductor from the ground plane. The results are compared with the simulated test results obtained through Finite Element based software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bundle" title="bundle">bundle</a>, <a href="https://publications.waset.org/abstracts/search?q=conductor" title=" conductor"> conductor</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal" title=" hexagonal"> hexagonal</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20line" title=" transmission line"> transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=ground-level%20electric%20field" title=" ground-level electric field"> ground-level electric field</a> </p> <a href="https://publications.waset.org/abstracts/145989/study-of-ground-level-electric-field-under-800-kv-hvdc-unipolar-laboratory-level-transmission-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12709</span> Feedback Matrix Approach for Relativistic Runaway Electron Avalanches Dynamics in Complex Electric Field Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Egor%20Stadnichuk">Egor Stadnichuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relativistic runaway electron avalanches (RREA) are a widely accepted source of thunderstorm gamma-radiation. In regions with huge electric field strength, RREA can multiply via relativistic feedback. The relativistic feedback is caused both by positron production and by runaway electron bremsstrahlung gamma-rays reversal. In complex multilayer thunderstorm electric field structures, an additional reactor feedback mechanism appears due to gamma-ray exchange between separate strong electric field regions with different electric field directions. The study of this reactor mechanism in conjunction with the relativistic feedback with Monte Carlo simulations or by direct solution of the kinetic Boltzmann equation requires a significant amount of computational time. In this work, a theoretical approach to study feedback mechanisms in RREA physics is developed. It is based on the matrix of feedback operators construction. With the feedback matrix, the problem of the dynamics of avalanches in complex electric structures is reduced to the problem of finding eigenvectors and eigenvalues. A method of matrix elements calculation is proposed. The proposed concept was used to study the dynamics of RREAs in multilayer thunderclouds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20Gamma-ray%20flashes" title="terrestrial Gamma-ray flashes">terrestrial Gamma-ray flashes</a>, <a href="https://publications.waset.org/abstracts/search?q=thunderstorm%20ground%20enhancement" title=" thunderstorm ground enhancement"> thunderstorm ground enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20runaway%20electron%20avalanches" title=" relativistic runaway electron avalanches"> relativistic runaway electron avalanches</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-rays" title=" gamma-rays"> gamma-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=high-energy%20atmospheric%20physics" title=" high-energy atmospheric physics"> high-energy atmospheric physics</a>, <a href="https://publications.waset.org/abstracts/search?q=TGF" title=" TGF"> TGF</a>, <a href="https://publications.waset.org/abstracts/search?q=TGE" title=" TGE"> TGE</a>, <a href="https://publications.waset.org/abstracts/search?q=thunderstorm" title=" thunderstorm"> thunderstorm</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20feedback" title=" relativistic feedback"> relativistic feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20feedback" title=" reactor feedback"> reactor feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20model" title=" reactor model"> reactor model</a> </p> <a href="https://publications.waset.org/abstracts/142458/feedback-matrix-approach-for-relativistic-runaway-electron-avalanches-dynamics-in-complex-electric-field-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=424">424</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=425">425</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10