CINXE.COM
Search results for: Manashi Adhikary
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Manashi Adhikary</title> <meta name="description" content="Search results for: Manashi Adhikary"> <meta name="keywords" content="Manashi Adhikary"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Manashi Adhikary" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Manashi Adhikary"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Manashi Adhikary</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20N.%20Patel">Subodh N. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Pusty"> Abhijit Pusty</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashi%20Adhikary"> Manashi Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Bhattacharyya"> Sandip Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm虏 and 495掳C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20scale" title=" oxide scale"> oxide scale</a>, <a href="https://publications.waset.org/abstracts/search?q=superheater%20tube" title=" superheater tube"> superheater tube</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20fatigue" title=" thermomechanical fatigue"> thermomechanical fatigue</a> </p> <a href="https://publications.waset.org/abstracts/107171/failure-and-stress-analysis-of-super-heater-tubes-of-a-67-tph-coke-dry-quenching-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Failure Analysis of Low Relaxation Prestressed High Carbon Steel Wire During Drawing Operation: A Metallurgical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souvik%20Das">Souvik Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20%20Bhattacharya"> Sandip Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Mukhopadhyay"> Goutam Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashi%20Adhikary"> Manashi Adhikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wires breakages during cold drawing are a complex phenomenon; wire breakages may be induced by improper wire-rod quality, inappropriate heat-treated microstructure, and/or lubrication breakdown on the wire surface. A comprehensive metallurgical investigation of failed/broken wire samples is therefore essential for understanding the origin of failure. Frequent breakage of wires during drawing is a matter of serious concern to the wire drawers as it erodes their already slim margins through reduced productivity and loss in yield. The present paper highlights the failure investigation of wires of Low Relaxation Prestressed High Carbon grade during cold drawing due to entrapment of hard constituents detached from the roller entry guide during rolling operations. The hardness measurement of this entrapped location indicates 54.9 Rockwell Hardness as against the rest portion 33.4 Rockwell Hardness. The microstructure chemical analysis and X-ray mapping analysis data of the entrapment location confirmed complex chromium carbide originated from D2-steel used in entry guide during the rolling process. Since the harder entrapped phase could not be deformed in the same manner as the parent phase, the failure of the wire rod occurs during hot rolling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LRPC" title="LRPC">LRPC</a>, <a href="https://publications.waset.org/abstracts/search?q=D2-steel" title=" D2-steel"> D2-steel</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium%20carbide" title=" chromium carbide"> chromium carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20guide" title=" roller guide"> roller guide</a> </p> <a href="https://publications.waset.org/abstracts/106416/failure-analysis-of-low-relaxation-prestressed-high-carbon-steel-wire-during-drawing-operation-a-metallurgical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Study of 'Rolled in Scale' and 'Rolled in Scum' in Automotive Grade Cold-Rolled Annealed Steel Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumendu%20Monia">Soumendu Monia</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Jain"> Vaibhav Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Hrishikesh%20Jugade"> Hrishikesh Jugade</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashi%20Adhikary"> Manashi Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Mukhopadhyay"> Goutam Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 'Rolled in scale' (RIS) and 'Rolled in Scum' (RISc) are two superficial surface defects on cold rolled and annealed steel sheets which affect the aesthetics of surface and thereby that of the end-product. Both the defects are believed to be originating from distinctly different sources having different mechanisms of formation. However, due to their similar physical appearance, RIS and RISc are generally confused with each other and hence attaining the exact root cause for elimination of the defect becomes difficult. RIS appears irregular in shape, sometimes scattered, and always oriented in rolling direction. RISc is generally oval shaped, having identifiable pointed edges and mostly oriented in rolling direction. Visually, RIS appears to be greyish in colour whereas RISc is whitish in colour. Both the defects have quite random occurrence and do not leave any imprints on the reverse-side of the sheet. In the current study, an attempt has been made to differentiate these two similar looking surface defects using various metallographic and characterization techniques. Systematic experiments have been carried out to identify possible mechanisms of formation of these defects. Detailed characterization revealed basic differences between RIS and RISc with respect to their surface morphology. To summarize, RIS was observed as a residue of an otherwise under-pickled scale patch on surface, after it has been subjected to cold rolling and annealing in a batch/continuous furnace. Whereas RISc was found to be a localized rubbing of the surface, at the time of cold rolling itself, resulting in a rough surface texture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annealing" title="annealing">annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=rolled%20in%20scale" title=" rolled in scale"> rolled in scale</a>, <a href="https://publications.waset.org/abstracts/search?q=rolled%20in%20scum" title=" rolled in scum"> rolled in scum</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20panel" title=" skin panel "> skin panel </a> </p> <a href="https://publications.waset.org/abstracts/107183/study-of-rolled-in-scale-and-rolled-in-scum-in-automotive-grade-cold-rolled-annealed-steel-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Unusual Weld Failures of Rotary Compressor during Hydraulic Tests: Analysis revealed Boron Induced Cracking in Fusion Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaushal%20Kishore">Kaushal Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Jain"> Vaibhav Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Hrishikesh%20Jugade"> Hrishikesh Jugade</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Hadas"> Saurabh Hadas</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashi%20Adhikary"> Manashi Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Mukhopadhyay"> Goutam Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Bhattacharyya"> Sandip Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotary air compressors in air conditioners are used to suck excessive volume of air from the atmosphere in a small space to provide drive to the components attached to them. Hydraulic test is one of the most important methods to decide the suitability of these components for usage. In the present application, projection welding is used to join the hot rolled steel sheets after forming for manufacturing of air compressors. These sheets belong to two different high strength low alloy (HSLA) steel grades. It was observed that one batch of compressors made of a particular grade was cracking from the weld, whereas those made of another grade were passing the hydraulic tests. Cracking was repeatedly observed from the weld location. A detailed comparative study of the compressors which failed and successfully passed pressure tests has been presented. Location of crack initiation was identified to be the interface of fusion zone/heat affected zone. Shear dimples were observed on the fracture surface confirming the ductile mode of failure. Hardness profile across the weld revealed a sharp rise in hardness in the fusion zone. This was attributed to the presence of untempered martensitic lath in the fusion zone. A sharp metallurgical notch existed at the heat affected zone/fusion zone interface due to transition in microstructure from acicular ferrite and bainite in HAZ to untempered martensite in the fusion zone. In contrast, welds which did not fail during the pressure tests showed a smooth hardness profile with no abnormal rise in hardness in the fusion zone. The bainitic microstructure was observed in the fusion zone of successful welds. This difference in microstructural constituents in the fusion zone was attributed to the presence of a small amount of boron (0.002 wt. %) in the sheets which were cracking. Trace amount of boron is known to substantially increase the hardenability of HSLA steel, and cooling rate during resolidification in the fusion zone is sufficient to form martensite. Post-weld heat treatment was recommended to transform untempered martensite to tempered martensite with lower hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressor" title="compressor">compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=weld" title=" weld"> weld</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=hardenability" title=" hardenability"> hardenability</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20low%20alloy%20steel" title=" high strength low alloy steel"> high strength low alloy steel</a> </p> <a href="https://publications.waset.org/abstracts/107209/unusual-weld-failures-of-rotary-compressor-during-hydraulic-tests-analysis-revealed-boron-induced-cracking-in-fusion-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Root Cause Analysis of a Catastrophically Failed Output Pin Bush Coupling of a Raw Material Conveyor Belt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaushal%20Kishore">Kaushal Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=Suman%20Mukhopadhyay"> Suman Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Susovan%20Das"> Susovan Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Manashi%20Adhikary"> Manashi Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Bhattacharyya"> Sandip Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In integrated steel plants, conveyor belts are widely used for transferring raw materials from one location to another. An output pin bush coupling attached with a conveyor transferring iron ore fines and fluxes failed after two years of service life. This led to an operational delay of approximately 15 hours. This study is focused on failure analysis of the coupling and recommending counter-measures to prevent any such failures in the future. Investigation consisted of careful visual observation, checking of operating parameters, stress calculation and analysis, macro and micro-fractography, material characterizations like chemical and metallurgical analysis and tensile and impact testings. The fracture occurred from an unusually sharp double step. There were multiple corrosion pits near the step that aggravated the situation. Inner contact surface of the coupling revealed differential abrasion that created a macroscopic difference in the height of the component. This pointed towards misalignment of the coupling beyond a threshold limit. In addition to these design and installation issues, material of the coupling did not meet the quality standards. These were made up of grey cast iron having graphite morphology intermediate between random distribution (Type A) and rosette pattern (Type B). This manifested as a marked reduction in impact toughness and tensile strength of the component. These findings corroborated well with the brittle mode of fracture that might have occurred during minor impact loading while loading of conveyor belt with raw materials from height. Simulated study was conducted to examine the effect of corrosion pits on tensile and impact toughness of grey cast iron. It was observed that pitting marginally reduced tensile strength and ductility. However, there was marked (up to 45%) reduction in impact toughness due to pitting. Thus, it became evident that failure of the coupling occurred due to combination of factors like inferior material, misalignment, poor step design and corrosion pitting. Recommendation for life enhancement of coupling included the use of tougher SG 500/7 grade, incorporation of proper fillet radius for the step, correction of alignment and application of corrosion resistant organic coating to prevent pitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brittle%20fracture" title="brittle fracture">brittle fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=cast%20iron" title=" cast iron"> cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20step" title=" double step"> double step</a>, <a href="https://publications.waset.org/abstracts/search?q=pitting" title=" pitting"> pitting</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20impact%20tests" title=" simulated impact tests"> simulated impact tests</a> </p> <a href="https://publications.waset.org/abstracts/107213/root-cause-analysis-of-a-catastrophically-failed-output-pin-bush-coupling-of-a-raw-material-conveyor-belt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Polyolefin Fiber Reinforced Self-Compacting Concrete Replacing 20% Cement by Fly Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suman%20Kumar%20Adhikary">Suman Kumar Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Zymantus%20Rudzionis"> Zymantus Rudzionis</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Balakrishnan"> Arvind Balakrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the behavior of concrete鈥檚 workability in a fresh state and compressive and flexural strength in a hardened state with the addition of polyolefin macro fibers. Four different amounts (3kg/m3, 4.5kg/m3, 6kg/m3 and 9kg/m3) of polyolefin macro fibers mixed in concrete mixture to observe the workability and strength properties difference between the concrete specimens. 20% class C type fly ash added is the concrete as replacement of cement. The water-cement ratio(W/C) of those concrete mix was 0.35. Masterglenium SKY 700 superplasticizer was added to the concrete mixture for better results. Slump test was carried out for determining the flowability. On 7th, 14th and 28th day of curing process compression strength tests were done and on 28th day flexural strength test and CMOD test were carried to differentiate the strength properties and post-cracking behavior of concrete samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=polyolefin%20fibers" title=" polyolefin fibers"> polyolefin fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title=" fiber reinforced concrete"> fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CMOD%20test%20of%20concrete" title=" CMOD test of concrete"> CMOD test of concrete</a> </p> <a href="https://publications.waset.org/abstracts/101795/polyolefin-fiber-reinforced-self-compacting-concrete-replacing-20-cement-by-fly-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> MAS Capped CdTe/ZnS Core/Shell Quantum Dot Based Sensor for Detection of Hg(II)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilip%20Saikia">Dilip Saikia</a>, <a href="https://publications.waset.org/abstracts/search?q=Suparna%20Bhattacharjee"> Suparna Bhattacharjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirab%20%20%20Adhikary"> Nirab Adhikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this piece of work, we have presented the synthesis and characterization of CdTe/ZnS core/shell (CS) quantum dots (QD). CS QDs are used as a fluorescence probe to design a simple cost-effective and ultrasensitive sensor for the detection of toxic Hg(II) in an aqueous medium. Mercaptosuccinic acid (MSA) has been used as a capping agent for the synthesis CdTe/ZnS CS QD. Photoluminescence quenching mechanism has been used in the detection experiment of Hg(II). The designed sensing technique shows a remarkably low detection limit of about 1 picomolar (pM). Here, the CS QDs are synthesized by a simple one-pot aqueous method. The synthesized CS QDs are characterized by using advanced diagnostics tools such as UV-vis, Photoluminescence, XRD, FTIR, TEM and Zeta potential analysis. The interaction between CS QDs and the Hg(II) ions results in the quenching of photoluminescence (PL) intensity of QDs, via the mechanism of excited state electron transfer. The proposed mechanism is explained using cyclic voltammetry and zeta potential analysis. The designed sensor is found to be highly selective towards Hg (II) ions. The analysis of the real samples such as drinking water and tap water has been carried out and the CS QDs show remarkably good results. Using this simple sensing method we have designed a prototype low-cost electronic device for the detection of Hg(II) in an aqueous medium. The findings of the experimental results of the designed sensor is crosschecked by using AAS analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title="photoluminescence">photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/69326/mas-capped-cdtezns-coreshell-quantum-dot-based-sensor-for-detection-of-hgii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Assessing the Efficiency of Sports Stadiums in India: An Explorative Study of Socio-Economic Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivam%20Adhikary">Shivam Adhikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sports stadiums are not merely public amenities for entertainment and recreation for a city. They are buildings with extremely high construction investment and running costs which holds the supreme responsibility of social integration, nation building and financial upliftment of the community apart from its primary motive of conducting and promotion of the sports. But the present scenario of sports performances at international events and growing physical inactivity among the youth in India show that the sports facilities are far behind in achieving these goals. A pilot study of Indira Gandhi Sports complex in Vijayawada, Andhra Pradesh gave an indication of underutilization of sports stadia in India. This probed a crying need for the assessment of the present usage and functioning of the major sports (non-cricketing) facilities within the country. This paper assesses the sustainability of stadiums built for national and international sporting (non-cricket) events in terms of sporting, socio-cultural and financial sustainability by mainly focusing on their usage in non-event days. The criteria for the assessment and comparison of the stadiums within the nation is done using World Stadium Index and GDI (Gross Domestic Income) while with international counterparts using WSI and GNI (Gross National Income). The pilot case of India Gandhi Sports complex in Vijayawada is further investigated for a deeper understanding of the present usage, the existing issues for its underutilization and the way-forward (at least a few) to reach its sustainable potential. The paper finally concludes with the discussion on whether sports stadiums are being utilized to its financial potential and if it is at par with its international counterparts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20sustainability" title="economic sustainability">economic sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20sustainability" title=" social sustainability"> social sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20infrastructure" title=" sports infrastructure"> sports infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=stadium%20efficiency" title=" stadium efficiency"> stadium efficiency</a> </p> <a href="https://publications.waset.org/abstracts/82058/assessing-the-efficiency-of-sports-stadiums-in-india-an-explorative-study-of-socio-economic-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monojit%20Manna">Monojit Manna</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpan%20Adhikary"> Arpan Adhikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20crowdsensing" title="mobile crowdsensing">mobile crowdsensing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20recruitment" title=" vehicle recruitment"> vehicle recruitment</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20coverage" title=" sensing coverage"> sensing coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20collection" title=" data collection"> data collection</a> </p> <a href="https://publications.waset.org/abstracts/163900/mobile-crowdsensing-scheme-by-predicting-vehicle-mobility-using-deep-learning-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Dealing with Buckling Effect in Snorkel by Finite Element Analysis: A Life Enhancement Approach in CAS-OB Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Nath%20Patel">Subodh Nath Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Raman"> Raja Raman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mananshi%20Adhikary"> Mananshi Adhikary</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Mathur"> Jitendra Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Bhattacharyya"> Sandip Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composition adjustment by sealed argon bubbling鈥搊xygen blowing (CAS-OB) process is a process designed for adjusting steel composition and temperature during secondary metallurgy. One of the equipment in the said process is a snorkel or bell, fixed to a movable bracket. Snorkel serves the purpose of feeding ferroalloys into the liquid metal simultaneously removing gases to the gas cleaning system through its port at its top. The bell-shaped snorkel consists of two parts. The upper part has an inside liner, and the lower part is lined on both side with high-alumina castable reinforced with 2% stainless steel needles. Both the parts are coupled with a flange bolt system. These flanges were found to get buckled during operation, and the gap was generating between them. This problem was chronic since its. It was expected to give a life of 80 heats, but it was failing within 45-50 heats. After every 25-30 heats, it had to be repaired by changing and/or tightening its nuts and bolts. Visual observation, microstructural analysis through optical microscopes and SEM, hardness measurement and thermal strain calculation were carried out to find out the root cause of this problem. The calculated thermal strain was compared with actual thermal strain; comparison of the two revealed that thermal strain was responsible for buckling. Finite element analysis (FEA) was carried out to reaffirm the effect temperature on the flanges. FEA was also used in the modification in the design of snorkel flange to accommodate thermal strain. Thermal insulation was also recommended which increased its life from 45 heats to 65 heats, impacting business process positively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAS%20OB%20process" title="CAS OB process">CAS OB process</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=snorkel" title=" snorkel"> snorkel</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20strain" title=" thermal strain"> thermal strain</a> </p> <a href="https://publications.waset.org/abstracts/107211/dealing-with-buckling-effect-in-snorkel-by-finite-element-analysis-a-life-enhancement-approach-in-cas-ob-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>