CINXE.COM
Search results for: Association rules Mining
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Association rules Mining</title> <meta name="description" content="Search results for: Association rules Mining"> <meta name="keywords" content="Association rules Mining"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Association rules Mining" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Association rules Mining"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4293</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Association rules Mining</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4293</span> Association Rules Mining Task Using Metaheuristics: Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abir%20Derouiche">Abir Derouiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdesslem%20Layeb"> Abdesslem Layeb </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Association Rule Mining (ARM) is one of the most popular data mining tasks and it is widely used in various areas. The search for association rules is an NP-complete problem that is why metaheuristics have been widely used to solve it. The present paper presents the ARM as an optimization problem and surveys the proposed approaches in the literature based on metaheuristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Optimization" title="Optimization">Optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Metaheuristics" title=" Metaheuristics"> Metaheuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining" title=" Association rules Mining"> Association rules Mining</a> </p> <a href="https://publications.waset.org/abstracts/120254/association-rules-mining-task-using-metaheuristics-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4292</span> Association Rules Mining and NOSQL Oriented Document in Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Senhadji">Sarra Senhadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Imene%20Benzeguimi"> Imene Benzeguimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohra%20Yagoub"> Zohra Yagoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apriori" title="Apriori">Apriori</a>, <a href="https://publications.waset.org/abstracts/search?q=Association%20rules%20mining" title=" Association rules mining"> Association rules mining</a>, <a href="https://publications.waset.org/abstracts/search?q=Big%20Data" title=" Big Data"> Big Data</a>, <a href="https://publications.waset.org/abstracts/search?q=Data%20Mining" title=" Data Mining"> Data Mining</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=MongoDB" title=" MongoDB"> MongoDB</a>, <a href="https://publications.waset.org/abstracts/search?q=NoSQL" title=" NoSQL"> NoSQL</a> </p> <a href="https://publications.waset.org/abstracts/126206/association-rules-mining-and-nosql-oriented-document-in-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4291</span> A Method for Reduction of Association Rules in Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20De%20Castro%20Rodrigues">Diego De Castro Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Lisboa%20Rocha"> Marcelo Lisboa Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20M.%20De%20Q.%20Trevisan"> Daniela M. De Q. Trevisan</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20Dias%20Da%20Conceicao"> Marcos Dias Da Conceicao</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Rosa"> Gabriel Rosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rommel%20M.%20Barbosa"> Rommel M. Barbosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title=" association rules"> association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=rules%20reduction" title=" rules reduction"> rules reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/110517/a-method-for-reduction-of-association-rules-in-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4290</span> An Optimized Association Rule Mining Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archana%20Singh">Archana Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Agarwal"> Jyoti Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Rana"> Ajay Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20item%20set%20counting" title=" dynamic item set counting"> dynamic item set counting</a>, <a href="https://publications.waset.org/abstracts/search?q=FP-growth" title=" FP-growth"> FP-growth</a>, <a href="https://publications.waset.org/abstracts/search?q=friendly%20algorithm" title=" friendly algorithm"> friendly algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a> </p> <a href="https://publications.waset.org/abstracts/2437/an-optimized-association-rule-mining-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4289</span> Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanyarat%20Bussaban">Kanyarat Bussaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunyanuth%20Kularbphettong"> Kunyanuth Kularbphettong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining%20technique" title=" data mining technique"> data mining technique</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20priori%20algorithm" title=" a priori algorithm"> a priori algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery" title=" knowledge discovery"> knowledge discovery</a> </p> <a href="https://publications.waset.org/abstracts/2673/analysis-of-users-behavior-on-book-loan-log-based-on-association-rule-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4288</span> Semi-Automatic Method to Assist Expert for Association Rules Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amdouni%20Hamida">Amdouni Hamida</a>, <a href="https://publications.waset.org/abstracts/search?q=Gammoudi%20Mohamed%20Mohsen"> Gammoudi Mohamed Mohsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to help the expert to validate association rules extracted from data, some quality measures are proposed in the literature. We distinguish two categories: objective and subjective measures. The first one depends on a fixed threshold and on data quality from which the rules are extracted. The second one consists on providing to the expert some tools in the objective to explore and visualize rules during the evaluation step. However, the number of extracted rules to validate remains high. Thus, the manually mining rules task is very hard. To solve this problem, we propose, in this paper, a semi-automatic method to assist the expert during the association rule's validation. Our method uses rule-based classification as follow: (i) We transform association rules into classification rules (classifiers), (ii) We use the generated classifiers for data classification. (iii) We visualize association rules with their quality classification to give an idea to the expert and to assist him during validation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=rule-based%20classification" title=" rule-based classification"> rule-based classification</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20quality" title=" classification quality"> classification quality</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/29443/semi-automatic-method-to-assist-expert-for-association-rules-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4287</span> Spatio-Temporal Data Mining with Association Rules for Lake Van</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tolga%20Aydin">Tolga Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fatih%20Alaeddino%C4%9Flu"> M. Fatih Alaeddinoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apriori%20algorithm" title="apriori algorithm">apriori algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title=" association rules"> association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=spatio-temporal%20data" title=" spatio-temporal data"> spatio-temporal data</a> </p> <a href="https://publications.waset.org/abstracts/31190/spatio-temporal-data-mining-with-association-rules-for-lake-van" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4286</span> An Efficient Data Mining Technique for Online Stores</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Al-Shalabi">Mohammed Al-Shalabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Obeidat"> Alaa Obeidat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In any food stores, some items will be expired or destroyed because the demand on these items is infrequent, so we need a system that can help the decision maker to make an offer on such items to improve the demand on the items by putting them with some other frequent item and decrease the price to avoid losses. The system generates hundreds or thousands of patterns (offers) for each low demand item, then it uses the association rules (support, confidence) to find the interesting patterns (the best offer to achieve the lowest losses). In this paper, we propose a data mining method for determining the best offer by merging the data mining techniques with the e-commerce strategy. The task is to build a model to predict the best offer. The goal is to maximize the profits of a store and avoid the loss of products. The idea in this paper is the using of the association rules in marketing with a combination with e-commerce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title=" association rules"> association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence" title=" confidence"> confidence</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20stores" title=" online stores"> online stores</a> </p> <a href="https://publications.waset.org/abstracts/3171/an-efficient-data-mining-technique-for-online-stores" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4285</span> Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizka%20Aisha%20Rahmi%20Hariadi">Rizka Aisha Rahmi Hariadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Ou-Yang"> Chao Ou-Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Cheng%20Wang"> Han-Cheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesri%20Govindaraju"> Rajesri Govindaraju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patient%20re-coming" title="patient re-coming">patient re-coming</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20check-up" title=" medical check-up"> medical check-up</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20examination" title=" health examination"> health examination</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20pattern%20mining" title=" sequential pattern mining"> sequential pattern mining</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title=" association rules"> association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=discriminant%20analysis" title=" discriminant analysis"> discriminant analysis</a> </p> <a href="https://publications.waset.org/abstracts/27462/predicting-medical-check-up-patient-re-coming-using-sequential-pattern-mining-and-association-rules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4284</span> An Adaptive Distributed Incremental Association Rule Mining System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewale%20O.%20Ogunde">Adewale O. Ogunde</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Folorunso"> Olusegun Folorunso</a>, <a href="https://publications.waset.org/abstracts/search?q=Adesina%20S.%20Sodiya"> Adesina S. Sodiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptivity" title="adaptivity">adaptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20association%20rule%20mining" title=" distributed association rule mining"> distributed association rule mining</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20mining" title=" incremental mining"> incremental mining</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20agents" title=" mobile agents"> mobile agents</a> </p> <a href="https://publications.waset.org/abstracts/10014/an-adaptive-distributed-incremental-association-rule-mining-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4283</span> On an Approach for Rule Generation in Association Rule Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Chandra">B. Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery" title="knowledge discovery">knowledge discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rule%20mining" title=" association rule mining"> association rule mining</a>, <a href="https://publications.waset.org/abstracts/search?q=antecedent%20support" title=" antecedent support"> antecedent support</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20generation" title=" rule generation"> rule generation</a> </p> <a href="https://publications.waset.org/abstracts/44331/on-an-approach-for-rule-generation-in-association-rule-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4282</span> An Approach for Association Rules Ranking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rihab%20Idoudi">Rihab Idoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Saheb%20Ettabaa"> Karim Saheb Ettabaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Basel%20Solaiman"> Basel Solaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hamrouni"> Kamel Hamrouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical association rules induction is used to discover useful correlations between pertinent concepts from large medical databases. Nevertheless, ARs algorithms produce huge amount of delivered rules and do not guarantee the usefulness and interestingness of the generated knowledge. To overcome this drawback, we propose an ontology based interestingness measure for ARs ranking. According to domain expert, the goal of the use of ARs is to discover implicit relationships between items of different categories such as ‘clinical features and disorders’, ‘clinical features and radiological observations’, etc. That’s to say, the itemsets which are composed of ‘similar’ items are uninteresting. Therefore, the dissimilarity between the rule’s items can be used to judge the interestingness of association rules; the more different are the items, the more interesting the rule is. In this paper, we design a distinct approach for ranking semantically interesting association rules involving the use of an ontology knowledge mining approach. The basic idea is to organize the ontology’s concepts into a hierarchical structure of conceptual clusters of targeted subjects, where each cluster encapsulates ‘similar’ concepts suggesting a specific category of the domain knowledge. The interestingness of association rules is, then, defined as the dissimilarity between corresponding clusters. That is to say, the further are the clusters of the items in the AR, the more interesting the rule is. We apply the method in our domain of interest – mammographic domain- using an existing mammographic ontology called Mammo with the goal of deriving interesting rules from past experiences, to discover implicit relationships between concepts modeling the domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rule" title="association rule">association rule</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20clusters" title=" conceptual clusters"> conceptual clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=interestingness%20measures" title=" interestingness measures"> interestingness measures</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology%20knowledge%20mining" title=" ontology knowledge mining"> ontology knowledge mining</a>, <a href="https://publications.waset.org/abstracts/search?q=ranking" title=" ranking"> ranking</a> </p> <a href="https://publications.waset.org/abstracts/47971/an-approach-for-association-rules-ranking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4281</span> Forecasting Unusual Infection of Patient Used by Irregular Weighted Point Set</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seema%20Vaidya">Seema Vaidya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining association rule is a key issue in data mining. In any case, the standard models ignore the distinction among the exchanges, and the weighted association rule mining does not transform on databases with just binary attributes. This paper proposes a novel continuous example and executes a tree (FP-tree) structure, which is an increased prefix-tree structure for securing compacted, discriminating data about examples, and makes a fit FP-tree-based mining system, FP enhanced capacity algorithm is used, for mining the complete game plan of examples by illustration incessant development. Here, this paper handles the motivation behind making remarkable and weighted item sets, i.e. rare weighted item set mining issue. The two novel brightness measures are proposed for figuring the infrequent weighted item set mining issue. Also, the algorithm are handled which perform IWI which is more insignificant IWI mining. Moreover we utilized the rare item set for choice based structure. The general issue of the start of reliable definite rules is troublesome for the grounds that hypothetically no inciting technique with no other person can promise the rightness of influenced theories. In this way, this framework expects the disorder with the uncommon signs. Usage study demonstrates that proposed algorithm upgrades the structure which is successful and versatile for mining both long and short diagnostics rules. Structure upgrades aftereffects of foreseeing rare diseases of patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rule" title="association rule">association rule</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=IWI%20mining" title=" IWI mining"> IWI mining</a>, <a href="https://publications.waset.org/abstracts/search?q=infrequent%20item%20set" title=" infrequent item set"> infrequent item set</a>, <a href="https://publications.waset.org/abstracts/search?q=frequent%20pattern%20growth" title=" frequent pattern growth"> frequent pattern growth</a> </p> <a href="https://publications.waset.org/abstracts/32862/forecasting-unusual-infection-of-patient-used-by-irregular-weighted-point-set" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4280</span> The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadidja%20Belbachir">Khadidja Belbachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafida%20Belbachir"> Hafida Belbachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20data%20mining" title=" distributed data mining"> distributed data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=partition" title=" partition"> partition</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20algorithms" title=" parallel algorithms"> parallel algorithms</a> </p> <a href="https://publications.waset.org/abstracts/34591/the-parallelization-of-algorithm-based-on-partition-principle-for-association-rules-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4279</span> A Hybrid Recommendation System Based on Association Rules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohammed%20Alsalama">Ahmed Mohammed Alsalama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recommendation systems are widely used in e-commerce applications. The engine of a current recommendation system recommends items to a particular user based on user preferences and previous high ratings. Various recommendation schemes such as collaborative filtering and content-based approaches are used to build a recommendation system. Most of the current recommendation systems were developed to fit a certain domain such as books, articles, and movies. We propose a hybrid framework recommendation system to be applied on two-dimensional spaces (User x Item) with a large number of Users and a small number of Items. Moreover, our proposed framework makes use of both favorite and non-favorite items of a particular user. The proposed framework is built upon the integration of association rules mining and the content-based approach. The results of experiments show that our proposed framework can provide accurate recommendations to users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title=" association rules"> association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=recommendation%20systems" title=" recommendation systems"> recommendation systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a> </p> <a href="https://publications.waset.org/abstracts/15279/a-hybrid-recommendation-system-based-on-association-rules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4278</span> Data Stream Association Rule Mining with Cloud Computing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Suraj%20Aravind">B. Suraj Aravind</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20M.%20Krishna%20Prasad"> M. H. M. Krishna Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20stream" title="data stream">data stream</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rule%20mining" title=" association rule mining"> association rule mining</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=frequent%20itemsets" title=" frequent itemsets"> frequent itemsets</a> </p> <a href="https://publications.waset.org/abstracts/10064/data-stream-association-rule-mining-with-cloud-computing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4277</span> A Theoretical Model for Pattern Extraction in Large Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Usman">Muhammad Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rule%20mining" title="association rule mining">association rule mining</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20warehouses" title=" data warehouses"> data warehouses</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization%20of%20association%20rules" title=" visualization of association rules"> visualization of association rules</a> </p> <a href="https://publications.waset.org/abstracts/80180/a-theoretical-model-for-pattern-extraction-in-large-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4276</span> An Enhanced MEIT Approach for Itemset Mining Using Levelwise Pruning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanvi%20P.%20Patel">Tanvi P. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Warish%20D.%20Patel"> Warish D. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Association rule mining forms the core of data mining and it is termed as one of the well-known methodologies of data mining. Objectives of mining is to find interesting correlations, frequent patterns, associations or casual structures among sets of items in the transaction databases or other data repositories. Hence, association rule mining is imperative to mine patterns and then generate rules from these obtained patterns. For efficient targeted query processing, finding frequent patterns and itemset mining, there is an efficient way to generate an itemset tree structure named Memory Efficient Itemset Tree. Memory efficient IT is efficient for storing itemsets, but takes more time as compare to traditional IT. The proposed strategy generates maximal frequent itemsets from memory efficient itemset tree by using levelwise pruning. For that firstly pre-pruning of items based on minimum support count is carried out followed by itemset tree reconstruction. By having maximal frequent itemsets, less number of patterns are generated as well as tree size is also reduced as compared to MEIT. Therefore, an enhanced approach of memory efficient IT proposed here, helps to optimize main memory overhead as well as reduce processing time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rule%20mining" title="association rule mining">association rule mining</a>, <a href="https://publications.waset.org/abstracts/search?q=itemset%20mining" title=" itemset mining"> itemset mining</a>, <a href="https://publications.waset.org/abstracts/search?q=itemset%20tree" title=" itemset tree"> itemset tree</a>, <a href="https://publications.waset.org/abstracts/search?q=meit" title=" meit"> meit</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20frequent%20pattern" title=" maximal frequent pattern"> maximal frequent pattern</a> </p> <a href="https://publications.waset.org/abstracts/33193/an-enhanced-meit-approach-for-itemset-mining-using-levelwise-pruning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4275</span> Statistical Analysis to Select Evacuation Route</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaky%20Musyarof">Zaky Musyarof</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Yono%20Sutarto"> Dwi Yono Sutarto</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwima%20Rindy%20Atika"> Dwima Rindy Atika</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Fajriya%20Hakim"> R. B. Fajriya Hakim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20pattern%20mining" title=" sequential pattern mining"> sequential pattern mining</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=evacuation%20route" title=" evacuation route"> evacuation route</a> </p> <a href="https://publications.waset.org/abstracts/21873/statistical-analysis-to-select-evacuation-route" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4274</span> Predicting Customer Purchasing Behaviour in Retail Marketing: A Research for a Supermarket Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabri%20Serkan%20G%C3%BCll%C3%BCo%C4%9Flu">Sabri Serkan Güllüoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis can be defined as the process of gathering, recording and researching data related to products and services, in order to learn something. But for marketers, analyses are not only used for learning but also an essential and critical part of the business, because this allows companies to offer products or services which are focused and well targeted. Market analysis also identify market trends, demographics, customer’s buying habits and important information on the competition. Data mining is used instead of traditional research, because it extracts predictive information about customer and sales from large databases. In contrast to traditional research, data mining relies on information that is already available. Simply the goal is to improve the efficiency of supermarkets. In this study, the purpose is to find dependency on products. For instance, which items are bought together, using association rules in data mining. Moreover, this information will be used for improving the profitability of customers such as increasing shopping time and sales of fewer sold items. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rule%20mining" title=" association rule mining"> association rule mining</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20basket%20analysis" title=" market basket analysis"> market basket analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=purchasing" title=" purchasing "> purchasing </a> </p> <a href="https://publications.waset.org/abstracts/3072/predicting-customer-purchasing-behaviour-in-retail-marketing-a-research-for-a-supermarket-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4273</span> Improved FP-Growth Algorithm with Multiple Minimum Supports Using Maximum Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elsayeda%20M.%20Elgaml">Elsayeda M. Elgaml</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20M.%20Ibrahim"> Dina M. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsayed%20A.%20Sallam"> Elsayed A. Sallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FP-growth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=FP-growth" title=" FP-growth"> FP-growth</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20minimum%20supports" title=" multiple minimum supports"> multiple minimum supports</a>, <a href="https://publications.waset.org/abstracts/search?q=Weka%20tool" title=" Weka tool"> Weka tool</a> </p> <a href="https://publications.waset.org/abstracts/28521/improved-fp-growth-algorithm-with-multiple-minimum-supports-using-maximum-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4272</span> Application of Association Rule Using Apriori Algorithm for Analysis of Industrial Accidents in 2013-2014 in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Triano%20Nurhikmat">Triano Nurhikmat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with the progress of science and technology, the development of the industrialized world in Indonesia took place very rapidly. This leads to a process of industrialization of society Indonesia faster with the establishment of the company and the workplace are diverse. Development of the industry relates to the activity of the worker. Where in these work activities do not cover the possibility of an impending crash on either the workers or on a construction project. The cause of the occurrence of industrial accidents was the fault of electrical damage, work procedures, and error technique. The method of an association rule is one of the main techniques in data mining and is the most common form used in finding the patterns of data collection. In this research would like to know how relations of the association between the incidence of any industrial accidents. Therefore, by using methods of analysis association rule patterns associated with combination obtained two iterations item set (2 large item set) when every factor of industrial accidents with a West Jakarta so industrial accidents caused by the occurrence of an electrical value damage = 0.2 support and confidence value = 1, and the reverse pattern with value = 0.2 support and confidence = 0.75. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rule" title="association rule">association rule</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20accidents" title=" industrial accidents"> industrial accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=rules" title=" rules"> rules</a> </p> <a href="https://publications.waset.org/abstracts/68504/application-of-association-rule-using-apriori-algorithm-for-analysis-of-industrial-accidents-in-2013-2014-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4271</span> Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emin%20Gundogar">Emin Gundogar</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Erkayman"> Burak Erkayman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusret%20Sazak"> Nusret Sazak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20performance" title="supply chain performance">supply chain performance</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20measurement" title=" performance measurement"> performance measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a> </p> <a href="https://publications.waset.org/abstracts/9196/assessing-supply-chain-performance-through-data-mining-techniques-a-case-of-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4270</span> Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rezky%20Rifaini">Rezky Rifaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Raden%20Bagus%20Fajriya%20Hakim"> Raden Bagus Fajriya Hakim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title="diagnosis">diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20health%20care" title=" primary health care"> primary health care</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20record" title=" medical record"> medical record</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20pattern%20mining" title=" sequential pattern mining"> sequential pattern mining</a>, <a href="https://publications.waset.org/abstracts/search?q=SPADE%20algorithm" title=" SPADE algorithm"> SPADE algorithm</a> </p> <a href="https://publications.waset.org/abstracts/46321/sequential-pattern-mining-from-data-of-medical-record-with-sequential-pattern-discovery-using-equivalent-classes-spade-algorithm-a-case-study-bolo-primary-health-care-bima" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4269</span> Towards Learning Query Expansion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Bouziri">Ahlem Bouziri</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiraz%20Latiri"> Chiraz Latiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Gaussier"> Eric Gaussier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supervised%20leaning" title="supervised leaning">supervised leaning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=query%20expansion" title=" query expansion"> query expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title=" association rules"> association rules</a> </p> <a href="https://publications.waset.org/abstracts/27524/towards-learning-query-expansion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4268</span> Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamanna%20Goyal">Tamanna Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Divya%20Bansal"> Divya Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Sofat"> Sanjeev Sofat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20measure" title=" similarity measure"> similarity measure</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20approaches" title=" statistical approaches "> statistical approaches </a> </p> <a href="https://publications.waset.org/abstracts/53364/clustering-of-association-rules-of-isis-al-qaeda-based-on-similarity-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4267</span> Spatiotemporal Community Detection and Analysis of Associations among Overlapping Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JooYoung%20Lee">JooYoung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasheed%20Hussain"> Rasheed Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the relationships among communities of users is the key to blueprint the evolution of human society. Majority of people are equipped with GPS devices, such as smart phones and smart cars, which can trace their whereabouts. In this paper, we discover communities of device users based on real locations in a given time frame. We, then, study the associations of discovered communities, referred to as temporal communities, and generate temporal and probabilistic association rules. The rules describe how strong communities are associated. By studying the generated rules, we can automatically extract underlying hierarchies of communities and permanent communities such as work places. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20detection" title=" community detection"> community detection</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution%20of%20communities" title=" evolution of communities"> evolution of communities</a>, <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal" title=" spatiotemporal"> spatiotemporal</a> </p> <a href="https://publications.waset.org/abstracts/62840/spatiotemporal-community-detection-and-analysis-of-associations-among-overlapping-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4266</span> Privacy Preserving in Association Rule Mining on Horizontally Partitioned Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manvar%20Sagar">Manvar Sagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikul%20Virpariya"> Nikul Virpariya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancement in data mining techniques plays an important role in many applications. In context of privacy and security issues, the problems caused by association rule mining technique are investigated by many research scholars. It is proved that the misuse of this technique may reveal the database owner’s sensitive and private information to others. Many researchers have put their effort to preserve privacy in Association Rule Mining. Amongst the two basic approaches for privacy preserving data mining, viz. Randomization based and Cryptography based, the later provides high level of privacy but incurs higher computational as well as communication overhead. Hence, it is necessary to explore alternative techniques that improve the over-heads. In this work, we propose an efficient, collusion-resistant cryptography based approach for distributed Association Rule mining using Shamir’s secret sharing scheme. As we show from theoretical and practical analysis, our approach is provably secure and require only one time a trusted third party. We use secret sharing for privately sharing the information and code based identification scheme to add support against malicious adversaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Privacy" title="Privacy">Privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=Privacy%20Preservation%20in%20Data%20Mining%20%28PPDM%29" title=" Privacy Preservation in Data Mining (PPDM)"> Privacy Preservation in Data Mining (PPDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontally%20partitioned%20database" title=" horizontally partitioned database"> horizontally partitioned database</a>, <a href="https://publications.waset.org/abstracts/search?q=EMHS" title=" EMHS"> EMHS</a>, <a href="https://publications.waset.org/abstracts/search?q=MFI" title=" MFI"> MFI</a>, <a href="https://publications.waset.org/abstracts/search?q=shamir%20secret%20sharing" title=" shamir secret sharing"> shamir secret sharing</a> </p> <a href="https://publications.waset.org/abstracts/20983/privacy-preserving-in-association-rule-mining-on-horizontally-partitioned-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4265</span> Review and Comparison of Associative Classification Data Mining Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzan%20Wedyan">Suzan Wedyan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=associative%20classification" title="associative classification">associative classification</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20ranking" title=" rule ranking"> rule ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20pruning" title=" rule pruning"> rule pruning</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/4191/review-and-comparison-of-associative-classification-data-mining-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4264</span> Analysis of Causality between Defect Causes Using Association Rule Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangdeok%20Lee">Sangdeok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangwon%20Han"> Sangwon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Changtaek%20Hyun"> Changtaek Hyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction defects are major components that result in negative impacts on project performance including schedule delays and cost overruns. Since construction defects generally occur when a few associated causes combine, a thorough understanding of defect causality is required in order to more systematically prevent construction defects. To address this issue, this paper uses association rule mining (ARM) to quantify the causality between defect causes, and social network analysis (SNA) to find indirect causality among them. The suggested approach is validated with 350 defect instances from concrete works in 32 projects in Korea. The results show that the interrelationships revealed by the approach reflect the characteristics of the concrete task and the important causes that should be prevented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causality" title="causality">causality</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20causes" title=" defect causes"> defect causes</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rule%20mining" title=" association rule mining"> association rule mining</a> </p> <a href="https://publications.waset.org/abstracts/51355/analysis-of-causality-between-defect-causes-using-association-rule-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=143">143</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=144">144</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Association%20rules%20Mining&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>